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Abstract
Autonomous underwater vehicles have the potential to inspect and map indoor

underwater environments, such as spent nuclear fuel pools and ship ballast tanks.
These environments are to be regularly monitored for structural integrity—existing
manual methods are expensive, dangerous and slow. Employing an autonomous
agent presents distinct challenges in SLAM and exploration. This thesis makes contri-
butions in the domains of visual localization and active SLAM for these environments.

In the first work, we propose a novel through-water method for visual localization
using landmarks above the water surface. With dead-reckoning, the vehicle pose
estimate drifts and the errors propagate to the resultant map. Adopting methods from
multimedia photogrammetry in our localization framework, we model refraction at
the water-air interface. To the best of our knowledge, this is the first through-water
method for underwater localization. We evaluate our method via both simulation and
real-world experiments in a test-tank environment.

The second work presents an active SLAM framework for sonar mapping of these
environments. Accurate mapping requires jointly considering the robot trajectory
with the SLAM problem. Building on previous work in mapping and planning, we
devise an exploration policy that bounds pose uncertainty through revisit actions. A
revisit policy is selected based on submap saliency, propagated pose uncertainty and
path information gain. We demonstrate the system in simulation and highlight the
advantages over an uncertainty-agnostic framework.
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Chapter 1

Introduction

1.1 Motivation

Autonomous underwater vehicles (AUVs) can conduct inspection tasks in complex underwater
environments. They have the potential to create high-fidelity maps of such areas with minimal
manual intervention. These include underwater structures like ship-hulls, dams, pipelines, reactor
pressure vessels, spent nuclear fuel (SNF) pools, and ship ballast tanks. These environments are
required to be regularly inspected for ensuring structural integrity and safety. This body of work
focuses on a subset of these environments—indoor underwater environments—such as SNF pools
and ballast tanks. Examples of these environments are shown in Fig. 1.1.

The prevalent workflow for inspecting SNF storage pools is manual, expensive and dangerous.
Human inspectors lower telescopic cameras mounted on poles into the pool to identify structural
deficiencies (Fig. 1.1). The process is slow and prohibitively expensive, with the personnel
position themselves on platforms above the water surface. There is incomplete coverage, as they
perform coarse manipulation of the device and cannot access complex geometries. In ship ballast
tanks, the inspections are usually conducted in the dry-docks and can cost up to 800 thousand
dollars [21]. Moreover, regular inspection is required as seawater accelerates structural corrosion.
AUV inspection can reduce downtime, with inspections during active operation of the ship.

Having established the advantages of robotic inspection, we now consider the sensing capabil-
ities of service AUVs. This generally includes proprioceptive sensors for 6-DoF state estimate,
visual information via onboard camera, and 3-D information from sonar. Visual methods are vi-
able due to excellent visibility and absence of open-sea error sources such as surface disturbances.
Sonar has been successfully used in challenging scenarios, such as bridge and ship-hull inspection
[40, 64]. Attenuation of signals prohibit the use of a global positioning system (GPS), except
when resurfacing. It is required that all sensors are subject to radiation hardening.

Despite this high-precision sensing payload, the uncertainty of vehicle dead-reckoning state
estimates grows. The accumulated drift consequently affects the quality of the generated map. Fig.
1.2 illustrates separate instances of odometry drift and inconsistent global map during inspection.

1
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Figure 1.1: Examples of indoor underwater environments that require regular inspection. (top-left) Status quo of SNF
pool inspection involves human inspectors lowering a camera into the pool [2]. (top-right) and (bottom-right) show
further examples of these environments [3, 4]. (bottom-left) shows an inspection solution for ship ballast tanks with a
drone [1].

These navigational shortcomings are generally handled by simultaneous localization and mapping
(SLAM) frameworks. This is formulated as a probabilistic inference problem over the robot’s
noisy sensor data, and has shown success in the underwater applications [69, 86].

In addition, teleoperation is difficult in cluttered underwater environments. Instead, the vehicle
can perform inspection via an exploration policy for volumetric coverage. In the absence of infor-
mative loop closures, vehicle state estimates can drift and give rise to ill-advised behavior. This
motivates an active SLAM approach—where the robot performs deliberate actions to complement
mapping and localization, while maintaining a safe exploration policy.

1.2 Scope and Approach

In this thesis, we discuss two methods which address underwater visual localization and active
exploration respectively. The work analyzes the potential of vision and sonar modalities individu-
ally, and motivates their combined use as future work. We develop these methods for the class of
hovering autonomous underwater vehicles (HAUVs) [90] (Fig. 2.2).

2
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Figure 1.2: (left) Gradually drifting dead-reckoning estimates of the underwater vehicle when executing a square
trajectory. (right) An example of a globally inconsistent map due to drifting odometry—the insets show point cloud
misalignment.

The first part—on visual localization—explores a novel through-water stereo framework for
drift-free vehicle pose estimates. As highlighted in Section 1.1, visual perception is viable in
these indoor underwater environments. We look through the refractive water-air interface and
track visual features in an incremental optimization framework. We establish the theory behind
refraction correction, borrowing ideas from multimedia photogrammetry. This is applied to the
HAUV in simulation, and in our real-world environment.

The second part—on active SLAM—devises a safe exploration policy for sonar mapping that
bounds pose uncertainty. It builds upon the existing virtual occupancy grid map (VOG-Map)
framework, which combined pose graph submap SLAM with a sampling-based planner [37].
Our method biases the vehicle towards revisitation if there is large drift in its pose estimate,
and towards next-best-view [11] exploration otherwise. We introduce the idea of global submap
saliency (GloSSy) metric for good revisit pose candidates. Further, we evaluate a revisit penalty
term based on propagated uncertainty and path information gain. We demonstrate that our method
has advantages over a standard exploration policy in simulation experiments with the HAUV in a
cluttered underwater tank environment.

1.3 Contributions and Organization
As highlighted in Section 1.2, the thesis can be organized into two chapters. In Chapter 3, we
propose a SLAM formulation for AUVs using an onboard upward-facing stereo camera. To the
best of our knowledge, this is the first through-water visual localization technique for underwater
vehicles. Concisely, our main contributions are1:

1Supplementary video : https://youtu.be/fZZTDyLymBs

3
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• an upward-facing stereo SLAM method for AUV localization with a ceiling feature map,
• a refraction correction module for through-water vision, modeled after prior work in

multimedia photogrammetry, and
• evaluation in both simulation and real-world settings.

In Chapter 4, we present an active SLAM method for an AUV in cluttered small-scale un-
derwater environments. Built upon the VOG-Map framework [37], it enables the robot to plan,
explore and map an apriori unknown environment while considering pose uncertainty. Here, our
contributions are:

• a global submap saliency (GloSSy) metric to identify revisit poses for reliable loop closures,
• a revisit penalty term based on propagated pose uncertainties and view utility gain, and
• experiments in simulation, for an underwater tank environment.

The thesis is organized as follows. Chapter 2 covers the preliminary theory on SLAM, factor
graphs, and introduces the platform. Chapter 3 describes the theory and implementation of the
through-water SLAM method. Chapter 4 details active submap SLAM for underwater exploration.
Finally, Chapter 5 recaps the contributions of the thesis and discusses future research directions.

4
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Chapter 2

Preliminaries

2.1 SLAM and Factor Graphs
This section acts as a primer on SLAM, and introduces the reader to a representation of the
inference problem—factor graphs. A robot must perform two concurrent tasks—(i) infer where
it is in the environment (localization) (ii) construct a map of the environment (mapping). This
involves getting the best estimate from inference over noisy sensory data and the robot’s motion
model. Initial probabilistic methods used filtering frameworks—such as the extended Kalman
filter (EKF) [83]. While effective, they are limited by their compute cost and linearization errors.

Figure 2.1: A sample factor graph representing poses and landmarks, taken from [23]. Variable nodes are the large
circles which are poses (xi) or landmarks (li), while measurement factors are denoted by smaller circles.

Optimization-based SLAM solves a nonlinear least-square problem. This is more accurate
than filtering methods as it preserves the history of cost functions over timesteps to compute
the optimal solution. Subsequent work by Kaess et al. [48, 49] developed an efficient solving
strategy—incremental smoothing and mapping (iSAM). Instead of re-calculating the entire system
each time, it updates the previous matrix factorization with the new measurements. The sparse
nature of the system (i.e. pose-landmark connectivity) ensures computational efficiency. For a

5
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high-level summary, Cadena et al. [12] provides a comprehensive overview of SLAM, recent
progress, and future directions.

Given sensory data and timesteps, we represent the problem as a factor graph—as commonly
done in the SLAM literature. A factor graph is a bipartite graph comprised of variables to be
optimized and factors that constrain the system. The variable nodes represent the state we wish to
estimate and the factors are the measurements obtained from sensors. An example—taken from
[23]—is shown in Fig. 2.1. It represents a SLAM problem where the state X comprises of poses
xi and landmarks lj . Measurements Z between nodes are binary factors (e.g. odometry, camera
measurements, and loop closures) and the rest are unary factors (e.g. GPS measurements, pose
priors).

We compute the maximum a posteriori (MAP) estimate, which predicts variable values that
maximally agree with the given measurements:

X ∗ = argmax
X

p(X|Z)

= argmax
X

p(X ) p(Z|X )

= argmax
X

p(X ) l(X ;Z)

= argmax
X

p(X )
N∏
i=1

l(X ; zi)

(2.1)

where l(X ;Z) is proportional to p(Z|X ) and denotes the likelihood of state X given measure-
ments Z . The next step does the same, instead as a product of individual measurements zi. This
makes the assumption of conditional independence of measurements, as encoded in the factor
graph (Fig. 2.1). In Section 3.4.1 and 4.2.3, we revisit this math and demonstrate how the Gaussian
noise assumption reduces the inference to a nonlinear least-squares problem.

2.2 Hovering Autonomous Underwater Vehicle
The methods in the thesis generalize to the class of hovering autonomous underwater vehicles
(HAUVs). They can hover in place and are used for a variety of operations such as inspection,
surveying and scientific research. Some examples of these vehicles are shown in Fig. 2.2. In our
experiments, we use the HAUV from Bluefin Robotics [90] (Fig. 2.3). It has five thrusters and is
controllable in all degrees of freedom, except pitch and roll. The platform has been successfully
employed for ship inspection [40, 86], as well as in indoor underwater applications [37, 94].

