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Abstract— This paper describes a system for performing multi- E
session visual mapping in large-scale environments. Mutsession ' Stereo 3D
:

mapping considers the problem of combining the results of Fealures

multiple Simultaneous Localisation and Mapping (SLAM) mis-

sions performed repeatedly over time in the same environmen :

The goal is to robustly combine multiple maps in a common P —

metrical coordinate system, with consistent estimates of ncer- :

tainty. Our work employs incremental Smoothing and Mapping

(iSAM) as the underlying SLAM state estimator and uses an Odomety

improved appearance-based method for detecting l00p CIOSES ~  (cccccccciccccccccccccccccacaccecemccccmaacan-

within single mapping sessions and across multiple sessmnTo E

stitch together pose graph maps from multiple visual mappirgy '

sessions, we employ spatial separator variables, called @mor '

nodes, to link together multiple relative pose graphs. We povide . yiongle & case

experimental results for multi-session visual mapping in he MIT E I Loop Closures
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Stata Center, demonstrating key capabilities that will seve as
a foundation for future work in large-scale persistent visial

Pose
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mapping.
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Index Terms—multi-session visual SLAM, lifelong learning, =~ =============sesmeecnmmcmooomcmooonnmae oo '
persistent autonomy Fig. 1: Internal architecture of windowed and multi-sessio

visual SLAM (VSLAM) processes.
|. INTRODUCTION

Despite substantial recent progress in visual SLAM [17],
many issues remain to be solved before a robust, generallvisu

mapping and navigation solution can be widely deployed. fye consider multi-session mapping in the broader context
key issue in our view is that opersistence- the capability of jife-long, persistent autonomous navigation, in whick w
for a robot to operate robustly for long periods of time. Agoyid anticipate tens or hundreds of repeated missions in

a robot makes repeated transits through previously Visitgth same environment over time. As noted by Cummins, the
areas, it cannot simply treat each mission as a completely Ng;qnapped robot problem” is closely related to multi-sess

experiment, not making use of previouslybl_JiItmaps. How,evqnapping_ In the kidnapped robot problem, the goal is to
nor can the robot treat its complete lifetime experience @Stimate the robot's position with respect to a prior maggiv

“one big mission”, with all data considered as a single pos, 4 priori information about the robot's position.
graph and processed in a single batch optimisation. We seek

to develop a framework that achieves a balance between thesalso closely related to the multi-session mapping problem
two extremes, enabling the robot to leverage off the resiiltsis the multi-robot mapping problem. In fact, multi-session
previous missions, while still adding in new areas as they amapping can be considered as a more restricted case of multi-
uncovered and improving its map over time. robot mapping in which there are no direct encounters betwee

The overall problem of persistent visual SLAM involvesobots (only indirect encounters, via observations madibef
several dif cult challenges not encountered in the basiéBL same environmental structure). Kiet al. presented an exten-
problem. One issue is dealing with dynamic environmentsion to iISAM to facilitate online multi-robot mapping basenl
requiring the robot to correct for long-term changes, sugh eultiple pose graphs [11]. This work utilised “anchor nddes
furniture and other objects being moved, in its internareep equivalent to the “base nodes” introduced by Ni and Dellaert
sentation; this issue is not addressed in this paper. Anotlier decomposition of large pose graph SLAM problems into
critical issue, which is addressed in this paper, is how gubmaps of ef cient batch optimisation [18], in an approach
pose the state estimation problem for combining the resudtalled Tectonic Smoothing and Mapping (T-SAM). Our work
of multiple mapping missions ef ciently and robustly. extends the approach of Kirat al. [11] to perform multi-

Cummins de nes the multi-session mapping problem aession visual mapping by incorporating a stereo odometry
“the task of aligning two partial maps of the environmentcofrontend in conjunction with a place-recognition system fo
lected by the robot during different periods of operatioh’[3 identifying inter- and intra-session loop closures.



