HoloOcean: An Underwater Robotics Simulator

Easton Potokar, Spencer Ashford, Michael Kaess, and Joshua G. Mangelson

Abstract—Due to the difficulty and expense of underwater
field trials, a high fidelity underwater simulator is a necessity for
testing and developing algorithms. To fill this need, we present
HoloOcean, an open source underwater simulator, built upon
Unreal Engine 4 (UE4). HoloOcean comes equipped with multi-
agent support, various sensor implementations of common
underwater sensors, and simulated communications support.
We also implement a novel sonar sensor model that leverages
an octree representation of the environment for efficient and
realistic sonar imagery generation. Due to being built upon
UE4, new environments are straightforward to add, enabling
easy extensions to be built. Finally, HoloOcean is controlled via
a simple python interface, allowing simple installation via pip,
and requiring few lines of code to execute simulations.

I. INTRODUCTION

An effective simulation environment for autonomous un-
derwater vehicles (AUVs) can accelerate the development
of algorithms and applications. This is true for all robotics
systems, but is particularly necessary for AUVs where field
testing is expensive and high-risk.

There are many modern day applications of AUVs that can
dramatically improve scientific knowledge, quality of life,
and safety. These applications include inspection of marine
infrastructure such as dams, ship hulls, and communication
lines, as well as exploration of oceans that can lead to
discoveries in the fields of geology, marine biology, and
medicine. However, all these applications require complex
algorithms to be designed and tested, which can be costly
and unreasonably challenging without a virtual environment
on which to first develop them.

We present HoloOcean, an open source underwater sim-
ulator. It is built upon the reinforcement learning simulator
Holodeck [[1] and the capabilities of Unreal Engine 4 (UE4)
[2]]. UE4 in particular provides accurate simulation dynamics,
high-fidelity imagery, a mature environment construction
editor, and a C++ interface to add custom sensors, agents,
etc. Specifically, HoloOcean has the following features:

1) A simple python interface, allowing for quick installa-
tion and effortless use.

2) Ease of adding new environments. UE4 is a well
documented game building engine with many marine
and underwater assets already made.

3) A novel and efficient imaging sonar implementation
built upon an octree structure that results in realistic
sonar imagery.

This work relates to Department of Navy awards N00014-21-1-2435 and
NO00014-21-1-2272 issued by the Office of Naval Research.

E. Potokar, S. Ashford, and J. Mangelson, are at Brigham Young
University; M. Kaess is at Carnegie Mellon University.

{eastonpots, spencerashford,
joshuamangelson}@byu .edu, kaess@cmu.edu

Fig. 1: HoloOcean is an open source underwater simulator, built upon Unreal
Engine 4. It comes with a variety of common underwater sensors such as
a DVL, IMU, optical and acoustic modems, and an imaging sonar.

4) Full support for multi-agent missions, including im-
plemented acoustic and optical modem sensors for
realistic cooperative simulations.

The paper is organized as follows. Section [I] reviews
current underwater robotics simulators and sonar sensor
models. In Section we describe our novel sonar imagery
algorithm, followed by Section where we review the
other various implementations and measurement models for
common underwater sensors such as a Doppler velocity log
(DVL), inertial measurement unit (IMU), GPS, camera, and
depth sensor. Multi-agent missions and communications via
optical and acoustic modems are described in Section
Customization of missions and the simple python interface
is laid out in Section [VIl Various environments made in UE4
are shown in Section and Section |VIII| summarizes the
article and proposes future work.

II. RELATED WORK
Creating a realistic underwater simulator requires many
features to be useful for algorithm development including,
but not limited to, multi-agent support; realistic sensor sim-
ulations; accurate underwater dynamics; ease of use; integra-
tion with existing systems; and, preferably, open source [3].
Another requirement is a lack of heavy dependencies. Heavy

Simulator Multi-Agent ~ Communications Sonar Open Source Small Dependencies ~ Maintained ~ Simple Mission Setup
HoloOcean v v v v v v v
UUV Simulator v X * v X * v
UWSim v X * v X X X
MarineSim v X X X X X *

TABLE I: Comparison of common underwater simulators. v'denotes that the simulator has a feature, * that it has a limited implementation or is unknown,
and X that it does not. There are many other common robotics simulators that are not listed here, but most don’t have support for underwater robotics.

