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Abstract— Actively exploring and mapping an unknown en-
vironment requires integration of both simultaneous localiza-
tion and mapping (SLAM) and path planning methods. Path
planning relies on a map that contains free and occupied
space information and is efficient to query, while the role of
SLAM is to keep the map consistent as new measurements are
continuously added. A key challenge, however, lies in ensuring a
map representation compatible with both these objectives: that
is, a map that maintains free space information for planning
but can also adapt efficiently to dynamically changing pose
estimates from a graph-based SLAM system.

In this paper, we propose an online global occupancy map
that can be corrected for accumulated drift efficiently based
on incremental solutions from a sparse graph-based SLAM
optimization. Our map maintains free space information for
real-time path planning while undergoing a bounded number of
updates in each loop closure iteration. We evaluate performance
for both simulated and real-world datasets for an application
involving underwater exploration and mapping.

I. INTRODUCTION

We address the problem of maintaining a 3D map rep-
resentation by a robot that can be used for autonomous
exploration and mapping. The task of exploring an unknown
3D environment requires both simultaneous localization and
mapping (SLAM) and path planning to work together. A key
challenge, however, lies in ensuring a map representation that
can be used by a path planner in real-time and can also adapt
efficiently to dynamically changing pose estimates from a
graph-based SLAM system.

In order for a robot to autonomously explore and map an
unknown environment, its map representation must maintain
free, occupied and unknown space information. Of the differ-
ent 3D map representations, volumetric representations like
occupancy grid maps [1] have the advantage of maintaining
this information by dividing space into voxels that can then
be classified as free, occupied or unknown. Occupancy grid
maps, however, are restricted to a filtering paradigm wherein
each map voxel is updated as a binary Bayes filter [1-3].
The Bayes filter makes use of the Markovian assumption to
update a map voxel based on the most recent posterior state
estimate and discards historical sensor measurements. This
comes at the disadvantage that recovering from incorrect map
updates due to uncertain poses becomes challenging. The
drawback is particularly evident in event of loop closures
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Fig. 1. Proposed framework for an online consistent occupancy map.
SLAM maintains a pose graph and associated set of submaps. Loop closures
result in pose updates that are applied incrementally to the global map
by undoing updates from older submaps and adding back submaps with
corrected poses. Planner works in parallel and queries the global map
directly.

from a graph-based SLAM system, which may require large
adjustments to correct past inaccurate poses in the robot’s
trajectory.

One solution [4, 5] to the problem is to have an explicit
merge or rasterization step to generate a global occupancy
map from optimized poses. However, this can become in-
tractable for larger environments as the merged global map
would have to be recomputed using all submaps every time
there is an updated solution for the past poses. On the other
hand, recent work [6] addressed this problem by maintaining
multiple local occupancy submaps whose reference poses
can undergo loop closure updates efficiently. These local
occupancy submaps are directly used by the path planning
algorithm, eliminating the need for a single global occupancy
map. However, this puts the burden on the planner to query
voxels from multiple submaps, leading to linearly rising
query times, as opposed to a sublinear rise in the case of
a single global map.

In this paper, we propose an online global occupancy map
representation that falls between these two previously stated
extremes. It retains submaps in the SLAM pose graph but
also maintains a global occupancy map for planning that
doesn’t have to be fully remerged every loop closure itera-
tion. Our key goal is that incremental solutions from a sparse



graph-based SLAM optimization must reflect as incremental
updates to the online global occupancy map. For this, we
leverage two important factors—first, only a small number
of poses in the SLAM graph are updated each loop closure
iteration, and second, since probabilistic updates for each
submap are independent of each other, we can incrementally
undo updates based on a pose uncertainty criteria. This
results in us being able to maintain a single global occupancy
map that is: globally consistent every iteration, has sublinear
query times for real-time path planning, and undergoes on
average a bounded number of updates in each loop closure
iteration (Fig. 1). In particular our main contributions are,

(1) An online global occupancy map representation that
balances planning times and is compatible with graph-
based SLAM systems.

(2) Evaluation and analysis of our proposed approach on
both simulated and real-world datasets.

