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Abstract
In recent years, dense reconstruction gains popularity because of its broad appli-

cations in inspection, mapping and planning. Cameras or LiDARs are generally de-
ployed for 3D dense reconstruction. However, current reconstruction pipelines based
on cameras or LiDARs have significant limitations in achieving an accurate and com-
plete scene reconstruction in certain environments due to the properties of LiDARs
and cameras.

In this thesis, we propose a new surface reconstruction pipeline that combines
monocular camera images and LiDAR measurements from a moving sensor rig to re-
construct dense 3D mesh models of different scenes accurately, especially of scenes
that are challenging for visual-only or LiDAR-only reconstruction. In particular, we
exploit the advantages of the multi-view stereo algorithm in the reconstruction and in-
tegrate with the LiDAR measurements to further improve the robustness and accuracy.
Current approaches employing cameras and LiDARs mainly focus on texture mapping
with the color information from the camera images or improving camera depth estima-
tion with the LiDAR. However, such methods only exploit the geometric information
from single sensor measurements instead of fusing the geometric information from
both sensors. In contrast, the proposed pipeline uses a two-stage approach to fuse the
structural measurements from LiDAR with the camera images to generate a surface
mesh. In the first stage, LiDAR measurements are integrated into a multi-view stereo
pipeline to help with the visual point cloud densification. After combining the dense
visual point cloud with LiDAR point cloud, a graph-cut algorithm is applied to extract
a watertight surface mesh. To validate the proposed pipeline, we collect data from
different kinds of scenes and compare results from our method with state-of-the-art
reconstruction methods. The experimental results show that our method outperforms
both the camera-only and LiDAR-only reconstruction pipelines in terms of accuracy
and completeness.
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Chapter 1

Introduction

1.1 Motivation

In recent years, high-fidelity 3D reconstruction has gained popularity due to its growing applica-
tions. Accurate reconstruction of various environments such as outdoor or indoor scenes helps with
different tasks. For example, Teixeira et al. [1] demonstrate building inspection using cameras on
a drone; Goesele et al. [2] show reconstruction for cultural heritage preservation.

In computer vision, much work has been done on 3D dense reconstruction using cameras. Images
provide plentiful geometric and color information, and several dense reconstruction pipelines are
well developed, such as COLMAP [3], and OpenMVS [4]. But the performance of camera-based
reconstruction algorithms highly depends on the lighting condition and the richness of textures.
Therefore, these algorithms have limited performance in indoor environments, due to the presence
of low-texture areas such as walls.

In the robotics community, 3D LiDARs are widely used for 3D perception and mapping. Com-
paring with cameras, LiDAR provides geometric measurements robustly, independent of the pres-
ence of visual features and variant lighting conditions. However, LiDAR measurements are much
sparser than dense pixel measurements from the camera and it is not feasible to find direct corre-
spondences between consecutive LiDAR scans. Other than that, the noise of LiDAR is relatively
large for compact objects in a close range, which limits the reconstruction performance of LiDAR
in indoor environments. As both camera and LiDAR have bottlenecks in different environments
due to their sensor modality, fusing two sensor measurements together enables us to exploit the
complementary nature of LiDAR and camera to robustly obtain 3D reconstructions in various en-
vironments.

The last decade has seen an increasing interest in combining LiDAR and camera together in the
field of robotics. In the domain of reconstruction, the research that employs a combination of
the two sensors typically derives the geometry from LiDAR only, while images are utilized for
texture mapping. However, these methods are not fully leveraging the geometric information from
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both LiDAR and camera, since only color or texture information is extracted from images. The
different sensor modalities make it difficult to fuse both kinds of measurements in a unified way.
Therefore, applying the combination of LiDAR and camera in reconstruction remains challenging.
In this thesis, we review previous LiDAR and camera dense reconstruction methods, and detail our
proposed method to tackle the challenges in the joint reconstruction. We then evaluate the results
from our work, and conclude with a discussion of future work.

1.2 Scope and Approach

In this thesis, we develop an offline dense surface reconstruction pipeline that combines geomet-
ric information from LiDAR and camera measurements to improve the robustness and accuracy
of the reconstructed model. While the developed method is specifically designed for indoor en-
vironments, it also shows improvements of accuracy in complicated outdoor scenes. Generally it
performs robustly in both indoor and outdoor environments.