Algorithm 1: Sonar Imagery Computation

Load = Make & cache if not made, else load cache;
Unload £ Delete from memory;
FOV £ Field of view;
R £ RootNode;
M represents a mid-level octree node;
L represents a leaf;
Load R till Ms;
Load all M within range;
foreach Sonar Tick do
foreach M; not in (R and FOV) do
| Unload My;
foreach M; in (R and FOV) do
Load M;;
foreach L; in (M; and FOV) do
dbj - nhj *Nimps
if dr; > O then
| AddL; to corresponding ¢, 6 bin;
foreach ¢, 0 bin do
Sort bin from closest range to farthest;
Take first cluster of elements in bin;
foreach L; in cluster do
| AddL; to corresponding ¢, r bin;
foreach ¢, r bin do

|2 = (2 Do di) (1w e
return z;

C-T-C IR B Y I L7 I S I

N == [<
_ceW:a\mawN—c

[
XN

N
&

25

Fig. 2: Pseudocode of our sonar imagery algorithm. Lines 10-17 correspond-
ing to recursively searching our octree to find leaves in our field of view,
lines 18-22 correspond to removing leaves that may be in shadows, and
lines 23-24 to the final computation of the image.

dependencies, such as Robot Operating System (ROS) [4],
can make installation and use cumbersome, particularly when
the simulator is only being used for data generation. Various
attempts at these features are listed in Table [I, but as far as
we know there are none that match all of these criteria.

UUV Simulator [5]] is one of the more mature options,
built upon the popular open source robotics simulator Gazebo
[6]. It has accurate modeling of hydrostatic and hydro-
dynamic effects, multi-agent support, a preliminary sonar
implementation [7]], and is easily configurable. However, it
requires the installation of ROS, lacks multi-agent commu-
nications, and does not appear to be actively maintained.

UWSim [8] is built on OpenSceneGraph and osgOcean
[9]. Tt also has multi-agent support and is open source,
but depends on ROS, is difficult to configure, is not being
actively maintained, and has a sonar model that is more akin
to a LiDAR.

Built upon USARSim [10], MarineSIM [[11]] is another
simulator for underwater navigation, but is not open source,
which limits the possibility for future development. Other
work in USARSim includes an implementation of acoustic
multi-agent communications [12]], but lacks other common
underwater sensors.

Fig. 3: Geometry of an imaging sonar. Shown are a single beam and the
elevation 6, azimuth ¢, and range r of a single point. All elevation data
will be lost as objects are projected onto the azimuth-range plane and then
binned accordingly.

An efficient and accurate implementation of a multi-beam
imaging sonar is also essential for research in underwater
perception and localization. The UUV Simulator sonar model
leverages a simulated depth camera and GPU computations
[7, [13] that appears promising, but has drawbacks due to
the depth camera field of view not matching that of a true
imaging sonar. Others leverage ray tracing [14] or more
accurate acoustic physics [[15]], which can be computationally
inefficient and currently have no integration with existing
simulators.

Holodeck [[1]] is an open source reinforcement learning
and robotics simulator. It’s built upon UE4 [2], providing it
with high-fidelity imagery, accurate dynamics built upon the
PhysX physics engine [16], and a mature community with
many environment assets already made. Further, Holodeck
has a simple python interface, allowing for easy installation
and use on a variety of systems. In this work, we propose
HoloOcean that builds on Holodeck and augments it with
accurate underwater dynamics, multi-agent communications,
a realistic imaging sonar implementation, and other under-
water sensor models.

III. IMAGING SONAR
An imaging sonar is a common underwater sensor used to
generate imagery of the environment. This imagery can be
used for localization, mapping, visualization, or various other
algorithms. In this section we cover how an imaging sonar
functions and present our algorithm for generating realistic
imagery, which is summarized in Fig. [2]

A. Operation

Multi-beam imaging sonar sensors use acoustic waves to
capture imagery of their environment. A wave is emitted and
upon encountering an object, part of the wave is reflected
back to the sonar, where intensity is recorded and beam-
forming techniques are used to determine the direction of the
return. This intensity will be dependent on the surface normal
vector it encountered as well as the normal of the impacting
beam. This is because a surface that is aligned with the beam
will reflect more energy than one that is perpendicular. Time

&

(@)

60°

0

(d)

Fig. 4: Example of imaging sonar simulation. (a) Shows the environment, with green rays showing an approximation of the field of view of the sonar.
The visible range is given by an azimuth of 120°, elevation of 20°, and a range from 1 to 50 meters. An octree resolution of 2cm is used. (b) Shows the
resulting sonar image, including minor multiplicative and additive noise. The image has 512 azimuth beams and 1024 range bins.

from sending to receiving the wave is also measured, and
from this the range r is calculated using the speed of sound
underwater.