Vehicle Payload
The vehicle’s payload is comprised of a Doppler velocity log (DVL), attitude and heading refer-
ence system (AHRS) and depth sensor, with measurements characterized as follows:
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Figure 2.2: The class of hovering autonomous underwater vehicles that the thesis focuses on. These include the
DepthX [29], MARES AUV [15], Sabertooth [79], and the AUV-Dagon [16]. Our own vehicle, the Bluefin HAUV,
pictured in 2.3.

(i) The depth sensor provides direct measurements of HAUV depth (Z).

(ii) The AHRS observes gravity to give drift-free pitch and roll estimates.

(iii) The X, Y and yaw quantities are obtained via dead reckoning, which drift with operation.

Such a configuration is common among underwater vehicles, and is modelled in both our
simulation and real-world experiments. Using high-precision navigation sensors, the proprietary
odometry of our vehicle exhibits very low drift over the relatively short time frames of operation.

Figure 2.3: Underwater robot used in real-
world experiments with its sensing payload vis-
ible. The DVL (D), stereo camera (C), and
DIDSON sonar (S) are fixed in front, with the
camera facing upwards.
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In all our experiments, we treat the vehicle odometry as the ground truth. We corrupt the relative
odometry between poses with significant additive white Gaussian noise. This induces drift in the
XY plane to mimic having a less accurate inertial measurement unit (IMU) + DVL payload, as
usually seen in underwater applications. This is summarized in Fig. 2.4.

Figure 2.4: (left) Schematic depicting noise addition to vehicle odometry to get a corrupted estimate. (right) Example
square trajectory shows drifting dead-reckoning with operation.

Stereo Camera
The stereo pair consists of two Prosilica GC1380 cameras fixed adjacent to the DVL, oriented
upwards (Fig. 2.3). It has a 0.078 m baseline and records 5 fps grayscale images (680× 512). We
calibrate the stereo camera underwater and manually measure the camera-robot transformation.
Images are corrected for radial and tangential distortion.

Figure 2.5: Stereo imagery from upward facing stereo camera. We use visual features for localization in Chapter 3.

DIDSON Sonar
Sonar is the primary sensing modality in Chapter 4, and its configuration resembles that in
[37, 86]. The sensor has a phased array of transducers, operated in the profiling mode. These
transducers produce beams with 14◦ vertical and 0.3◦ horizontal width. Every sonar scan sweeps
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a horizontal arc, comprising of 96 beams. We further avoid ambiguity in the vertical FoV with a
concentrator lens. Teixeira et al. [86] performs post-processing and extracts range from the sonar
data, ultimately representing each scan as points on a horizontal plane. The HAUV possesses only
one rotational degree of freedom, yaw, thus the sonar is rotated by 90◦ with respect to the body
frame (Fig. 2.6). The vehicle can rotate and translate in the environment, and the sonar sweeps
the free-space volume.

Figure 2.6: Simulated HAUV with DIDSON sonar imaging an object in environment. The red scan line is approximate
representation of the sonar beam when filtered by the concentrator lens. This model is used for simulation experiments
in Section 4.5
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Chapter 3

Localization: Through-water Visual SLAM

3.1 Introduction
There is a need for autonomous inspection and mapping of underwater environments such as
SNF pools. However, long-term operation causes drift in pose estimate if it is solely reliant on
dead reckoning. Existing line-of-sight and vision-based localization methods are not adaptable
to cluttered environments, especially when no modifications can be made to the surroundings.
We note that while underwater sections of the pools may not have uniformly distributed visual
features, ceilings are structurally rich (or can be modified to be so). There is also good visibility
in the pools, as there is little-to-no turbidity. These factors motivate a visual localization method
for AUVs that looks through the water surface.

A problem of interest is—how do we model refraction at the water-air interface? This
work builds on existing literature in through-water photogrammetry, but, unlike them, considers
underwater cameras observing landmarks in air. The scope of our method widens when we
consider other applications that can benefit from it. Commercial swimming pool cleaning robots
are platforms that have cheaper navigational payloads. Here, our localization framework could
work standalone, or act as a fail-safe for existing visual methods [13]. This is also viable for
exploration robots in partially submerged caves, with active lighting [92]. To researchers, the
method can deliver ground-truth estimates in the absence of expensive underwater motion capture
systems.

3.2 Background and Related Work
The problem of underwater localization has received considerable attention over the years. Nu-
merous sensing modalities and algorithms have been explored, as documented by Paull et al. [71].
Recently, Nawaz et al. [65] proposed an acoustic sensor network to localize a robot swarm in a
nuclear storage pond (Fig. 3.2), while Rust et al. [77] used visible light to localize an ROV in a
nuclear reactor. Both methods suffer from attenuation in cluttered environments with multi path
transmission.
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Figure 3.1: (top-left) A sampling of ceiling frames taken from the stereo pairs. These highlight challenges for the
frontend, including motion blur, light scattering and particulates. (bottom-left) An underwater still of our AUV
executing a trajectory in the test environment at a depth of 1m. The upward-facing stereo camera views the ceiling
through the water interface. (right) Our test tank environment, with the vehicle executing a trajectory.

Jung et al. [44, 45] developed visual localization methods for AUVs by installing fiducials
underwater. However, spent nuclear pools cannot be modified due to radioactivity and often have
nuclear waste and thick sludge deposition at the bottom. Cho et al. [18] performed 3-DoF state
estimation of a robot in a reactor vessel through an external camera, by viewing LEDs on the
vehicle frame (Fig. 3.2). Later, Lee et al. [54] used a submerged camera and prior map to obtain a
full 6-DoF state estimate through fiducial tracking (Fig. 3.2). Both methods, however, are affected
by clutter in the line-of-sight between the camera and robot. Consequently, they do not scale to
larger environments.

The field-of-view of an upward-facing camera on an AUV is not obstructed while navigating
these cluttered environments (Fig. 3.1). Ceilings in most such environments have robust structural
cues for localization, with several notable examples for ground vehicles [30, 42]. In this problem
formulation, feature points triangulate to landmarks in air, viewed through the water-air interface.
Refraction causes light to bend at the interface, and generates a systematic error in heights cal-
culated from stereo correspondences. This creates large geometric errors in the global map, and
affects the optimized trajectory estimate. To achieve the true SLAM solution, we must explicitly
model for the refraction.

Refraction correction was first explored in aerial photogrammetry for shallow water [60, 87].
These works obtain actual water depth from an analytic plotter by applying a correction factor.
Fryer et al. later demonstrated that two-camera photogrammetry of submerged objects can only be
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Figure 3.2: (left) Full 6-DoF state estimation with a submerged camera, monitoring a robot in a nuclear reactor [54].
(top-right) An external camera performs 3-DoF state estimation of a robot in a reactor vessel [18]. (bottom-right)
Acoustic sensor network for a nuclear storage pond [65].

approximated, as rays from an object have different incident angles with the cameras [31]. This
procedure was used to create underwater topographical maps of river beds and reefs [63, 93]. All
prior through-water methods (i) are not in the context of SLAM and (ii) consider aerial cameras
observing underwater objects.

3.3 Refraction Observation Model
A routine operation in any visual SLAM framework is the projection of 3-D points to image
pixels and the corresponding backprojection of 2-D image points to 3-D points. When operating
in a single medium, this is a trivial operation given camera intrinsics and extrinsics. We require
compensation factors that enable these operations in a dual-media setting. Thus, based on pre-
vious work, we introduce methods for refraction-corrected stereo triangulation (Section 3.3.2)
and refraction-corrected projection (Section 3.3.3). However, the prior algorithms were for aerial
photogrammetry through shallow water. We adapt them to the inverse problem of an underwater
camera observing points in air. Our SLAM framework (Section 3.4) uses this module at every
stage for true landmark positions.

A fixed-baseline stereo camera is calibrated underwater and has known, constant camera-robot
extrinsics. When a light ray enters the camera housing, it passes from water → glass → air.
The single viewpoint (SVP) pinhole camera model is found to be theoretically inaccurate due
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to refraction at the camera housing [89]. Agrawal et al. later show that these cameras can be
expressed in terms of an axial model [6] . This implies that light rays intersect an axial line rather
than a single point. The validity of any approximation thus depends on the length of this axial line.
Luczynski et al. study this closely to conclude that an SVP pinhole model is a valid approximation
if the center of projection and flat port and very close to each other [57]. This is always the case
for underwater housings—the camera is placed very near the flat port.

Thus, we adopt the pinhole camera model—refraction at the camera’s housing is accounted
for in the lens distortion parameters. This approximation has worked well for prior work in
underwater imaging [10, 43, 66]. The camera viewing direction is not required to be perpendicular
to the water surface. Lacking this assumption, we cannot model refraction at the water interface as
a radial distortion [80]. We establish a sign-convention for the Z direction: the water surface is the
XY plane, points in air are negative and points underwater are positive. The apparent landmark is
that triangulated without considering refraction at the interface. The true landmark is that obtained
from explicitly modeling this refraction.

3.3.1 Assumptions

Sections 3.3.2 and 3.3.3 make some simplifications, and we discuss them here for completeness:

(i) We assume the water surface is planar, which is commonly done in through-water methods.
This allows us to apply the laws of refraction to the problem. Prior work makes this
simplification not only for indoor environments, but also in reefs with minor waves [63, 87].

(ii) It is assumed that we know the pose of the cameras. This is valid as we possess knowledge of
our vehicle’s pose, or more precisely, the pose estimate from the factor graph optimization.
We transform this by the known, fixed extrinsics to get the camera poses.

(iii) We know the refractive indices of the media, µw = 1.33 for water and µa = 1 for air. These
values can be modified depending on the media we consider (e.g. saline water).

(iv) We are given the pixel correspondences for the landmarks. This is obtained from our feature
detector (Section 3.4.2).

