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Abstract— From archaeology to the inspection of subsea
structures, underwater mapping has become critical to many
applications. Because of the balanced trade-off between range
and resolution, multibeam sonars are often used as the primary
sensor in underwater mapping platforms. These sonars output
an image representing the intensity of the received acoustic
echos over space, which must be classified into free and occu-
pied regions before range measurements are determined and
spatially registered. Most classifiers found in the underwater
mapping literature use local thresholding techniques, which are
highly sensitive to noise, outliers, and sonar artifacts typically
found in these images. In this paper we present an overview of
some of the techniques developed in the scope of our work on
sonar-based underwater mapping, with the aim of improving
map accuracy through better segmentation performance. We
also provide experimental results using data collected with
a DIDSON imaging sonar that show that these techniques
improve both segmentation accuracy and robustness to outliers.

I. INTRODUCTION

From wide-area bathymetric charts used as navigation aids
to high-resolution maps of submerged archaeological sites,
maps of underwater scenes have become critical to many
applications. Depending on the end-use of these maps, there
may exist associated accuracy and resolution requirements:
in hydrographic surveys, for instance, the features of interest
are likely to be at least an order of magnitude larger than
those in archaeological or salvage surveys [10]. The accuracy
of these maps is driven mainly by the individual accuracies
of each of three contributors: (i) the pose (position and orien-
tation) estimate, (ii) the mapping sensor measurements, and
(iii) the knowledge of the relative poses between navigation
and mapping sensors, also known as sensor offsets. It is often
the case that the uncertainty associated with the pose estimate
is the dominant error source, as evidenced by both the body
of literature dedicated to the problem of improving underwa-
ter vehicle navigation, and the amount of resources dedicated
to improving that estimate in most vehicle platforms through
better navigation sensors: high frequency Doppler velocity
logs, low-drift inertial measurement units and, in some cases,
acoustic positioning systems such as long and ultra-short
baseline systems. Still, there are situations in which mapping
sensor performance—the main focus of this paper—can be
the dominant error source, particularly for platforms with
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high accuracy navigation systems through use of either
highly accurate navigation sensors or more advanced nav-
igation techniques such as Simultaneous Localization and
Mapping (SLAM). Additionally, for platforms equipped with
less precise navigation sensors, mapping sensor error may
exceed navigation error in short-term regimes.

The most common types of sensors used for underwater
mapping are optic and acoustic. Optic sensors, such as
cameras, structured light sensors, and LIDAR, are capable
of very high resolution measurements (≤ 0.01m), but their
sensitivity to the optical conditions of the water column
(turbidity and color attenuation) often places an upper bound
on their useful range on the order of a few meters. Lack
of ambient light in some applications (particularly those in
deep water) requires camera-based mapping sensors to be
accompanied by a lighting system.

Multibeam sonars are of particular interest as mapping
sensors as they provide a measurement of echo intensity
over range and angle, which can be transformed into a set
of range measurements. If the pose of the sensor and the
nominal orientation of its beams are known, these ranges can
be spatially registered and used to create a three dimensional
map. Like other sonars, multibeam sensors sit on a trade-
off curve between range and resolution, determined by their
bandwidth and center frequency: high frequency sonars can
achieve very high range resolution, but the higher sound
absorption at those frequencies severely limits their range;
conversely, lower frequency sensors have long ranges, but
lower resolutions. Another important aspect impacting the
performance of a multibeam sonar is its beam pattern—it
determines the sensor’s angular resolution in both horizontal
and vertical directions.

The use of multibeam echo sounders for underwater map-
ping dates back a few decades [11]. Featureless sonar-based
mapping techniques rely on classifying sonar images into
“object” and “free-space” regions (segmentation) to produce
estimates of range to objects, which are then spatially regis-
tered using the latest pose estimates. For this reason, range
measurement accuracy is highly dependent on segmentation
performance. Most approaches rely on some type of thresh-
olding of the sonar image, selecting, for each beam, either
the first or strongest return above a threshold. Burguera et
al. explored different approaches to segment images from
a mechanically-swept imaging sonar using standard image
processing operations [5]. Similar techniques were used in
work by Mallios et al. [13], and McVicker et al. [14]. Some
of these implement some form of post-segmentation outlier
rejection, usually by looking at the agreement of the range
measurements of adjacent beams [16], [13].