1. RELATED WORK recognition system for intra- and inter-session loop desu

Several vision researchers have demonstrated the operafl§t€ction. When a loop closure is detected, pose estimation
of visual mapping systems that achieve persistent operatio performed on the matched frames, with the resultant pose and

a limited environment. Examples of recent real-time visuiame-id's passed to the multi-session pose graph optiforsa

SLAM systems that can operate persistently in a smalftodule.
scale environment include Klein and Murray [12], Eade and
Drummond [5], and Davisoet al. [4, 8]. Klein and Murray's IV. STEREOODOMETRY
system is highly representative of this work, and is tardete Within each submap the inter-frame motion and associated
at the task of facilitating augmented reality applications scene structure is estimated via a stereo odometry frontend
small-scale workspaces (such as a desktop). In this apmroathe most immediate bene t of the use of stereo vision is that
the processes of tracking and mapping are performed in tyyGvoids issues associated with monocular systems inogudi
parallel threads. Mapping is performed using bundle adjusability to estimate scale and indirect depth estimatibine
ment. Robust performance was achieved in an environmefdreo odometry approach we use is similar to that presented
as large as a single of ce. While impressive, these systerpg [19].
are not designed for multi-session missions or for mappfng 0 Our stereo odometry pipeline tracks features using a stan-
large-scale spaces (e.g., the interior of a building). dard robust approach followed by a pose re nement step.
There have also been a number of approaches reportedHer each pair of stereo frames we rst track a set Harris
large-scale visual mapping. Although a comprehensiveesuniorners in the left frame using the KLT tracking algorithm.
is beyond the scope of this paper we do draw attention to tiie resulting tracked feature positions are then used to- com
more relevant stereo based approaches. Perhaps thetezfrliegute the corresponding feature locations in the right frame
these was the work of Nist@t al. [19] on stereo odometry. In Approximate 6-DOF pose estimation is performed through the
the robotics literature, large-scale multi-session maggias use of a RANSAC based 3-point algorithm [6]. The input to
been the focus of recent work of Konoligéal. in developing the motion estimation algorithm consists of the set of teaick
view-based mapping systems [14, 13]. Our research is glos@datures positions and disparities within the current #and
related to this work, but has several differences. A crucige current estimates of the 3D locations of the correspandi
new aspect of our work in relation to [14] is the methogandmarks. In our work we have found that ensuring that
we use for joining the pose graphs from different mappingpproximately 50 features are tracked between framestsesul
sessions. Konolige and Bowman join pose graphs using “weigk a reliable pose estimate through the 3-point RANSAC
links”, which are used to connect disjoint sequences. Thgocedure. Finally, accurate pose estimation is achiewed b
weak links are added with a very high covariance and subsgentifying the inliers from the estimated pose and usiregth
quently deleted after place recognition is used to join th&ep in a Levenberg-Marquardt optimisation that minimises the
graphs [14]. In our approach, which extends [11] to full 6reprojection error in both the left and right frames.
DOF, we use anchor nodes as an alternative to weak links; then our implementation of the above stereo odometry pipeline
use of anchor nodes provides a more ef cient and consisteé use a GPU based KLT tracker [25]. This minimises the load
way to stitch together the multiple pose graphs resultiognfr on the CPU (by delegating the feature detection and tracker t
multiple mapping sessions. In addition, our system has beg GPU) and exploits the GPU's inherent parallel archifest
applied to hybrid indoor/outdoor scenes, with hand-cdrrigo permit processing at high frame rates. In parallel to wes

(full 6-DOF) camera motion. compute a disparity map for the frame, which is then combined
with the results of the feature tracker, resulting in a set of
1. SYSTEM OVERVIEW stereo features.

. . . . In order to maintain an adequate number of features we
In this section we describe the architecture and componthésteCt new features in every fth frame, or when the number

of a complete multi-session stereo visual SLAM system. Thi ) .
P y OF feature tracks in the current frame drops below a certain

includes a stereo .V'S“?' SLAM fronte_nd, a _place reCOgnltl(ﬂJlreshold. A consequence of keeping the number of featares i
system for detecting single and multi-session loop clasurg iven frame high, whilst at the same time setting a minimum

. . . . . a
and a mult|-ses§|on sta.te-estlmatllon_system. A SChem&tlcirtm)tger-feature distance in the KLT tracker, is that it helps t
the system architecture is shown in Figure 1. The system uses A )