For the dense reconstruction using a camera, multi-view stereo (MVS) methods have matured
through the years. State-of-the-art dense reconstruction pipelines, such as OpenMVS [4], support
reconstruction from images to dense mesh models with high accuracy. On the reconstruction
benchmark Tank and Temple [5], OpenMVS is the top ranking open-source software. It is used
in this thesis as the baseline method to provide the dense reconstruction from vision, and as a
method for comparison in the experiments. Regarding LiDAR, although the state estimation is
not our focus in this thesis, obtaining accurate poses is essential for 3D reconstruction. Therefore,
we adopt LOAM [6] proposed by Zhang et al. to estimate poses from the LiDAR measurements.
Besides poses of the sensors, extrinsic calibration is necessary for registration of measurements
across sensors. We use line and plane constrained camera-LiDAR calibration based on [7]. The
calibration result and analysis against other calibration algorithms are evaluated in the appendix.

Once we have the poses of LiDAR and camera in a sequence and the transformation between two
sensors, we can consider how to fuse their geometric information together to recover a 3D model of
the environment. We take the approach of using MVS as the baseline and adding LiDAR measure-
ments to improve the dense reconstruction steps, since images have more dense information than
LiDAR scans. To be specific, our pipeline can be divided into three steps: preprocessing, point
densification and surface reconstruction. In the preprocessing step, since a single LiDAR scan is
too sparse, we merge multiple LiDAR scans into a single point cloud using their poses to generate
a prior map of the reconstructed environment. From this step on, we start to fuse LiDAR and cam-
era measurements together. Since LiDAR measurements are different from camera images, which
have feature correspondences across the sequence, it is difficult to match them together based on
the features in the environment. Moreover, the different noise models between LiDAR measure-
ments and camera measurements also lead to the problem. Therefore, we first merge LiDAR and
visual point clouds together, then do a Delaunay tetrahedralization on the point cloud, and eventu-
ally use a graph-cut algorithm to extract the surface mesh from the point cloud. In the graph-cut
algorithm, we formulate the term of the energy function to consider the difference between LiDAR
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points and camera points.

1.3 Contribution and Organization

In this thesis, we present an approach that combines LiDAR scans and camera images to achieve
3D surface reconstruction with improved accuracy and completeness. First, we address the chal-
lenges in the dense scene reconstruction using LiDAR or camera. We then provide our reconstruc-
tion pipeline that fuses geometric information from LiDAR and camera measurements to recover
dense surfaces. The main contributions of this thesis are as following:

• The state-of-the-art vision-based reconstruction pipeline struggles on non-texture areas while
LiDAR-based mapping lacks for detail and color information in the reconstructed model. We
propose a novel approach to combine them together and exploit their complementary nature
to improve the reconstruction result in both indoor and outdoor environments comparing
with vision-only or LiDAR-only methods.

• To combine the LiDAR and camera information together, the difference of LiDAR and cam-
era noise model makes it difficult to integrate two measurements for reconstruction proba-
bilistically. We formulate the problem by putting their measurements into a unified Delaunay
tetrahedra and using a graph-cut algorithm to solve based on the sensor property.

• To evaluate the performance of the proposed reconstruction pipeline, we collect real-world
data to experiment with our pipeline and compare with the results from current state-of-the-
art methods. The results overall show improvements in both indoor and outdoor datasets.
We provide detailed analysis and visualization to illustrate the advantages and shortcomings
of the proposed pipeline.

The thesis is organized as follow: Chapter 2 discusses background and related work. Chapter 3
provides the preliminaries for the graph-cut algorithm and the connection between graph-cut and
surface reconstruction. Chapter 4 introduces the proposed surface reconstruction pipeline using
LiDAR and camera, including detailed derivation and evaluation. Eventually, in Chapter 5, we
summarize our contributions and discuss future work. In the Appendix 5.2, we introduce the
calibration algorithm for LiDAR-camera calibration and the comparison between two different
calibration algorithms.
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Chapter 2

Background and Related Work

In this chapter, we classify the related work based on the sensor type which they use in their meth-
ods: LiDAR mapping, camera-based reconstruction and methods involving both sensors. Over
past decades, an extensive amount of literature have been produced in the reconstruction or map-
ping fields with focus on different environments and different tasks. We will summarize their
advantages and shortcomings in order to highlight the contribution of this thesis.