The use of a fixed threshold in combination with scene-
dependent intensities and sonar artifacts results in incon-
sistent segmentation performance, negatively affecting the
mapping process. In his work on underwater mapping [20],
VanMiddlesworth highlighted many of the challenges in
the use of imaging sonar for mapping, and the difficulties
of mitigating their effects on individual images. Instead,
he argued for thresholding as an adequate segmentation
approach and that mitigation processes (such as outlier
removal) should take place later in the mapping pipeline.
Other applications of sonar image segmentation appear to
take the opposite perspective, and point to more robust
processing techniques. Early work by Clay and Stanton [17],
[18] looked at using sonar echo statistics for fish and seafloor
classification; their work showed that certain differences in
the scene (e.g. the density of a fish school) resulted in
significantly distinct echo statistics, and proposed the use
of the Rayleigh and Rice distributions to model them. In
the context of submarine detection, Abraham, Dugelay, and
Laterveer [6], [12] addressed the problem of reducing the
number of potential detections (clutter removal) in a low-
frequency sonar ping. Intensity distributions were estimated
using the ping in combination with the output from a Page
detector [2]. The segmentation problem was then formulated
as a Markov random field, which was solved using these
distribution estimates and some manually set parameters.
Later work by Abraham et al. [1] addressed the problem
of obtaining these distribution estimates without the use
of a detector, relying instead on expectation-maximization
techniques to determine the parameters of a mixture model.

The aim of this paper is to combine the use of intensity
distribution estimation techniques with more robust formula-
tions of the problem of segmentation of multibeam images,
while also addressing important pre-processing steps that im-
prove performance of both fixed-threshold and probabilistic
classifiers. The paper is structured as follows: we begin with
a short overview of the active sonar equation which we use
to more formally state our problem in section II. Sections
III and IV address techniques to reduce sonar- and channel-
induced distortions in the intensity measurements. Section
V presents the technique used to estimate a mixture model
for the measurements, and how it is used in the segmentation
process. These are then demonstrated in section VI using data
collected during a ship hull inspection field experiment. We
conclude with an overview of the techniques, their strengths
and limitations, and avenues for future improvements.

II. PROBLEM STATEMENT

In its simplest form, an active sonar transmits an acoustic
signal at some time t0 and then samples the received acoustic
signal over some time interval [t0+δ, t0+δ+RTS ], where δ
is the blanking time, TS is the sampling period, and R is the
number of samples. Assuming no occlusions and a constant
sound speed of c, the kth sample of the received signal will
have been reflected by an object at a range rk c2 (δ + kTS),
or, equivalently, in the kth range bin. The received signal
intensity RL for that sample can be modeled using the

(active) sonar equation:

RL = SL− 2TL(rk) + TS +DI (1)

Here, the source level SL is the intensity of the transmitted
acoustic signal at the source, while the directivity index DI
models the variation in that intensity with direction—also
known as its beam pattern. Both parameters are specific
to the actual sonar, with data sheets often reporting the
beam width as the angle for which the index reaches -3dB
(i.e., intensity is halved). The transmission loss TL(r) is a
function of medium properties such as the spreading and
absorption, as well as the distance between the scatterer and
the sonar. Finally, the target strength TS will depend on the
the object’s dimensions and scattering properties [19]. All
of these quantities are expressed in decibels with respect to
a reference pressure (traditionally, 1µPa: dB re 1µPa1).
Since the received signal intensity is quantized, each of the
samples of the received acoustic signal will take values in
the set {0, . . . , L−1}—the output will be a one-dimensional
array of quantized intensity values indexed by range.

A multibeam sonar, comprising an array of transducers,
usually employs beamforming to create a set of virtual beams
that sweep along a plane, each of which can be thought of
as a single-beam sonar as described above2. The output of
a multibeam sonar will be a two-dimensional array (image),
representing quantized intensity measurements over a polar
grid, with each row corresponding to a virtual beam: a sonar
with B beams and R range bins (or equivalently, samples
over time) will output an YB×R array, where yij represents
the quantized average intensity of the received signal for the
ith beam’s jth range bin.