. ; . . ; ensure a good distribution of the resulting feature set tver
a sub-mapping approach in conjunction with a global mult
session pose graph representation. Optimisation is peefr
by applying incremental and batch SAM to the pose graph and
the constituent submaps, respectively. Each submap isuguil
over consecutive sets of frames, where both the motion of theDeriving a pose graph representation from the stereo odom-
sensor and a feature based map of the scene is estimated. @irge system involves two levels of processing. The rst of
the current submap reaches a user de ned maximum numkiegse optimises over the poses, features and structur@with
of poses, 15 in our system, the global pose graph is augmenrgetbcal window. As each new frame is added, a full batch
with the resultant poses. optimisation is performed. The second step transfers ageitn

In parallel to the above, as each frame is processed, fheses to the pose graph after a xed maximum number of

visual SLAM frontend communicates with a global placérames is reached. The resulting pose graph structureiosnta

V. SINGLE SESSIONVISUAL SLAM



no point features and can be optimised ef ciently even for eontrast to the stereo projection factdisin the smoothing

large number of poses. formulation above, we now use factags
We apply smoothing in combination with a homogeneous 1 2
point parameterisation to the local window to improve the gi(Qi)= gi(Xj;Xj0) K exp > (X X;) ¢ « )

pose estimates obtained from visual odometry. In contrast
to visual odometry, smoothing takes longer range conggraithat represent constraintswith covariancesK; between pairs
into account, which arise from a single point being visiblef poses as obtained by local smoothing or by loop closure
in multiple frames. The homogeneous point parameterisatidetection. We use the notatieg= xa Xy from Lu and Milios
p=(x;y;zw) allows dealing with points at in nity [24]. Points [16] for representing posg, in the local frame of pose,
close to or at in nity cannot be represented correctly by thea = X Xq).
conventional Euclidean formulation. Even for points theg a
not at in nity, convergence of the smoothing optimisatian i VI. PLACE RECOGNITION
typically improved.

We use exponential maps based on Lie group theory 3?
deal with overparameterised representations. In paatione

Place recognition is an important component in the context
large-scale, multi-robot and multi-session SLAM, where
a:fllgorithms; based on visual appearance are becoming more

rnion represent orientations in 3D ef . . -
use Quate_ ons to represent orientations in 3D spaceeQu gopular when detecting locations already visited, alsowkno
nions consist of four parameters to represent three degfee ; "
as loop closures. In this work we have implemented a place

freedom, therefore causing problems for conventionaltieas . .
. : . . __fecognition module based on the recent work of [1, 2], which
squares algorithms. Using an exponential map, as desdiobed .
. X . “demonstrated robust and reliable performance.
example in [7], reduces the local updates during optinosati . .
. - . The place recognition module has the following two com-
to three parameters. The homogeneous point parametenisati )
X onents:
suffers from the same problem, and indeed the same solutfoi )
can be applied as for Quaternions after realising that bath a ~ 1h€ rst componentis based on the bag-of-words method
equivalent to the 3-sphei® in R* if normalised. (BoWw) [23] which is wnplemented in a hlerarchlc.al way
With overparameterisations removed, the optimisatiotpro [ZO]_- This Impl_ement_auon enables qwck comparisons of
lem can now be solved with standard least-squares solvers. &N image at time with a database of images in order
We use the iSAM library [9] to perform batch smoothing with {0 nd those that are similar _a_ccordmg+ to the scare
Powell's Dog Leg algorithm. iSAM represents the optimisati Then, there are three possibilitiessif a”/ the match
as a factor graph, a bipartite graph containing variableespd IS considered highly reliable and acceptedq if/ { < s<

. : "

factor nodes and links between those. Factor nodes, or short @ !t the match is checked by conditional random eld

factors, represent individual probability densities (CRF)-Matching in the next step, otherwise the match
is ignored. In our implementatiort; is the BoW score