2.1 LiDAR Mapping

For LiDAR-only methods, 3D reconstruction is usually formulated as a SLAM (Simultaneous Lo-
calization And Mapping) problem, which is constructing a map while localizing the sensor itself
on the map. Since LiDAR scans consist of sparse points in the space, the representation of the
LiDAR map is limited. One straightforward representation is a registered point cloud. An example
is shown in Fig. 2.1. Zhang and Singh [6] propose to use geometric features such as edges and
planes in consecutive LiDAR scans to estimate the LiDAR odometry, and register LiDAR points
using the estimated odometry. This idea is generally utilized or extended in [8, 9, 10]. In these sys-
tems, the map is represented by a sparse point cloud. The other representation adopted in LiDAR
mapping is the surfel-based map, which is often used in the RGB-D camera mapping literature. In
[11] and [12], LiDAR measurements are represented as a surfel map which realizes probabilistic
fusion. Using surfels enables the data association between closest LiDAR points in consecutive
LiDAR scans to adjust the surfel position and normal, although there is no explicit point-to-point
correspondences between individual LiDAR scans. The surfel map is a more suitable representa-
tion than a point cloud since the radius of a surfel represents the uncertainty and it supports the
dense visualization of surfaces. However the evaluations of these works focus more on the SLAM
metrics, which are on the error of the trajectory, instead of the accuracy of the geometry recon-
struction. Besides, there is research that use voxel grid to represent the LiDAR map, such as [13]
and [14], but these works mostly focus on segmentation or planning.

5



(a) Original image (b) LiDAR map

Figure 2.1: An example of a registered LiDAR point cloud in a kitchen. It shows the artifacts of LiDAR scan lines and
the sparsity of the LiDAR map. The poses used for LiDAR map are from LOAM [6].

2.2 Vision-based Reconstruction

For vision-only reconstruction, a number of multi-view stereo (MVS) algorithms have been devel-
oped in recent years. In this section, we focus on the approaches which are designed or applicable
for scene reconstruction. To distinguish from object-focused reconstruction, which is usually un-
der full visibility without any occlusion, scene reconstruction has the following properties: the
reconstruction target may be within a cluttering environment and the view points may be limited
[15].

The authors of [16] propose the MVS reconstruction pipeline based on depth map estimation
and merging. Although the method is applied to object reconstruction, current state-of-the-art
pipelines, such as [3, 4], adopt its depth map based method but with more robust system design
and implementation to adapt to images taken from different scenes. Furukawa and Ponce [15]
develope a patch-based MVS pipeline (PMVS) to reconstruct compact objects. Instead of esti-
mating the depth maps directly, PMVS estimates the 3D positions of patches from the images.
Since PMVS depends on finding pixel level correspondences across images to define patches, low
texture environments result in low completeness maps. As shown in Fig. 2.2, wall areas, carpets
and some other low texture areas are not reconstructed well. In [17], Vu et al. proposed a dense
scene reconstruction pipeline which can generate a surface mesh even under uncontrolled imaging
conditions. With global visibility taken into account and a mesh deformation step, Vu’s pipeline
improves the accuracy of the surface mesh and achieves impressive results in the outdoor scenes.
However, its performance still relies on a number of features to extract a dense point cloud for
generating a precise mesh. Therefore the indoor dataset is still challenging fot their pipeline. The
authors of [18] introduce the latest MVS benchmark ETH3D which includes high resolution im-
ages input for both indoor and outdoor scenes with the ground truth 3D models. They evaluate
several state-of-the-art scene reconstruction pipelines on their new dataset including [3, 15] and
the results show that although the accuracy is high in the reconstructed area, all existing methods
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(a) Original image (b) Result from PMVS [15]

Figure 2.2: The result of running PMVS [15] in a hallway. All the non-texture area is not recovered in the model.

struggle to have a high completeness towards low texture areas.

Besides the geometric based methods, many learning based MVS algorithms have been proposed
recently including [19? ]. Although these methods achieve impressive results on public bench-
marks, their generalization to the unknown scenes without training on specific datasets is not clear.
Therefore in this thesis we will not compare against these kinds of methods.

2.3 Visual-LiDAR Mapping

Research with both LiDAR and camera gains popularity in recent years in the robotics commu-
nity. In terms of the reconstruction, [20] and [21] map the image textures to the LiDAR registered
point cloud. While they exploit the advantages of LiDAR in planar and distant scenes, the geo-
metric information in images is not combined with range data in the reconstruction or mapping
stage. [22] and [23] utilize 3D LiDARs and cameras to estimate dense depth maps. Although
these works adopt probabilistic methods to generate accurate visual point clouds from a single im-
age and LiDAR scan pair, LiDAR points are not directly integrated into the reconstruction stage.
These methods achieve single view depth estimation, while we are interested in larger-scale recon-
struction from a sequence of images and LiDAR scans.

