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Abstract— This paper describes a system for performing multi-
session visual mapping in large-scale environments. Multi-session
mapping considers the problem of combining the results of
multiple Simultaneous Localisation and Mapping (SLAM) mis-
sions performed repeatedly over time in the same environment.
The goal is to robustly combine multiple maps in a common
metrical coordinate system, with consistent estimates of uncer-
tainty. Our work employs incremental Smoothing and Mapping
(iSAM) as the underlying SLAM state estimator and uses an
improved appearance-based method for detecting loop closures
within single mapping sessions and across multiple sessions. To
stitch together pose graph maps from multiple visual mapping
sessions, we employ spatial separator variables, called anchor
nodes, to link together multiple relative pose graphs. We provide
experimental results for multi-session visual mapping in the MIT
Stata Center, demonstrating key capabilities that will serve as
a foundation for future work in large-scale persistent visual
mapping.

Index Terms— multi-session visual SLAM, lifelong learning,
persistent autonomy

I. I NTRODUCTION

Despite substantial recent progress in visual SLAM [17],
many issues remain to be solved before a robust, general visual
mapping and navigation solution can be widely deployed. A
key issue in our view is that ofpersistence– the capability
for a robot to operate robustly for long periods of time. As
a robot makes repeated transits through previously visited
areas, it cannot simply treat each mission as a completely new
experiment, not making use of previously built maps. However,
nor can the robot treat its complete lifetime experience as
“one big mission”, with all data considered as a single pose
graph and processed in a single batch optimisation. We seek
to develop a framework that achieves a balance between these
two extremes, enabling the robot to leverage off the resultsof
previous missions, while still adding in new areas as they are
uncovered and improving its map over time.

The overall problem of persistent visual SLAM involves
several dif�cult challenges not encountered in the basic SLAM
problem. One issue is dealing with dynamic environments,
requiring the robot to correct for long-term changes, such as
furniture and other objects being moved, in its internal repre-
sentation; this issue is not addressed in this paper. Another
critical issue, which is addressed in this paper, is how to
pose the state estimation problem for combining the results
of multiple mapping missions ef�ciently and robustly.

Cummins de�nes the multi-session mapping problem as
“the task of aligning two partial maps of the environment col-
lected by the robot during different periods of operation [3].”

Fig. 1: Internal architecture of windowed and multi-session
visual SLAM (vSLAM) processes.

We consider multi-session mapping in the broader context
of life-long, persistent autonomous navigation, in which we
would anticipate tens or hundreds of repeated missions in
the same environment over time. As noted by Cummins, the
“kidnapped robot problem” is closely related to multi-session
mapping. In the kidnapped robot problem, the goal is to
estimate the robot's position with respect to a prior map given
no a priori information about the robot's position.

Also closely related to the multi-session mapping problem
is the multi-robot mapping problem. In fact, multi-session
mapping can be considered as a more restricted case of multi-
robot mapping in which there are no direct encounters between
robots (only indirect encounters, via observations made ofthe
same environmental structure). Kimet al. presented an exten-
sion to iSAM to facilitate online multi-robot mapping basedon
multiple pose graphs [11]. This work utilised “anchor nodes”,
equivalent to the “base nodes” introduced by Ni and Dellaert
for decomposition of large pose graph SLAM problems into
submaps of ef�cient batch optimisation [18], in an approach
called Tectonic Smoothing and Mapping (T-SAM). Our work
extends the approach of Kimet al. [11] to perform multi-
session visual mapping by incorporating a stereo odometry
frontend in conjunction with a place-recognition system for
identifying inter- and intra-session loop closures.



II. RELATED WORK

Several vision researchers have demonstrated the operation
of visual mapping systems that achieve persistent operation in
a limited environment. Examples of recent real-time visual
SLAM systems that can operate persistently in a small-
scale environment include Klein and Murray [12], Eade and
Drummond [5], and Davisonet al. [4, 8]. Klein and Murray's
system is highly representative of this work, and is targeted
at the task of facilitating augmented reality applicationsin
small-scale workspaces (such as a desktop). In this approach,
the processes of tracking and mapping are performed in two
parallel threads. Mapping is performed using bundle adjust-
ment. Robust performance was achieved in an environment
as large as a single of�ce. While impressive, these systems
are not designed for multi-session missions or for mapping of
large-scale spaces (e.g., the interior of a building).