computed between the current image and the previous
one in the database. The minimum con dence expected
for a loop closure candidate & = 0:15 and for a loop
closure to be accepted &" = 0:8. The images from one
session are added to the database at one frame per second
and with the sensor in motion, i.e. during the last second,
the sensor's motion according to the visual odometery
module might be greater than2n or Q2rad.
The second component consists of checking the previ-
- ous candidates with CRF-Matching in 3D space. CRF-
Q = argmaxQ fi(Qi) 2) Matching is an algorithm based on Conditional Random
Q i Fields (CRF). Laffertyet al. [15] proposed CRF for
When the smoothing window reaches a maximum size, all matching 2D laser scans [21] and for matching image
poses and associated odometry are transferred to the turren features [22]. CRF-Matching is a probabilistic model that
session's pose graph, and a new local window is initialised. IS able to jointly reason about the association of features.
By including all poses from a window, as opposed to just the In [1] CRF-Matching was extended to reason in 3D space
rst or rst and last pose (as is the case in other approaches) about the association of data provided by a stereo camera
we ensure that loop closures between arbitrary frames can System.We compute the negative log-likelihdggo from
be dealt with within the pose graph. Full details of the loop the maximum a posteriori (MAP) association between the
closure handling is provided in Section VII. To initialise a ~ current scene in timeagainst the candidate scene in time
new window we use the last pose of the previous window in  t% We accept the match only ifi0 Ly 1.
conjunction with all landmarks that correspond to featthes ~ This module exploits the efciency of Bow to detect
are tracked into the current frame. revisited places in real-time. CRF-Matching is a more com-
The pose graph is again being optimised using the iSAputationally demanding data association algorithm bexdius
library [9], but this time using the actual incremental iISAMuses much more information than BoW. For this reason, only
algorithm [10] to ef ciently deal with large pose graphs. Inthe positive results of Bow are considered for CRF-Matching

Q)= filgipiexp 3 PlGip) 25 (1)

where P(x; p) is the stereo projection of a 3D poift into

a camera of given 3D pose yielding the predicted stereo
projections(u;v) and (ug;Vv), z = (0.;0r;V) is the actual
stereo measurement, ar®l represents the Gaussian image
measurement noise. iISAM then nds the least-squares etgima
Q of all variablesQ (camera poses and scene structure
combined) as



VII. MULTI-SESSIONVISUAL SLAM

]

E Single session '

. . . L] .
For multi-session mapping we use one pose graph for ez : L M Vs
- - - " ..| I..' ' -

VSLAM

robot/camera trajectory, with multiple pose graphs cotetec
to one another with the help of “anchor nodes” as introduct
in Kim et al. [11] and Ni and Dellaert [18].

In this work we distinguish between intra-session and inte
session loop closures. Processing of loop closures ispeei Stereo Frames | .
rstly with each candidate frame being input to the abov Odomery : Multi-session s
place recognition system. These candidate frames are ethtc Pose Windos N
against previously input frames from all sessions. On sgce
ful recognition of a loop closure the place recognition eyst
returns the matched frame's session and frame identier in
conjunction with a set of stereo feature correspondences
between the two frames. These feature sets consist of ligtsencountec; is given by
of SURF feature locations and stereo disparities. Note that
since these featL.Jr_es are alrefidy computed and stored durll{agj;;xsg; DS;DSO) L exp 1
the place recognition processing, their use here does aocepl 2

any additional computational load on the system. (4)

These feature sets serve as input to the same camvélpaere the index was dropped for simplicity. The concept of

. . . . . : relative pose graphs generalises well to a larger number of
orientation estimation system described in Section IV eHbe P grapns g 9

. " raj ries. The number of anchor n n nl
disparities for one of the feature sets are used to perform éEPOt trajectories. The nu _be ot ancho odes depends only
on the number of robot trajectories.

reconstruction of their preimage points. These 3D poings ar
passed with their corresponding 2D features from the second
image into a 3-point algorithm based RANSAC procedure.
Finally the estimated orientation is iteratively re nedaligh

a non-linear optimisation procedure that minimises theaep In this section we present results of the performance of

jection error in conjunction with the disparity. our system for both single- and multi-session processihg. T
Inter-session loop closures introduce encounters betwegfiaset that we use was collected at the Ray and Maria Stata

pose graphs corresponding to different visual SLAM sessiorcenter at MIT over a period of months. This building in known

An encounter between two sessimv.:ondso_is a measurement oy ts jrregular architecture and provides a good testirmygd

that connects two robot posgﬁandxjo. This is in contrast to tor visual SLAM techniques in general.