Our problem can then be described in the following way:
we are interested in finding a function f(·) that maps a sonar
scan image Y onto a segmented image X . Each pixel yij
in the sonar scan image (i ∈ {1, ..., B}, j ∈ {1, ..., R})
takes a quantized intensity value in the set {0, ..., L − 1},
whereas each pixel xij in the segmented image is assigned
one of N classes. In the special case when N = 2 we
have a binary classification problem where we are interested
in determining whether or not an object is present at the
physical location of pixel xij . For N > 2 we would be
looking for a more detailed classification of what is at each
pixel (e.g., air bubbles, fish, acoustic artifacts, etc.).

Any classifier will depend on the intensity measurements,
so it is critical that these are as accurate as possible. Ensuring
this is the case requires identifying—and mitigating—the
primary mechanisms through which inaccuracies are intro-
duced. These are primarily related to properties of the sonar
and its surrounding medium.

1For the sake of simplicity, we will omit the reference pressure (1µPa)
and distance (1m) in the remainder of this text, writing simply “dB”.

2Some multibeam sonars employ acoustic lens assemblies to accomplish
beamforming [3], while some others make use of a 2D array to sweep the
beam in two directions and produce a volumetric scan. For simplicity, we
focus our discussion on typical imaging and bathymetric multibeam sonars,
comprising a one-dimensional linear transducer array



(a) Original image

(b) After deconvolution and taper removal

Fig. 1. Artifacts caused by certain beam pattern properties (side lobes and
taper) result in the “ghosting” effect seen in the top image, where multiple
instances of the hull shape are noticeable; these can be corrected for using
the techniques described in Section III.

III. SONAR MODEL

One of the terms of the sonar equation introduced in the
previous section is the directivity index DI , which models
the sonar’s beam pattern—its directional sensitivity. The
beam width of a sonar, defined by the angle at which the
main lobe is 3dB below its maximum value, determines its
angular resolution. The side lobes determine in what other
directions is the sonar the most sensitive—depending on
the difference in amplitude between main and side lobes,
reflections originating from these directions will be more or
less noticeable, introducing inaccuracies in the measurements
and (further) reducing the overall resolution of the sonar.
The effect of these mechanisms is illustrated in Figure 1,
where multiple, fainter instances of the hull shape are clearly
visible, as a result of significant side lobe height. spatially
invariant system h(r, θ) under the effect of additive noise ν:
In order to mitigate these effects, we can model the sonar
image y(r, θ) as the output of a linear, spatially invariant
system h(r, θ) under the effect of additive noise ν:

y(r, θ) = h(r, θ) ∗ x(r, θ) + ν (2)

In this model, x(r, θ) is the original image, also in polar
coordinates (as a function of range r and angle θ). The spatial
invariance assumption equates to requiring the beam pattern
to be the same for all beams and range bins. If we limit
the model described by equation 2 to its angular component
(h(r, θ) = h(θ)), the impulse response corresponds to the
sonar’s beam pattern. Using this model, we can employ
Wiener deconvolution to recover an estimate of the original
image [9]:

x̂(r, θ) = g(r, θ) ∗ y(r, θ) (3)

G(ωθ) =
H∗(ωθ)

|H(ωθ)|2 + SNR(ωθ)−1
(4)

H(ωθ) and SNR(ωθ) are, respectively, the power spectral
densities of the impulse response and signal to noise ratio.

In this discussion, we have made the assumption that the
beam pattern shape—the location, width and magnitude of
lobes and nulls—remains the same for all beams. While
this is not always the case, we can at least mitigate part
of this variation by introducing an angle-varying gain k(θ)
to compensate for the reduction in gain that can be observed
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Fig. 2. Angular impulse response and taper function for the DIDSON. The
angular impulse response h(θ) was determined from the sonar specification
and normalized to have unit energy; the taper function k(θ) was determined
experimentally from the background set described in section VI.

in the beam pattern as we move away from the center beam.
This is illustrated in figure 2, where there is a clear reduction
in response amplitude towards either side of the center beam.