(3) Implementing the proposed approach for an autonomous
underwater exploration and mapping application

II. RELATED WORK

State-of-the-art SLAM algorithms are predominantly for-
mulated as maximum a posteriori (MAP) estimation over a
graph [6-11]. The MAP estimation framework has proven to
be more accurate and efficient than previous approaches for
SLAM based on nonlinear filtering [12]. The pose graph,
which stores poses of the robot and spatial constraints
between them, is a central data structure in graph-based
SLAM. The graph representation that we make use of is a
submap-based pose graph SLAM [6, 9-11]. This is a popular
representation for large-scale SLAM systems wherein the
SLAM frontend divides the world into a collection of locally
consistent maps or submaps each with their own local
coordinate frames [5, 6, 9-11, 13, 14] that can then be
deformed with respect to each other for drift correction.
The relative constraints between different submap coordinate
frames are maintained either as a pose graph in the case of
graph-based SLAM systems [9—11] or as a posterior belief
in the case of filtering-based SLAM systems [5, 13].

Only a few of these submap-based SLAM systems ex-
plicitly model freespace information in their submaps [5, 6,
11, 13] for path planning purposes. Ho et al. [6] maintain
multiple local occupancy grid submaps that the path planner
queries directly, eliminating the need for a global map.
While efficient for loop closures, the burden is placed on the
planner to query multiple submaps leading to linearly rising
planner query times with number of submaps, as opposed
to a sublinear rise with a global map. On the other hand,
Fairfield et al. [5, 13] use a global occupancy map created
by merging several local occupancy grid submaps. This
ensures efficient planning times, but loop closure updates can
become intractable for larger environments as all submaps
would need to be remerged every time there is an updated
pose solution. Konolige et al. [11] maintain local occupancy
grid submaps but within a hybrid metric-topological map
framework. The hybrid metric-topological class of methods,
however, rely on local planning with metric maps and global

planning with topological maps and hence cannot be easily
substituted for use with path planners that rely on standard
occupancy maps.

From the planning side, state-of-the-art path planning
algorithms for exploration and mapping of prior unknown
environments [15—17] make use of an occupancy grid map
representation of the world that can model free, occupied
and unknown space. These systems make use of a filtering
framework for updating the occupancy grid map. In order to
use occupancy grid maps with a graph SLAM framework,
however, an explicit merge or rasterization step is needed to
generate an occupancy grid map from the underlying graph.
Naively doing this for large environments by iterating over
all graph nodes, however, would take significantly longer
than the graph optimization itself, making it unsuitable for
real-time planning requirements.

III. PROPOSED MAPPING APPROACH

Given an incoming sequence of measurements, our objec-
tive is to build a global occupancy map that can represent
free, occupied and unknown space. If the set of sensor poses
are known with certainty at the time they are recorded,
existing occupancy grid mapping techniques can be used
directly to construct a global occupancy map. Our focus,
however, is on occupancy mapping with uncertain poses
i.e. when sensor poses are not well localized globally at
the time they are recorded due to accumulated drift. When
mapping with uncertain poses, our objective is to maintain
a occupancy map that can correct itself efficiently based on
loop closure updates from a SLAM system.

We build our mapping system upon the OctoMap frame-
work [1]. OctoMap is an octree-based 3D occupancy grid
mapping system that models free and occupied volumes and
implicitly volumes not yet measured. The octree data struc-
ture underneath makes OctoMap an efficient representation
for real-time robotics applications in 3D environments.

A. Map Construction

Let M denote our proposed online occupancy grid map.
At each step we consider a local occupancy grid submap
m; being updated in M. The reference frame for each local
submap m; is parameterized as a rigid transformation with
respect to a global reference frame as 77 € SFE(3). Each
submap addition can then be expressed as,

M = MUT!m, ey

Since each local occupancy grid m; is stored as an octree
data structure, the union operation in Eq. 1 involves iterating
over all leaf node voxels of m;, transforming voxel centers
to global coordinates using 77, and updating corresponding
occupancy values in the global octree representing M.

The local occupancy grid submap m; used here can
be constructed by locally accumulating sensor scans us-
ing odometry or frame-to-frame alignment. Sensor scans
{z,,0%,} accumulated in each submap are integrated as
m; by ray casting from sensor scan origins o}, to each
measurement endpoint in 2%,,. In our application involving



use of a sonar sensor on an underwater robot, m; is created
by accumulating a set of sequential sensor scans over a finite
time period ¢ based on robot odometry. Each scan in this set
is registered into a coordinate frame 7} placed at the pose of
the first scan, also referred to as the base (or keyframe) pose.
The time period ¢ is determined by balancing the trade-off
that submaps are short enough for accumulated odometry
drift to stay low, yet large enough that the submaps have
sufficient features for identifying loop closures. For a submap
my, this time period ¢ is computed by keeping the pose
covariance YJ; below a maximum threshold value, i.e.,