measurements between poses of a single trajectory, which a'The dataset includes indoor and outdoor (and mixed) se-

of one of two type_s: The most fre_quent_type of measuremelliences captured from both a wheeled platform and using
connects successive poses, and is derived from visual od

. handheld camera with full 6-DOF movement (e.g. ascend-
etry and the subsequent local smoothing. A second type

' ded by int ion | : il% and descending stairs, etc.). All images sequences were
measurement IS provided Dy Intra-Session 1o0op Closures. captured using a Point Grey Bumblebee colour stereo camera

The use of anchor nodes [11] allows at any time to combiRgth a baseline of 11.9cm and where both lenses had a
multiple pose graphs that have previously been optimiséstal length of 3.8mm. The wheeled platform also included
independently. The anchor nod# for the pose graph of a horizontally mounted 2D SICK laser scanner and a spinning
sessions speci es the offset of the complete trajectory with iDAR. Although we do not use the LiDAR sensors in our
respect to a global coordinate frame. That is, we keep tbgstem, the accompanying laser data allows us to compare
individual pose graphs in their own local frame. Poses afige performance of our technique to that of a laser-based
transformed to the global frame by pose composin x* scan matcher in restricted 3D scenarios (i.e. 2Dotational
with the corresponding anchor node. movement).

In this relative formulation, pose graph optimisation rama  The complete multi-session visual SLAM system follows
the same, only the formulation of encounter measuremetite architecture shown in Fig. 1, and is implemented as a
involves the anchor nodes. The factor describing an eneourget of loosely coupled processes that communicate via the
between two pose graphs also involves the anchor nodéghtweight Communications and MarshalliflgCM) robot
associated with each pose graph. The anchor nodes areniiddleware system. This permits straightforward parisihel
volved because the encounter is a global measure betwbetween the components of the system, hence minimising the
the two trajectories, but the pose variables of each tmajgct impact on all modules due to uctuations in the load of a
are speci ed in the session's own local coordinate framee Thparticular module (e.g. due to place recognition defertimg
anchor nodes are used to transform the respective posestof €RF processing). Futhermore the overall architecture @an b
pose graph into the global frame, where a comparison wittansparently recon gured for different setups (e.g. freingle
the measurement becomes possible. The fdetdescribing CPU to multi-core or distributed processing).

Fig. 2: Multi-session visual SLAM processing

(@ % © B c.

VIIl. EXPERIMENTS AND RESULTS



(b)
Fig. 3: Single session visual SLAM processing including 64DOF motion.

A. Single-Session Visual SLAM Results sequence, where the divergence between each traversa of th
hallway can be clearly seen.

In this section we provide results from a number of single Th h h It of th . lied
session SLAM experiments. We have applied the system in e center gure shows the result of the correction applie

single session mode (i.e. only running a single frontend)sec to thhe pose gLE_ipEl_dLr’]e t(;) g seﬂuencde (t))f IOOE closgres occuring
a variety of sequences for the Stata Center dataset dedcri bt eharea '9 |ghte Y the hre i ox.h ere It cz;m s%eehn
above. The system is capable of operating over exten t the pose graph sections showing the traversals of the

sequences in both indoor, outdoor and mixed environmet lway are much more coincident and that the misalignment

with full 6-DOE motion in corresponding portions of the map is reduced considgrabl
Two example feature-based maps from outdoor sequeng-«l,;]é9 gure also shows accuracy of the map relative to the
round truth CAD oorplan.

are shown in Fig. 3. Here, for (a), the underlying grid is
a scale of 10m, where the trajectory is approximately 1OOmAIthOugh the odometry system has shown to be robust

in length. An example image from the sequence is shown §{€7 Maps of the order of h_undreds of meters, two failure
the inset with the GPU KLT feature tracks overlaid on the |efP°‘?'eS for the system are n IOV\_/—textu_re or IOW_ contrast
frame. Fig. 3 (b) shows a similar scale sequence that insludgVironments, or where the disparity estimation fails oaer
full 6-DOF motion, where the user has carried a handheff9¢ Set of features, e.g. due to aliasing. We do not address
camera up a stairs. this situation in the current system, however the standard

