
REAL-TIME DENSE MAPPING WITHOUT POSE

GRAPH USING DEFORMATION AND

ORIENTATION

PUNEET PURI

ROBOTICS INSTITUTE, SCHOOL OF COMPUTER SCIENCE

CARNEGIE MELLON UNIVERSITY

ADVISER: PROF. MICHAEL KAESS

THESIS COMMITTEE

PROF. MICHAEL KAESS

PROF. MARTIAL HEBERT

DANIEL MATURANA

JUNE 2017

CMU-RI-TR-17-35

Abstract

In this thesis, we propose a novel approach to integrating inertial sensor data into a

pose-graph free dense mapping algorithm that we call GravityFusion. A range of dense

mapping algorithms have recently been proposed, though few integrate inertial sensing.

We build on Elasticfusion, a particularly elegant approach that fuses sensor information

directly into small surface patches called surfels. Traditional inertial integration happens

at the level of camera motion, however, a pose graph is not available here. Instead, we

present a novel approach that incorporates the gravity measurements directly into the map:

Each surfel is annotated by a gravity measurement, and that measurement is updated with

each new observation of the surfel. We use mesh deformation, the same mechanism used

for loop closure in Elasticfusion, to enforce a consistent gravity direction among all the

surfels. This eliminates drift in two degrees of freedom, avoiding the typical curving of

maps that are particularly pronounced in long hallways. We qualitatively show our results

in the experimental evaluation using a RGB-D and a stereo camera setup.

ii

Acknowledgements

I would thank my advisor Prof. Michael Kaess for his guidance and support during

my Masters journey. His tenacity and patience in our meetings to dig deep into the subject

helped me greatly. I would also like to thank my collaborators Daoyuan Jia, Curtis Borium

and Prof Nathan Michael and out of group collaborators Vishal Duggar and Rohan Thakker.

And finally, I would like to thank the members of my research group with whom discussing

and brainstorming in every group meeting help build a better understanding of the SLAM

problem.

iii

Contents

Abstract . ii

Acknowledgements . iii

List of Tables . vii

List of Figures . viii

1 Introduction 1

1.1 Background . 1

1.2 Problem statement . 2

2 Related Work 4

2.1 Brief history of SLAM approaches . 4

2.2 Visual SLAM and dense mapping . 5

3 Approach 8

4 Map Creation 11

4.1 Camera tracking . 11

4.1.1 Geometric and photometric camera pose estimation 12

4.1.2 Joint optimization (without inertial data) 13

4.1.3 Bootstrapping with inertial data 13

4.2 Adding inertial information into surfels 15

4.3 Updating gravity direction information . 16

iv

Contents Contents

5 Map correction: Deformation graph 17

5.1 Influence of graph on surfels . 18

5.2 Deformation graph optimization . 20

5.2.1 Constraints . 20

5.2.2 Gravity alignment . 22

5.2.3 Regularization . 23

5.2.4 Rotation . 23

5.3 Triggering graph optimization . 24

6 Results: RGB-D camera 25

6.1 Dense reconstruction using RGB-D . 25

6.1.1 Hardware . 26

6.1.2 Experiment setup . 26

6.2 Evaluation on simulated dataset . 29

6.3 Evaluation of inertial camera tracking . 31

7 Results: Stereo camera 33

7.1 Camera setup . 33

7.1.1 BumbleBee2 camera . 34

7.1.2 Stereo sensor pack V1: Head mounted 34

7.1.3 Stereo sensor pack V2: Body mounted 35

7.1.4 Calibration . 36

7.2 Stereo software stack . 36

7.2.1 Image pre-processing . 37

7.2.2 Disparity generation . 37

7.2.3 Depth computation . 37

7.2.4 Packaging depth and RGB frames 38

7.3 Reconstruction . 38

v

Contents Contents

7.3.1 Scanning with stereo camera . 38

7.3.2 Stereo reconstruction with ElasticFusion 39

7.3.3 Stereo GravityFusion system . 39

8 Conclusion and future work 43

Bibliography 44

vi

List of Tables

6.1 ICL-NUIM dataset performance of various systems 30

vii

List of Figures

1.1 Consistent model created through a low-feature corridor dataset 3

3.1 Sequence from walking through a long corridor 9

4.1 Bootstrapping Optimization with Inertial Data 14

5.1 Influence of graph nodes on surfels . 18

5.2 Affect of different energy terms on graph node’s spatial orientation 21

6.1 RGB-D Camera setup . 25

6.2 Comparison of camera tracking loss and recovery on a corridor dataset . . . 26

6.3 Map generated from a dataset of office alleys in a circuit 28

6.4 Mapping of a cluttered office deskroom 30

6.5 Inertial initialization of camera tracking estimate 31

6.6 Inertial camera tracking error norm comparison 32

7.1 Bumbleebe2 stereo camera . 34

7.2 Head mounted V1-sensor-pack with stereo camera and IMU 35

7.3 Body mounted V2-sensor-pack with stereo camera and IMU 35

7.4 Software stack for 3D Mapping using stereo frames and IMU 36

7.5 Pre-processing and rectification of image frame 37

7.6 Stereo image dense disparity generation 38

7.7 Camera pattern for scanning the surface 39

viii

List of Figures List of Figures

7.8 3D model of the inhouse demo roof . 40

7.9 Scan of tiles using V2-sensor-pack Stereo camera 41

7.10 Broken model due to tracking loss with a stereo camera 42

7.11 GravityFusion based consistent model using a stereo camera 42

ix

Chapter 1

Introduction

1.1 Background

Visual SLAM is the process of creating a map while simultaneously localizing the camera.

This process not only creates a representation but also finds the path which camera took as

it observes the surroundings to create that map.

Creating an accurate map of real-world is becoming increasingly important as we often

want our systems to operate in these surroundings. A good map lends itself to further

knowledge extraction like scene understanding, localization, etc. Good quality maps are

relevant for mobile robot navigation and manipulation, for augmented and virtual reality

applications, and for inspection tasks.

Accurate dense mapping got reignited with the advent of low-cost RGB-D cameras, and

now this trend is even driving commodity stereo camera growth. Mapping methods can be

broadly classified into sparse and dense. We here look into the dense mapping methods as

they offer the possibility of creating a map with details; including complete geometric and

color information.

1

1.2. Problem statement Chapter 1. Introduction

1.2 Problem statement

Most systems rely on only stereo or RGB-D cameras to create dense 3D maps, however in-

ertial sensors are becoming ubiquitous. Combining dense 3D mapping with inertial sensing

provides significant advantages over pure vision-based mapping.

In the absence of a global reference such as GPS, mapping algorithms suffer from drift,

that can partially be mitigated by loop closures in a simultaneous localization and mapping

(SLAM) context. Drift results from the accumulation of noisy sensor data over time, where

small errors add up over longer trajectories to yield significant discrepancies between the

model and the physical world. A typical solution to reducing drift is loop closure: When we

re-observe a previously visited area of the environment, we can create a constraint between

the earlier observations and the current sensor data, a loop closure, that allows removal of

some of the accumulated drift.

Incorporating loop closures into dense mapping is a challenging problem: Volumetric

representations are not suitable, as translation and rotation of parts of the model is compu-

tationally very expensive. Surface mesh representation on the other hand can be deformed

at relatively low cost, but re-integrating two surface meshes after loop closure is challeng-

ing. The surfel representation used in ElasticFusion allows for both, efficient deformation

and re-integration upon loop closure. We therefore use ElasticFusion as the basis for our

work.

Even with loop closures, some drift remains, and additional measurements, such as

from an inertial sensor, are needed. When mapping a single floor of a building there is

typically insufficient data to constrain drift in some directions, yielding a curved map. The

poorly constrained degrees of freedom include pitch, roll and z, while drift in x, y and

yaw is bounded by loop closures. Incorporating additional sensor information can help in

limiting that drift. Inertial sensors provide complementary information: by providing an

estimate for the gravity direction, they eliminate drift in pitch and roll.