. 2 2 2 2 2 2
¥, =t x diag(0;,0,,0%,05,,0,,0;) < Lmaz  (2)

where, diag(o2,0;,0%,07,07,07) is the 6 x 6 covariance
matrix representing uncertainties in {x, y, z, yaw, pitch,
roll} directions respectively, and the < operation is done
in an element-wise manner. For datasets collected by our
underwater robot, we only consider uncertainties in {x, y, h}
directions for the ¢ computation. This is because, as we’ll
see later, the onboard state estimation on our robot gives us

absolute measurements in the {z, p,r} directions.

B. SLAM Pose Graph

Fig. 2 illustrates the SLAM pose graph represented as a
factor graph. A factor graph is a bipartite graph with two
types of nodes: variables x; € V and factors ®; € U [18].
In our case, the variable nodes x; are the base poses Tig of
each local occupancy submap m;. The factor nodes encode
differences between actual and predicted measurements as
soft constraints to the graph. Since we get absolute {z,p,r}
measurements for our underwater vehicle, the odometry
factor has been split as a relative pose-to-pose zyh factor
and a unary zpr factor [8, 9]. The loop closure factor is
obtained by applying ICP-based scan matching to submap
point cloud pairs {m;,my} so as to get transformation [
as the actual measurement.

To estimate values of variable nodes, we need to perform
maximum a posteriori (MAP) inference on the factor graph
in Fig. 2. For Gaussian noise models, MAP inference is
equivalent to solving a nonlinear least-squares optimization
problem of the form [9, 18],

& = argmin { (|Ix0 & Xpriorl[%,)+
—

pose prior
N
SO (1F Gcimrixi) —willi, + [lgx) — will2 )+ 3
i=1 ’
xyh factor zpr factor
> (lhtes,xi) = lll2,,) )
(i,k)eL

loop closure factor

where, |le||2 = eT¥7le is the Mahanalobis distance and
© the difference between two manifold elements. X" is the
state comprising of all variables: X = {x1, X3, ...X, } where
x; € SE(3) represents base pose transform 77 of submap
m;. The measurement prediction functions and covariances
associated with the zyh, zpr, and loop closure factors are

e zyh factor @ loop closure

factor

@ pose prior

zpr factor

Fig. 2. SLAM pose graph represented as a factor graph. Variable nodes
are shown as larger uncolored circles with corresponding variable names
x;. Factor nodes are shown as smaller color filled circles with color legend
showing type of factor.

{f(),9(), ()} and {A;,T;,E;}, respectively. L is set of
all tuples (i, k) for which a pairwise registration constraint
l;; exists between poses x; and xy.

To solve the least squares optimization in Eq. 3, we
make use of the iSAM optimization library [19]. iSAM
provides efficient algorithms for solving Eq. 3 incrementally.
It does so by linearizing measurement prediction functions
f(),9(:), h(-) and collecting all components into one large
system yielding a standard linear least squares of the form
X = argmin y||AX — b||2. Since A is a sparse matrix, the
linear least squares objective is solved for by computing a
matrix factorization R of A. As new factors and variables are
added to the graph, solution X is incrementally computed
by updating the previous factorization R directly instead
of refactoring A. This leads to an efficient incremental
algorithm (with periodic batch update steps) for computing
X. A more thorough treatment is provided in [19].

C. Global Map Loop Closure Update

In the previous subsection, we looked at how incremental
optimization for sparse graph-based SLAM provided a way
to incrementally compute optimized posteriors for base poses
X = {Tf’}f\;l as new loop closures are added to the graph.
Our objective now is to use these optimized pose posteriors
to efficiently update our online global occupancy grid M.