IV. CHANNEL MODEL

The transmission loss term in Equation 1, TL, captures
the attenuation the acoustic signal suffers as it travels from
the sonar to the scatterer and back. This reduction is due
to two phenomena affecting the signal: geometric spreading
over an increasingly large surface as it travels in a dispersive
medium, and absorption by the medium as some of the
energy in the pressure waves is converted to heat.

A. Geometric Spreading

Geometric spreading models the decrease in intensity as
the signal wave front propagates away from the source
along a surface that is increasing in area. Depending on the
sonar and environment, this spreading is often modeled as
spherical or cylindrical, with 1/r2 and 1/r dependencies,
respectively [19]. The transmission loss due to geometric
spreading, in dB.m−1, can be written as:

TLS = 10 log10 (rβ) (5)

where we have used a reference distance of rref = 1m, and
the parameter β models the spreading regime (β = 1 for
cylindrical, β = 2 for spherical).

B. Absorption

Absorption losses model the decrease in signal intensity
caused by dissipation as some of the energy in the signal is
converted to heat. This conversion is driven mainly by vis-
cous and relaxation processes related to the water molecules
and some of the dissolved substances (respectively). These
losses are modeled as:

TLA = αr (6)

where α represents the total absorption, α = αV + αR, due
to both viscous and relaxation processes. These are mainly
dependent on sonar depth and frequency, as well as water
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Fig. 3. Attenuation curves for a 1.8MHz sonar under both cylindrical and
spherical spreading regimes, using α = 1.1 dB.m−1 [19], [4].

salinity and temperature, and models for these are available
in the literature [19, Ch. 5], [4, Ch. 5]. These attenuation
effects are often corrected with a time-varying gain (TVG)
on the sonar, or as a radial gain on the image [16]:

k(r) = k1 log10(r) + k2r + k3 (7)

where, from equations 5 and 6, we would set k1 = 20β
and k2 = 2α. The necessity of ensuring attenuation is
compensated for prior to segmentation is illustrated in figure
3, which shows attenuation values under different spreading
regimes for the sonar used in section VI.

V. SEGMENTATION

In section II we formulated our problem as one where
we want to assign a label to each pixel as a function
of the associated intensity measurement yij . Sections III
and IV presented some of the most important phenomena
affecting those intensity measurements, as well as techniques
that can be used to mitigate them in order to obtain more
accurate intensity estimates. The outcome of these techniques
is shown in figure 1, where most of the artifacts in the raw
sonar image (top) have been successfully removed (bottom),
resulting in a more accurate sonar image.

In this section we focus on using these improved estimates
for the purposes of segmentation: we begin by estimating the
underlying distributions, which are required to characterize
the performance of a simple, local binary classifier. We then
move to a more advanced model where the label assigned to
a site depends not only on the intensity at that site, but also
on those of its neighbors.

Our problem formulation described each multibeam image
as an image YB×R where yij is the intensity of beam i for
the jth range bin. We model this image as a B×R lattice, as
shown in figure 4, where each site (i, j) is treated as a hidden
Markov model, with measurement yij (the intensity of a pixel
in the sonar image), and (hidden) state xij ∈ {1, . . . , N},
describing the scattering at that site.

A. Intensity Distribution Estimates

Treating each site xij as independent of all other states,
we can write the probability distribution associated with its

beam B

...

beam i

...

beam 1

xB1

x11

bin 1 . . .

xij

bin j . . .

xBR

x1R

bin R

Fig. 4. Graphical model for the classification problem: a B × R lattice,
where each site xij represents the range-angle cell (pixel) corresponding to
beam i and range bin j. The sites making up the 4-neighborhood of xij
are shaded in gray.

measurement as a N -component mixture:

pij(y) =

N∑
k=1

πij,kpij(y|k) (8)

where πij,k ∈ {0, 1} and
∑N
k=1 πij,k = 1 for all sites

(i, j) (i.e., πij,k is the indicator variable for xij = k). The
independence assumption, while clearly incorrect3, is used
to significantly simplify our approach, and is commonly
made further along in a mapping pipeline [7]. We have also
implicitly assumed that transmission loss, directivity, and all
other effects unrelated to the presence (and type) of scattering
occurring at site (i, j) have been modeled and corrected.