2

1.2. Problem statement Chapter 1. Introduction

Our contribution is a novel algorithm that integrates inertial measurements directly into

the map. Since the ElasticFusion algorithm is pose-free, conventional inertial fusion al-

gorithms cannot be applied. Instead, we fuse inertial measurements inside the map. We

then use a mesh deformation technique, used in ElasticFusion for loop closing, to enforce

a consistent gravity direction over the entire map to correct map’s drift.

Figure 1.1: Our approach, described in this thesis, produces a consistent model through a
low-feature corridor circuit, where other methods fail.

3

Chapter 2

Related Work

2.1 Brief history of SLAM approaches

Solving SLAM resembles the problem of Bundle Adjustment (in photogrammetry) or

Structure from motion (in computer vision) with an important difference; it has an as-

pect of incremental update during map formation. The earliest approaches such as Smith

and Cheeseman [35] solved the SLAM problem using EKF(Extended-Kalman-Filter). The

EKF based approaches extended by Davison [6], Castellanos and Tardós [1], and Newman

[33] had a limitation that the map creation scaled linearly whereas the co-variance scaled

quadratically. Only a few solutions such as Hierarchal SLAM proposed in Estrada et al. [8]

bypassed this limitation.

The advent of particle filters, also known as Monte Carlo methods provided a more

scalable solution to the EKF. Particle filter approaches such as FastSLAM by Montemerlo

et al. [26] overcame the scalability issue by using conditional independence (with Rao-

Blackwelization) and a better map management.

The graph-based SLAM methods are where a graph is formed with nodes and edges.

The edges are constraints in the form of measurement between variables which are rep-

resented as nodes. The graph-based SLAM tackled the issues faced by EKF and particle

4

2.2. Visual SLAM and dense mapping Chapter 2. Related Work

filters as they could scale well and maintain accuracy. One of the first approach of graph-

based SLAM method was Lu and Milios [24] followed by Dellaert [7] Konolige et al.

[21] Konolige and Gutmann [20] Kümmerle et al. [22]. The iSAM’s factor graph based

approach by Kaess et al. [15], Kaess et al. [16] results in a sparse factorization problem

which allows incremental matrix optimization, demonstrating that these systems can work

at scale.

2.2 Visual SLAM and dense mapping

Visual SLAM uses the camera as a predominant sensor to map surroundings and localize

itself. Seminal work on Visual SLAM was done by Davison in his thesis, Davison [5], and

as part of Mono-SLAM, Davison [6]. These were capable of capturing a map of sparse

landmark features and estimating the pose of the camera in real time. Some of the key

contributions were inverse depth parametrization which allowed to handle infinity distances

Montiel et al. [27]. Another key milestone in the field of VisualSLAM was PTAM Klein

and Murray [19] as it separated the thread for tracking and mapping to run at different

rates. The tracking thread was run at camera frame rate, however, the mapping was slowed

down to be processed over batches. It also avoided linearization error common with EKF

by performing bundle adjustment over a wider array of frames

Davison did some of the earlier work with Dense mapping Newcombe and Davison

[30], using the monocular system of Klein and Murray [19], followed by DTAM. DTAM,

Newcombe et al. [31], was capable of live dense 3D reconstruction using a monocular

camera and used an inverse depth map. The advent of Microsoft Kinect RGB-D camera

made the depth sensor easily accessible at a moderate price point, sparking a huge interest

in visual SLAM community. Henry et al. [11] and Huang et al. [13] developed one of the

earlier systems with Kinect sensor. These approaches used FAST feature correspondence

to do visual odometry and made sparse bundle adjustment as a post-processing step to

5

2.2. Visual SLAM and dense mapping Chapter 2. Related Work

building a dense map. The seminal paper of KinectFusion by Newcombe et al. [32] was

capable of real-time 3D reconstruction. It utilized the parallel capability of GPU to run real

time and was able to map small spaces such as tables, office cubicles, etc. It used Truncated

Sign distance function(TSDF) from Curless and Levoy [3] allowing parallelization and

efficient scene representation.

Various dense mapping techniques have been proposed over the past several years .

One approach, BundleFusion by Dai et al. [4], uses bundle adjustment for global frame

alignment combined with dense map generation, making it very accurate but also com-

putationally expensive. Probabilistic formulations account for estimation uncertainty and

include REMODE by Pizzoli et al. [34] as well as planar mapping approaches by Hsiao

et al. [12], that use infinite planes in a bundle adjustment setup to model planar surfaces.

Another set of approaches is based on an implicit surface representations in the form of a

signed distance function, a volumetric representation that allows fusion of multiple camera

frames. The KinectFusion by Newcombe et al. [32], was later extended in Kintinuous to

large scale environments by Whelan et al. [40]. Another common approach called point-

based fusion Keller et al. [17] fuses sensor information into small surface patches with

orientation and scale. ElasticFusion by Whelan et al. [39] combines point-based fusion

with mesh deformation for large scale loop closure. We use ElasticFusion as the basis for

our inertial mapping system.

Inertial sensor measurements are often integrated into mapping in the context of feature-

based methods, some examples follow. Indelman et al. [14] provides a smoothing-based

solution to IMU integration with other sensors in a factor graph framework. Forster et al.

[9] improves upon the pre-integration method used for integrating the inertial data into

the SLAM factor graph. Leutenegger et al. [23] also provides an integrated SLAM solution

based on smoothing. Mur-Artal and Tardos [29] integrates the inertial measurements during

tracking over a local map.

6

2.2. Visual SLAM and dense mapping Chapter 2. Related Work

Inertial sensing integrated with dense mapping is less common to find in the literature.

One way is to use a feature-based inertial integration, such as Mur-Artal and Tardos [29],

to recover the camera trajectory, and then apply a separate dense mapping system, such

as Mur-Artal and Tardos [28]. Concha et al. [2] presents a direct visual SLAM method

fused with inertial measurements. Usenko et al. [38] recently presented a dense visual

inertial odometry method, however, by only using odometry it is not possible to incorporate

loop closures for consistent large scale mapping. Ma et al. [25] present a KinectFusion-

based inertial fusion, however, without the capability to close loops as a deformation of the

dense volumetric representation is computationally expensive. To retain the advantages of

fusion while allowing loop closures, we build on point-based fusion, and in particular the

ElasticFusion algorithm.

While all of the above methods incorporate inertial sensor data at the level of camera

motion, we present a novel approach that directly fuses them with the map. In our Gravi-

tyFusion algorithm, correction of the map proceeds in much the same way as loop closures

in ElasticFusion, using a deformation graph by Sumner et al. [37] to perform mesh defor-

mation.

7

Chapter 3

Approach

Our approach, called GravityFusion, corrects accumulated drift in the map using inertial

information embedded in surfels. As the camera moves, the system builds a map of surfels

similar to ElasticFusion. However, instead of just fusing RGB-D data from multiple frames

to create a surfel, GravityFusion also includes orientation information from an inertial sen-

sor at the time of frame capture. This is done by including the measured direction of earth’s

gravity into the surfel that is being created or updated. Similar to updating position, ori-

entation, and color of a surfel in ElasticFusion, a weighted average is used to fuse gravity

vectors of a surfel measured at different times. The map created as a result has measured

gravity vectors embedded in every surfel.

While the mapping is being done, the GravityFusion system triggers gravity vector re-

alignment after a certain number of frames to ensure that the map’s drift is corrected. This

correction is done using a mesh deformation graph, similar to ElasticFusion. The mesh

nodes are sampled surfels of the map. These nodes, like surfels, contain gravity informa-

tion. The nodes of the deformation graph are reoriented to align the gravity vectors to a

common direction. This reorientation of graph nodes results in deformation graph nodes

getting realigned. The correction in rotation and position gives the required information to

fix the accumulated drift in the map.

8

Chapter 3. Approach

(a) Kintinuous/RGBD SLAM [40] generates a map that bends.

(b) Elasticfusion [39] accumulates drift and looses tracking.

(c) Our approach GravityFusion frequently corrects the model using the measured gravity direction
to produce a consistent model.