There have also been a number of approaches reported for
large-scale visual mapping. Although a comprehensive survey
is beyond the scope of this paper we do draw attention to the
more relevant stereo based approaches. Perhaps the earliest of
these was the work of Nistéret al. [19] on stereo odometry. In
the robotics literature, large-scale multi-session mapping has
been the focus of recent work of Konoligeet al. in developing
view-based mapping systems [14, 13]. Our research is closely
related to this work, but has several differences. A crucial
new aspect of our work in relation to [14] is the method
we use for joining the pose graphs from different mapping
sessions. Konolige and Bowman join pose graphs using “weak
links”, which are used to connect disjoint sequences. The
weak links are added with a very high covariance and subse-
quently deleted after place recognition is used to join the pose
graphs [14]. In our approach, which extends [11] to full 6-
DOF, we use anchor nodes as an alternative to weak links; the
use of anchor nodes provides a more ef�cient and consistent
way to stitch together the multiple pose graphs resulting from
multiple mapping sessions. In addition, our system has been
applied to hybrid indoor/outdoor scenes, with hand-carried
(full 6-DOF) camera motion.

III. SYSTEM OVERVIEW

In this section we describe the architecture and components
of a complete multi-session stereo visual SLAM system. This
includes a stereo visual SLAM frontend, a place recognition
system for detecting single and multi-session loop closures,
and a multi-session state-estimation system. A schematic of
the system architecture is shown in Figure 1. The system uses
a sub-mapping approach in conjunction with a global multi-
session pose graph representation. Optimisation is performed
by applying incremental and batch SAM to the pose graph and
the constituent submaps, respectively. Each submap is built up
over consecutive sets of frames, where both the motion of the
sensor and a feature based map of the scene is estimated. Once
the current submap reaches a user de�ned maximum number
of poses, 15 in our system, the global pose graph is augmented
with the resultant poses.

In parallel to the above, as each frame is processed, the
visual SLAM frontend communicates with a global place

recognition system for intra- and inter-session loop closure
detection. When a loop closure is detected, pose estimationis
performed on the matched frames, with the resultant pose and
frame-id's passed to the multi-session pose graph optimisation
module.

IV. STEREOODOMETRY

Within each submap the inter-frame motion and associated
scene structure is estimated via a stereo odometry frontend.
The most immediate bene�t of the use of stereo vision is that
it avoids issues associated with monocular systems including
inability to estimate scale and indirect depth estimation.The
stereo odometry approach we use is similar to that presented
by [19].

Our stereo odometry pipeline tracks features using a stan-
dard robust approach followed by a pose re�nement step.
For each pair of stereo frames we �rst track a set Harris
corners in the left frame using the KLT tracking algorithm.
The resulting tracked feature positions are then used to com-
pute the corresponding feature locations in the right frame.
Approximate 6-DOF pose estimation is performed through the
use of a RANSAC based 3-point algorithm [6]. The input to
the motion estimation algorithm consists of the set of tracked
features positions and disparities within the current frame and
the current estimates of the 3D locations of the corresponding
landmarks. In our work we have found that ensuring that
approximately 50 features are tracked between frames results
in a reliable pose estimate through the 3-point RANSAC
procedure. Finally, accurate pose estimation is achieved by
identifying the inliers from the estimated pose and using them
in a Levenberg-Marquardt optimisation that minimises the
reprojection error in both the left and right frames.

In our implementation of the above stereo odometry pipeline
we use a GPU based KLT tracker [25]. This minimises the load
on the CPU (by delegating the feature detection and tracker to
the GPU) and exploits the GPU's inherent parallel architecture
to permit processing at high frame rates. In parallel to thiswe
compute a disparity map for the frame, which is then combined
with the results of the feature tracker, resulting in a set of
stereo features.

In order to maintain an adequate number of features we
detect new features in every �fth frame, or when the number
of feature tracks in the current frame drops below a certain
threshold. A consequence of keeping the number of features in
a given frame high, whilst at the same time setting a minimum
inter-feature distance in the KLT tracker, is that it helps to
ensure a good distribution of the resulting feature set overthe
image.

V. SINGLE SESSIONV ISUAL SLAM

Deriving a pose graph representation from the stereo odom-
etry system involves two levels of processing. The �rst of
these optimises over the poses, features and structure within
a local window. As each new frame is added, a full batch
optimisation is performed. The second step transfers optimised
poses to the pose graph after a �xed maximum number of
frames is reached. The resulting pose graph structure contains



no point features and can be optimised ef�ciently even for a
large number of poses.

We apply smoothing in combination with a homogeneous
point parameterisation to the local window to improve the
pose estimates obtained from visual odometry. In contrast
to visual odometry, smoothing takes longer range constraints
into account, which arise from a single point being visible
in multiple frames. The homogeneous point parameterisation
p= ( x;y;z;w) allows dealing with points at in�nity [24]. Points
close to or at in�nity cannot be represented correctly by the
conventional Euclidean formulation. Even for points that are
not at in�nity, convergence of the smoothing optimisation is
typically improved.