The sonar reading in a given horizontal direction forms
a beam. Each beam has a horizontal angle, known as the
azimuth ¢, and a vertical width, known as the elevation 6,
as seen in Fig. 3

Each beam will correspond to a column in the resulting
2D image, while each row will correspond to a range interval
with its resulting quantity being given by its echo intensity.
In this way, a sonar gives a projection of 3D space onto a
2D image, with the elevation as the dimension that is lost.

B. Projection Model

To simulate sonar imagery, we discretize the environment
using an octree implementation. In each leaf of the octree,
both location and surface normals are stored. This octree
allows us to project the points onto the sonar image, rather
than using expensive ray tracing or relying on the square
field of view of a depth camera. When octrees are generated,
nodes are only added if the box is only partially occupied.
This eliminates the need to store areas of free space, as well
as areas inside of objects.

To find the octree leaves in our field of view, we first
recursively search the root octree to find all mid-level nodes
in our field of view. Note, to allow for imaging of other
agents during operation, a small octree is made for each
agent and updated after each time step. In parallel, we then
recursively search the agent octrees along with all previously
found mid-level nodes to find all the leaves in the field of
view.

Once the leaves are found, the dot product d between the
surface unit normal ns and impact unit normal n; of each is
calculated. This gives us the cosine of the angle ¢ between
the two normals as follows,

d2n,-n; =cos(eh) >0 = |w|<g. (1)

s

If the angle is greater than 7, this implies the leaf must be
on the backside of an object and it isn’t kept. Thus, we keep
all leaves with a dot product greater than O.

C. Shadows

Once all leaves on the front side of objects are found, we
must remove the ones that lie in shadows. To do this, we
first place each of the leaves in their corresponding ¢, 6 bin.
We have found that an elevation bin size of 0.03° provides
the best results.

In parallel, each of these bins is sorted by ascending
range. We keep the first cluster of a bin. We do this by
iterating through the sorted bin, checking if the difference
between two adjacent elements’ range value is less than some
predefined e. Once a gap larger than e is found, everything
after it is then removed, as it is part of a shadow.

There exist more accurate shadowing algorithms, but at a
significant computational cost. This algorithm has provided
us with a good combination of both accuracy and efficiency.

The resulting leaves are then sorted into their correspond-
ing ¢, r bins. The following calculation is then performed to
determine the pixel value z7; of the i, jth bin,

S 1 = sm sa
zij:<a2dk>(1+w)+ w
k=0
Wsm ~ N(O’ O,sm)’ WSG ~ /’?‘(O_Sa)7

where dj, was computed previously in eqn. (), w*®, w'
provide additive and multiplicative noise, respectively, and R
is the Rayleigh distribution. These steps are all summarized
in Fig. 2]

D. Efficiency & Memory

Unfortunately, as many of our environments are
2kmx2km, generating a full octree representation all at once
requires an unwieldy amount of time, and storing it all in
memory is impossible. To combat this, we generate, cache,
and load octree leaves in real time, as follows.

On startup, the root octree till mid-level nodes is either
made and cached, or loaded from file. Then, each mid-level
node within some r,,,,; of our vehicle that isn’t already
cached is created and saved to file.

During the recursive search, when a mid-level node is
found, we check if it’s been loaded; if not, then it’s loaded

2

(a)

Fig. 5: Demonstration of various sensor visualization tools included in HoloOcean. (a) Shows two vehicles transmitting over optical modem, with their
available line of sight highlighted as cones. (b) Shows a sonar simulation with an octree generated at 10cm. Highlighted are the field of view of the sonar
in green, and each octree leaf inside the field of view in red. (c) Shows the beams of a DVL highlighted in green.

from the cache or made and cached. Each mid-level node
that isn’t in the field of view is deleted from memory.

We’ve found that loading from our cache, a directory of
json files, is fast and has negligible impact on performance
since the number of new mid-level nodes in the field of view
each iteration is generally small. In addition, the cache is
persistent between simulations, thus it can be reused with
each new mission. This method also removes the need to
generate the full 2kmx2km octree representation on first
startup, instead only generating the leaves that are likely to
be used.