Figure 3.1: Shown is a sequence from walking through a long corridor

Subsequently, all surfels that are not part of the deformation graph are corrected based

on neighboring deformation graph nodes. The drift correction of a node is propagated to

its neighbouring surfels which reorients and re-positions them to ensure correct alignment.

The extent of correction is based on vicinity to a correcting graph node. It is possible that

multiple nodes affect a surfel and contribute to a change in its location and orientation.

Since these corrections are done for all the sufels throughout the map, in the end we get a

map which is drift corrected.

Frequent gravity-based map corrections are performed in real-time. While ElasticFu-

sion applies graph deformation only at loop closure, we regularly perform a mesh defor-

mation to incorporate gravity measurements and eliminate drift. To allow for real-time

processing, the gravity correction is added to the GPU-based loop closure algorithm in

ElasticFusion. Consequently, a good map is always available in our pose-graph-free ap-

proach, without the need to maintain past states or deal with issues often related to the

marginalization of previous state information.

9

Chapter 3. Approach

In the following chapters, we describe our approach in detail. In chapter. 4 we discuss

the process of map creation and inclusion of inertial information into the map. Following

this, in the chapter. 5 we describe the map’s drift correction using a deformation graph.

We compare our approach to other methods in chapter. 6 and in chapter. 7 we discuss the

results obtained using our described method and ElasticFusion system on a stereo camera

setup.

10

Chapter 4

Map Creation

Mapping process in our approach GravityFusion resembles ElasticFusion’s with changes

in camera tracking method and map datastructure. The map is represented as an unordered

surfel list similar to Whelan et al. [39] and Keller et al. [17]. A surfel S consists of gravity

vector g ∈ R3, position v ∈ R3, normal n ∈ R3, color c ∈ N3, confidence λ ∈ R, radius

r ∈ R, initialization timestamp t0 and last updated timestamp t. Section 4.1 and subsection

4.1.3, explain the changes in tracking subsystem and how our approach embeds inertial

information into the map.

4.1 Camera tracking

Our camera tracking approach closely resembles ElasticFusion’s [39] where combined

depth tracking and photometric alignment is initialized with photometric alignment only.

Our approach differs as it informs this photometric alignment with an inertial measurement

from the IMU rotation, thus leading to a more robust camera pose estimation. We only

make use of rotation values from the inertial data because incremental angular motion is

available with greater accuracy using standard IMUs.

11

4.1. Camera tracking Chapter 4. Map Creation

4.1.1 Geometric and photometric camera pose estimation

In the RGB-D incoming frame we define the image domain as Ω ⊂ N2 and the depth

map D as the depth of pixels d : Ω→ R. The 3D back projection of a point u ∈ Ω for

a given depth map D is given by p(u,D) = K−1ud(u), where K is the camera intrinsic

matrix and u is the homogeneous form of u. The perspective projection of a 3D point

p = [x,y,z]> (in camera frame Fc), is represented as u = π(Kp). Here π(p) = [x/z,y/z]>

represents the de-homogenization operation.The normal map is computed for every depth

map using central differences. The color image C is represented as c : Ω→ N3. The color-

intensity value of a pixel u ∈ Ω, given a color image C with color c(u) = [c1,c2,c3]
>, is

defined as I(u,C) = (c1 + c2 + c3)/3. The global pose of the camera Pt (in global frame

Fg) is determined by registering live a depth map and a color frame with the model, where

Rt ∈ SO(3) and tt ∈ R3

Pt =

 Rt tt

0 0 0 0

 (4.1)

Geometric error is calculated between the raw live depth map Dt from the sensor and the

active model’s depth map using last frame, D̂t−1, Here vk
t is the back projection of the kth

vertex in Dt and vk represents the corresponding vertex in the model and nk is the normal

of vk. T is the current estimation of transformation of camera pose and exp(ξ) is the

incremental motion with parameter ξ to be optimized in the current iteration.

Eicp = ∑
k
((vk− exp(ξ)T.vk

t).n
k)2, (4.2)

Similarly the color from the live frame Ct at the current time t and model Ct−1 is used to

find the optimum motion parameter ξ using photometric error Ergb; intensity difference

12

4.1. Camera tracking Chapter 4. Map Creation

between pixels.

Ergb = ∑
u∈Ω

(I(u,Ct− I(π(K exp(ξ)Tp(u,Dt)),Ct−1)))
2 , (4.3)

4.1.2 Joint optimization (without inertial data)

The geometric pose estimation is done by iteratively minimizing tracking error Etracking

as a weighted sum of geometric error Eicp and photometric error Ergb. These errors are

calculated in order to find the optimal motion parameter ξ , where ξ ∈ R6 and exp(ξ) ∈

SE(3). The tracking error is expressed as,

Etracking = Eicp +ωrgbErgb, (4.4)

where ωrgb is the weight of photometric error Ergb over ICP error Eicp.The incremental

motion parameter, ξ is optimized in current iteration where ω ∈ R3 and x ∈ R3. The cost

of system is minimized using non-linear least-squares Gauss Newton . The J contains

the measurement jacobian and r the residual, where each iteration is solved using Cholesky

decomposition similar to ElasticFusion [39]. This results in a optimal ξ that gets a accurate

camera pose estimate Pt = exp(ξ)TPt−1.

argmin ‖ Jξ + r ‖2 (4.5)

ξ =

 [w]× x

0 0 0 0

 (4.6)

4.1.3 Bootstrapping with inertial data

ElasticFusion, like most SLAM algorithms, suffers when the quantum of motion between

frames is high. Frames with low RGB-D information content are also challenging, since

13

4.1. Camera tracking Chapter 4. Map Creation

Figure 4.1: Bootstrapping Optimization with Inertial Data

registration becomes difficult. Specifically, the optimization procedure used to determine

the transform matrix between frames relies on an initial point provided by an SO(3)

(rotation-only) photometric alignment. If this initial estimate is poor, the subsequent

optimization procedure fails to converge to the correct transform.

Using inertial data

The SO(3) alignment step cannot handle large motions or sparse RGB-D frames, and this is

precisely the point where we intervene with inertial data. We use inertial measurements to

derive the rotation matrix that transforms the current frame to the previous frame, and use

this as an initial value for SO(3) alignment. We only make use of rotation values from the

inertial data because of two main reasons - firstly, incremental angular motion is available

with greater accuracy using standard IMUs, and secondly, angular motion has a much larger

impact on the motion between frames than linear motion. Our hypothesis is that reasonably

accurate rotation estimate allows the SO(3) alignment procedure to overcome the problem

of large inter-frame motion.

14

4.2. Adding inertial information into surfels Chapter 4. Map Creation

Optmizing with inertial data

Similar to ElasticFusion, the energy from both eq. 4.2 and eq. 4.3 are jointly optimized

to calculate the least squares solution for optimal ξ to get accurate camera pose estimate

Pt = exp(ξ)TPt−1. Unlike ElasticFusion before the optimization begins the initial estimate

T is influenced using incremental rotation data Rimu ∈ SO(3) from IMU as shown in Fig.

4.1. This results in a more accurate initialization of T. We call this the SO(3) initialization

step.