3.3.2 Refraction-corrected Stereo Triangulation

Given pixel correspondences in an image pair, we wish to calculate the true position of a
landmark. Fig. 3.3 (a) illustrates the geometry for a single point landmark observed by a stereo
pair. The cameras are at positions c1 and c2, having depths H1 and H2 below the water surface
respectively. The apparent landmark P ′ has a height h′, while the true landmark P has a depressed
height h. c′1 and c′2 are the interface intercept points obtained by tracing the rays from P ′ to c1 and
c2 respectively. For rays from P to c1 and c2, the incidence angles with the interface are i1, i2 and
refracted angles are r1, r2.
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Figure 3.3: (a) Geometry of
refraction-corrected stereo triangu-
lation for a single landmark in air.
While the stereo pair incorrectly tri-
angulates a measurement to appar-
ent position P ′, we perform correc-
tion to obtain the true position P .
(b) (inset) top view of the geom-
etry, showing directly observable
quantities in the XY plane.

Fig. 3.3 (b) is the top view of Fig. 3.3 (a) showing the distances in the XY dimensions:

d1 = ‖c1xy − c′1xy‖ d2 = ‖c2xy − c′2xy‖
d′1 = ‖c′1xy − P

′
xy‖ d′2 = ‖c′2xy − P

′
xy‖

(3.1)

From Fig. 3.3, r1 and r2 are:

r1 = tan-1

(
d1

H1

)
r2 = tan-1

(
d2

H2

)
(3.2)

Snell’s law relates the refractive indices of media with the direction of light propagation. Further,
i1 and i2 are:

sin i1
sin r1

=
sin i2
sin r2

=
µw
µa

(3.3)

Knowing the angles of incidence, we obtain the corrected height of the landmark for each camera
(hc1 , hc2). From Fig. 3.3, in a similar fashion to Equation 3.2, we have:

hc1 = d′1/ tan(i1) hc2 = d′2/ tan(i2) (3.4)

They are found to be slightly different, as no unique solution exists when rays from the true 3-D
point landmark have different incident angles with the cameras [31]. However, an approximate
solution suffices for landmark initialization. We take the average, giving the final corrected height:

h = (hc1 + hc2)/2 (3.5)
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Thus, refractive triangulation gives us the true position of landmarks. This ensures consistent
triangulation regardless of robot location and assures geometrically accurate maps.

3.3.3 Refraction-corrected Projection
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Figure 3.4: Radial shift geometry
for the estimated true position of
a landmark P with respect to cam-
era center C. An iterative proce-
dure converges to P ∗, which is the
shifted position of the landmark.
This allows us to trivially project
the 3-D landmark into the camera
similar to a single-medium setting.

Given the true position of a landmark—P—we wish to project it to image coordinates.
First, we calculate the shifted position P ∗ the camera views the landmark at. This is done by
radially shifting it parallel to the water surface. P ∗ lies on the ray joining the apparent landmark
position P ′ with the camera center (Fig. 3.3). Due to bending of light at the interface, true
landmark position and camera center are no longer collinear. We radially shift the landmark with
respect to the camera center before projection [58].

Fig. 3.4 shows the problem geometry when viewed perpendicular to the direction of the ray.
The true landmark to be imaged is P , at a height Hp. The projection center of the camera viewing
the landmark is C, at depth Hc. The incident and refracted rays make angles i, r with the interface.
There is no closed form solution as C ′ is unknown—we follow an iterative method. This process
is formalized in Algorithm 1.

We initialize the shifted radial distance R∗ to the true radial distance R itself. Knowing its
position and applying Snell’s law, we can compute the angles i and r. The radial shift, ∆R, is
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Algorithm 1 Iterative radial-shift for refraction correction.

1: R∗ = R =
√

(Px − Cx)2 + (Py − Cy)2

2: repeat
3: r = tan-1 R∗

Cz+Pz

4: i = sin-1
(
µw
µa

sin r
)

5: ∆R = R∗ − (Hp tan i+Hc tan r)

6: R∗ ← R∗ + ∆R

7: until (|∆R| < ε)

8: P ∗x = Cx + R∗

R
(Px − Cx)

P ∗y = Cy + R∗

R
(Py − Cy)

P ∗z = Pz

computed as ∆R = R∗ −R. From Fig. 3.4:

R = Hp tan i+Hc tan r

R∗ = (Hp +Hc) tan r
(3.6)

These are directly evident from the right triangles that i and r are part of. Using Equation 3.6, we
compute ∆R at every iteration and radially shift the point until convergence (i.e. |∆R| < ε). We
convert the expression to Cartesian coordinates to get the shifted landmark that we can project
trivially, as in the single-media case. In initial tests, we get convergence to within a few cm from
ground truth in 10 iterations.

We implement the correction equations from Mass et al. without any modifications for conver-
gence [58]. Maas et al. also mentions the introduction of an overcompensation factor as a way to
accelerate the convergence of the iterative equation set. They do not, however, implement it as the
choice of such a value c is non-trivial. It is dependent on the two refractive indices, the ratio of
the path lengths in the two media, and the incidence angle. A constant overcompensation factor
c cannot guarantee convergence, it must instead be varying and recomputed every time. Thus
we settle for the vanilla method without an overcompensation factor. Future work could include
constructing a lookup table to speed-up this operation.

3.4 Proposed SLAM Formulation

3.4.1 Factor Graph Representation
We represent the problem as a factor graph optimization, as explained in Section 2.1. This is
graphically represented in Fig. 3.5. As discussed in Section 2.2, AUVs generally have a pressure
sensor that directly observes depth (Z). Detecting the direction of gravity allows the IMU to
provide absolute pitch and roll measurements. The remaining degrees of freedom—X, Y and

17



August 9, 2019
DRAFT

Corrected stereo factor3-DOF ZPR factor3-DOF XYH factorPose prior

Figure 3.5: Factor graph representing our SLAM formulation. Variable nodes are the large circles that represent
either poses (xi) or landmarks (li). Measurement factors are denoted by smaller, colored circles. As opposed to
conventional landmark-based stereo SLAM, our method incorporates a refraction-corrected stereo factor between
poses and landmarks.

yaw—are obtained via dead reckoning and are subject to drift. This gives accurate measurements
locally, but the pose estimate drifts over long dives. We represent the vehicle pose as:

xi = [ti,x, ti,y, ti,z︸ ︷︷ ︸
translational
components

, φi, θi, ψi︸ ︷︷ ︸
yaw, pitch and

roll angles

]T (3.7)

Thus, we can split the vehicle odometry into two independent constraints, similar to [94]: (i) a
3-DoF pose-to-pose relative odometry constraint on XYH (X, Y, yaw) and (ii) a 3-DoF unary
constraint on ZPR (Z, pitch, roll). At a given timestep i: an XYH factor ui−1 is added between
xi−1 and xi, and a ZPR factor vi is added to vehicle pose xi. A corrected stereo measurement
factor mk joins any observed 3-D point landmark lj with pose xi. This factor mk is the corrected
stereo landmark pixel observations, which is a four-vector for unrectified stereo. We attach a pose
prior measurement p0 to x0 to bind the entire trajectory to a global coordinate frame. The state
and measurement vectors are:

X = {x0, . . . , l0, . . .}
Z = {p0, u0, . . . , v0, . . . ,m0, . . .}

(3.8)

We expand the MAP estimate defined in Section 2.1 as follows:

X ∗ = argmax
X

p(X|Z)

= argmax
X

p(X )p(Z|X )

= argmax
X

p(x0)︸ ︷︷ ︸
prior

n∏
i=1

p(ui|xi−1, xi)︸ ︷︷ ︸
XYH

p(vi|xi)︸ ︷︷ ︸
ZPR

m∏
k=1

p(mk|xi, lj)︸ ︷︷ ︸
corr. stereo factor

(3.9)
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We consider all four measurements as normally distributed random variables with covariances Σ0,
Ψi, Φi, Γk:

p(x0) = N (p0,Σ0)

p(ui|xi−1, xi) = N (U(xi−1, xi),Ψi)

p(vi|xi) = N (V(xi),Φi)

p(mk|xi, lj) = N (M(xi, lj),Γk)

(3.10)

In Equation 3.10:
(i) p0 represents the pose prior.

(ii) U(xi−1, xi) represents the relative transform between consecutive poses in [ti,x, ti,y, φi].

(iii) V(xi) is the direct measurement of [ti,z, θi, ψi].

(iv) M(xik , ljk) is the refraction-corrected stereo measurement function. It projects lj into the
stereo cameras at vehicle pose xi while accounting for refraction. The output is a four-vector
of stereo pixel measurements.

Assuming Gaussian noise reduces the inference to a nonlinear least squares optimization [23]:

X ∗ = argmin
X

− log

(
p(x0)

n∏
i=1

p(ui|xi−1, xi)p(vi|xi)

m∏
k=1

p(mk|xi, lj)

)

= argmin
X

‖p0 	 x0‖2Σ0
+

m∑
k=1

‖mk −M(xi, lj)‖2Γk

+
n∑
i=1

(
‖ui − U(xi−1, xi)‖2Ψi

+ ‖vi − V(xi)‖2Φi

)
(3.11)

The 6-DoF pose prior is in the SE (3) Lie group, and 	 represents the logarithm map of the
relative transformation between the elements [7]. The notation of the form ‖w‖2

Λ = wTΛ−1w is
the Mahalanobis distance of w.

We use incremental methods to obtain optimized vehicle pose and landmark estimates at
every timestep [48, 49]. Instead of re-calculating the entire system each time, it updates the
previous matrix factorization with the new measurements. The sparse nature of the system (i.e.
pose-landmark connectivity) assures computational efficiency.

3.4.2 Feature Extraction
Our technique uses sparse stereo feature points. Existing benchmarks for feature detectors
underwater focus on repeatability in turbid environments [33], which is not required in our clear
conditions. Our preliminary investigation demonstrated no discernible upside to using other
feature detectors such as SIFT, SURF, or MSER versus the ORB detector. We use ORB based on
the following:
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Figure 3.6: Feature matching between a stereo pair of images from our real-world dataset (Section 3.5.4). Adaptive
non-maximal suppression prevents clustering of feature points and gives good spatial distribution. In these frames,
the vehicle is just below the water surface and the reflection of the stereo pair at the water interface is faintly visible.

Environment
The studies [19, 33] consider Harris, Hessian, Laplacian, DoG and other detectors in underwater
environments of varying turbidity. Ferrera et al. [28] later performed similar evaluations with
ORB features on the TURBID dataset [19]. SIFT and SURF perform better in these scenarios
as compared to ORB. However, our method considers underwater environments with little-to-no
turbidity. The configurations of the experiments are also different—while the above prior work
images objects present inside turbid water, we look directly out of clear water into air. We thus
believe directly adapting their results would not be appropriate.