Under this formulation, the conditional intensity distri-
butions pij,k(y|k) are free to have different parameters for
different sites, radically increasing the dimensionality of the
estimation problem, even for single-parameter distributions.
To address this, we make the additional assumption that these
distributions are identical for all sites:

pij(y) =

N∑
k=1

πij,kp(y|k) (9)

At this point, the conditional distributions are still unknown;
to estimate them, we average equation 9 over all sites (i, j):

p(y) =
1

BR

∑
i,j

pij(y) =

N∑
k=1

πkp(y|k) (10)

where πk ∈ [0, 1] and
∑N
k=1 πk = 1. If p(y|k) are

assumed to follow parametric distributions, the estimation
problem can be framed and solved using techniques such
as expectation-maximization or least-squares, to obtain es-
timates for both πk and the distribution parameters. The
choices for p(y|k) are tied to the application, as the scat-
tering properties depend on the environment—options in-
clude exponential, Rayleigh, and Rice distributions [18], [1].
Whatever the choice, however, the distribution described by
equation 10 should not be treated as stationary (except,

3At the very least, the intensity measurement yij will depend on the
presence or absence of an object in sites (i, 1 . . . j − 1).



perhaps, for static scenes): as the scene changes, so will
the parameters, and the mixture model must be re-estimated
for every new image. To compare p(y) with the empirical
distribution h(y), we use the Kullback-Leibler divergence:

KLD(p, h) =
∑

p(y)log

(
h(y)

p(y)

)
(11)

B. Local classifier: binary hypothesis testing

In the special case where N = 2, equation 10 becomes

p(y) = π1p(y|1) + (1− π1)p(y|2) (12)

Under this model, the maximum a-posteriori (MAP) decision
rule is [15]:

Λ(y)
x=2

≷
x=1

η (13)

where Λ(y) = p(y|2)
p(y|1) is the likelihood function, and η =

π1

1−π1
. Here, we set x = 2 if Λ(y) > η, and x = 1 otherwise.

The fixed thresholding decision rule, commonly found in the
literature, can be written as:

y
x=2

≷
x=1

ε (14)

In this binary hypothesis setting, the probabilities of false
alarm, pFA and detection, pD are also of interest:

pFA = 1− F (y|1) (15)
pD = 1− F (y|0) (16)

where F (y|k) is the conditional cumulative distribution
function. Plotting pD against pFA yields the Receiver Oper-
ating Characteristic (ROC) curve, which helps understand
classifier performance and the trade-off between the two
probabilities. Estimating these is also important when using
occupancy grid techniques later in the mapping pipeline [7].

C. Neighborhood classifier: Markov random field

One of the main drawbacks of the local classifier is that
it fails to account for information in the neighboring sites,
considering only the local intensity value. As illustrated in
figure 4, an alternative is to also consider the label of sites
xkl in the neighborhood of xij , vij when computing the label
assignment to xij . This is done by including the joint label
distribution in the model

p(xij , yij) =
1

Z

∏
ij

Φ(xij , yij)
∏
kl∈vij

Ψ(xij , xkl) (17)

and taking its logarithm, yielding

E(xij , yij) = −ln(Z) +
∑
ij

φ(xij , yij) +
∑
kl∈vij

ψ(xij , xkl)

(18)

where Z is the partition function [6], φ(xij , yij) is the
unary potential (the mixture model previously described),
and ψ(xij , xkl) is the binary potential, often chosen to be a
weighted indicator function on the difference. Techniques
used to solve for the labels X = {xij} include Iterated
Conditional Modes and Simulated Annealing [6], [12].

VI. EXPERIMENTAL RESULTS

A. Experimental Setup

The data used in our experiments was collected using a
DIDSON imaging sonar [3], mounted on a Bluefin HAUV
[8]. The DIDSON was equipped with a concentrator lens,
reducing its vertical beam width from 14◦ to approximately
1.5◦, and operated in High Frequency mode, with a center
frequency of 1.8 MHz. The data used for the development of
these techniques consists of two sets, selected from a larger
ship hull inspection set of almost 42, 000 images:

• “Background” set: 116 images of open water (i.e. empty
space). Care was taken to ensure these did not contain
clutter or targets (e.g. fish).