4.2 Adding inertial information into surfels

The inertial information is incorporated into the map by embedding gravity direction into

every surfel. This is done as the frame is being aligned and fused to the model. To orient

the gravity vector into the model frame, a unit vector [0,0,1]>, in model frame, is trans-

formed into the IMU (camera) frame using the inertial readings from the IMU. The inertial

readings(orientation) are obtained from the AHRS of the IMU, denoted as Rimu. We denote

this gravity vector in IMU frame as gi
imu ∈R3 where i ∈R is surfel’s index. We then trans-

form gi
imu back to the model frame using the tracking estimate of the camera orientation

represented as Rtracking ∈ SO(3). We denote this gravity vector as gi
model . The gi

model is

added into every surfel, providing two degree of freedom inertial information.

gi
imu = (Rimu)

−1
[

0 0 1

]>
(4.7)

gi
model = Rtrackinggi

imu (4.8)

15

4.3. Updating gravity direction information Chapter 4. Map Creation

4.3 Updating gravity direction information

When new frames are fused to the model, surfels are updated for gravity, position, nor-

mals and radius according to the confidence of the current and incoming surfels, similar

to ElasticFusion. The confidence value is initialized along with the creation of the surfel

and accumulates each time we observe the same surfel in the camera frame. The surfel

correspondences are built with map registration of the incoming frame. The confidence

parameter acts as a weight; a measure of the extent to which we should retain the surfel in

an update. The update equations for the surfel parameter, given the new incoming surfel’s

parameters, gravity direction g′, position v′, normal n′ and confidence λ ′ are described be-

low. We obtain the updated gravity direction g of the surfel by a weighted average with the

gravity reading of the incoming surfel g′.

g =
λ ·g+λ ′ ·g′

λ +λ ′
(4.9)

v =
λ ·v+λ ′ ·v′

λ +λ ′
(4.10)

n =
λ ·n+λ ′ ·n′

λ +λ ′
(4.11)

λ = λ +λ
′ (4.12)

In this chapter we described the process of map creation and embedding inertial infor-

mation into the map. In next chapter we discuss the process of map correction to address

the drift accumulation using a deformation graph.

16

Chapter 5

Map correction: Deformation graph

To correct the model for drift and tracking inconsistencies we use a deformation graph.

The deformation model used here is general enough to be applied to any map and still

provides intuitive manipulation while preserving surface consistency. This formulation

allows stretching and realignment of the map while maintaining surface continuity. The

deformation graph is a mesh made up of nodes connecting its neighbors via edges. The

nodes of the deformation graph are created by sampling existing surfels from a full model.

As a result, the graph created is a sparser model of the original map. The deformation of

this graph is a set of affine transformations of graph nodes providing spatial reorganization.

These affine transformation influence the neighboring nodes, having an overlapping effect.

Our deformation graph is similar to that in Sumner et al. [37] and Whelan et al. [39]

with an essential addition that each node contains inertial information in the form of gravity

direction. A single graph node contains a gravity vector Gg ∈R3, its position Gp ∈R3 and a

timestamp. The graph node also stores an affine transformation as rotation GR ∈ SO(3) and

translation Gt ∈ R3 to be applied to itself and spatially influences surfels and graph nodes

in its neighborhood. This affine transformation is initialized as Gt = 000 and GR = I at the

time of graph creation, and again after completion of graph optimization. We consider the

total number of graph nodes to be m and each having at most K neighbors. As explained

17

5.1. Influence of graph on surfels Chapter 5. Map correction: Deformation graph

Figure 5.1: Influence of graph nodes on surfels: The surfel (green) is affected by rotation
and translation of the graph node (blue).

in below subsections, the influence of graph nodes can be broken down into two stages:

firstly, how graph nodes affect surfels in their vicinity, as shown in Fig. 5.1 and secondly,

how graph nodes influence each other during graph optimization for deformation as shown

in Fig. 5.2.

5.1 Influence of graph on surfels

An affine transformation of a graph node is centered around itself. As graph node rotates,

denoted by GR, and translates, denoted by Gt , its influence causes the nearby surfels to

spatially reorient. The effect of graph node’s affine transformation on a nearby surfel at

location v is shown in Fig. 5.1. This principle is used throughout the deformation graph to

obtain the new location v̂ and is given by:

v̂ = GR(v−Gp)+Gp +Gt (5.1)

18

5.1. Influence of graph on surfels Chapter 5. Map correction: Deformation graph

The extent of this influence is limited by the distance of surfel i from the graph node j. The

influence here is represented as a weight w j given by the following equation, where dmax is

the distance of the surfel to the Kth nearest graph node.

w j(vi) = (1−||vi−G j
p||/dmax) (5.2)

To smoothly blend the effect of multiple graph nodes on a surfel, we sum over the

combined influence. The resultant final position of the surfel is written as

v̂i =
m

∑
j=1

w j(vi)G
j
R(vi−G j

p)+G j
p +G j

t (5.3)

The normal of a surfel represents its direction. Hence any rotation applied to the sur-

fel effect the orientation of its normal ni. Similar to the position update, the combined

influence of graph node’s rotation on surfel’s orientation is expressed as

n̂i =
m

∑
j=1

w j(vi)(G
j
R)
−1ni (5.4)

As surfel and its normal orientation get updated, a similar update is applied to the

gravity direction associated with that surfel. This update ensures that after deformation,

the gravity direction remains consistent to the surfel’s orientation.

ĝi =
m

∑
j=1

w j(vi)(G
j
R)
−1gi (5.5)

We sample the graph nodes densely, ensuring that graph nodes have an accurate repre-

sentation of the entire map. This dense sampling assures that when deformation is applied,

its influence reaches all desired surfels in the map.

19

5.2. Deformation graph optimization Chapter 5. Map correction: Deformation graph

5.2 Deformation graph optimization

We optimize the deformation graph to find the affine transformation of graph nodes, which

when applied to our model will correct its drift and make it consistent. This optimization

utilizes the direction of gravity vectors in the graph nodes to inform the deformation. In

an ideal case where there is no drift, all of the gravity vectors on each of the graph nodes

will be parallel to each other. However, since the model accumulates drift, the nodes’

gravity vectors become misaligned as shown in Fig. 5.2a, the optimization explained below

penalizes this incorrect orientation. The graph optimization finds the unknown variables

which describe a corrective rotation and translation of every graph node. These rotations

and translations, when applied back to graph nodes, and in turn onto surfels, addresses

the drift by fixing the model. The optimization of the deformation graph is done using

minimization of the combined cost of four components:

5.2.1 Constraints

The constraints cost term Econ, ensures that these graph nodes are either allowed to move or

to remain stationary. A single constraint on a graph node l is a tuple containing its source

location, as Gl
p(source), and its destination location, as Gl

p(dest). These constraints are of

three types:

A) Pin constraint: They freeze graph nodes at their position, making them unable to ro-

tate or translate during graph deformation. This constraint type is expressed in eq. 5.6 as

Epin = Econ. Here the graph node’s source and destination location are kept identical.

B) Generic constraint: The graph nodes having a generic constraint, spatially re-locate

from their source location to their destination location. Generic constraints are used for

loop closures as they deform the map from its current location (source) to a similar pre-

viously visited location (destination). The system ensures that graph nodes at destination

location remain fixed and do not snap towards source location by adding a pin constraint

20

5.2. Deformation graph optimization Chapter 5. Map correction: Deformation graph

(a) This shows constraint energy term of the type pin constraint Epin. The Epin

freezes the graph node in its location (in red), acting as a standard reference

(b) Effect of the realignment of the gravity vectors caused by the additional
Egravity term, making them parallel.

(c) Shows the effect of inclusion of regularization Ereg term.The Ereg causing the
graph nodes to remain consistent with each other, enforcing a surface geometry,
keeping the model consistent and preventing it from degeneration

Figure 5.2: Affect of different energy terms on the spatial orientation of the graph nodes in
the deformation graph.

21

5.2. Deformation graph optimization Chapter 5. Map correction: Deformation graph

on destination graph node.

C) Relative constraint: This type of constraint is similar to a generic constraint with the

exception that neither source graph node nor destination graph node are constrained via a

pin constraint. The relative constraint is required in to ensure that previous loop closures

remain consistent and are not torn off due to newly added generic constraints.

Out of the three constraint types, our approach uses pin constraints actively as they

freeze the graph nodes, locking their gravity vectors in place and making them as a refer-

ence.

Econ = ∑
l

∥∥Gl
p(source)−Gl

p(dest)

∥∥2
2 (5.6)

5.2.2 Gravity alignment

In the process of map creation, the model accumulates drift due to small errors in tracking

and the gravity vectors diverge as shown in Fig. 5.2a. These vectors in a drifted model

are not entirely parallel. The gravity alignment cost term Egrav, penalizes this incorrect

alignment and minimizes the alignment error by realigning gravity vectors to a standard

reference. The standard reference is the direction of gravity vector Gk
g, from a graph node k

with a pin constraint, shown in red in Fig. 5.2. This standard reference graph node remains

frozen in its orientation and location and is usually sampled from the recently acquired

parts of the model. The graph optimization results in a corrective rotation G j
R required for

every graph node j in the model, such that gravity vectors of these nodes become aligned

as shown in Fig. 5.2b.