Speed
In stereo visual SLAM, we require features that can be computed and matched extremely fast.
Prior literature documents feature extraction times per frame of—ORB (≈ 20ms), SURF (≈
200ms) and SIFT (≈5000ms) [76].

Empirical considerations
Our preliminary tests comprised of an empirical evaluation of ORB, SIFT, SURF and MSER
(region-based) features. In the presence of water surface disturbances, we believe ORB features
tended to be more stable. ORB features are also proven to perform better in the presence of
image noise [76]. In these experiments, they were less sensitive to washout and lens flares.
These artifacts are commonly seen in our datasets (Fig. 3.1), but do not occur in the TURBID
dataset [19]. Region-based methods like MSER were found to yield resulting blobs that were
highly unstable.

In summary–first, we valued the efficiency of ORB features for close-to-real-time imple-
mentation. Second, our preliminary investigation demonstrated no discernible upside to using
blob-based feature detectors.
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We detect a large number of ORB feature points and prune them through adaptive non-maximal
suppression [8], selectively choosing keypoints based on corner strength and spatial location.
This prevents clustering, degeneracy, and speeds up computation. We establish matches between
the stereo pairs based on the Hamming distance between their binary descriptors. To remove
ambiguous matches, we perform the distance-ratio test [56] and further select the inliers of a
RANSAC homography computation. Fig. 3.6 shows feature matches between a stereo pair from
our real-world dataset.

3.4.3 Data Association

Wrong correspondences affect the accuracy of the state estimate and landmark map. Thus,
we need a reliable data association framework. Two operations—map update and landmark
initialization—are explained below:

Map update

The estimated positions of landmarks in the optimization are first corrected to their apparent
positions for the current camera poses (Section 3.3.3). They are then projected into the cameras
of the stereo pair. A landmark is temporally matched with a stereo keypoint if its corresponding
projection lies within an empirical gating threshold gt in both cameras (gt = 5 pixels). In the case
of multiple matches, the closest projected landmark is considered.

Landmark initialization

If a stereo keypoint does not correspond to an existing landmark, it is considered for initialization
as a new landmark. We only initialize landmarks when they are supported by observations from
multiple viewpoints, similar to the distant stereo point triangulation in [62]. We triangulate a
stereo keypoint upon first viewing it, but do not add it to the optimization yet. If a stereo keypoint
lies within gt of the projected landmark for the N consecutive frames, we add this landmark to
the global map. We initialize it by triangulating over all the N views. It is only then that the
landmark and its corresponding measurements are added to the optimization. The value of N = 5
is empirically selected, but this is often reduced in difficult visibility conditions.

3.4.4 Implementation

Our framework uses the Georgia Tech smoothing and mapping (GTSAM) library [22] for factor-
graph optimization. We use iSAM2 [49] for an efficient incremental solution using the Powell’s
dog-leg optimization algorithm. The experiments (Section 3.5.3 and 3.5.4) are run offline on an
Intel Core i7-7820HQ CPU @ 2.90GHz and 32GB RAM without GPU parallelization.
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3.5 Experimental Results

3.5.1 Trajectory Metrics

Given the estimated, noisy and ground truth trajectories of the vehicle, we wish to evaluate the
quality of the SLAM solution. In simulation, we also compute the mean and median absolute
landmark error (ALE) of the final landmark map. We follow the relative pose error (RPE) and
absolute trajectory error (ATE) metrics [85]. Consider an estimated vehicle trajectory P1 . . . Pn ∈
SE(3) and ground truth trajectory Q1 . . . Qn ∈ SE(3). Both sequences are assumed to be time-
synced and have the same number of readings. In general, both the metrics are correlated and we
expand them below:

Relative Pose Error

This is a measure of how locally accurate a trajectory is over a time interval t. The RPE thus
sufficiently captures drift of vehicle pose.

Ei :=
(
Q−1
i ·Qi+t

)−1 (
P−1
i · Pi+t

)
(3.12)

From these errors, we compute the root mean square error (RMSE) of only the translational
component. This is generally sufficient as rotational errors manifest themselves as translational
errors. We empirically select t = 1 sec for the RPE evaluation.

Absolute Trajectory Error

This metric quantifies the global consistency of the estimated trajectory. At a high-level, this
is a comparison of the estimated and ground truth trajectory. Before we do so, we use Horn’s
algorithm [38] to compute a transformation that aligns the trajectories. The error at timestep i is:

Fi := Q−1
i SPi (3.13)

Similar to the RPE case, we compute the root mean square error (RMSE) of the translational
components of Fi.

Table 3.1: Covariance matrices (defined in Section 3.4.1) used in simulation and real-world experiments. They are
diagonal square matrices of the form diag(M0

2,M1
2, . . .). The units for translation, rotation and image measurements

are meters, radians and pixels respectively.

Covariances Type Square roots of matrix diagonal elements (M)
Σ0 6-DoF pose prior 10−4 m, 10−4 m, 10−4 m, 10−4 m, 10−4 m, 10−4 m
Ψi 3-DoF XYH odometry 0.01 m, 0.01 m, 0.01 rad
Φi 3-DoF ZPR measurement 0.01 m, 0.005 rad, 0.005 rad
Γk Corrected stereo factor 1 pix, 1 pix, 1 pix, 1 pix
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3.5.2 Noise and Covariance
Noise is added in the XYH directions at every frame, with standard deviations σx = σy =
0.01 m and σφ = 0.01 rad. In Section 3.5.3 and 3.5.4, we compare this synthesized dead reckoning
with our SLAM solution. The covariance values for all the factors are shown in Table 3.1.

3.5.3 Simulated Experiments
For preliminary analysis, we run simulations with generated vehicle motions and assume known
data association. We randomly initialize landmarks in space above the water surface, spread across
the XY plane and between 4–5 m in the Z direction. We add Gaussian noise (σ = 1 pixel) to
stereo landmark measurements. When projecting ground truth landmarks, we apply our refractive
model to simulate looking through the water surface. Two scenarios are analyzed: a square and
corkscrew trajectory. While square does not include motion in the Z direction or yaw rotation,
corkscrew exercises all these degrees of freedom. To emulate the HAUV, we constantly vary the
pitch and roll over the ±5◦ range. Each dataset has 1200 poses, executing 7 loops of radius 2.5m
in corkscrew and 10 loops of side length 3m in square.

In Table 3.2, we quantitatively compare the dead reckoning and SLAM estimate trajectories
against ground truth. It can be seen that we achieve substantial reduction in ATE and RPE with
our framework for both trajectories. While the mean ALE is higher for corkscrew, the median
verifies that it is due to outliers. Fig. 3.7 qualitatively compares both trajectories and estimated
landmarks. The dead reckoning trajectory drifts significantly over time, while our solution roughly
overlaps with the ground truth. In Table 3.4, we further compare these results with a modified
implementation that does not account for refraction.

3.5.4 Real-world Experiments
Our SLAM framework is evaluated using the HAUV in an indoor test-tank. The tank has a depth
of 3m and radius of 3.5m. Regions of the ceiling are not at the same height from the water surface
due to piping, air ducts and girders. On measurement with survey equipment, they are found to be
between 3.6–5.8m. Fig. 3.8 shows the ceiling and tank setup.

We log 12 datasets for evaluation that encompass a wide range of scenarios the vehicle may
encounter. They vary between 100–686 seconds in length and all but one execute pre-programmed

Table 3.2: Mean absolute trajectory error (ATE) and relative pose error (RPE) for the two simulation trajectories.
Mean and median absolute landmark error (ALE) are also shown. We see a significant decrease in error in the SLAM
solution as compared to the dead reckoning trajectory.

Dataset
Dead reckoning SLAM solution

ATE (m) RPEtrans (m) RPErot (◦) ATE (m) RPEtrans (m) RPErot (◦) ALEmean (m) ALEmedian (m)

square 0.458 0.661 16.444 0.012 0.018 0.130 0.015 0.008
corkscrew 0.415 0.593 10.931 0.011 0.017 0.112 0.107 0.005
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Figure 3.7: Visualization of the SLAM trajectory and landmark estimates from simulation, overlaid with the tank
environment. (a) and (b) show top-views while (c) and (d) are from the side. The SLAM solution coincides (and thus
obscures) the ground truth, while the dead reckoning drifts. The estimated landmarks converge to near their ground
truth positions.

loops in the tank. The vehicle translates in the X and Y directions at a fixed depth, along with
rotation about the Z-axis (yaw rotation). The pitch and roll directions of the vehicle cannot be
controlled, but fluctuate mildly underwater nevertheless. Upon receiving a valid pair of stereo
frames, we use its timestamp to interpolate a state estimate. Challenges that can degrade the
SLAM solution include water surface disturbances, motion blur, suspended particulates, light
scattering and image washout (Fig. 3.1). The value of N (refer Section 3.4.3) is reduced to 2 in
datasets with larger disturbances. The datasets incorporate all these conditions (brackets denotes
number of such datasets):

Depth: Just below surface (4), 1m (4) and 2m depth (4).
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Figure 3.8: (top) Ceiling present over the tank. Objects in the vehicle’s field-of-view are between 3.6–5.8m in height
from the water surface. (bottom) Tank setup with vehicle executing a trajectory at 1m depth.

Visibility: With (8) and without (4) suspended particulates.
Lighting: With (3) and without (9) ceiling lights.

Table 3.3 lists the evaluation metrics for the dead reckoning and SLAM solution for all 12
datasets. We choose one representative dataset from each depth level—datasets 03, 08 and 09—
and plot the trajectory estimates (Fig. 3.9). Our proposed method significantly reduces drift in
all cases, as seen in the ATE and RPE metrics. This is most apparent in the longer datasets, 08
(Fig. 3.9 (b)) and 10.

We also compare the results from our real-world and simulation dataset with a modified
implementation that does not account for refraction (refer Table 3.4). The results show reduced
error when we account for refraction (RC), which reinforces our method. We also see a significant
difference between the final landmark maps of both cases. Fig. 3.10 visualizes this result for
dataset 08.