2.4 Summary

To summarize, LiDAR-only methods have impressive localization accuracy and map consistency,
but due to the sparse representation and the nature of sensor, it lacks for details in terms of compact
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objects. For MVS algorithms, some of the-state-of-the-art pipelines achieve impressive accuracy
on different benchmarks. However, almost all of them rely on the visual features in the bundle
adjustment or point cloud densification step. In low-texture or even non-texture scenes such as
many indoor walls, the MVS algorithm shows low completeness or even wrong geometry. Little
research has been done in dense reconstruction using both vision and LiDAR, and most research
addresses texture mapping, which is similar to the LiDAR-only method but with the color texture
from the images. Therefore, to improve the robustness and exploit the advantages of the two
sensors, we propose to combine the LiDAR and MVS pipeline together in the thesis.
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Chapter 3

Preliminaries

3.1 Surface Reconstruction using Graph-cut Algorithm

3.1.1 Graph-cut Algorithm

The graph-cut algorithm is from graph theory. In graph theory, a cut is to divide the vertices of a
graph into two disjoint subsets [24]. In the flow network (example in Fig. 3.1), we have two special
nodes, source (s) and sink (t), connecting to other nodes in the graph as Fig. 3.2 shows. A s-t cut
is a cut that partitions the graph in order to place s and t in different subsets. And the s-t cut only
cuts the edges directing from the source side to the sink side. A minimum s-t cut is a s-t cut that
minimizes the total weights of edges on the cut.

Finding the minimum cut in a flow network has been proven to be equivalent to finding the maxi-
mum flow in the same network in [25]. Therefore the algorithms for finding the maximum flow are
generally applied in the minimum cut problem. Many famous algorithms are proposed to solve the
maximum flow problem, such as the Ford-Fulkerson algorithm [25]. In [26], Boykov et al. propose
their own algorithm and compare it with other methods. Based on [26], the incremental breadth-
first search [27] is introduced to improve the running time. In our system, the graph-cut problem is
solved by [27]. After [27], Goldberg et al. propose a better method [28], which interested readers
can refer to.

3.1.2 Surface Reconstruction Formulation

The surface reconstruction problem is defined as follows: given an unstructured point cloud and
camera visibility information, extract the surface from the point cloud. Following [29, 30], we
adopt a similar Delaunay method formulation, which represents the surface using Delaunay tri-
angles in the space. The advantage of this method is that the resulting model is watertight and
non-intersecting inside the surfaces. The Delaunay tetrahedralization is used on the input point
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Figure 3.1: An example of a flow network
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Figure 3.2: An example graph and cut in the computer vision formulation. All red, blue and black edges are edges in
the graph. Red and blue represent the edge to the source or the sink. The thickness of the edge represents the cap.

cloud to divide the space into a set of Delaunay tetrahedra. Next, the surface reconstruction prob-
lem is converted to a Delaunay tetrahedra labeling problem. Each tetrahedron is labeled as inside
or outside of the surface. After the label assignment, the triangular facets shared by a inside tetra-
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hedron and an outside tetrahedron are written into the visualized mesh.

The core of the surface reconstruction is the formulation of the Delaunay tetrahedra labeling prob-
lem. We follow [29] to define an energy function on the surface and formulate the problem as
an energy minimization problem. [31] first introduces the application of the minimum graph-cut
algorithm in solving the energy minimization. Interested readers can refer to [31], which clearly
demonstrates the connection between the graph-cut algorithm and the energy minimization prob-
lem on early vision problems. Therefore, the graph-cut algorithm here is applied to minimize the
energy function across the graph. To represent the set of tetrahedra using a graph, each tetrahedron
is a node and shared facets between neighboring tetrahedra are the edges. The weight of an edge,
known as the cap of the flow, is assigned based on the energy function. Minimizing the energy
function is equivalent to finding the minimum-cut in the graph, therefore the weighting scheme
controls how the surface will be extracted. In this thesis, we adopt similar idea as in [29, 30, 32]
to modify the weighting scheme for cutting the graph. The graph-cut algorithm in the surface re-
construction finds the global optimum for labelling the tetrahedra based on the energy function.
But the tradeoff is the longer running time when more points are added in the space. The detail of
weighting will be introduced in Section 4.

11



12



Chapter 4

Joint Surface Reconstruction from
Monocular Vision and LiDAR

Figure 4.1: Textured mesh without shading from our reconstruction pipeline that exploits the complementary proper-
ties of cameras and LiDARs. Our method preserves fine shapes while reconstructing textureless surfaces.

In Section 2, we review the different frameworks on 3D reconstruction using LiDAR and camera,
and analyze the advantages and drawbacks of these methods. In this chapter, we detail our pro-
posed dense surface reconstruction pipeline, including the two main stages: the generation of the
dense point cloud, and the mesh reconstruction using minimum s-t cut.