Egrav =
m

∑
j=1
j 6=k

∥∥(G j
RG j

g)
>.Gk

g−1
∥∥2

2 (5.7)

22

5.2. Deformation graph optimization Chapter 5. Map correction: Deformation graph

5.2.3 Regularization

The regularization term is added to the graph optimization to ensure that model remains

consistent and the surface geometries are enforced. To highlight this, Fig. 5.2b shows the

effect of inconsistent geometry without regularization term Ereg, and Fig. 5.2c shows a

more consistent geometry with the inclusion of the regularization term. The distortion free

map deformation is achieved by ensuring overlapping influence of affine transformation

from neighboring graph nodes to be consistent to one another. The regularization term Ereg

is described in eq. 5.8, where graph node j influences affine transformation of graph node

k as k is one of its neighboring node given by N (j). The cost Ereg, is calculated as a sum

of squared difference between the position of graph node k predicted by influence from

graph node j and the position of graph node k when its affine transformation is applied to

itself. The weight α jk is proportional to the degree of which the influence of nodes j and k

overlap. For more details, we refer the reader to Sumner et al. [37].

Ereg =
m

∑
j=1

∑
k∈N (j)

α jk
∥∥G j

R(G
k
p−G j

p)+G j
p +G j

t − (Gk
p +Gk

t)
∥∥2

2 (5.8)

5.2.4 Rotation

Lastly we want to ensure that the variables optimized are orthonormal to form a valid

rotation matrix, which is enforced by

Erot =
m

∑
j=1

∥∥(G j
R)
>(G j

R)− I
∥∥2

2 (5.9)

The complete graph deformation is based on optimization of a combined sum of all

the components explained above. The weight coefficients control the effect of each energy

term:

min
G1

R..G
m
R ,

G1
t ..Gm

t

ωconEcon +ωregEreg +ωrotErot +ωgravEgrav (5.10)

23

5.3. Triggering graph optimization Chapter 5. Map correction: Deformation graph

In our experiments, we set ωrot = 1,ωreg = 10,ωcon = 100 and ωgrav = 100. We mini-

mize the weighted energy term w.r.t each graph node’s rotation G j
R, j ≤ m and translation

G j
t , j ≤ m using iterative Gauss-Newton method. The rotation and translation calculated

are used in above eqs. 5.3, 5.4, and 5.5 to align the model for correction.

5.3 Triggering graph optimization

We trigger graph optimization to correct for drift after a fixed interval of frames (Ct=500).

This frequent graph optimization ensures that gravity constraints are enforced even if no

loop closure occurs. In the event of local and global loop closure, we trigger graph opti-

mization similar to ElasticFusion. For details on local and global loop closure we refer to

Whelan et al. [39].

In this chapter we described the process of map correction by addressing the drift accu-

mulation using a deformation graph informed by gravity direction. In the next chapter we

compare our approach to the other state of the art dense systems.

24

Chapter 6

Results: RGB-D camera
We discuss the results obtained using our system GravityFusion with the RGB-D camera

and an inertial sensor. In the next chapter, ch.7, we discuss the stereo camera based recon-

struction using both ElasticFusion and our system GravityFusion.

6.1 Dense reconstruction using RGB-D

We evaluate the performance of our system against other approaches, qualitatively using

data from different real-world environments such as hallways and office alleys. We also do

the quantitative surface evaluation on public datasets as described in following section 6.2.

Figure 6.1: Our camera setup: ASUS Xtion Pro Live with Microstrain 3DM-GX4-25

25

6.1. Dense reconstruction using RGB-D Chapter 6. Results: RGB-D camera

(a) Broken map generated by ElasticFusion[39] due to loss of tracking

(b) ElasticFusion with camera tracking initialized with IMU, yet still, it loses tracking

(c) Our approach of GravityFusion without inertial initialization of the camera tracking. It recovers
the broken model using deformation, however, leaves artifacts in middle of the corridor.

(d) Our approach of GravityFusion with inertial initialization of the camera tracking. GravityFusion
recovers the model using deformation while maintaining map consistency.

Figure 6.2: Comparison of camera tracking loss and recovery on a corridor dataset

6.1.1 Hardware

Our hardware setup is a combination of a RGB-D camera (ASUS Xtion Pro Live) and a

IMU (Microstrain 3DM-GX4-25) as shown in Fig. 6.1. We use filtered output of inertial

readings from Microstrain 3DM-GX4-25 sensor.

6.1.2 Experiment setup

We focus qualitative testing on long corridors instead of small room environments. In long

hallway type environment, often dense methods without pose graph fail as slow drift in

map registration causes bending, or lack of features cause loss of tracking due to incorrect

photometric alignment. We showcase our systems versatility as it performs well in various

26

6.1. Dense reconstruction using RGB-D Chapter 6. Results: RGB-D camera

environments like such as : a) Long corridor with features b) Corridors with fewer features

c) Corridors with loops and d) Office desk environment.

Experiment for drift correction

We capture data through a long corridor which has significant features. The Fig. 3.1 shows

the comparison among models generated from various systems. The Kintinuous/RGB-D

SLAM[40] in Fig. 3.1a, tracks successfully however due to drift accumulation there is a

significant bent in the corridor map. The ElasticFusion in Fig. 3.1b suffers both from drift

accumulation and loss of tracking. Our system in Fig. 3.1c maintains a consistent map

generating a straight corridor.

Experiment for tracking correction

For qualitative evaluation of tracking, we do a 4-way comparison where the IMU based

SO(3) initialization of camera tracking is added to ElasticFusion, similar to as described

in the tracking 4.1. The Fig.6.2a shows tracking failure of ElasticFusion due to the in-

correct photometric alignment. The second image Fig.6.2b shows the map created from

ElasticFusion (with IMU based tracking initialization), despite the initialization, the sys-

tem converges incorrectly and loses tracking. The third image Fig.6.2c shows the map

from GravityFusion (without IMU based tracking initialization). The map deformation is

performed using gravity information and the model recovers despite tracking loss, though

some misalignment of the corridor remains and is visible as an artifact in the center. The

fourth image Fig.6.2d, is of our system GravityFusion (with IMU based tracking initial-

ization). Here our system mitigates tracking loss and creates a consistent model with no

visible artifacts.

27

6.1. Dense reconstruction using RGB-D Chapter 6. Results: RGB-D camera

(a) ElasticFusion loses tracking.

(b) Kintinuous incorrectly estimates camera rotation at alley corners, losing tracking.

(c) GravityFusion maintains a straight floor profile creating a consistent model.

Figure 6.3: Map generated from a dataset of office alleys in a circuit

28

6.2. Evaluation on simulated dataset Chapter 6. Results: RGB-D camera

Experiment for loop closures

To test loop closure performance, we go through an office environment with alleys con-

nected in a circuit. The Fig.6.3a shows a map generated using ElasticFusion. The Elas-

ticFusion is unable to track correctly and bends the model creating an inconsistent map.

The center image Fig.6.3b, shows a map generated from Kintinious/RGB-D SLAM sys-

tem. The Kintinious/RGB-D SLAM system near alley corners is unable to estimate camera

rotation correctly, resulting in an inconsistent model. The bottom image Fig.6.3c, is of our

system, as it tracks accurately following through corridors and corners without bending.

Though we do not trigger a global loop closure, our system triggers multiple local loop

closures and does creates a more consistent model.

Experiment for office environments

In this experiment we test our system ensuring that we retain the ElasticFusion-like ability

to do mapping with loopy(and zig-zag) camera motion. Here we show a cluttered office

desk room which is mapped with similar camera motion. We first do loopy (and zig-zag)

camera movement to capture the desk then take the camera around the room through the

open doors to arrive back to the point we started. Our system handles this camera motion

well and generates a consistent map as shown in Fig. 6.4.