A naive approach would be iterate over all nodes of the
graph and add all local submap measurements into a single
global map. However, when applied to larger environments,
this step would take significantly longer than the optimization
itself, making it unsuitable for real-time planning require-
ments. Instead, we’d like to propagate the incremental pose
updates from iSAM efficiently as incremental updates to
our global occupancy grid map M. Consider, after a loop
closure update, the base pose values {T7}Y , get updated
to {T9}N . We compute a subset S; of local maps whose
base pose updates exceed a threshold €1, that is,

m; €81 V ||TZ-‘(]9T{L]||>€1. @)

For each local submap m;, i € S1, we further compute the
marginal uncertainty >J; ; of each base pose node. If a local
submap m; is well localized globally, it would have a low
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(c)

(a)-(c) illustrates a loop closure update to the proposed online global occupancy grid map M. The rectangular structure being mapped is shown

in orange, occupied grid cells are shown in black. (a) shows the grid map constructed using base poses {Tig }}20 (b) After a loop closure, the incremental
SLAM optimization returns updated base pose solutions {7’ ig }20. Based on this SLAM solution, submap subset m; € S1 N Sz is identified that must
be updated in M. Here, j = 8,9, 10 with corresponding voxels shown in blue, green, red respectively. (¢) shows incremental updates from the SLAM

optimization reflected as corresponding updates to the global map M.

marginal uncertainty, implying that measurements integrated
from m; lie within an acceptable uncertainty threshold. This
can be expressed as,

m; €Sy YV ||Ei7i”>62 5

where, || - || is the [2-norm proportional to the volume of an
ellipsoid of constant probability density defined by 3; ;.

The set Sy essentially identifies stable (||Z; ;|| < e2)
and unstable (||2; ;|| > €2) regions in the map, with pose
uncertainty being the metric for map stability. For computing
the marginal pose covariances ¥, ;, we utilize the dynamic
programming based approach included in the iSAM library
[19] and detailed in [20] to efficiently recover arbitrary
entries from the covariance matrix. This avoids inverting the
entire information matrix.

Now the submap subset m; € {S1 N Sz} essentially
denotes submaps that lie in unstable regions of the global
map and whose base pose updates after a loop closure
exceeds a threshold. This is the submap subset that must
be updated within our online global occupancy map M.
To compute this update, consider first the standard recursive
Bayes filter update rule for an occupancy map voxel n [1, 3],

pnlzi))  __ p(nlz) p(nlzii1) 1—p(n)
1—pnlzi)  1=p(nlz) 1—-pnlz-a) pn)
inverse sensor model recursive term prior
(6)

where, z; is the measurement added at the most recent time
step t. Expressing Eq. 6 in log-odds ratio form,

l(n|z1.4) = U(n|zt) + U(n|z1.4-1) — I(n) @)

where, [(n) =log (p(n)/(1 — p(n))) is the log-odds ratio.
We are interested in formulating a probabilistic measure-
ment update as in Eqgs. 6, 7 but now for updating online
global map M based on measurements from the submap
subset m; € {81 N S2}. For this, we must perform a new

measurement update based on optimized poses and undo
previous updates from unoptimized poses. Consider {n?}V_;
to be the leaf node voxels of submap m;, {Tjg , T7} the
optimized and unoptimized base poses of m; and n € M
the voxels in online global occupancy map M. The recursive
probabilistic update to M (with an additional term for
undoing an update) for each submap m; can then be written
out as,

p(ﬂln{;v_ﬁf) _ p(n\niaf}“’) 1 —p(nini, T})

new update undo old update
p(n‘njl:vfl’qu) 1 —p(n)
1 7p(n|n]1:v71ﬂcrjg) p(n)

prior

recursive term

= bu(nlnd,,, Tf) = Lu(nlnd, T7) — Lu(nlnd, T7)+

Im (n‘n]l-:vfl’ T_]g) —lm (TL)

®)

where, the subscript M to the log-odds function Ixq(-)
denotes the map in which the log-odds lookup is being done.

Note that the new update term in Eq. 8 is equivalent to
the inverse sensor model term in Eq. 6. The log-odds form
Iam(n|nd, Tjg ) of this term denotes how voxels n € M must
be updated on addition of measurements {n{;,TAf } coming
from local submap m;. Conversely, the log odds form of
the undo old update term in Eq. 8 denotes how voxels n €
M must be updated on removal of measurements {nJ, Tj’ }
coming from local submap m ;. This leads to a simple but
efficient algorithm, as summarized in Algorithm 1, for doing
loop closure updates in the online global occupancy map M.
Additionally, Fig. 3 too illustrates the process of updating
voxels in M based on loop closure updates.