In the absence of loop closing we have found the syste?'Rpr.OaCh of incorporating ipertial Sensors is a naturaltim
to have drift of approximately 1%-3% in position during leve© th|s_ pro_ble_m. An alter_na_twe approach that we are culyent
motion (i.e. without changes in pitch angle). To demonetra'lnvesugatlng |s_the possibility of using multl-sess_lonAEM as
this, Fig. 4 shows two maps with two trajectories, both take SOIUt'Or_] to this problem, v_vhere_by adometry fanure “*SLF“. .
from the same sequence. The yellow contour shows a _c.reatlon_ of ahew SeSS.IOH.WIth a weak prior on the initial
LIDAR based map computed from applying a scanmatchir?@s't.'on' This disjoint session is treated the same as ahg/rot
algorithm to the output of horizontal LiDAR scanner attatthe>=>>'0"- When a new encounter does occur, the session can
to the cart. The scanmatcher's estimated pose is shown by Imaereconnected to the global pose graph. A future paper will
dark blue trajectory, which can be seen more clearly in ﬂ%esent results of this approach.
lower right-hand inset. The distance between grid linehe t
gure is 2m. Frpm the gure the horlzonfcal dlsplacem_ent OE. Multi-Session Visual SLAM Results
the nal poses is approximately 60cm with a total trajectory
of approximately 20m. To test the full multi-session visual SLAM system, we took
An example of the accumulated error in position due tiwo sequences from the same area as shown in Fig. 5 and
drift is shown in Fig. 5. Here the dataset consists of an imageocessed each through a separate instance of the visud SLA
sequence taken over an indoor area within in the Stata Centeyntend. Results of each of the separate sessions are shown
Here the grid is at a scale of 5m with the sequence tak&ig. 6 (a) and 6 (b), with the combined multi-session results
by travelling on a large loop over a space of approximateghown in Fig. 6 (c). Again, loop closure occurred in the same
35m 15m. The image at the top shows the result of the moti@mea as shown in Fig. 5 (b). Finally Fig. 6 (d) shows a textured
estimate in the absence of a loop closure. The majority of tkiersion of the same map. The scale of the grid is 2m for
drift here is due to the tight turn at the right-hand end of thgigures (a) & (b), and 5m for Figures (c) & (d).



Fig. 4: Comparison of drift in single session visual SLAM | 3 : et
against 2D LIiDAR scan matcher over a 20m trajectory. Gric 1 BNl - N ::
scale is 2m. ‘ it -

IX. CONCLUSIONS

In this paper we have presented a 6-DOF multi-sessio
visual SLAM system. The principal contribution of the paper
is to integrate all of the components required for a multi-!
session visual SLAM system using iSAM with the anchor (b)
node formulation [11]. In particular this is the rst exanepl
of an anchor node based SLAM system that (i) uses visio
as the primary sensor, (ii) operates in general 6-DOF mc
tion, (iii) includes a place recognition module for idewtifg
encounters in general environments, and (iv) derives 6-DO
pose constraints from those loop closures within thesergéne
environments (i.e. removing the need for ducial targets as
was used in [11]).

We have demonstrated this system in both indoor and ou
door environments, and have provided examples of singk- ar
multi-session pose graph optimisation and map constmuctio b
We have also shown the effects of loop closures within single ©

session mapping in reducing drift and correcting map stirect Fig. 5: Single-session dataset containing a large loope Her
Multi-session visual mapping provides a solution to thghe grid scale is at 5m. (a) Map and pose graph prior to loop
problem of large-scale persistent localisation and mappim  cjosure showing drift in position and structure. (b) Map and
the future we plan to extend the results published here to ifgse graph showing correction in the position and structure
corporate the entire Stata dataset described in the Sedfion que to a series of loop closures in the area shown by the red
Furthermore we intend to evaluate the approach in onlidguare. Background image shows ground truth CAD oorplans
collaborative mapping scenarios over extended timescales qf the environment. (c) Textured version of gure (b).
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Fig. 6: Stata Center second oor dataset with two separageices captured over an &80 area. (a) Map and poses for
session 1. (b) Map and poses for session 2. (c) Multi-seggise graphs after inter-session loop closure showingftramed
maps. (d) Textured version of gure (c).
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