6.2 Evaluation on simulated dataset

Since our system performs frequent graph optimization, which deforms and fixes the

model, we here verify that map generated as a result does not have any undesired bends or

artifacts. We evaluate our system on ICL-NUIM dataset of Handa et al. [10]. We compute

the accuracy of the generated map against the 3D surface from the dataset. Since no IMU

value is provided in these datasets, we use the value from ground-truth to simulate the

inertial information. We evaluate on all four datasets, and the results of these surface

29

6.2. Evaluation on simulated dataset Chapter 6. Results: RGB-D camera

Figure 6.4: Mapping of a cluttered office deskroom using loopy(and zig-zag) camera mo-
tion.

System lr kt0 lr kt1 lr kt2 lr kt3

DVO SLAM [18] 0.032m 0.061m 0.1119m 0.053m

Kintinuous 0.011m 0.008m 0.009m 0.150m

Elasticfusion 0.007m 0.007m 0.005m 0.028m

Gravity Fusion 0.007m 0.005m 0.005m 0.025m

Table 6.1: ICL-NUIM dataset performance of various systems

evaluation errors are listed under Table 6.1. Our system not only matches the model

accuracy of compared system, but we also exceed their accuracy on two of the datasets: lr

kt1 and lr kt3.

30

6.3. Evaluation of inertial camera tracking Chapter 6. Results: RGB-D camera

6.3 Evaluation of inertial camera tracking

Unlike the previous section, here we wanted to validate our approach of initializing the

camera tracking described in the section. 4.1, ensuring it leads to consistent results. In this

section, we discuss the results from inertial data being used to initialize the photometric

alignment required in camera tracking optimization. We make use of the well-known TUM

SLAM dataset Sturm et al. [36] to benchmark our modifications. The dataset provides both

RGB-D frames and groundtruth data for the camera’s trajectory in a variety of scenarios.

We make use of incremental inter-frame motions computed from these ground-truth tra-

jectories as a simulation for an actual IMU. We modified the data-set by only retaining

every 40th frame - this increased the average rotation rate from 5.7 deg/sec to a massive

225 deg/sec, a 40x increase. A qualitative comparison of the reconstructed map with this

dataset is shown in figure 6.5, where IMU based initializing of camera tracking results in a

more consistent model. We also compare the angular errors of IMU based initialization of

camera tracking against camera tracking without IMU initialization. We notice that norm

of error represented in axis-angle notation, is lesser when using inertial data, this is shown

in figure 6.6.

(a) Without inertial initialization (b) With inertial initialization

Figure 6.5: Inertial initialization of camera tracking estimate

31

6.3. Evaluation of inertial camera tracking Chapter 6. Results: RGB-D camera

0 20 40 60 80 100 120
1

1.02

1.04

1.06

1.08

1.1

1.12

With IMU input

Without input

Figure 6.6: Norm of error (in axis-angle notation) w.r.t ground truth

Video links:

Without IMU initialization:https://www.youtube.com/watch?v=uUvrVxtKLM0

With IMU initialization:https://www.youtube.com/watch?v=9DkLUx3MDh4

In this chapter, we showcased our system compared to the other state of the art dense

systems using public datasets and our custom datasets. We also validated our camera track-

ing initialization using a modified public data set. In the next chapter, we showcase results

obtained using a stereo camera using the ElasticFusion and our approach.

32

https://www.youtube.com/watch?v=uUvrVxtKLM0
https://www.youtube.com/watch?v=9DkLUx3MDh4

Chapter 7

Results: Stereo camera

Here we discuss the qualitative results obtained with dense reconstruction using a stereo

camera setup. The ElasticFusion system is designed to be used with the RGB-D camera.

This limits the systems use to primarily indoor environments as the infrared projector in

RGB-D camera is not intended to work in outdoor lighting. We modify the ElasticFusion

toolchain and discuss some of the dense mapping results we achieved with our stereo cam-

era setup. We also show how some of the mapping failures of ElasticFusion are mitigated

when doing the same scanning using our system GravityFusion. Our broader problem def-

inition is to obtain high-quality scans of a surface from a close-up distance (<2meters).

7.1 Camera setup

We experimented with multiple cameras listed here to evaluate the reconstruction quality.

Dense reconstruction requires stereo camera system with high quality lenses and preferably

global shutter functionality, this aids in getting a more accurate disparity match. We below

discuss details of the cameras systems and some of there results.

33

7.1. Camera setup Chapter 7. Results: Stereo camera

7.1.1 BumbleBee2 camera

The BumbleBee2 stereo camera is setup with a FireWire 1394 card. The system is designed

to use a ROS node which controls camera parameters. The camera was set to publish

images of 648 x 488 at 30fps (48fps max). Since the camera had high-quality lenses and

utilized a global shutter, we were able to generate consistent reconstruction. The map

produced were of high-quality, however, as the camera was tethered via FireWire port to a

desktop we were restricted to the office environment. We did not use BumbleBee2 in our

outdoor field testing.

Figure 7.1: Bumbleebe2 stereo camera

7.1.2 Stereo sensor pack V1: Head mounted

This system of the stereo-camera pair was housed in a custom aluminum CNC’ed block

along with an inertial sensor as shown in Fig.7.2. The system composed of two global

shutter cameras of 752x480 with 70-degree FOV and a VN-100 IMU, which were con-

nected to an onboard computer. This was intended to be a low-power device; hence an

odroid-board was used. Due to sensor bandwidth and computation limitations, the frame

rate of these cameras was set to 9fps. This system was designed and assembled by Curt

Boirum (of FRC-CMU).

34

7.1. Camera setup Chapter 7. Results: Stereo camera

Figure 7.2: Head mounted V1-sensor-pack with stereo camera and IMU

7.1.3 Stereo sensor pack V2: Body mounted

This V2 stereo-camera sensor pack, designed by Curt Boirum, used a body mounting setup

as shown in Fig. 7.3. This design allowed for a better weight distribution and hence permit-

ted a stable scanning motion pattern. The system composed of two global shutter cameras

of 752x480 with 70-degree FOV and a VN-100 IMU, similar to V1. The system had a

significantly more potent on board system using a i7-5600U based single board computer

to process frames faster. We achieved 50fps with 752x480 and 20fps with 1280x960 cam-

eras(experimental). Here we discuss results derived using 752x480 resolution frames.

Figure 7.3: Body mounted V2-sensor-pack with stereo camera and IMU

35

7.2. Stereo software stack Chapter 7. Results: Stereo camera

7.1.4 Calibration

We perform the calibration using the ROS stereo camera calibration utility. We ensure

calibration is done at a focal length and within the range at which we intend to operate.

This results in an accurate calibration and a more true stereo setup. These stereo calibration

values for left and right camera : camera intrinsic K, projection matrix P, distortion model

parameters D and Rectification matrix R are used in below described stereo processing

software stack.

7.2 Stereo software stack

Here we discuss our reconstruction software stack using images from our custom stereo

camera. The system makes use of Robot Operating System(ROS) infrastructure to do the

pre-processing and disparity generation. The packaging for reconstruction is done using

customized software. The complete stack is shown in Fig. 7.4

Figure 7.4: Software stack for 3D Mapping using stereo frames and IMU

36

7.2. Stereo software stack Chapter 7. Results: Stereo camera

7.2.1 Image pre-processing

As part of the image pre-processing we take an input image stream from the stereo RGB

camera pair and crop it to 640x480. We also increase the brightness and contrast of the im-

age using g(i, j) = α. f (i, j)+β where f (i, j) is the source image, α is the gain (contrast)

parameter and β is the bias parameter to add brightness. We perform the image rectifica-

tion using the ROS-stereo-image-proc’s rectification module. Here we publish the camera

intrinsic K, Projection matrix P, Distortion model parameters and Rectification matrix R to

correct the image as shown in Fig. 7.5

Figure 7.5: Pre-processing and rectification of image frame

7.2.2 Disparity generation

We use the ROS module stereo-image-proc to generate disparity. We utilize the stereo block

matching algorithm and the semi-global block matching algorithm for disparity generation.