• “Test” set: a smaller set of just 10 images, representative
of possible scenes (i.e. fish, hull, propeller). and shown
in the left column of figure 7.

Both subsets were acquired with a receiver gain of 20 dB,
and a 9 meter window starting at 2.25 meters.

B. Intensity Distributions

Background: The background set was selected from the
larger hull inspection set in order to better understand the in-
tensity distribution when no objects are present. The images
in this set were pre-processed using the techniques described
in section III to recover more accurate intensity estimates. We
then computed the intensity histograms for each of the range
bins, to determine the need to correct for the phenomena
described in section IV—the results are shown in figure 5,
where we can see that the variation in intensity due to range
is minimal: approximately 5% of full scale at high intensities,
and negligible at the more probable, lower intensities. The
overall distribution (over all ranges and images) is nearly
exponential, save for the higher probability at zero intensity.
In fact, when fitting a model of the form

pY (y|B) = (1− πB)δ(y) + πBλe
−λy (19)

we arrive at πB ≈ 0.312 and λ ≈ 44.6, with a KL divergence
of 4.06×10−4. Here, δ(x) is the indicator function (δ(y) = 1
when y = 0, δ(y) = 0 otherwise). The use of an exponential
distribution is consistent with some of the results found in
the literature [1].

Object: The images in the test set were selected to provide
representative examples of the scenes of potential interest in
a mapping application, for example: different hull geome-
tries, propeller, fish schools. While each of these objects
will certainly have distinct scattering properties, resulting
in significantly different intensity distributions, we make
the simplifying assumption of treating them as different
instances of a particular distribution (namely, the Rayleigh
distribution - equation 20), and estimating its parameter for
every image. This scene-dependence is thus captured in the
distribution’s prior, and scale parameter σ.

pY (y|O) =
y

σ2
e−

y2

2σ2 (20)
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Combining equations 19 and 20 we get the mixture model:

pY (y) = (1− π1 − π2)δ(y) + π1λe
−λy + π2

y

σ2
e−

y2

2σ2

(21)

Least-squares fits of this mixture model to each the his-
tograms of the ten test set images (after pre-processing)
yields the mixture models shown in figure 8, with parameters
listed in table I. From these, we find that the choice of a
Rayleigh-distributed object intensity seems appropriate for
most cases, with σ usually in the interval [0.1, 0.2] and
π2 ∈ [0.01, 0.02]. The background distribution parameters
remain, for the most part, consistent with those estimated
for the background data set: π1 ≈ 0.3 and λ in the range
30 – 50. These parameters are also helpful in estimating the
signal to noise ratio in the images, which we approximate
by SNR ≈ π2

1−π2
≈ 0.02. Still, there are some notable

exceptions, namely, images 6 and 7, with the latter achieving
the largest KL divergence value over the entire set. In the
first case, the faint returns from the partial ensonification
of the rudder result in an incorrect fit with π2 ≈ 0. In the
latter—image 7—the object intensity distribution appears to
be closer to being exponentially-distributed, likely related to
the higher complexity of the scene.

C. Classifier Performance

After estimating the mixture model parameters for the
test set, we use equations 15 and 16 to compute the ROC
curve for each image. From the results, shown in figure
6, we notice some scene-dependence in the classification
performance: for a false positive probability pFA ≈ 1×10−5

(an average of one false detection per sonar image), the
detection probabilities range between 0.2 and 0.4 for the
“fish” images (0, 1, 2, and 3), and between 0.4 and 0.6 for
“hull” images (4, 5, 8, and 9). It is also interesting to note
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Fig. 6. ROC curves for the test images, with random classifier shown as
a dashed black line. Detection probability pD for pFA = 0.001 ranges
from approximately 0.4 (propeller) to 0.95 (rudder), with a more typical
values of 0.6 (fish) and 0.8 (hull). The two extremes (rudder and propeller)
correspond to the worst mixture model fits. For pFA ≈ 1 × 10−5 (an
average of one false positive per image) pD drops to 0.5 or lower.

that images 6 and 7 obtain the best and worst curves for the
set, as a result of poor model parameter estimation.