In the dense point cloud generation step, the depth-map-based point densification method is applied
due to the following reasons. First of all, in an offline system, calculating depth map from many
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Figure 4.2: Diagram of our reconstruction pipeline. Boxes marked in red are the parts that we modify based on MVS
pipeline. Notations are detailed in following sections.

different views improves the robustness and accuracy of the depth estimation. Secondly, a depth
map approximately exploits all the pixel information provided by an image and its overlapping
views. Lastly, considering the function of LiDAR measurements in the densification step, it is
straightforward to use LiDAR points in the depth map computation. Next, we extend the baseline
graph-cut algorithm introduced in Section 3.1.2 by formulating a new energy term accounting for
the different noise models of the LiDAR and camera.

The pipeline is initially tested in indoor environments, and it shows robustness and accuracy out-
doors as well. We distinguish the indoor and outdoor environments because they are mostly differ-
ent in data collection, scene scale, and impacts on LiDAR and camera measurements. For camera,
the lighting condition in the indoor scene has the property of Lambertian reflectance, but it varies
outdoors. Regarding LiDAR, the indoor scene limits its range measurements (generally to less than
10m), while a longer range is normally better for LiDAR measurements. Besides, the distinction
also depends on the complexity of different scenes, e.g. cluttered or open space. Details will be
provided in the evaluation in terms of different datasets to test on.

4.1 LiDAR Scans and High-resolution Images Preprocessing

The goal of the preprocessing allows us to have registered LiDAR and camera poses under the
same coordinate. In our pipeline, we use a LiDAR pose estimation pipeline [6] to get poses for
LiDAR. Since the calibration between camera and LiDAR has been obtained from Appendix A, it
is used to get the camera poses from the LiDAR poses. Therefore, we have the scale information
from LiDAR odometry and set the camera poses as the prior before passing them into the bundle
adjustment pipeline. We use OpenMVS [4] as our baseline method since it has implemented many
methods for bundle adjustment and dense reconstruction in the consideration of robustness and
accuracy, such as [32, 33, 34]. After running the full bundle adjustment, we obtain the adjusted
camera poses. We use the calibration again to get the adjusted LiDAR poses from camera poses,
and merge the LiDAR scans based on the adjusted poses. From the preprocessing, we produce the
merged LiDAR point cloud, aligned poses of the two sensors and a sparse visual point cloud from
bundle adjustment.
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4.2 LiDAR-improved Point Cloud Densification

There are two stages in point cloud densification: depth map estimation and fusion. In the baseline,
the depth map estimation is developed based on [34]. In [34], starting with random initialization
of each pixel with a depth value, spatial and temporal propagation gradually refine the estimation,
until the final convergence of the depth map. For multi-view cases, since a set of sparse 3D feature
points are extracted in the bundle adjustment stage, it is utilized to initialize the depth for specific
pixels. By performing 2.5D Delaunay triangulation inside the image plane, each pixel can be ini-
tialized by the distance from the camera center to the triangular facet that it lies on. The baseline
method works well with the feature-rich areas because there are enough features to ensure a rea-
sonably good initial estimation. However, for frames or environments which do not have enough
visual features, such as wall areas, the depth estimation does not perform well as Fig. 4.3a shows.
Therefore, we incorporate LiDAR measurements in the first stage to initialize the depth map es-
timation. We denote the registered LiDAR point cloud from multiple scans using corresponding
poses as Pl. Input image frames are represented by the set I = {I0, ..., In−1}, and corresponding
depth maps are denoted by the set D = {D0, ..., Dn−1}. Comparing to the method in [34], which
randomly initializes the depth for each pixel but can not always converge to the correct depth, our
method uses LiDAR measurements as prior to improve the initialization. We initialize the depth
map Di, by projecting points in Pl back to Ii’s image frame. There are several cases when we
initialize the depth for one pixel:

• Several projected LiDAR measurements available: only the closest measurement to the cam-
era center is used for initialization, which accounts for occluding surfaces.

• Sparse feature points available: we take the depth information from the sparse feature point
for initialization, even when projected LiDAR measurements exist for the pixel. As men-
tioned above, the sparse feature point is from structure from motion, which employs robust
multi-view geometry methods to calculate feature point positions, therefore it is more accu-
rate than LiDAR measurements.

• Neither camera points nor projected LiDAR measurements available: We use the initialized
pixels which are outputs from previous two cases as vertices to form a 3D triangulation
inside the image plane. For each triangle facet in the triangulation, the depth of uninitialized
pixels inside it is set to the distance from camera center to the facet.