Inorder to get high-quality 3-D reconstruction, a dense disparity frame is required. We get

dense disparity generation by setting the hyperparameters such as ’maximum search range’

on the epipolar line to be 200(pixels) and the ’minimum disparity’ to be beyond 30(pix-

els). This provides a cut-off threshold for objects further away and avoids any incorrect

correlation at the time of generating disparity .

7.2.3 Depth computation

We use the ROS stereo-image-proc module to generate the point cloud frames. These

frames are processed to extract the z value from points to generate a depth map. Here we

37

7.3. Reconstruction Chapter 7. Results: Stereo camera

Figure 7.6: Stereo image dense disparity generation

list out the method to calculate depth(in mm) Z ∈R given d ∈R as disparity(pixels), given

the focal length(in pixels) as f ∈ R, and stereo camera baseline(in mm) as B ∈ R. We

express depth as Z = f ∗B/d.

7.2.4 Packaging depth and RGB frames

To do dense reconstruction, we feed the image and depth frames into GravityFusion and

ElasticFusion via a custom format. known as ’.klg’. This format requires the RGB and

depth frames to be compressed. These compressed frames of RGB and depth are stored

along with a respective timestamp. To time synchronize the RGB/Depth frames with the

corresponding IMU readings, we use the IMU timestamp during file creation.

7.3 Reconstruction

We showcase qualitative results from ElasticFusion and GravityFusion. V2-sensor-pack

stereo camera described above in section 7.1.3 was used along with the stack described in

section 7.2 to create the following models. Here our intent is not to compare instead to

highlight the quality of stereo camera based reconstruction with both ElasticFusion and our

system GravityFusion.

7.3.1 Scanning with stereo camera

We collect our dataset by moving the sensor pack in lawn mower pattern as shown in figure

7.7. We maintain a 25-30% overlap during the scan strides. This type of scan pattern allows

38

7.3. Reconstruction Chapter 7. Results: Stereo camera

for the system to have frequent local loop closure at the overlapping strides hence keeping

the model consistent.

Figure 7.7: Camera pattern for scanning the surface

7.3.2 Stereo reconstruction with ElasticFusion

We use the ElasticFusion to generate the following dense 3D reconstructions. The 3D

models generated are shown in figure 7.8 and figure 7.9. The details of scan quality are

highlighted in the sub-figure 7.8b and sub-figure.7.9c. Both these results are captured in

full daylight showcasing a high-quality reconstruction without the need for an RGB-D

camera.

7.3.3 Stereo GravityFusion system

The dense reconstruction generated with ElasticFusion either due to drift or due to tracking

loss sometime results in an inconsistent model. Here we showcase a dataset where Elastic-

Fusion fails to create a correct model due to tracking loss shown in figure 7.10. However

using our system GravityFusion, we are able to recover tracking loss and create a more

consistent model.

39

7.3. Reconstruction Chapter 7. Results: Stereo camera

(a) 3D model using lawnmower pattern

(b) Detailed model : highlights deformities in the surface

Figure 7.8: 3D model of the inhouse demo roof

40

7.3. Reconstruction Chapter 7. Results: Stereo camera

(a) Full depth cloud model

(b) Color 3D point cloud model

(c) Close up of the scan: Individual tile depth visible

Figure 7.9: Scan of tiles using V2-sensor-pack Stereo camera

41

7.3. Reconstruction Chapter 7. Results: Stereo camera

(a) Color model (b) Inconsistent model, side profile in small image

Figure 7.10: Model broken due to tracking loss, scan patterns are not aligned

(a) Color model (b) Consistent model

Figure 7.11: Gravity-Fusion using inertial information aligns scan patterns making model
consistent

42

Chapter 8

Conclusion and future work

We have presented a novel algorithm for correcting a map with inertial sensor data in the

absence of a pose graph. Our GravityFusion algorithm works in real time and is capable

of fusing inertial measurements of gravity on a per-surfel basis. Our detailed approach en-

forces global consistency of the gravity direction in the model through a mesh deformation.

The deformation eliminates drift in pitch and roll in the model making it consistent. The

evaluation on custom and public datasets validates our approach.

Questions for future research include how to make full use of the inertial measurements,

i.e. what is the equivalent of tightly coupled integration into the map. At the tracking level,

inertial information could be used not just for initialization, but also as a constraint in the

alignment optimization. This could provide helpful constraints in perceptually challenging

and ambiguous settings. Another direction is towards formalizing the deformation graph

as a factor graph in the current setup utilizing gravity information. This formulation will

extend the geometric consistency of the current approach. Alongside since our approach

uses a surfel based representation, the current method of mapping will be able to overlap

surfaces without the issues faced in other pose graph based approaches such as Kintinuous,

hence resulting in a more robust and accurate map over a much larger scale.

43

Bibliography

[1] J. Castellanos and J. Tardós. Mobile Robot Localization and Map Building: A Mul-
tisensor Fusion Approach. Boston, MA: Kluwer Academic Publishers, 2000.

[2] A. Concha, G. Loianno, V. Kumar, and J. Civera. “Visual-Inertial Direct SLAM”.
In: IEEE Intl. Conf. on Robotics and Automation (ICRA). 2016.

[3] B. Curless and M. Levoy. “A volumetric method for building complex models from
range images”. In: SIGGRAPH. 1996, pp. 303–312.

[4] A. Dai, M. Nießner, M. Zollöfer, S. Izadi, and C. Theobalt. “BundleFusion:
Real-time Globally Consistent 3D Reconstruction using On-the-fly Surface Re-
integration”. In: ACM Transactions on Graphics 2017 (TOG) (2017).

[5] A. Davison. “Mobile Robot Navigation using Active Vision”. PhD thesis. Keble
College, Oxford, 1998.

[6] A. Davison. “Real-Time Simultaneous Localisation and Mapping with a Single
Camera”. In: Intl. Conf. on Computer Vision (ICCV). Nice, France, 2003, pp. 1403–
1410.

[7] F. Dellaert. “Square Root SAM: Simultaneous Location and Mapping via Square
Root Information Smoothing”. In: Robotics: Science and Systems (RSS). 2005.

[8] C. Estrada, J. Neira, and J. Tardós. “Hierarchical SLAM: Real-Time Accurate Map-
ping of Large Environments”. In: IEEE Trans. Robotics 21.4 (2005), pp. 588–596.

[9] C. Forster, L. Carlone, F. Dellaert, and D. Scaramuzza. “On-Manifold Preintegration
for Real-Time Visual-Inertial Odometry”. In: IEEE Trans. Robotics (2016).

[10] A. Handa, T. Whelan, J. McDonald, and A. Davison. “A Benchmark for RGB-D
Visual Odometry, 3D Reconstruction and SLAM”. In: IEEE Intl. Conf. on Robotics
and Automation, ICRA. Hong Kong, China, 2014.

[11] P. Henry, M. Krainin, E. Herbst, X. Ren, and D. Fox. “RGB-D mapping: Using
Kinect-style depth cameras for dense 3D modeling of indoor environments”. In: The
International Journal of Robotics Research 31.5 (2012), pp. 647–663.

[12] M. Hsiao, E. Westman, G. Zhang, and M. Kaess. “Keyframe-based Dense Planar
SLAM”. In: IEEE Intl. Conf. on Robotics and Automation (ICRA). To appear. Sin-
gapore, May 2017.

[13] A. S. Huang, A. Bachrach, P. Henry, M. Krainin, D. Fox, and N. Roy. “Visual odom-
etry and mapping for autonomous flight using an RGB-D camera”. In: In Proc. of
the Intl. Sym. of Robot. Research. 2011.

44

Bibliography Bibliography

[14] V. Indelman, S. Wiliams, M. Kaess, and F. Dellaert. “Information Fusion in Navi-
gation Systems via Factor Graph Based Incremental Smoothing”. In: Robotics and
Autonomous Systems 61.8 (2013), pp. 721–738.