The solve time for each dataset (Table 3.3) depends on how densely connected the underlying
factor graph is. Most of the execution time is devoted to the optimization; the refraction module
requires only a smaller proportion of the compute time. For example, the entire optimization for
dataset 08 (724 seconds dataset duration, 144 landmarks) takes 884.3 seconds to solve with the
refraction module, and 789.4 seconds without. We can achieve real-time performance through
keyframing or fixed-lag smoothing.
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Figure 3.9: Qualitative comparison of trajectories from the representative datasets. We observe strong correspondence
between our SLAM trajectory and the ground truth, while the dead reckoning trajectory drifts over time. The global
coordinates (in the X and Y) vary between trajectories as the origin is defined by the vehicle start position prior to
recording.

Table 3.3: Mean ATE and RPE for the 12 underwater datasets. Details about each dataset—operation depth, runtime
duration and solve time—are shown. 0m indicates a depth just below the water surface. Datasets in bold are the
representative datasets, which further appear in Fig. 3.9 and Table 3.4.

Dataset Dead reckoning SLAM solution

# depth (m) duration (s) solve (s) ATE (m) RPEt (m) RPEr (◦) ATE (m) RPEt (m) RPEr (◦)

01 1 133.8 476.3 0.069 0.112 4.572 0.053 0.072 2.198
02 0 99.6 188.7 0.122 0.149 3.301 0.067 0.079 1.480
03 0 202.2 505.5 0.280 0.370 5.976 0.115 0.090 2.539
04 2 121.8 63.0 0.103 0.145 4.121 0.058 0.125 2.822
05 1 192.6 23.4 0.076 0.112 2.600 0.046 0.062 1.273
06 2 203 13.5 0.095 0.137 2.328 0.051 0.068 1.520
07 1 238.8 329.9 0.181 0.248 5.839 0.074 0.096 2.886
08 1 724.0 884.3 0.568 0.818 21.451 0.073 0.098 2.267
09 2 260.0 449.2 0.265 0.343 5.696 0.086 0.105 2.216
10 2 686.2 1409.0 0.327 0.402 20.583 0.068 0.082 1.365
11 0 446.8 2088.0 0.259 0.329 9.050 0.037 0.051 1.175
12 2 200.0 91.4 0.096 0.160 2.972 0.050 0.065 1.164

Table 3.4: ATE of real-world (left) and simulation datasets (right) with/without refraction correction (RC). It reduces
when RC is present in the framework.

Dataset 01 02 03 04 05 06 07 08 09 10 11 12 mean sq cork

ATERC 0.053 0.067 0.115 0.058 0.046 0.051 0.074 0.073 0.086 0.068 0.037 0.050 0.065 0.012 0.011
ATEno RC 0.057 0.067 0.155 0.060 0.047 0.053 0.075 0.074 0.102 0.071 0.041 0.058 0.072 0.015 0.014
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Figure 3.10: (a) Final landmark map of dataset 08. (b) The landmark map with refraction correction is compared
with that without refraction correction.
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Chapter 4

Mapping and Exploration: Active Submap
SLAM

4.1 Introduction
The SLAM problem is generally trajectory agnostic—it assumes that the chosen path is sufficient
for mapping and localization. Within the context of our environment, this raises two problems.
First, precise teleoperation is difficult in the cluttered environments, such as those pictured
in Figure 4.1. Second, the performance of the SLAM solution is dependent on the choice of
trajectory—they must be jointly considered. This is considered as active SLAM, which dates back
to seminal work on active perception by Bajcsy et al. [9].

Figure 4.1: (left) Example of cluttered SNF pool that is difficult to teleoperate in [5]. (right) Drifting state estimate
creates erroneous occupancy representation, which can lead to ill-advised trajectories.

Active SLAM in marine environments was demonstrated by Fairfield et al. for re-localizing
an AUV [25]. Here, a deep-operating vehicle constructs bathymetric maps with sonar and utilizes
it to re-localize its gradually drifting pose. The authors later used a submap representation and
selected entropy-reducing actions for active loop closing [26]. Kim et al. used visual saliency
for loop-closing camera registrations in ship-hull inspection runs [51]. This method attempts to
balance the trade-off between area coverage and revisit actions for a preplanned trajectory. Chaves
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et al. extended this work for coverage-efficient revisit policies [17].

This chapter instead presents an active SLAM framework for mapping indoor underwater
environments. Here, the vehicle must perform volumetric exploration while maintaining bounded
pose uncertainty. While it is not handled in conjunction to the localization strategy (Chapter
3), their combination is considered future work (Section 5). Below the water level, the visual
measurements are sparse and not uniformly distributed. Instead, shape information from sonar
can be used for pose-to-pose constraints.

We look at navigational decision-making—can we devise a balanced exploration strategy that
uses sonar information to identify candidate revisit poses? Additionally, how do we decide what
are good poses to revisit? Executing revisit actions bounds pose uncertainty through loop closures,
but comes at a cost. The revisit policy results in extra distance travelled and redundant volumetric
coverage. This necessitates a heuristic for the exploration policy, based on pose uncertainty and
path information gain.

This work builds upon VOG-Map [37], which combines pose-graph submap SLAM with
sampling-based planning for underwater environments. VOG-Map prevents vehicle drift via itera-
tive closest point (ICP) submap loop closures, and its exploration policy is based on maximizing
information gain. The vehicle has a notion of free and occupied space for planning, which can be
deformed based on loop closures. It also creates a dense global map from collating local sonar
submap point clouds. The system is explained in detail in Section 4.2.3, and its components are
shown in Fig. 4.2.

Figure 4.2: The block diagram of the active exploration method, with its different components. We build on the
mapping framework by Ho et al. [37], and we add the capabilities for revisit to it.
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4.2 Background and Related Work

4.2.1 Unknown Space Exploration

To plan an exploration trajectory, the robot must have a notion of free-space in the environment.
An occupancy grid map is a powerful volumetric space representation amenable to motion plan-
ning. It reduces the map to uniformly spaced field of binary random variables, each indicating
free, occupied or unknown space at the given location. The OctoMap uses an octree data structure,
resulting in a tractable representation for robotics problems [39].

The rapidly exploring random tree (RRT) planner is a sampling-based algorithm for space
exploration [53]. It grows a tree in configuration space, and in every iteration a newly sampled
node is attached to the tree. The sampled node is connected to an existing node in the tree that is
closest to it. However prior to connection: (i) the node is scaled in configuration space to be within
a maximum extension range of the existing tree (ii) the new edge is verified to be collision-free
via ray-tracing. The RRT extend operation is shown in Fig. 4.3.

Figure 4.3: The RRT extend operation, as taken from [53].

Bircher et al. proposed combining the RRT planner with the OctoMap representation [11].
The planner follows a receding horizon next-best-view algorithm. It first grows an RRT tree, and
evaluates the branch that gives the best coverage of unmapped space. The exploration step executes
only the first edge of branch, and this heuristic is recomputed. This biases robot exploration
towards unknown volumes in the environment.

4.2.2 SONAR Submaps

A submap SLAM framework considers the global map as a collation of local submaps described in
their own coordinate frame. This method has found wide application in field robotics [27, 78, 95].
Each submap is associated with a base pose node, and we connect these to form the pose graph
(Fig. 4.6). The base pose is the reference pose with respect to which the local sonar submap is
constructed, as used by Teixeira et al. [86]. This fragments the map into manageable pieces, and
operations on these fixed-size submaps are computationally feasible. A resulting global map can
be seen in Fig. 4.4. How do we decide on the time period and size of the submap? Their size must
be large enough for successful loop closure detection, and small enough that there is limited local
odometry drift.
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Figure 4.4: (a) Vehicle odometry creates a sonar sweep, image sourced from Kaess et al. [46]. (b) Teixeira et
al. formulated a SLAM framework that performs ICP for submaps for pose-to-pose constraints.

4.2.3 The Virtual Occupancy Grid Map
For completeness, we briefly describe VOG-Map and direct the reader to the original manuscript
for further details [37]. In short, VOG-Map incorporates a pose-graph SLAM framework while
maintaining free-space information for motion planning and exploration. The components of the
system are shown in Fig. 4.5.

Figure 4.5: The system description of the VOG-Map framework by Ho et al. [37] for autonomous underwater
exploration with the HAUV platform.

Free-space Representation

VOG-Map differs from the global occupancy grid maps [11, 70, 91] in that this representation can
be deformed to correct accumulated drift. The base poses in the VOG-Map pose graph correspond
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to the local occupancy grid maps (Fig. 4.6).

Figure 4.6: The pose graph as formulated in [Teixeira et al., 2016] upon which VOG-Map is built. When the
optimization updates the pose estimates of the nodes, base poses of the local occupancy grid maps are also updated
using VOG-Map deformation operation. This corrects the VOG-Map for drift or accumulated noise.

The local occupancy grid map is created by collating the sonar scans over a period of time.
They are with respect to the base pose, which in our case is the pose of the first scan in the submap.
The sonar scans that comprise the submap are integrated through raycasting operations and the
occupancy probabilities of a voxel v is updated in accordance to [39, 61]. They use a log-odds
update rule and assume a uniform prior probability P (v) = 0.5.

ICP Loop Closure

The loop closure constraint finds the relative pose transformation between submaps using the
ICP algorithm [86]. The corresponding point clouds associated with each local occupancy grid
is cached by the system. As described in Section 2.2 and 3.4.1, the pose estimation is restricted
to 3DoF. 2D Point-to-Point ICP is carried out between the submap clouds to compute the X, Y
translation and yaw that aligns them. The algorithm is described in detail by Sorkine-Hornung
et al. [84]. VOG-Map runs through all the submaps while computing loop closure factors—the
complexity rises linearly with number of submaps.

Standard Operations

There are two operations executed in the system—deformation and occupancy querying:

Deformation: Upon adding a loop closure to the graph, a batch optimization is carried out
and the base poses are updated. This results in a map deformation, by modifying the arrangement
of the local occupancy grid maps. The complexity of this operation rises linearly with the number
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of submaps accumulated.

Occupancy Querying: This operation takes in an R3 point in space and outputs the occu-
pancy probability with status (free, occupied, or unknown). This is done by querying all the local
occupancy grid maps and combining the log-odds terms.