We use exponential maps based on Lie group theory to
deal with overparameterised representations. In particular we
use Quaternions to represent orientations in 3D space. Quater-
nions consist of four parameters to represent three degreesof
freedom, therefore causing problems for conventional least-
squares algorithms. Using an exponential map, as describedfor
example in [7], reduces the local updates during optimisation
to three parameters. The homogeneous point parameterisation
suffers from the same problem, and indeed the same solution
can be applied as for Quaternions after realising that both are
equivalent to the 3-sphereS3 in R4 if normalised.

With overparameterisations removed, the optimisation prob-
lem can now be solved with standard least-squares solvers.
We use the iSAM library [9] to perform batch smoothing with
Powell's Dog Leg algorithm. iSAM represents the optimisation
as a factor graph, a bipartite graph containing variable nodes,
factor nodes and links between those. Factor nodes, or short
factors, represent individual probability densities
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where P(x; p) is the stereo projection of a 3D pointp into
a camera of given 3D posex, yielding the predicted stereo
projections(uL;v) and (uR;v), zi = ( ûL; ûR; v̂) is the actual
stereo measurement, andSi represents the Gaussian image
measurement noise. iSAM then �nds the least-squares estimate
Q� of all variables Q (camera poses and scene structure
combined) as

Q� = argmax
Q

Õ
i
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When the smoothing window reaches a maximum size, all
poses and associated odometry are transferred to the current
session's pose graph, and a new local window is initialised.
By including all poses from a window, as opposed to just the
�rst or �rst and last pose (as is the case in other approaches)
we ensure that loop closures between arbitrary frames can
be dealt with within the pose graph. Full details of the loop
closure handling is provided in Section VII. To initialise a
new window we use the last pose of the previous window in
conjunction with all landmarks that correspond to featuresthat
are tracked into the current frame.

The pose graph is again being optimised using the iSAM
library [9], but this time using the actual incremental iSAM
algorithm [10] to ef�ciently deal with large pose graphs. In

contrast to the stereo projection factorsfi in the smoothing
formulation above, we now use factorsgi
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that represent constraintsci with covariancesXi between pairs
of poses as obtained by local smoothing or by loop closure
detection. We use the notationxd = xa 	 xb from Lu and Milios
[16] for representing posexa in the local frame of posexb
(xa = xb � xd).

VI. PLACE RECOGNITION

Place recognition is an important component in the context
of large-scale, multi-robot and multi-session SLAM, where
algorithms based on visual appearance are becoming more
popular when detecting locations already visited, also known
as loop closures. In this work we have implemented a place
recognition module based on the recent work of [1, 2], which
demonstrated robust and reliable performance.

The place recognition module has the following two com-
ponents:

� The �rst component is based on the bag-of-words method
(BoW) [23] which is implemented in a hierarchical way
[20]. This implementation enables quick comparisons of
an image at timet with a database of images in order
to �nd those that are similar according to the scores.
Then, there are three possibilities, ifs � a + l t the match
is considered highly reliable and accepted, ifa � l t < s<
a + l t the match is checked by conditional random �eld
(CRF)-Matching in the next step, otherwise the match
is ignored. In our implementation,l t is the BoW score
computed between the current image and the previous
one in the database. The minimum con�dence expected
for a loop closure candidate isa � = 0:15 and for a loop
closure to be accepted isa + = 0:8. The images from one
session are added to the database at one frame per second
and with the sensor in motion, i.e. during the last second,
the sensor's motion according to the visual odometery
module might be greater than 0:2m or 0:2rad.

� The second component consists of checking the previ-
ous candidates with CRF-Matching in 3D space. CRF-
Matching is an algorithm based on Conditional Random
Fields (CRF). Laffertyet al. [15] proposed CRF for
matching 2D laser scans [21] and for matching image
features [22]. CRF-Matching is a probabilistic model that
is able to jointly reason about the association of features.
In [1] CRF-Matching was extended to reason in 3D space
about the association of data provided by a stereo camera
system. We compute the negative log-likelihoodL t;t0 from
the maximum a posteriori (MAP) association between the
current scene in timet against the candidate scene in time
t0. We accept the match only ifL t;t0 � L t;t� 1.

This module exploits the ef�ciency of BoW to detect
revisited places in real-time. CRF-Matching is a more com-
putationally demanding data association algorithm because it
uses much more information than BoW. For this reason, only
the positive results of BoW are considered for CRF-Matching.