This process produces realistic sonar images, as can be
seen in Fig. EI At a 5.12m mid-level node size, 2cm minimum
leaf size, and 50m max distance we can sample 2 sonar
images per second, and at 2.56m mid-level, 1cm minimum,
10m distance we can sample about 14 images per second.

IV. SENSOR MODELS

HoloOcean comes built in with a variety of sensors used
in underwater robotics. They’ve been implemented with real
world sensors in mind, and thus come with many configura-
tion options and noise models. Note, all sensors have been
configured with their own sensor frame, defined with respect
to the robot frame as R, t.. These are represented in the

CRINE
world frame RY,t; as follows,
R = R/R;

3
ty =R, +t).)
Each sensor has various configurations that can be set in a
simple json file, as shown in Fig. [§] These configurations
include R[,t., the sample rate in Hz, covariance for noise
models, visualization tools as seen in Fig. and various
other sensor specific configurations. Further, when desired, a
Lightweight Communications and Marshalling (LCM)
wrapper has been included to allow for an interface with
real code. A ROS wrapper could also easily be added and is
under active development.
In this section, we cover the measurement model used for
each sensor, as well as various other implementation details.

A. Doppler Velocity Log

A DVL functions by sending out four acoustic waves
and upon their return, uses incoming and outgoing wave

velocities to calculate the sensor velocity in the sensor frame
by leveraging the Doppler effect. We denote the angle of
the acoustic waves from the negative z-axis as «, and the
calculated velocity of the beams as the 4-vector v,. The
sensor measurement z? is then modeled as,

z¥ = Ri(vp + w¥) = R, v + Rpw", w’ ~ N(0,3")
1 —1
ZSig(a) 0 QSir(l)(a) 01
Ry = in(a ;1 a
b X 2s 1() X 2s 1()
4cos(a) 4cos(a) 4cos(a) 4cos(a)
“

where w” is Gaussian noise, Rj is the transformation from
the beam frame to the sensor frame [18]], and v, is the
velocity in the world frame that we pull from UE4.

Additionally, a DVL also calculates the distance each wave
traveled, resulting in a 4-vector of ranges that can be used
to assemble a sparse point cloud.

B. Inertial Measurement Unit

An IMU sensor measures angular velocity and linear
acceleration in the sensor frame. A time-varying bias is
commonly found in both measurements of an IMU, and we
include it in the sensor model as follows [19]],

2% = R, ay + 0% + w9, w ~ N(0,2%)
2 =w+ b +w”, w ~ N(0,%%)
bt = b 4+ Wba7 wba ~ N(O, Eba) (5)
Bo=b 4w, W~ N(0,5),

HoloOcean can also be configured to return the bias for
ground truth purposes in cases where it’s also being tracked.

C. Depth Sensor

Underwater pressure is directly proportional to depth, and
is often used as a z-axis position measurement in the global
frame. We measure it as follows, given our global z position
is denoted by p, [20],

2 =p, +wl, wd ~ N(0,0%). (6)

D. Camera

An underwater camera is also included that allows for im-
agery of the environment to be taken from the camera frame.
UE4 has long been known for its high-fidelity imagery,
providing games with realistic graphics for many years. This

"name": "MyMission",
"world": "PierHarbor",
"ticks_per_sec": 300,
"agents": [
{
"agent_name": "auv0",
"agent_type": "HoveringAUV",
"sensors": |
{
"sensor_type": "IMUSensor",
"socket": "IMUSocket",
"location": [1.0, 2.0, 3.0],
"rotation": [1.0, 2.0, 3.0],
"Hz": 300,
"configuration": {

"Sensor specific config"
}
}

] 4

"location": [1.0, 2.

"rotation": [1.0, 2.

}
1
"window_width": 1280,
"window_height": 720
}

Fig. 6: Example of a mission configuration. The sensor socket is a predefined
frame on the vehicle body where a sensor can be placed. The sensor location
and rotation parameters are then used as an offset from the chosen socket.

can be fine tuned to give photorealistic underwater imagery
[21]], as is the case in HoloOcean.