However, the method assumes perfect state estimate, so drift can result in poor quality maps
such as Fig. 4.1. We require a method that enables the robot to plan, explore and map an apriori
unknown environment while considering pose uncertainty.

4.2.4 Saliency for Active SLAM

The idea of saliency comes from the seminal work on the human perception model by Itti and
Koch [41]. They highlight the presence of visually salient regions in an image that command the
attention of the viewer. In computer vision, this has been explored in the context of a bag-of-
words (BoW) representation [68]. The BoW was first used for textual data, and image features
descriptors were found to be analogous to words. This was later used in appearance-based visual
SLAM—FAB-MAP learnt commonly-occurring visual words offline for online loop-closure
detection [20]. The term frequency-inverse document frequency (tf-idf) statistic captures the rarity
of words in a dataset, and has been used for text classification [67, 82].

Figure 4.7: (a) Examples of visual candidates for loop-closure camera registrations in work by Kim et al. [51] (b)
Good revisit candidates are shown in brighter colors.

Local feature descriptors and keypoint detectors have also been introduced for 3-D point cloud
data. They have found application in 3-D object recognition, classification, shape analysis, and
model retrieval. A survey and comparison of the different feature descriptors can be found in [36].
Rendondo et al. [75] quantized 3-D SURF descriptors to generate 3-D visual words. This 3-D
BoW representation is then used to recognize point cloud object categories. In this thesis, we use
a BoW representation for 3-D feature descriptors that we learn offline. This is used in conjunction
with a tf-idf global saliency metric to quantify the uniqueness of a submap base pose.
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Kim et al. established that there is a strong correlation between visual saliency of a scene
and the probability of making a successful visual loop closure. Some examples of salient scenes
are shown in Fig. 4.7.a, and these revisit poses appear as brighter shades in Fig. 4.7.b. They
introduce a global saliency score for keyframes by measuring the idf of visual word occurrences
in candidate images. The score represents inter-image rarity, and these poses are viable revisit
candidates in the active SLAM framework. In the coming sections, we explore an analogous idea
for sonar submaps.

4.3 Submap Saliency

4.3.1 Vocabulary Generation

Figure 4.8: Building a 3-D scene dictionary offline from a large collection of sonar submaps from an underwater tank
environment.

We illustrate the process of building a dictionary of 3-D visual words in Fig. 4.8. Given a
submap point cloud, we first subsample keypoints from it. 3-D keypoints are unique elements
identified in a points cloud that can be used in place of the entire cloud. We use the Harris3D
keypoint detector, which ports the classical Harris operator to 3-D data [81]. Following this, we
extract a set of descriptors using the signature of histograms of orientations (SHOT) [88]. SHOT
divides the local support into a spherical grid. Within a local radius, cos θi = nu · nvi is computed,
where nu is the keypoint normal, and nvi is the normal of a point in the radial neighbourhood.
Each angle i is binned into the section of the sphere that corresponds to cos θi, which results
in a 32-dimension SHOT descriptor. This histogram is L-1 normalized for robustness to point
density. This representation is invariant to rotation, translation, and noise. The SHOT descriptors
are clustered into N = 50 3-D visual words that make up our BoW submap dictionary.

To build this dictionary, we use 3 datasets collected from teleoperating the vehicle in our
underwater tank. We place a rectangular piling in the center and accumulate sonar submaps of
the environment. Fig. 4.9 shows camera stills from operating the vehicle while Fig. 4.8 shows a
global map from one dataset.

4.3.2 The GloSSy Metric
Global saliency was introduced for images by Kim et al. [51] as a measure of feature uniqueness
across images. It was applied to locate revisit locations in a trajectory that maps a ship hull.
In place of 128-dimensional SURF descriptors, we use SHOT descriptors to compute a global
submap saliency (GloSSy) metric. The tf-idf [67, 82] measures the inverse-document frequency
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Figure 4.9: Camera stills from our vehicle recording sonar submaps for training our BoW dictionary. (left) view from
underwater camera (right) view from GoPro mounted on vehicle. We image a central rectangular piling and the tank
walls, the resulting global map can be seen in Fig. 4.8.

of a word, or how often it is encountered in the environment. Given word w, the tf-idf is computed
as:

ti =
nid
nd

log
N

ni
(4.1)

where nid is the number of occurrences of word i in document d, nd is the total number of words
in document d, N is the total number of documents, and ni is the number of occurrences of word
i across all documents. Intuitively, the score given to a word is low if we encounter it often in
the entire database. A simpler metric often used is simply the idf, the latter half of Equation 4.1.
Similar to [51] we define an inter-submap rarity term as a summation of idf:

Gs(t) =
∑
j ∈ Ws

log2

N(t)

nwj
(t)

(4.2)

whereWs ⊂ W(t) is the subset of words found in submap s, nwj
(t) is the number of submaps

encountered that contain word wj , and N(t) is the current total number of submaps accumulated.
This metric must be recomputed for all N(t) submaps every time a new submap is received. While
[51] uses an inverted index update scheme, it is not required in our case due to the small number
of submaps. Thus, the idf update has linear complexity with N(t). The summed idf is normalized
to a [0, 1] score, with Gmax being the maximum summed idf encountered:

SGs(t) =
Gs(t)
Gmax

(4.3)

4.3.3 Revisit Candidates
Fig. 4.10 shows the top/bottom revisit poses from a real-world dataset. In the dataset, the vehicle
is imaging the rectangular piling, and the resulting global point cloud is shown in gray. The revisit
poses are the base poses associated with the respective submaps. Qualitatively, we observe the
best revisit poses are those looking head-on at the piling’s edge. In an ICP loop closure framework
these submaps can be easily aligned and avoid degeneracy. The bottom set of poses comprise
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Figure 4.10: Top/bottom 3 revisit poses according to GloSSy scores in a real-world dataset. The gray point cloud
represents the complete global map, and the colored sections show the submap that belongs to the revisit pose. The
6DoF pose of the vehicle is visualized, along with the GloSSy score in small print.

of the vehicle imaging the tank wall’s curvature, or the flat side of the piling. These submaps
are not as distinct, and can lead to degeneracy or incorrect loop-closures. Therefore, we note an
empirical correlation between the GloSSy metric and good poses to revisit. In our system, we
sort the revisit poses by their SGs(t) values and consider the top N = 4 candidates in our active
SLAM formulation.

4.4 Active SLAM

4.4.1 Exploration Policy

The vehicle exploration is defined by the motion policy π(t) being executed. It is formulated as a
dual-behavior policy:

π(t) =

{
πnbv, if Ur(t) ≤ 1

πk∗ , otherwise
(4.4)

where πnbv is the next-best-view exploration behavior existing in [37], πk∗ is the revisit behavior
we introduce in this work (Section 4.4.4), and Urobot(t) is the uncertainty ratio (Section 4.4.2).
Intuitively, this strategy performs information-theoretic exploration when the robot uncertainty
is low, and toggles to revisit previous poses upon exceeding the threshold. We choose from the
revisit candidates provided by the saliency thread (Section 4.3). We employ a heuristic penalty
function that considers (i) the propagated pose covariance at the revisit pose (ii) the view-utility
gain from executing the revisit policy. The cached RRT path is reused—along with a shortcutting
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operation—removing the need for motion planning. Algorithm 2 summarizes the policy selection,
and the steps are explained in the following sections.

Algorithm 2 Exploration policy thread. Submapping, voxel updates, saliency computation and
pose graph optimization happens in parallel. Ur(t) is the D-opt uncertainty ratio of the robot at the
current timestep t. Policy πk∗ guides the robot to the selected revisit pose and policy πnbv executes
the VOG-Map next-best-view strategy.
Require:

VOG-Map representation of the current world stateMvog(t)

Ensure:
Trajectory policy π(t) for planner

1: if Ur(t) > 1 then
2: Select top N salient revisit poses.
3: for k ← 1 to N do
4: Get revisit policy πk with revisit trajectory P k

r . Policy π(t)← πk∗ .
5: Propagate virtual odometry to obtained Σπk and compute Uπk .
6: Compute view-utility gain Gain(πk) given mapMvog(t).
7: Compute revisitation penalty Pπk
8: Find k∗ = arg maxRk

r

9: π(t)← πk∗

10: else
11: Compute exploration policy πnbv with trajectory P nbv

r . Policy π(t)← πnbv

12: π(t)← πnbv

13: Execute policy π(t)

4.4.2 Uncertainty Criteria
Carillo et al. [14] compares the choice of uncertainty criteria for the active SLAM problem.
According to the Theory of Optimal Experimental Design (TOED) [72, 73] one can compare two
policy classes π1 and π2 if:

Cov(π1)− Cov(π2) ∈ NND(l) (4.5)

Where Cov(πi) represents the resulting l × l covariance matrix from carrying out the policy
πi. This criteria dictates that the covariance difference must belong to the group of positive
semi-definite matrices, NND(l). While this is helpful in telling us if π1 is better than π2, it fails
to quantify the difference between them. For this, we require a mapping between NND(l) and a
scalar quantity: NND(l)→ R.

This mapping must satisfy certain properties, as highlighted in [14]—(i) positive homoge-
nous (ii) isotonic, and (iii) concave. Further, it must faithfully capture the extent of uncertainty
of Cov(πi). TOED prescribes certain functions that satisfy these requirements—A-optimality
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criterion (A-opt), D-optimality criterion (D-opt) and E-optimality criterion (E-opt) [72, 73].

A-opt describes the mean uncertainty of the covariance matrix, and has been successfully used
in active SLAM [52, 55]. Kiefer et al. [50] provides evidence that only D-opt is proportional to
the uncertainty ellipse of the state parameters. Carillo et al. [14] establishes through experimental
comparison that D-opt gives meaning information in an active SLAM context, and has certain
desired properties. Thus, we use the aforementioned D-opt for our purposes.

Figure 4.11: The marginal pose covariance for a 6-DoF robot, with our condensed form on the right. This 3 × 3
matrix encodes the required information for the D-opt criterion.