[15] M. Kaess, A. Ranganathan, and F. Dellaert. “iSAM: Fast Incremental Smoothing
and Mapping with Efficient Data Association”. In: IEEE Intl. Conf. on Robotics and
Automation (ICRA). Rome, Italy, 2007, pp. 1670–1677.

[16] M. Kaess, A. Ranganathan, and F. Dellaert. “iSAM: Incremental Smoothing and
Mapping”. In: IEEE Trans. Robotics 24.6 (2008), pp. 1365–1378.

[17] M. Keller, D. Lefloch, M. Lambers, S. Izadi, T. Weyrich, and A. Kolb. “Real-time
3D Reconstruction in Dynamic Scenes using Point-based Fusion”. In: Proc. of Joint
3DIM/3DPVT Conference (3DV). 2013.

[18] C. Kerl, J. Sturm, and D. Cremers. “Dense Visual SLAM for RGB-D Cameras”. In:
Proc. of the Int. Conf. on Intelligent Robot Systems (IROS). 2013.

[19] G. Klein and D. Murray. “Parallel Tracking and Mapping for Small AR Workspaces”.
In: IEEE and ACM Intl. Sym. on Mixed and Augmented Reality (ISMAR). Nara,
Japan, 2007, pp. 225–234.

[20] K. Konolige and J.-S. Gutmann. “Incremental Mapping of Large Cyclic Environ-
ments”. In: International Symposium on Computational Intelligence in Robotics and
Automation (CIRA’99). 1999.

[21] K. Konolige, J. Bowman, J. Chen, P. Mihelich, M. Calonder, V. Lepetit, and P. Fua.
“View-Based Maps”. In: Robotics: Science and Systems (RSS). 2009.

[22] R. Kümmerle, G. Grisetti, H. Strasdat, K. Konolige, and W. Burgard. “g2o: A
General Framework for Graph Optimization”. In: Proc. of the IEEE Int. Conf. on
Robotics and Automation (ICRA). Shanghai, China, 2011.

[23] S. Leutenegger, S. Lynen, M. Bosse, R. Siegwart, and P. Furgale. “Keyframe-based
visual-inertial odometry using nonlinear optimization”. In: Intl. J. of Robotics Re-
search 34.3 (2015), pp. 314–334.

[24] F. Lu and E. Milios. “Globally consistent range scan alignment for environment
mapping”. In: Autonomous Robots (1997), pp. 333–349.

[25] L. Ma, J. Falquez, S. McGuire, and G. Sibley. “Large Scale Dense Visual Inertial
SLAM”. In: Field and Service Robotics (FSR). 2016, pp. 141–155.

[26] M. Montemerlo, S. Thrun, D. Koller, and B. Wegbreit. “FastSLAM: A Factored
Solution to the Simultaneous Localization and Mapping Problem”. In: Proc. 19th

AAAI National Conference on AI. Edmonton, Alberta, Canada, 2002.

[27] J. Montiel, J. Civera, and A. Davison. “Unified Inverse Depth Parametrization for
Monocular SLAM”. In: Robotics: Science and Systems (RSS). Philadelphia, PA,
2006.

[28] R. Mur-Artal and J. Tardos. “Probabilistic Semi-Dense Mapping from Highly Ac-
curate Feature-Based Monocular SLAM”. In: Robotics: Science and Systems (RSS).
July 2015.

45

Bibliography Bibliography

[29] R. Mur-Artal and J. Tardos. Visual-Inertial Monocular SLAM with Map Reuse.
arXiv:1610.05949. 2017.

[30] R. Newcombe and A. Davison. “Live dense reconstruction with a single moving
camera”. In: IEEE Conf. on Computer Vision and Pattern Recognition (CVPR).
IEEE. 2010, pp. 1498–1505.

[31] R. Newcombe, S. Lovegrove, and A. Davison. “DTAM: Dense Tracking and Map-
ping in Real-Time”. In: Intl. Conf. on Computer Vision (ICCV). Barcelona, Spain,
2011, pp. 2320–2327.

[32] R. Newcombe, A. Davison, S. Izadi, P. Kohli, O. Hilliges, J. Shotton, D. Molyneaux,
S. Hodges, D. Kim, and A. Fitzgibbon. “KinectFusion: Real-Time Dense Surface
Mapping and Tracking”. In: IEEE and ACM Intl. Sym. on Mixed and Augmented
Reality (ISMAR). Basel, Switzerland, 2011, pp. 127–136.

[33] P. Newman. “On the Structure and Solution of the Simultaneous Localisation and
Map Building Problem”. PhD thesis. The University of Sydney, 1999.

[34] M. Pizzoli, C. Forster, and D. Scaramuzza. “REMODE: Probabilistic, Monocular
Dense Reconstruction in Real Time”. In: IEEE Intl. Conf. on Robotics and Automa-
tion (ICRA). 2014.

[35] R. Smith and P. Cheeseman. “On the representation and estimation of spatial uncer-
tainty”. In: Intl. J. of Robotics Research 5.4 (1987), pp. 56–68.

[36] J. Sturm, N. Engelhard, F. Endres, W. Burgard, and D. Cremers. “A Benchmark for
the Evaluation of RGB-D SLAM Systems”. In: Proc. of the International Conference
on Intelligent Robot Systems (IROS). 2012.

[37] R. Sumner, J. Schmid, and M. Pauly. “Embedded Deformation for Shape Manipula-
tion”. In: SIGGRAPH. San Diego, California, 2007.

[38] V. Usenko, J. Engel, J. Stückler, and D. Cremers. “Direct Visual-Inertial Odometry
with Stereo Camera”. In: IEEE/RSJ Intl. Conf. on Intelligent Robots and Systems
(IROS). 2016.

[39] T. Whelan, S. Leutenegger, R. F. Salas-Moreno, B. Glocker, and A. J. Davison.
“ElasticFusion: Dense SLAM Without A Pose Graph”. In: Robotics: Science and
Systems (RSS). Rome, Italy, July 2015.

[40] T. Whelan, M. Kaess, H. Johannsson, M. Fallon, J. Leonard, and J. McDonald.
“Real-time Large Scale Dense RGB-D SLAM with Volumetric Fusion”. In: Intl.
J. of Robotics Research 34.4-5 (Apr. 2015), pp. 598–626.

46

	Abstract
	Acknowledgements
	Contents
	List of Tables
	List of Figures
	1 Introduction
	1.1 Background
	1.2 Problem statement

	2 Related Work
	2.1 Brief history of SLAM approaches
	2.2 Visual SLAM and dense mapping

	3 Approach
	4 Map Creation
	4.1 Camera tracking
	4.1.1 Geometric and photometric camera pose estimation
	4.1.2 Joint optimization (without inertial data)
	4.1.3 Bootstrapping with inertial data

	4.2 Adding inertial information into surfels
	4.3 Updating gravity direction information

	5 Map correction: Deformation graph
	5.1 Influence of graph on surfels
	5.2 Deformation graph optimization
	5.2.1 Constraints
	5.2.2 Gravity alignment
	5.2.3 Regularization
	5.2.4 Rotation

	5.3 Triggering graph optimization

	6 Results: RGB-D camera
	6.1 Dense reconstruction using RGB-D
	6.1.1 Hardware
	6.1.2 Experiment setup

	6.2 Evaluation on simulated dataset
	6.3 Evaluation of inertial camera tracking

	7 Results: Stereo camera
	7.1 Camera setup
	7.1.1 BumbleBee2 camera
	7.1.2 Stereo sensor pack V1: Head mounted
	7.1.3 Stereo sensor pack V2: Body mounted
	7.1.4 Calibration

	7.2 Stereo software stack
	7.2.1 Image pre-processing
	7.2.2 Disparity generation
	7.2.3 Depth computation
	7.2.4 Packaging depth and RGB frames

	7.3 Reconstruction
	7.3.1 Scanning with stereo camera
	7.3.2 Stereo reconstruction with ElasticFusion
	7.3.3 Stereo GravityFusion system

	8 Conclusion and future work
	Bibliography