VII. M ULTI -SESSIONV ISUAL SLAM

For multi-session mapping we use one pose graph for each
robot/camera trajectory, with multiple pose graphs connected
to one another with the help of “anchor nodes” as introduced
in Kim et al. [11] and Ni and Dellaert [18].

In this work we distinguish between intra-session and inter-
session loop closures. Processing of loop closures is performed
�rstly with each candidate frame being input to the above
place recognition system. These candidate frames are matched
against previously input frames from all sessions. On success-
ful recognition of a loop closure the place recognition system
returns the matched frame's session and frame identi�er in
conjunction with a set of stereo feature correspondences
between the two frames. These feature sets consist of lists
of SURF feature locations and stereo disparities. Note that
since these features are already computed and stored during
the place recognition processing, their use here does not place
any additional computational load on the system.

These feature sets serve as input to the same camera
orientation estimation system described in Section IV. Here the
disparities for one of the feature sets are used to perform 3D
reconstruction of their preimage points. These 3D points are
passed with their corresponding 2D features from the second
image into a 3-point algorithm based RANSAC procedure.
Finally the estimated orientation is iteratively re�ned through
a non-linear optimisation procedure that minimises the repro-
jection error in conjunction with the disparity.

Inter-session loop closures introduce encounters between
pose graphs corresponding to different visual SLAM sessions.
An encounter between two sessionss ands0 is a measurement
that connects two robot posesxs

j andxs0

j0. This is in contrast to
measurements between poses of a single trajectory, which are
of one of two types: The most frequent type of measurement
connects successive poses, and is derived from visual odom-
etry and the subsequent local smoothing. A second type of
measurement is provided by intra-session loop closures.

The use of anchor nodes [11] allows at any time to combine
multiple pose graphs that have previously been optimised
independently. The anchor nodeDs for the pose graph of
sessions speci�es the offset of the complete trajectory with
respect to a global coordinate frame. That is, we keep the
individual pose graphs in their own local frame. Poses are
transformed to the global frame by pose compositionDs � xs

i
with the corresponding anchor node.

In this relative formulation, pose graph optimisation remains
the same, only the formulation of encounter measurements
involves the anchor nodes. The factor describing an encounter
between two pose graphs also involves the anchor nodes
associated with each pose graph. The anchor nodes are in-
volved because the encounter is a global measure between
the two trajectories, but the pose variables of each trajectory
are speci�ed in the session's own local coordinate frame. The
anchor nodes are used to transform the respective poses of each
pose graph into the global frame, where a comparison with
the measurement becomes possible. The factorh describing

Fig. 2: Multi-session visual SLAM processing
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where the indexi was dropped for simplicity. The concept of
relative pose graphs generalises well to a larger number of
robot trajectories. The number of anchor nodes depends only
on the number of robot trajectories.

VIII. E XPERIMENTS AND RESULTS

In this section we present results of the performance of
our system for both single- and multi-session processing. The
dataset that we use was collected at the Ray and Maria Stata
Center at MIT over a period of months. This building in known
for its irregular architecture and provides a good testing ground
for visual SLAM techniques in general.

The dataset includes indoor and outdoor (and mixed) se-
quences captured from both a wheeled platform and using
a handheld camera with full 6-DOF movement (e.g. ascend-
ing and descending stairs, etc.). All images sequences were
captured using a Point Grey Bumblebee colour stereo camera
with a baseline of 11.9cm and where both lenses had a
focal length of 3.8mm. The wheeled platform also included
a horizontally mounted 2D SICK laser scanner and a spinning
LiDAR. Although we do not use the LiDAR sensors in our
system, the accompanying laser data allows us to compare
the performance of our technique to that of a laser-based
scan matcher in restricted 3D scenarios (i.e. 2D+ rotational
movement).

The complete multi-session visual SLAM system follows
the architecture shown in Fig. 1, and is implemented as a
set of loosely coupled processes that communicate via the
Lightweight Communications and Marshalling(LCM) robot
middleware system. This permits straightforward parallelism
between the components of the system, hence minimising the
impact on all modules due to �uctuations in the load of a
particular module (e.g. due to place recognition deferringto
CRF processing). Futhermore the overall architecture can be
transparently recon�gured for different setups (e.g. fromsingle
CPU to multi-core or distributed processing).



(a) (b)

Fig. 3: Single session visual SLAM processing including full 6-DOF motion.