We make two underlying assumptions when defining the
undo update term in Eq. 8: firstly updates to each voxel



Algorithm 1 Global Map Loop Closure Update
Input M: proposed online global occupancy map,
{m;}¥_,: local occupancy submaps,
{T?}N |: submap poses before loop closure,
{Tig } | : optimized submap poses after loop closure,
{3} : marginal pose covariances before loop closure
Output M
Parameters ¢, ¢>

fori=1t Ndo
updateFlag = (|[77 & 77| > e1) & (|[Sl] > e2)
if updateFlag then
ni. + getLeafNodeVoxels(m;)
Xi . < getVoxelCenters(n® i)
for v=1to V do
(TP X3) < Ia(TP X)) = Lin, (X))
Lm(TPX5) = Lm(TYX5) + I, (X3)
end for
end if
end for

n € M are independent, and secondly probabilistic update
is an invertible function. The first assumption holds true
for occupancy grid mapping in general. For the second
assumption to hold true, clamping thresholds (as also used by
Octomap [1]) must be set to their minimum and maximum
possible values, that is Py, = 0, pmaer = 1 for all,

ZM(n|n{:v,T]»g) = max (min (ZM(n|n{:v,f}9), lmax> ,lmm)
)

where, lin, lmaes are the log-odds values corresponding to
Dmin, Pmaz respectively. This would ensure that information
close to p =0, p =1 is not lost, and the probabilistic map
update function is invertible.

D. Map Occupancy Queries

Occupancy queries to the map are typically made by the
path planning module. We make use of a sampling-based
exploration planner [17] that queries the map in the form of
ray cast queries. Ray cast queries are needed by the planner
for computing collision-free paths and for computing view
utility gains of sensor rays casted from next-best-viewpoints.

Map queries to our online global occupancy map M are
performed the same way as in Octomap [1]. Ray cast queries
are performed by stepping along a ray from sensor origin
to an end point, and returning the occupancy values for all
voxels along that ray. Each voxel query on an octree data
structure of tree depth d,,, can be performed sub-linearly
with a complexity of O(dpqe,) = O(logn), where n is the
number of nodes in the tree. Like Octomap, the use of octrees
also enables multi-resolution queries, where tree traversal is
stopped at a fixed depth.

IV. RESULTS AND EVALUATION

We evaluate our proposed mapping approach on met-
rics like map quality, accuracies, query and update time

Fig. 4. Bluefin hovering autonomous underwater vehicle (HAUV)

complexities. We perform this evaluation for two simulated
datasets and one real-world dataset. Since our application of
interest is underwater exploration, we collect these datasets
by making our underwater robot explore simulated and real-
world underwater environments. All evaluation is done on a
laptop with an Intel Core 17-7820HQ 2.9GHz processor.

A. Experimental Setup

For generating the simulated datasets, we adapt the UUV
Simulator [21], a gazebo-based underwater simulator, and
customize it for our underwater robot model. The underwater
robot that we use is the Bluefin hovering autonomous under-
water vehicle (HAUV) as seen in Fig. 4. The Bluefin HAUV
is equipped with several sensors for onboard navigation:
a Doppler velocity log (DVL), an attitude and heading
reference system (AHRS), and a depth sensor. The depth
sensor gives direct measurements of the vehicle’s z position.
Additionally, the AHRS is also capable of providing direct,
drift-free estimates of vehicle’s roll » and pitch p angles. The
vehicle’s x,y positions and yaw h are not directly observable
and instead estimated by accumulating dead reckoning of
the DVL and IMU odometry measurements. As a result, the
vehicle’s onboard navigation system gives us a drifting pose
estimate in the {x,y,h} directions, and an absolute pose
estimate in the {z,p,r} directions [8].

To replicate this navigation payload on the simulated
HAUV, we add gaussian noise to absolute ground truth
estimates in the {z,p,r} directions, and gaussian noise to
the relative ground truth estimates in the {x, y, h} directions.

Tmazx

Fig. 5.

Geometry of a single sonar scan.



Dataset 1: Simulated Propeller

Fig. 6.

Dataset 1: Simulated Propeller

Fig. 7.

Consider x;,x;11 as the uncorrupted ground truth state esti-
mates, X; the current corrupted state estimate, the corrupted
next time step estimate X;;; can then be computed as,

Ai = (Xt+1 (&) Xt) EBN(O, Emyh)

Xip1 = X D AX

it-{-l = )th-‘rl @N(Oa 2zp?")

(10)

where, Y., = diag(c},0.,0,07,0,0) are the co-
variance values in {z,y,h} directions and %, =
diag(0,0,02,0,07,07) are covariances in the {z,p,r} di-
rections. The variance values that we use for all simulated
experiments are o = 0.00138 m?/s, o7 = 0.00138 m?/s,
i = 1077 rad?/s, 02 = 0.0001 m?/s, 012) =107 rad?/s,
02 =107 rad?/s.