Kiefer et al. [50] shows that the normalized D-opt criterion is:

φ(πi) = det (Σπi)
1/l (4.6)

We consider the marginal covariance of the robot pose, which would make our covariance matrix
6× 6. We use an efficient method described by Kaess et al. to recover a part of the full covariance
matrix [47]. However, as described in Section 2.2, only the [X, Y, yaw] quantities drift. We can
therefore consider only the 3×3 covariance matrix for the D-opt criterion, as shown in Figure 4.11.
The ratio of the scalar with the maximum allowable value is used, which we call the uncertainty
ratio:

Uπi(t) =
det (Σπi(t))

1/3

det (Σallow)1/3
Ur(t) =

det (Σr(t))
1/3

det (Σallow)1/3
(4.7)

where Uπi is the uncertainty ratio of the n-step propagated covariance from executing policy
πi, and Ur is the uncertainty ratio of the current robot pose. Σallow is the maximum allowable
uncertainty for the vehicle, which we empirically decide.

In Algorithm 2, Ur(t) acts as a gating function to choose between πnbv and πk∗ , while Uπi(t) is
used to compute revisit penalties (Section 4.4.4). A similar strategy is employed by Kim et al. to
trigger and choose revisit poses [51].

4.4.3 Revisit Trajectories
Given a set of candidate revisit poses k ← 1 to N , we wish to compute a trajectory P k

r for
each policy πk. The trajectories we compute must have (i) similar submap coverage for reliable
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Figure 4.12: Computing a revisit trajectory for
the robot to two candidates (red). The cached
RRT is displayed with transparency, while the
revisit trajectories are in dotted lines. Note
the shortcutting operation for one of the candi-
dates.

loop-closures (ii) minimal planning overhead. Running a new RRT or A* planner for all N revisit
poses is expensive and may not give similar submap coverage. Instead, we cache the existing RRT
state and run our retrace with shortcutting operation. This is similar to the work by Stenning et
al. that uses the existing RRT path for revisits, when the robot must re-localize itself. Example
trajectories to revisit candidates are shown in Fig. 4.12.

Algorithm 3 Retrace with shortcutting operations for revisit candidates.
Require:

Cached RRT nodesR(t)

Revisit candidates {x1 . . . xN}
Ensure:

Revisit trajectories {P 1
r . . . PN

r }
1: for k ← 1 to N do
2: Find i∗ = arg min(dist(ni, xk)), the node inR(t) closest to xk
3: Compute trajectory P i∗

r via nr . . . ni∗ inR(t) . Retracing
4: Interpolate trajectory P k

i∗ and append to P i∗
r → P k

r . Shortcutting

The process is described in Algorithm 3—for each revisit candidate we compute the node
in the tree closest to it. We then retrace our path down the tree and perform local interpolation
from the closest point to the revisit candidate. This ensures the vehicle follows a similar trajectory,
while also cutting short circuitous routes. Note that the trajectory is generated only with respect to
[X, Y, yaw]. The dotted lines in Fig. 4.12 show the revisit trajectories for two example candidates.
We only generate an inbound trajectory, and the vehicle continues its exploration policy from that
point forward.
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4.4.4 Penalty Term
To choose the policy P k

r , we must evaluate a value function for each candidate and choose the
action that maximizes this. Kim et al. formulates active SLAM as optimizing a value function
that depends on propagated uncertainty and redundant area coverage [51]. The relative weighting
of both these terms can be adjusted, which leads to a spectrum of different vehicle behaviors.
In general, this value function can depend on uncertainty, trajectory length, time, and energy
consumed [14].

Our value function is a penalty defined below in Equation 4.8, and the individual terms are
defined in the following sections. α parameterizes the relative weights between the terms, we
select the policy πk∗ that minimizes the penalty term.

Pπk(t) = α · Uπk(t)︸ ︷︷ ︸
uncertainty penalty

− (1− α) · Gain(πk)(t)︸ ︷︷ ︸
gain bias

k∗ = arg min Pπk(t)

(4.8)

(a) Candidate waypoint I (b) Candidate waypoint II

Figure 4.13: We reuse the RRT path for revisits, along with short-cutting to the revisit poses. We create virtual pose
graph nodes at the tree vertices, and compute the propagated vehicle uncertainty at the candidate waypoint. This
uncertainty magnitude is represented as the blue ellipses. We interpolate our revisit path and accrue the gain from
these intermediate waypoints for the total revisit gain.

Uncertainty Term

Given a candidate trajectory k, we are interested in the terminating covariance matrix Σπk as
a measure of uncertainty. This uncertainty ratio term Uπk(t) (Equation 4.7) penalizes revisits
to far-off candidates as the drift incurred from that action can make an imperfect state estimate
worse. Σπk is computed by propagating the current covariance n-steps forward by adding virtual
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odometry factors to the existing factor graph (Fig. 4.14). Here n is the number of nodes in the
revisit path (Section 4.4.3).

Figure 4.14: Addition of virtual nodes to the existing pose graph. Here xr is the current robot pose, vi is a virtual
pose node with the connected odometry factors. The graph terminates at the candidate pose vn.

We consider the worst-case (i.e., no loop-closures) along the virtual trajectory P k
r and add only

odometry factors. The noise on the 3-DoF odometry constraint is scaled proportional to the travel
distance between the consecutive nodes. Note that we must assume a constant velocity model for
the vehicle, which is an approximation. Once we add the factors, we run a batch optimization on
the graph, and recover the marginal pose covariance Σπk as carried out by Kaess et al. [47]. We
obtain the uncertainty ratio Uπk(t) according to Equation 4.7. Finally, these factors are removed
from the graph.

Gain Term

While Uπk(t) penalizes candidates that are far-off, we add a bias term Gain(πk) that rewards
view-utility gain along the trajectory P k

r . This incentivizes trajectories that further the task of
exploration along our revisit path. This is computed by discretizing P k

r and summing up the
visibility gain according to Bircher et al. [11]:

Gain(πk) =

n∑
i= 1

Visible(Mvog, vi)e
−λc(σvi

vi−1
) + Gain(xr) (4.9)

whereMvog is the VOG-Map representation of the world, vi is the ith virtual node pose, xr is the
current robot pose, σvivi−1

is the path between nodes and c(σvivi−1
) is the traversal cost. To compute

Visible(Mvog, vi) we count the total number of visible and unmapped voxels along the sensor
ray direction of the vi.

Weighting term

Fig. 4.13 depicts the uncertainty ellipses and sensor ray directions for the trajectories computed in
Section 4.4.3. In Equation 4.8, α weighs the effect of the uncertainty and gain terms in policy

42



August 9, 2019
DRAFT

selection. With observe that k∗ switches between candidate 2 and 3 by varying α. Thus one can
prioritize between drift and view-utility gain in the revisit trajectories.

Figure 4.15: Revisit candidates with their corresponding paths. The size of the circles represent the magnitude of
Gain(πk). In (a) the vehicle prefers to go to the candidate with maximum gain but accumulates more drift, while (b)
depicts the opposite behavior.

4.5 Simulated Experiments

We evaluate our active SLAM system in simulation—the HAUV exploring a simulated underwater
tank environment. The system is benchmarked against (i) VOG-Map [37] (ii) VOG-Map with
random revisits.

4.5.1 Setup

For successful experimentation, our simulator must have capabilities for mapping, planning,
low-level vehicle control and state estimation. We use the UUV Simulator [59] based on gazebo
and modify the vehicle to emulate the HAUV. It has a profiling sonar with 96 beams at a 29◦

horizontal FoV and a 1◦ vertical FoV. This is approximated as a 1-D line scanner in the simulator.
A visualization of the vehicle imaging a structure up close is shown in Fig. 2.6.

The state estimation has the properties described in Section 2.2. We add Gaussian noise to the
absolute quantities—Z, pitch and roll directions. In the X, Y and yaw directions, we corrupt the
relative odometry with additive white Gaussian noise. This causes the sonar base poses to drift
in the plane, but we assume no drift between scans in a submap. The measurement covariance
matrices used are listed in Table 4.1.
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Table 4.1: Covariance matrices (defined in Section 4.5.1) used in simulation experiments. They are diagonal square
matrices of the form diag(M0

2,M1
2, . . .). The units for translation and rotation are meters and radians respectively.

Covariances Type Square roots of matrix diagonal elements (M)
Σ0 6-DoF pose prior 0.000138 m, 0.000138 m, 10−5 m, 9× 10−6 m, 10−8 m, 10−8 m
Ψi 3-DoF XYH odometry 0.00414 m, 0.00414 m, 9× 10−5 rad
Φi 3-DoF ZPR measurement 10−5 m, 10−8 rad, 10−8 rad
∆k 3-DoF loop-closure 0.000138 m, 0.000138 m, 9× 10−6 rad

Figure 4.16: Simulation environment with HAUV model pictured. It is a metrically accurate rendering of the real-
world tank environment, with targets of different geometries suspended. The central object is hexagonal piling-like
structure.

The simulated HAUV is operated in a 3-D environment designed based on the real-world tank
environment (Section 3.5.4). The tank and vehicle are metrically accurate, and objects suspended
have different geometries. The objective is for the HAUV to explore and map the environment
safely, and bound pose uncertainty.

4.5.2 Results

We run 3 different methods to evaluate our active SLAM method. These are (i) active SLAM, (ii)
VOG-Map with random revisits, and (iii) VOG-Map. As each run is stochastic, we execute them
5 times and average the results. Each run records 20 submaps before termination, and we ensure
that the entire tank is covered. We use the simulation parameter values described in Table 4.2.
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Table 4.2: Simulation parameters for active mapping.

Parameter Value Comments
Octamap volume 7m x 7m x 1.5m Approximate dimensions of the environment
Collision volume 0.6m x 0.6m x 0.5m Approximate dimensions of robot

Free-space volume 2m x 2m x 2m Initial free-space assumption for the robot
Octamap resolution 0.1m Size of each voxel

RRT max range 2.25m Maximum distance of RRT extend operation
Maximum # submaps 20 Submap limit before termination

Dictionary size 50 Number of 3-D visual words
Minimum ICP points 100 Minimum number of points in a cloud for registration

Sonar FoV 1◦, 29◦ Vertical and horizontal field-of-view of sonar
Sonar rate 5 scans/sec Rate of scan messages

Submap size 100 scans Number of scans accumulated for one submap
# Revisit Candidates 3 Top N candidates to consider for revisit
Gap between revisits 3 submaps Buffer between consecutive revisit actions
Ur threshold 10−2 Uncertainty threshold for revisit action

α 0.6 Relative weighting in penalty function Pπi
Virtual velocity 0.5 m/s Constant velocity assumption for uncertainty propagation

Figure 4.17: Our HAUV exploring the simulation environment. We grow an RRT tree based on information gain and
choose the best edge to execute. The Octamap indicates free, unknown and occupied space.