A. Single-Session Visual SLAM Results

In this section we provide results from a number of single
session SLAM experiments. We have applied the system in
single session mode (i.e. only running a single frontend) across
a variety of sequences for the Stata Center dataset described
above. The system is capable of operating over extended
sequences in both indoor, outdoor and mixed environments
with full 6-DOF motion.

Two example feature-based maps from outdoor sequences
are shown in Fig. 3. Here, for (a), the underlying grid is at
a scale of 10m, where the trajectory is approximately 100m
in length. An example image from the sequence is shown in
the inset with the GPU KLT feature tracks overlaid on the left
frame. Fig. 3 (b) shows a similar scale sequence that includes
full 6-DOF motion, where the user has carried a handheld
camera up a stairs.

In the absence of loop closing we have found the system
to have drift of approximately 1%-3% in position during level
motion (i.e. without changes in pitch angle). To demonstrate
this, Fig. 4 shows two maps with two trajectories, both taken
from the same sequence. The yellow contour shows a 2D
LiDAR based map computed from applying a scanmatching
algorithm to the output of horizontal LiDAR scanner attached
to the cart. The scanmatcher's estimated pose is shown by the
dark blue trajectory, which can be seen more clearly in the
lower right-hand inset. The distance between grid lines in the
�gure is 2m. From the �gure the horizontal displacement of
the �nal poses is approximately 60cm with a total trajectory
of approximately 20m.

An example of the accumulated error in position due to
drift is shown in Fig. 5. Here the dataset consists of an image
sequence taken over an indoor area within in the Stata Center.
Here the grid is at a scale of 5m with the sequence taken
by travelling on a large loop over a space of approximately
35m� 15m. The image at the top shows the result of the motion
estimate in the absence of a loop closure. The majority of the
drift here is due to the tight turn at the right-hand end of the

sequence, where the divergence between each traversal of the
hallway can be clearly seen.

The center �gure shows the result of the correction applied
to the pose graph due to a sequence of loop closures occuring
at the area highlighted by the red box. Here it can seen
that the pose graph sections showing the traversals of the
hallway are much more coincident and that the misalignment
in corresponding portions of the map is reduced considerably.
The �gure also shows accuracy of the map relative to the
ground truth CAD �oorplan.

Although the odometry system has shown to be robust
over maps of the order of hundreds of meters, two failure
modes for the system are in low-texture or low contrast
environments, or where the disparity estimation fails overa
large set of features, e.g. due to aliasing. We do not address
this situation in the current system, however the standard
approach of incorporating inertial sensors is a natural solution
to this problem. An alternative approach that we are currently
investigating is the possibility of using multi-session SLAM as
a solution to this problem, whereby odometry failure results in
the creation of a new session with a weak prior on the initial
position. This disjoint session is treated the same as any other
session. When a new encounter does occur, the session can
be reconnected to the global pose graph. A future paper will
present results of this approach.

B. Multi-Session Visual SLAM Results

To test the full multi-session visual SLAM system, we took
two sequences from the same area as shown in Fig. 5 and
processed each through a separate instance of the visual SLAM
frontend. Results of each of the separate sessions are shownin
Fig. 6 (a) and 6 (b), with the combined multi-session results
shown in Fig. 6 (c). Again, loop closure occurred in the same
area as shown in Fig. 5 (b). Finally Fig. 6 (d) shows a textured
version of the same map. The scale of the grid is 2m for
Figures (a) & (b), and 5m for Figures (c) & (d).



Fig. 4: Comparison of drift in single session visual SLAM
against 2D LiDAR scan matcher over a 20m trajectory. Grid
scale is 2m.

IX. CONCLUSIONS

In this paper we have presented a 6-DOF multi-session
visual SLAM system. The principal contribution of the paper
is to integrate all of the components required for a multi-
session visual SLAM system using iSAM with the anchor
node formulation [11]. In particular this is the �rst example
of an anchor node based SLAM system that (i) uses vision
as the primary sensor, (ii) operates in general 6-DOF mo-
tion, (iii) includes a place recognition module for identifying
encounters in general environments, and (iv) derives 6-DOF
pose constraints from those loop closures within these general
environments (i.e. removing the need for �ducial targets as
was used in [11]).

We have demonstrated this system in both indoor and out-
door environments, and have provided examples of single- and
multi-session pose graph optimisation and map construction.
We have also shown the effects of loop closures within single-
session mapping in reducing drift and correcting map structure.

Multi-session visual mapping provides a solution to the
problem of large-scale persistent localisation and mapping. In
the future we plan to extend the results published here to in-
corporate the entire Stata dataset described in the SectionVIII.
Furthermore we intend to evaluate the approach in online
collaborative mapping scenarios over extended timescales.
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