For sensing, we equip the simulated HAUV with a 1D
laser line sensor in order to replicate the profiling sonar
sensor on the real vehicle. A schematic of the profiling sonar
sensor geometry is shown in Fig. 5. Each scan consists of 96
beams evenly spaced within sonar’s 1) = 29° horizontal field-
of-view. Sensor readings are retuned as {r, 1} values which
are converted to cartesian coordinates. In the case of the real
sonar sensor, the elevation angle opening is a non-zero value
0 =~ 1°, which we don’t explicitly model in our simulated
line sensor. As a result, there is greater vertical ambiguity in
the real sonar returns compared to the simulated returns.

Dataset 2: Simulated Pilings

Dataset 2: Simulated Pilings

N

Dataset 3: Real-world Pilings

Simulated and real-world underwater environments used for generating the datasets

Dataset 3: Real-world Pilings

o

Qualitative reconstructions of proposed online occupancy map

B. Datasets and Baselines

We collect datasets for the following underwater environ-
ments: simulated propeller, simulated pilings, and real-world
pilings. These environments are visualized in Fig. 6. To
collect the simulated datasets, a next-best-view based explo-
ration path planner [17] was used for planning collision-free
trajectories through complex structures in the environments.
The real-world dataset was collected using the real HAUV
during field trials in San Diego in Nov 2018. During the
field trials, the HAUV was controlled using manually set
waypoints due to constraints like vehicle tether that are
currently not handled by our exploration planner.

We compare our proposed mapping approach against: (a)
a global occupancy grid map remerged using all submaps
with SLAM optimized poses and (b) VOG Map [6] that
only maintains local occupancy grid submaps and doesn’t
do any global merging. To generate (a), the remerge can
be done using either local occupancy grids in each submap
m; or raw measurements {z!, ot ,} in each submap m;.
Reintegrating raw measurements would involve iterating over
all measurements and ray casting these again into a new
map, which is clearly a computationally expensive process
not suitable for real-time SLAM and planning. Hence, when
comparing map query and map update times, we’ll compare
against a global occupancy grid remerged using the local
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Fig. 10. ROC curves computed against ground truth for simulated datasets

occupancy grids directly in each submap m;. We refer to
this as a Full Merge map, and is the equivalent of doing a
batch update on a global occupancy grid map.

C. Map Accuracies

Fig. 7 shows qualitative results for the proposed online
occupancy grid maps corresponding to the underwater en-
vironments in Fig. 6. Occupied voxels for the environment
explored up till 100 submaps have been visualized. In all
the experiments, number of sonar scans in each submap were
kept at 200, octree resolution at 10cm, probability hit as 0.75,
probability miss as 0.20, probability occupied threshold as
0.7, probability free threshold as 0.3 and clamping thresholds
as Prmin = 0, Prmaz = 1.

For the two simulated datasets, we also compare map
accuracies quantitatively against ground truth occupancy
maps. Fig. 10 plots the Receiver Operating Characteristic
(ROC) curves with corresponding Area under Curve (AUC)
values for proposed and VOG map. VOG map was generated

Dataset 1: Simulated Propeller

Dataset 2: Simulated Pilings

for comparison by querying global coordinates in multiple
local submaps and summing their log-odds. Since VOG
map uses the most recent SLAM poses, it has an accurate
reconstruction. Fig. 10 shows the proposed map having
similar AUC values as VOG map despite sparse updates.
A primary reason for AUC values not being closer to 1 for
both VOG and proposed maps are the quality of SLAM loop
closures—which seem to be better for the simulated propeller
dataset over the simulated pilings.

D. Map Query Complexities

Occupancy queries to the map are made by the path
planner. The queries from the exploration path planner [17]
that we use are primarily ray cast queries. Ray cast queries
on the map are performed by stepping along a ray from
ray origin to ray end point, returning occupancy voxels of
all voxels along that ray. We profile ray cast query times
for 1000 rays of varying lengths (< 4m) sampled randomly
in the explored map regions. Fig. 8 shows the median
query times for a single ray against number of submaps for
proposed map, VOG map and the Full Merge map. VOG map
has a linearly rising map query complexity since it queries
multiple local overlapping submaps. Our proposed approach,
however, has a sublinear query time (similar to Full Merge)
since it maintains a single global map.