45



August 9, 2019
DRAFT

In Fig. 4.18, We assess the quality of the global map we generate from active SLAM, and
compare it against the dead-reckoning map. We can see structures are better aligned when incor-
porating the loop closures. This is backed up by our quantitative metrics in Table 4.3.

Figure 4.18: Ground truth point cloud with resultant map, where heatmap indicates the cloud to cloud error. This
global map is a collation of 20 submaps in the simulation environment. We see that qualitatively, there is better
alignment in structures such as the central piling and the ladder at the bottom.

Table 4.3: Map quality of the active SLAM solution as compared to the dead-reckoning estimates. While the former
incorporates the optimized poses to deform local submaps, the latter considers drifting odometry as the base poses of
the submaps. Mean error is the cloud to cloud error metric

Dead-reckoning solution Active SLAM solution
Mean error (m) std. deviation Mean error (m) std. deviation

0.066273 0.041402 0.055343 0.037989

Table 4.4: Average cloud to cloud error over 5 runs of the exploration policies. We see that the active method gives
the best quality map, with the maximum number of loop closures. Interestingly, random revisits performs better than
pure exploration. This implies that going back to places helps bound vehicle pose uncertainty.

No revisits Random revisits Active SLAM
Mean error (m) 0.1001 0.0915 0.0756

Mean num. loop closures 12.6 15.8 17
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We then compare our method with the two benchmarks, shown in Table 4.4. The active
method performs the best, with the largest number of loop closures. We also note that random
revisits performs better than pure exploration, proving that going back to places helps re-localize.
We track the pose uncertainty ratio of the vehicle over runtime and plot them in Fig. 4.19 and 4.20.
We see that in the our method the mean uncertainty ratio is close to the allowable threshold (Fig.
4.19), while it is higher in VOG-Map’s case (Fig. 4.20). This is because we are able to bound
vehicle drift through loop closures, while VOG-Map performs uncertainty-agnostic exploration.

Figure 4.19: Plot showing the uncertainty ratio vs. submaps for the active SLAM method. The cyan circles denote
loop closure occurrences and yellow line is the allowable uncertainty threshold. The mean uncertainty ratio lies close
to this threshold as a result of informative loop closures.

Figure 4.20: Plot showing the uncertainty ratio vs. submaps for VOG-Map. The cyan circles denote loop closure
occurrences and yellow line is the allowable uncertainty threshold. Here, the mean uncertainty ratio is away from the
threshold due to the lack of informative loop closures.

We analyze the revisits in Table 4.5, comparing random revisits and the penalty-informed ones.
While the distances travelled are similar, the active policy gives better loop closures. We can tune
the α value in Equation 4.8 to incur lesser distance travelled. Finally, we visualize the top revisit
poses based on GloSSy scores in Fig. 4.21. The best revisit poses are looking at objects in the
tank (ladder, piling), while bad ones look at the tank wall or fail to accumulate sufficient submaps.

47



August 9, 2019
DRAFT

Figure 4.21: Top/bottom 3 revisit poses according to GloSSy scores in a simulation run. The gray point cloud
represents the complete global map, and the colored sections show the submap that belongs to the revisit pose. The
6DoF base pose of the vehicle is visualized.

Table 4.5: Average number of revisits executed and distance travelled over 5 runs. We see that the distance travelled
is similar, but Table 4.4 tells us that the active policy gives better loop closures. Modifying the value of α can give
lesser revisit distance.

Random revisits Active SLAM
Mean num. of revisits 3.6 3.4

Mean total revisit distance 5.44956 5.35588

The simulation experiments show the merit of revisiting, and the need for an informed method
to select revisit actions. While exploration over long dives causes dead-reckoning to drift, we can
bound this drift with these loop-closures. Adding the visual localization method from Section 3.3
could further benefit accuracy and provide sensing redundancy.
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Chapter 5

Conclusion

5.1 Contributions

In this thesis, we address the challenges in localization and exploration in indoor underwater envi-
ronments. We present visual through-water localization to address the state estimation problem,
and active mapping to obtain dense, accurate maps of the environment. We propose these methods
towards the goal of an integrated SLAM framework for underwater inspection of SNF pools and
ship ballast tanks. While the algorithms are tested on the Bluefin HAUV, they can be applied on
hovering AUVs with similar sensing payloads.

In Chapter 3, we present a novel visual localization framework for underwater vehicles. There
exists no prior work that takes cues from above the water surface for underwater visual SLAM. By
utilizing an onboard upward-facing stereo camera, our method is less prone to failure in cluttered
environments as compared to traditional line-of-sight methods. We detail the challenges that
refraction presents and develop a correction module. Previously, refraction correction had only
been addressed for aerial photogrammetry and lens housing compensation. We formulate the
landmark-based stereo SLAM problem and address the challenges faced by the frontend. We
evaluate the method through simulation and a dozen real-world underwater experiments. While it
assumes good visibility and illumination, we confirm it to perform well even in difficult conditions.

In Chapter 4, we extend the VOG-Map system to perform active SLAM with submaps. We
develop a safe exploration policy for mapping in cluttered underwater environments with bounded
pose uncertainty. The resulting dense maps can provide valuable information for inspection and
monitoring of these facilities. We introduce the GloSSy metric for submap saliency, and use it to
identify ideal revisit poses for loop-closures. We select a revisit policy based on robot uncertainty
and information gain, and previous planning iterations to execute the best policy. We compare
our method in simulation and show improvements over an uncertainty-agnostic SLAM framework.
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5.2 Observations and Future Work
The work analyzes the potential of vision and sonar modalities individually, and results show
potential for their integrated use. Multiple modalities enable redundancy, and algorithms that fuse
these modalities have recently found success in the underwater domain [74].

In Chapter 3, our approximation of water surface planarity can be improved by modeling
for waves and ripples [32]. The generic point feature frontend can be improved by taking ideas
from the state-of-the-art in visual SLAM. It can be replaced by a dense or semi-dense method for
mapping applications, or combined with lines for robust detection [35]. In larger environments,
we can also integrate loop closure detection. For computational efficiency, an over-compensation
factor can be used in the refraction module, or it can be completely replaced by a lookup-table [58].
A large baseline stereo pair will guarantee better results for distant stereo points. Further, we can
also rectify stereo images to exploit epipolar constraints for faster matching. Point correspon-
dences are restricted to epipolar curves due to the refractive interface, as detailed by [34]. The
SLAM framework may also be extended to support the use of monocular cameras.

In Chapter 4, future work will be towards evaluating the system in real-world scenarios
such as the tank environment (Fig. 3.8). The existing planner queries voxels over multiple
submaps, leading to query times that rise linearly with the number of submaps encountered.
With this computational bottleneck, the planner may in fact be operating on an outdated map.
This compromises safe autonomy, and leads to ill-informed exploration policies. A system that
maintains a global map without the need to merge from scratch at every loop closure iteration
would be ideal. Propagating covariance through virtual nodes assumes a simplistic constant
velocity motion model, and a more nuanced formulation is necessary. Submap-based SLAM can
draw inspiration from LiDAR methods for map representation and place recognition. Dubé et
al. [24] segment the point-cloud to obtain discriminative features and a compact representation.
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planning for inspecting unexplored underwater structures. IEEE Robotics and Automation
Letters, 2(3):1436–1443, 2017. 4.2.3

[92] Nick Weidner, Sharmin Rahman, Alberto Quattrini Li, and Ioannis Rekleitis. Underwater
cave mapping using stereo vision. IEEE Intl. Conf. on Robotics and Automation (ICRA),
pages 5709–5715, 2017. 3.1

[93] R. M. Westaway, S. N. Lane, and D. M. Hicks. The development of an automated correction
procedure for digital photogrammetry for the study of wide, shallow, gravel-bed rivers. Earth
Surface Processes and Landforms, 25(2):209–226, 2000. 3.2

[94] Eric Westman and Michael Kaess. Underwater AprilTag SLAM and calibration for high pre-
cision robot localization. Technical Report CMU-RI-TR-18-43, Carnegie Mellon University,
October 2018. 2.2, 3.4.1

[95] Brian Yamauchi and Pat Langley. Place learning in dynamic real-world environments.
Proceedings of RoboLearn, 96:123–129, 1996. 4.2.2

57


	1 Introduction
	1.1 Motivation
	1.2 Scope and Approach
	1.3 Contributions and Organization

	2 Preliminaries
	2.1 SLAM and Factor Graphs
	2.2 Hovering Autonomous Underwater Vehicle

	3 Localization: Through-water Visual SLAM
	3.1 Introduction
	3.2 Background and Related Work
	3.3 Refraction Observation Model
	3.3.1 Assumptions
	3.3.2 Refraction-corrected Stereo Triangulation
	3.3.3 Refraction-corrected Projection

	3.4 Proposed SLAM Formulation
	3.4.1 Factor Graph Representation
	3.4.2 Feature Extraction
	3.4.3 Data Association
	3.4.4 Implementation

	3.5 Experimental Results
	3.5.1 Trajectory Metrics
	3.5.2 Noise and Covariance
	3.5.3 Simulated Experiments
	3.5.4 Real-world Experiments


	4 Mapping and Exploration: Active Submap SLAM
	4.1 Introduction
	4.2 Background and Related Work
	4.2.1 Unknown Space Exploration
	4.2.2 SONAR Submaps
	4.2.3 The Virtual Occupancy Grid Map
	4.2.4 Saliency for Active SLAM

	4.3 Submap Saliency
	4.3.1 Vocabulary Generation
	4.3.2 The GloSSy Metric
	4.3.3 Revisit Candidates

	4.4 Active SLAM
	4.4.1 Exploration Policy
	4.4.2 Uncertainty Criteria
	4.4.3 Revisit Trajectories
	4.4.4 Penalty Term

	4.5 Simulated Experiments
	4.5.1 Setup
	4.5.2 Results


	5 Conclusion
	5.1 Contributions
	5.2 Observations and Future Work

	Bibliography