After the initialization, we find matching patches and perform spatial propagation for refinement
as detailed in [34]. Finally, we project all depth maps in D to 3D space and use the fusion method
of [33] to reject inconsistent depths. Fig. 4.3a shows that OpenMVS [4] fails to estimate depth
in textureless areas, but incorporating LiDAR measurements improves the depth map estimation.
Eventually, we generate a dense point cloud Pc from images in I.
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(a) Depth map from OpenMVS [4] (b) Depth map from our method

(c) Corresponding original image

Figure 4.3: Comparison of depth maps from OpenMVS and our pipeline. (a) Textureless areas, such as the wall and
chairs, result in poor depth estimation when using image-based MVS. (b) Fusing LiDAR measurements with the MVS
depth map significantly improves depth estimation in the low texture regions.

4.3 Surface Reconstruction from Fused Measurements

Besides fusing LiDAR geometric information with visual measurements, LiDAR measurements
help with the surface reconstruction as well. Although the LiDAR points are already utilized in the
densification, their visibility information is not exploited. Therefore, we combine the LiDAR and
camera measurements together and use their visibility information jointly to extract the surface.
To be specific, after generating the point cloud Pc from the last section, we combine it with LiDAR
points Pl into one point cloud Pall. Then, we perform Delaunay tetrahedralization on Pall and
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convert the resulting tetrahedra to a graph for s-t cut algorithm to label each tetradedron as either
inside or outside of the surface. Finally we generate a watertight surface mesh.

4.3.1 Point Insertion

Generally all points in Pc and Pl can be inserted in the tetrahedralization process. However, since
the huge number of points result in a long running time, efficiency needs to be taken into account.
The other drawback with a large number of points, especially LiDAR points, is that LiDAR points
usually have larger noise1 than triangulated camera points for short distance measurements. In that
case, the LiDAR points make the reconstructed surface bumpy. Therefore, we design an optional
downsample scheme to decrease the number of points inserted while maintaining the visibility
information. In the insertion stage, we downsample Pl to Pd by clustering points in Pl within a
given radius r to a single mean point. After downsampling, for each point p in Pd, we project it
back to every camera frame Ii. If p is inside Ii’s camera view, we record Ii in a set Ip, of which the
corresponding set of depth maps is called Dp. If the depth of projected p is not valid in any depth
map in Dp, p is inserted into the tetrahedralization. As a result, inserted LiDAR measurements do
not pollute the camera measurements in the same areas.

4.3.2 Graph-based Extraction of Surface Mesh

For 3D mesh generation, we use the graph-cut algorithm introduced in Section 3 to extract the
mesh. In our proposed method, we fit a set of tetrahedra T in the s-t cut framework similar to [17].
We propose to add a term in the energy function to take account of the discrepancy in two sensor
modalities.

E(T) = Evisibility + λqualityEquality + λlidarElidar (4.1)

Terms Evisibility + λqualityEquality were first derived in [29] for range data. Since two sensors
are incorporated in this framework, we introduce a new energy term Elidar, which accounts for
the different noise model of the camera and LiDAR to smooth the bumpy surfaces from noisy
LiDAR measurements. Since we maintain the original formulation of the quality term from [29]
in our pipeline, Sections 4.3.3 and 4.3.4 provide details about our formulation of the visibility and
energy terms. After calculating the energy of the whole graph based on Equation 4.1, we apply the
minimum s-t cut algorithm to determine the binary label of each tetrahedron.

4.3.3 Visibility Information

Since we have camera and LiDAR measurements, the visibility term can be divided into two parts
accordingly. For the camera visibility term, [32] has derived a weighting scheme for tetrahedra

1Up to ±3cm for Velodyne VLP-16 according to its datasheet.
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Figure 4.4: The example of how the visibility is assigned in the graph. The red dots in the top part is the points in the
space. The lines connecting the red dots are facets of the tetrahedra, which is corresponding to the edges in the bottom
part. The light green edges are in front of the sampled points and the dark green edge is behind the line of sight. The
bottom part is the graph representation of the tetrehedra in the top. The cell containing the sensor is connected to
source and the cell behind the the cell of the sample point is connected to the sink.

T to be consistent with the visibility of the camera by penalizing visibility conflicts. Specifically,
αvis is introduced as the unit confidence value for each ray from the center of camera to a visual
point, which is proportional to the number of camera views seeing the point. For LiDAR points,
αvis is calculated in a different method since they are sparsely distributed in different locations
across different scans. If the downsampling of the LiDAR point cloud during point insertion is
performed, we set αvis for each point in Pd proportional to the number of points in r, which is
calculated during downsampling for visibility consistency. This removes redundant points while
keeping the additional visibility support that these points offer. If without downsampling, αvis is
set to a constant value for LiDAR points.