E. Map Update Complexities

Fig. 9 shows the cumulative average over map update
times against number of submaps. It can be seen that the Full
Merge map has a rising map update time, with sizable jumps
at iterations where a loop closure update happens. VOG-map

Dataset 3: Real-world Pilings

0.10 Co 0.07 o 0.050 Co
—— Full Merge 0.06- —— Full Merge 0.045- —— Full Merge
. 0:08- —— vOG Map — —— VOG Map __0.040- — VOG Map
) v 0.05- - [%)
= —— Proposed —— Proposed £ 0.035- —— Proposed 1
g% S g o0 - goo030- .
W 0.04- i © 0.03- - o 0.025- -
E £ 0.02- | £ 0.020- -
F 0.02- = F0.015- .
0.01 - 0.010- -
T —_—— T T L
0-00 10 20 30 40 50 60 70 80 90 100 000 15 20 30 40 50 60 70 80 90 100 0-0055°"75 20 30 40 50 60 70 80 90
Number of submaps Number of submaps Number of submaps
Fig. 8. Median ray cast query times
Dataset 1: Simulated Propeller Dataset 2: Simulated Pilings Dataset 3: Real-world Pilings
600 I I I I I I 450 I I I I I 800 I I I I I
sool Full Merge 400- —— Full Merge 700- —— Full Merge
= — VOG Map = 350- —— VOG Map T 5600~ T VOG Map
€ 400- — Proposed - g 300- —— Proposed -~ Es00- Propased 1
c c 250~ . c
= 300~ - = 200 = 400- .
) (0] r 7 )
€ 200- - E150 _ g 300- N

= 100- - F
50 4 1007 J

=
100- -

% 10 20 30 40 50 60 70 80 90 100
Number of submaps

0

0 10 20 30 40 50 60 70 80 90 100
Number of submaps

0 10 20 30 40 50 60 70 80 90
Number of submaps

Fig. 9. Cumulative average over the map update times



has almost a constant time update since each map update
step only involves correcting the base pose values of local
submaps. Our proposed online occupancy map maintains a
global map without rising map update times. This is because
our map undergoes on average a bounded number of updates
each loop closure iteration proportional to the impact of the
loop closures.

Thresholds €1, €5 affect the submap subset m; € {S1NSa}
that must be incrementally updated in our online map. €; was
chosen to be 1072 or ~0.6° for differences in yaw, pitch,
roll axes and 2 x 1072 or 0.2cm for differences in x, y, Z
axes. ||X; ;|| is taken to be the volume of the 95% confidence
ellipse of the uncertainty values in the x, y, h directions. We
set e; as the maximum uncertainty volume reached in the
initialization phase (chosen here as 7 < 10).

FE. Overall System Performance

From the planning side, the exploration planner that we
use [17] extensively queries the occupancy map to compute
information gain. On average, in each planning iteration, the
planner performs ~100, 000 ray cast queries. In the case of
VOG map, the median query times in Fig. 8 would cause
each planning iteration to be in the order of seconds within
100 submaps. Having sublinear query times, as is the case
for the proposed map or the Full Merge map, is essential for
real-time planning.

From the SLAM side when there is a loop closure, Full
Merge map recreates the global map by iterating over all
nodes of the pose graph. Our proposed map bounds rising
map update times by selecting a small subset of submaps and
incrementally updating the global map. While VOG map has
a more efficient update, however, update time for proposed
map is easily amortized over the ~100, 000 planner queries
that happen each planning iteration in sublinear times.

V. DISCUSSIONS

We present an online global occupancy map representation
that can be corrected for accumulated drift efficiently based
on incremental solutions from SLAM. A key challenge is
ensuring that the map can be queried by a path planner
in real-time as well as be updated efficiently by dynami-
cally changing pose estimates from the SLAM system. Our
solution is to maintain both a global occupancy map and
a set of submaps in the SLAM pose graph. Every time a
pose is updated, a submap is removed and a submap with
the corrected pose is added to the global map. We leverage
two properties—sparsity of updates and independence of
submaps and demonstrate that this results in both bounded
query time and bounded update time.

One issue that remains, however, is that the memory
footprint of the system still continues to rise linearly. In
current SLAM formulations, this is inevitable as submaps
are used for determining loop closure. One way to overcome
this could be to formalize a criteria for rejecting a new
measurement if the information content is negligible. Since
entropy can only decrease, this can potentially guarantee a
bound on the number of submaps.
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