E. GPS Sensor

While GPS is not available underwater, when near the
surface AUVs can gain connection and receive GPS measure-
ments to aid in localization. We model this by the following,
letting global position be denoted as p,

29 =p+wI, w? ~ N(0,39). @)

Further, we only allow GPS measurements to be received
when within a certain distance d of the surface, where d can
be configured to be a random variable distributed as A'(d, X).

F. Pose Sensor

A pose sensor is also included for use as ground truth. It
returns an element of SE(3), of the form,

Rw tw
P — S s
2P = [leg 1} . (8)

V. MULTI-AGENT MISSIONS & COMMUNICATIONS

HoloOcean also allows for an arbitrary number of agents
to be used in a scenario. Adding agents, with any kind of
sensors attached, is as simple as adding a few lines to a
json file. HoloOcean comes with two agents models: our in-
house custom hovering AUV based on the BlueROV2 by
BlueRobotics, and a generic AUV. Both follow a simple
buoyancy dynamics model, while the hovering AUV has
forces applied to the thruster locations, and the generic AUV
has a thruster along with fin dynamics as defined in [22].

In many multi-agent missions, communications between
agents is essential for cooperative efforts. For underwater
robotics, this becomes a difficult task as communications
are restricted to optical or acoustic modems. To better

simulate these scenarios, these modems are also included
in HoloOcean as described below.

A. Acoustic Modem

Our acoustic modem model is based off of the capabilities
of the Blueprint Subsea SeaTrac X150 [23]. This means that
to communicate, an acoustic wave is sent from one beacon
to another. In HoloOcean, when a message is sent from an
acoustic modem, it’s sent with a message type along with
its data payload. We check if any messages are sent at the
same time; if there are, all messages are dropped to simulate
interference of acoustic waves.

We calculate how many time steps it will take for the
acoustic message to arrive. Upon arrival, the payload is
received, and depending on the message type, a return
message is possibly sent. Along with the payload, other data
is received such as bearing, range, and depth as specified by
the message type.

B. Optical Modem

The optical modem is roughly based on the Hydromea
LumaX [24]. It operates similarly to the acoustic modem,
with a few notable differences. In HoloOcean, when an
optical modem sends a message, it first checks to make sure
the sending and receiving beacons are oriented properly to
see each other and that no object is obstructing the view.

Once a connection is verified, the message and its payload
are sent, in this case with no delay.

VI. PYTHON INTERFACE

HoloOcean is essentially built as a python wrapper of
an UE4 compiled game binary. This allows for a simple
python interface for controlling simulations, as well as easy
installation.

A. Installation

Installation is performed by installing the python package,
then from the python package a simple command will down-
load the UE4 packaged binary. Note, as more environments
for HoloOcean become available, each environment will be
available for download individually as an UE4 packaged
binary. Installation is as follows. First from the command
line to install the python package while using python 3.6+,

$ pip install holoocean

Then from a python console or script to download and
install the UE4 environments,

import holoocean
holoocean.install ("Ocean")

B. Python Interface

HoloOcean’s python interface is modeled after OpenAl
Gym [25]. This means controlling the robots can be done
in a few lines of code. For example, the following code
creates the predefined mission “PierHarbor-Hovering” which
includes our custom in-house Hovering AUV loaded with
its sensors at the pier environment. It then sends the AUV
commands, one for each of its eight thrusters, to push it

(C)) (e)

Fig. 7: Examples of the environments that we have created in UE4 for use in HoloOcean. (a) Shows the full dam environment with size 650m x 650m, with
(d) showing a closeup of one of the pipes. (b) Shows an overview of the pier environment, including all 3 sizes of piers, with a total size of 2kmXx2km,
and (e) showing a closeup of a pier in the top left of (b). Finally, (c) shows the open water environment which includes a number of sunken submarines
and planes for inspection with a total size of 2kmx2km, with one of the submarines shown in (f).

upwards for 200 ticks. At the end of each tick, a “state”
dictionary is returned that has all the sensor information
sampled at that time step.

import holoocean
env = holoocean.make ("PierHarbor-Hovering")

command = [10,10,10,10,0,0,0,0]
for _ in range(200) :
env.act ("auv0", command)
state = env.tick ()

C. Configuring Missions

Configuring missions is easily done by defining a custom
configuration in json format, as shown in Fig. [} Note, the
configuration takes in a possible array of agents, as well as
an array of sensors objects for each agent. This json, either
loaded from a file or inserted directly in the python code,
is passed to HoloOcean for mission creation. This allows
for painless customization of missions, with any variation of
sensors and agents as required.