In three cases, the edge weight is incremented for measurements and its corresponding sensor’s
center in the graph of tetrahedron:

• For the ray from a sensor to a point inside its view intersecting the facet fi shared by tetrahe-
dra n1 and n2, the corresponding edge weight in the graph is incremented by αvis multiplying
with the inverse of distance from camera center to the intersection.

• For the cell directly behind the line of sight which is the line segment connecting the sensor
and the point, its edge connected to the source node is incremented by αvis.

• For the cell containing the sensor, its edge connected to the source is set to a large value.

18



The corresponding relation between the tetrahedra and the graph is shown in Fig. 4.4. In the space
the tetrahedra has four facets, so the Fig. 4.4 is the simplified example.

4.3.4 LiDAR Smoothing Term

As mentioned in Section 4.3.1, LiDAR points have relatively larger noise than camera points.
However, the visibility and quality terms cannot account for the different noise levels of LiDAR
and camera measurements, since these two terms do not identify the source of vertices in a single
tetrahedron. For example, Fig. 4.5 shows the scenario where both LiDAR and camera points exist
for a surface. With original visibility and quality terms, the extracted mesh surface is bumpy
and mostly determined by LiDAR points lying out of the surface because of their larger noise.
Therefore, we add the LiDAR smoothing term to improve the quality of the surface where LiDAR
and camera measurements overlap. We alternate the weights of the edges connecting with the
tetrahedron which contains both LiDAR and camera points as vertices, hence these tetrahedra are
more likely to be labeled as out of the surface by the graph-cut algorithm. As Fig. 4.5 shows, in the
zoomed view, only the facet in red of the tetrahedron is marked as inside. For the set of tetrahedra,
the extracted surface is mostly determined by camera points closer to the real surface.

Algorithm 1 Elidar calculation
1: for node i in G do
2: for facet f of node i do
3: if vertex of f from both LiDAR and visual points then
4: weight(f)+ = γ
5: else
6: weight(f)+ = β
7: end if
8: end for
9: end for

We examine the three vertices of each tetrahedron’s facet to decide the term Elidar. When three
vertices are composed by LiDAR points or camera points only, we add a large constant value β
to the edge in G that corresponds to the facet. The large value represents a large penalty to cut
the edge off. On the other hand, when both LiDAR points and camera points are included in three
vertices, we give this edge a small weight γ, which indicates higher probability to cut the edge
off in s-t cut algorithm. (See tetrahedron in Fig. 4.5 and Algorithm 1). In this way, the labeling
process is much more robust to noise around surfaces from LiDAR measurements as can be seen
in Fig. 4.6.

In terms of the selection of γ and β in Algorithm 1, we need to consider the density of point cloud
and the visibility information in the scene. The parameter selection essentially affects the final
visualization of the mesh. Generally, when β value increases, small structures or objects are wiped
out in the model. It is important to keep the visibility term dominant in the energy function for
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Figure 4.5: Different LiDAR and visual points noise level around the ground truth surface and a zoomed view of a
tetrahedron around the surface. In zoomed view, based on the term Elidar, the facet with red edges is most likely to
be labeled as inside since it has larger weight than the other three facets containing LiDAR points.

(a) Mesh result without Elidar (b) Mesh result with Elidar

Figure 4.6: Comparison of reconstructed mesh with/without the LiDAR smoothing term (Elidar). The smoothing term
reduces noise from LiDAR measurements while preserving fine structures recovered from vision.

correct geometry in the final model, and select a moderate αvis and β. In the Section 4.4.5, we
will discuss about how the weighting method works and show the comparisons between different
weighting schemes.

4.4 Experiments and Results

4.4.1 Implementation

We implement our method in C++ based on the open source library OpenMVS [4], by integrating
depth map initialization, LiDAR measurements processing and the new formulation of the energy

20



function into the pipeline. We use CGAL [35] to manipulate tetrahedra and do Delaunay triangula-
tion. All experiments are run on a Ubuntu desktop with Intel i7-7700 @3.60GHz CPU and 32GB
RAM.