The third column of figure 7 shows the segmentation
results using MRF segmentation given an initial label assign-
ment provided by the local MAP classifier (equation 13).
We employ Simulated Annealing to estimate the optimal
assignment from an energy minimization formulation of
equation 18, and use a weighted indicator function to model
label mismatch as having a higher energy cost:

ψ(xij , xkl) =
1

2
(1− δ(xij − xkl)) (22)

For comparison, the second column of figure 7 shows the
output of a fixed threshold classifier, with ε = 0.22. The
threshold was chosen in order to keep pFA under 1× 10−5

for typical hull images (an average of 1 false positive
per image) - thus requiring knowledge of the underlying
distributions. Still, fixed threshold results show significantly
worse performance - images 0 and 5 fail to detect a large part
of the returns, likely due to the lower intensity measurements
from low incidence angles; image 9 shows some outliers
despite missing part of the hull.

TABLE I
TEST SET: MIXTURE PARAMETERS

Image π1 λ π2 σ KLD [×10−3]
0 0.292 58.521 0.021 0.131 1.158
1 0.301 42.013 0.015 0.149 0.764
2 0.294 46.006 0.016 0.133 0.565
3 0.294 39.358 0.014 0.138 0.610
4 0.298 50.565 0.011 0.176 1.289
5 0.291 73.630 0.020 0.101 0.665
6 0.312 52.937 0.000 1.000 4.990
7 0.279 26.978 0.070 0.152 7.522
8 0.312 35.356 0.006 0.275 1.612
9 0.310 44.012 0.010 0.191 1.550



Fig. 7. Test data set results: original test images (first column), fixed threshold (second column), and MRF segmentation using local MAP segmentation
for initialization (third column). The test images show several representative scenes for the ship hull inspection task (hull (4,5,8,9), propeller (7), and
rudder (6)), as well as other scenes which are often encountered during inspection: fish schools (0,1,2,3) and seafloor (0). The fixed threshold was set to
ε = 0.22 in order to obtain pFA ≈ 1× 10−5 for the hull images (hence assuming knowledge of the underlying distributions). For the segmented images,
background and object are shown as black and white, respectively. All images are shown in polar coordinates, and were pre-processed to mitigate beam
pattern and taper effects prior to segmentation. Best viewed on a computer.

VII. CONCLUSIONS AND FUTURE WORK

Sections III and IV provided a brief overview of some of
the key phenomena affecting the intensity measurements out-
put by a multibeam sonar. Mitigating sonar artifacts proved
particularly effective despite reliance on strong assumptions
which may not always hold (e.g. the angular component of
the impulse response will not be invariant when imaging
occurs in the sonar’s near-field). Future efforts could look at
relaxing some of these assumptions while working to capture
the radial component of the impulse response function. A
related limitation of the current work also worthy of future
investigation is that it does not account for echo intensity
variation with incidence angle (e.g. model scattering as
Lambertian)—doing so would likely increase the accuracy
of the mixture model and, in turn, that of the classifier, as a
result of greater separation between background and object.

The distribution estimates presented in section VI appear
to be accurate approximations of the empirical distributions,
providing some experimental support for the component
choices for the mixture model. Still, images 6 and 7 illustrate
some of the limitations: a mismatch likely caused by the
inability of the simple two-component mixture model to

capture a great variety of scenes, which could be mitigated by
either increasing the number of components or considering
other distributions (e.g. Weibull). Comparison with other
mixture model estimation techniques, such as expectation-
maximization, would also be desirable, to better assess
feasibility for real-time applications.

While the MRF model has proven successful at captur-
ing some of the dependence between neighboring sites to
produce a more accurate segmentation, there is significant
room from improvement (as can be seen from the number
of outliers still found on the images in the last column of
figure 7), potentially through use of larger neighborhoods.
Conversely, it would also be interesting to explore simpler
model formulations so as to reduce the computational effort,
or to learn linear approximations to these accurate, but
resource-intensive techniques.
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Fig. 8. Mixture models for the test set images: normalized histogram is shown in blue, and mixture model in green. The parameters for these distributions
are listed in table I. Plots are numbered left-to-right: top row corresponds to images 0 (left) and 1 (right). Best viewed on a computer.
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