HoloOcean also comes with a number of other features
such as headless mode, configurable time steps, frame rate
capping, and others. For further information, documentation
is available at holoocean.readthedocs.iol

VII. ENVIRONMENTS

To provide a wide range of realistic scenarios, we have
built various environments for HoloOcean as well. Currently,
these include a dam, pier, and open water environment.
We have configured each of these with realistic underwater

imagery, as well as large underwater areas for use in multi-
agent missions. Examples can be seen in Fig.

As one of the most popular game engines, UE4 has a large
marketplace full of environments and meshes for purchase
by independent users at reasonable prices. This makes rapid
development of high quality environments possible. In addi-
tion, UE4 has great documentation and a large community
behind it, resulting in an abundance of online resources for
new users, significantly lessening the initial learning curve.

HoloOcean has already aided us in our research, provid-
ing realistic data for verification of the invariant extended
Kalman filter for underwater navigation [26].

VIII. CONCLUSION

Building upon Holodeck and UE4, we created a new
open source underwater simulator, allowing for painless
building of custom environments from UE4. It also features
a simple to install and use python interface. Further, we
have implemented a novel imaging sonar model, allowing
for realistic real-time imagery. Several common underwater
sensors such as a DVL, IMU, camera, GPS, and depth
sensor have also been implemented. Multi-agent missions
and communications are also supported through acoustic
and optical modems. All together, this results in a mature
underwater simulator that’s extensible and easy to use. Future
work will include additional sonar sensors, a GPU implemen-
tation of our imaging sonar algorithm, a ROS wrapper to
publish sensor data, additional agents including autonomous
surface vehicles, more accurate sensor noise simulations, and
additional custom environments.

holoocean.readthedocs.io

[1]

[2]
[3]

[4]

[5]

[7]

[8]

[9]
[10]

(1]

[12]

[13]

[14]

[15]

[16]
[17]

(18]

[19]

[20]

[21]

[22]

[23]
[24]

[25]

[26]

REFERENCES

J. Greaves, M. Robinson, N. Walton, M. Mortensen, R. Pottorff,
C. Christopherson, D. Hancock, J. Milne, and D. Wingate, “Holodeck:
A high fidelity simulator,” https://github.com/BYU-PCCL/holodeck,
2018.

Epic Games, “Unreal engine,” https://www.unrealengine.com, 2019.
D. Cook, A. Vardy, and R. Lewis, “A survey of AUV and robot sim-
ulators for multi-vehicle operations,” in Proc. IEEE/OES Autonomous
Underwater Vehicles Conf., Oct. 2014, pp. 1-8.

M. Quigley, K. Conley, B. P. Gerkey, J. Faust, T. Foote, J. Leibs,
R. Wheeler, and A. Y. Ng, “ROS: an open-source robot operating
system,” in ICRA Workshop on Open Source Software, 2009.

M. M. M. Manhaes, S. A. Scherer, M. Voss, L. R. Douat, and
T. Rauschenbach, “UUV Simulator: A Gazebo-based package for un-
derwater intervention and multi-robot simulation,” in Proc. IEEE/MTS
OCEANS Conf. Exhib., Sep. 2016, pp. 1-8.

N. Koenig and A. Howard, “Design and use paradigms for Gazebo,
an open-source multi-robot simulator,” in Proc. IEEE/RSJ Int. Conf.
Intell. Robots and Syst., vol. 3, Sep. 2004, pp. 2149-2154 vol.3.

R. Cerqueira, T. Trocoli, G. Neves, S. Joyeux, J. Albiez, and
L. Oliveira, “A novel GPU-based sonar simulator for real-time ap-
plications,” Computers & Graphics, vol. 68, pp. 66-76, Nov. 2017.
M. Prats, J. Pérez, J. J. Fernandez, and P. J. Sanz, “An open source tool
for simulation and supervision of underwater intervention missions,”
in Proc. IEEE/RSJ Int. Conf. Intell. Robots and Syst., Oct. 2012, pp.
2577-2582.

“osgOcean,” https://github.com/kbale/osgocean, 2018.

S. Carpin, M. Lewis, J. Wang, S. Balakirsky, and C. Scrapper,
“USARSim: A robot simulator for research and education,” IEEE
Robot. and Automation Letters, pp. 1400-1405, Apr. 2007.

P. Namal Senarathne, W. S. Wijesoma, K. W. Lee, B. Kalyan,
M. Moratuwage, N. M. Patrikalakis, and F. S. Hover, “MarineSIM:
Robot simulation for marine environments,” in Proc. IEEE/MTS
OCEANS Conf. Exhib., 2010, pp. 1-5.

A. Sehgal and D. Cernea, “A multi-AUV missions simulation frame-
work for the USARSiIm robotics simulator,” in Mediterranean Con-
ference on Control and Automation, 2010, pp. 1188-1193.

D.-H. Gwon, J. Kim, M. H. Kim, H. G. Park, T. Y. Kim, and
A. Kim, “Development of a side scan sonar module for the underwater
simulator,” in 2017 14th International Conference on Ubiquitous
Robots and Ambient Intelligence (URAI), Jun. 2017, pp. 662-665.

K. J. DeMarco, M. E. West, and A. M. Howard, “A computationally-
efficient 2D imaging sonar model for underwater robotics simulations
in Gazebo,” in Proc. IEEE/MTS OCEANS Conf. Exhib., Oct. 2015, pp.
1-7.

A. Rascon, “Forward-looking sonar simulation model for robotic
applications,” Thesis, Monterey, CA; Naval Postgraduate School, Sep.
2020.

NVIDIA, “Physx,” https://github.com/NVIDIAGameWorks/PhysX.

A. S. Huang, E. Olson, and D. C. Moore, “LCM: Lightweight
Communications and Marshalling,” in Proc. IEEE/RSJ Int. Conf. Intell.
Robots and Syst., Oct. 2010, pp. 4057-4062.

J. Y. Taudien, “Doppler velocity log algorithms: detection, estimation,
and accuracy,” Ph.D. dissertation, Pennsylvania State Universiy, 2018.
R. Hartley, M. Ghaffari, R. M. Eustice, and J. W. Grizzle, “Contact-
aided invariant extended Kalman filtering for robot state estimation,”
Int. J. Robot. Res., vol. 39, no. 4, pp. 402-430, 2020.

S. Aravamudhan and S. Bhansali, “Reinforced piezoresistive pressure
sensor for ocean depth measurements,” Sensors and Actuators A:
Physical, vol. 142, no. 1, pp. 111-117, 2008.

T. Manderson, I. Karp, and G. Dudek, “Aqua underwater simulator,”
in Proc. IEEE/RSJ Int. Conf. Intell. Robots and Syst., 2018.

Z. J. Harris and L. L. Whitcomb, “Preliminary Evaluation of Coop-
erative Navigation of Underwater Vehicles without a DVL Utilizing
a Dynamic Process Model,” in Proc. IEEE Int. Conf. Robot. and
Automation, 2018, pp. 4897-4904.

Blueprint, “SeaTrac X150 USBL Transponder Beacon,” https://www.
blueprintsubsea.com/pages/product.php?PN=BP00795, 2020.
Hydromea, “LumaX,” https://www.hydromea.com/
underwater-wireless-communication/, 2020.

G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman,
J. Tang, and W. Zaremba, “OpenAl gym,” CoRR, vol. abs/1606.01540,
2016.

E. Potokar, K. Norman, and J. G. Mangelson, “Invariant Extended
Kalman Filtering for Underwater Navigation,” IEEE Robot. and Au-

tomation Letters, vol. 6, no. 3, pp. 5792-5799, Jul. 2021.

https://github.com/BYU-PCCL/holodeck
https://www.unrealengine.com
https://github.com/kbale/osgocean
https://github.com/NVIDIAGameWorks/PhysX
https://www.blueprintsubsea.com/pages/product.php?PN=BP00795
https://www.blueprintsubsea.com/pages/product.php?PN=BP00795
https://www.hydromea.com/underwater-wireless-communication/
https://www.hydromea.com/underwater-wireless-communication/

	Introduction
	Related Work
	Imaging Sonar
	Operation
	Projection Model
	Shadows
	Efficiency & Memory

	Sensor Models
	Doppler Velocity Log
	Inertial Measurement Unit
	Depth Sensor
	Camera
	GPS Sensor
	Pose Sensor

	Multi-Agent Missions & Communications
	Acoustic Modem
	Optical Modem

	Python Interface
	Installation
	Python Interface
	Configuring Missions

	Environments
	Conclusion