4.4.2 Experimental Settings

We first test the performance of our pipeline in the indoor scene. Our method requires high-
resolution images and LiDAR scans to reconstruct indoor scenes, but currently no public bench-
mark datasets containing such data exist. Therefore, we collect our own datasets using a custom-
built sensor rig (Fig. 4.7a) with a Velodyne VLP-16 LiDAR and a FLIR Grasshopper3 camera.
They are time synchronized. We use a survey LiDAR scanner FARO Focus 3D to collect the
ground truth model. We compare our method with state-of-the-art algorithms PMVS2 [15], Open-
MVS [4], and a LiDAR-only method [29] on three indoor datasets. We also extend the experiment
to the outdoor environments using a large-scale outdoor dataset.

(a) The sensors within the red boxes are used to collect
datasets

(b) Pictures of data collection scenes

Figure 4.7: Our data collection device and experiment scenes. In (b), from left to right, data are collected in lift lobby,
hallway, and kitchen.
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4.4.3 Indoor Evaluation

A qualitative comparison of reconstructed models is presented in Fig. 4.7. The mesh model from
the LiDAR point cloud can accurately depict the structure of the room, but it has two shortcomings.
First, it cannot keep thin structures or small objects in the final result because of its sampling
sparsity. Second, with more LiDAR points added for reconstruction, more noise and artifacts from
the sensor are introduced to the mesh model. This is seen in Fig. 4.8b, where the floor and walls
are bumpy and display repeated stripe-shaped artifacts that correspond to the laser scan lines. For
OpenMVS (Fig. 4.7c), the geometry of the scene is wrong starting from the point densification
step (see Fig. 4.3). The PMVS2 result (Fig. 4.7d) is relatively accurate in terms of patch positions,
but only edges and corners are reconstructed in textured areas. The surface mesh from our method
(Fig. 4.8a) can preserve the details of thin structures and small objects, and recover the textureless
surfaces more accurately and smoothly.

Quantitatively, we evaluate our pipeline against other methods using metrics presented in [5]. The
ground truth is provided in point cloud format, but our resulting model is a surface mesh. Hence,
for comparison, we extract the vertices of tetrahedron facets which are shared by tetrahedra labeled
as inside and outside of the surface as a point cloud. Since the camera and LiDAR sensors have
different coverage of the scene, we manually bound our resulting point clouds to areas that are
viewed by both sensors. After aligning the reconstructed model with the ground truth, we compare
them according to the metrics in [5]. In [5], precision P (d), recallR(d), and F-score are defined for
measuring the accuracy and completeness in the unified metric. Here d is a threshold of distance.
P (d) is the percentage of points in the reconstructed model of which the distance to their closest
point in the ground truth model is smaller than d. R(d) is calculated the other way around, by
computing a similar percentage score from the ground truth model to the reconstructed model.
RecallR(d) indicates the percentage of the ground truth model that is captured by the reconstructed
model. F-score is a summary measure, which is the harmonic mean of precision and recall given
threshold d. In our evaluation, we set d to 0.05m.

F-score =
2P (d)R(d)

P (d) +R(d)
(4.2)

Precision and recall of reconstructed models are visualized as the false-color map in Fig. 4.8.
We compare across three datasets, collected in lift lobby, hallway, and kitchen, respectively. The
kitchen dataset is considered as the most difficult one since it contains many small objects, thin
structures and occlusions. Lift lobby is the least challenging one because most surfaces are flat
walls, the floor, or the ceiling. In the experiments with other pipelines, the parameters are set to
default values as provided in open source code or the corresponding literature.

As Table 4.1 shows, the F-score of our method is better than the state-of-the-art pipelines on all
three datasets. In terms of precision and recall, LiDAR-only and OpenMVS methods both do well
in precision, but their coverages are mostly on large structures and textured objects respectively.
From LiDAR recall error in Fig. 4.9b, we can see that the chairs around the table are missing in the
LiDAR-only result, while the walls in OpenMVS [4] and PMVS2 results (Fig. 4.8c, 4.8d) are in
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Method Lift Lobby Kitchen Hallway
Ours 96.6/88.8/92.5 91.9/82.3/86.9 93.1/75.2/83.2
OpenMVS [4] 88.6/28.4/43.0 90.0/64.0/74.8 93.7/16.3/27.8
PMVS2 [15] 86.8/26.1/40.2 87.8/44.1/58.7 34.4/10.9/16.5
LiDAR [29] 95.7/85.1/90.1 86.2/69.1/76.7 91.6/66.3/77.0

Table 4.1: Precision/Recall/F-score for different pipelines. Best result shown in bold.

poor reconstruction. So their recall percentage is relatively low in the indoor scenarios. Because of
integrating both LiDAR and camera visibility information, our pipeline can reconstruct the scene
with both clustered objects and textureless structures accurately.

Besides the visualization and the quantitative evaluations, we dive deeper into the statistics of
the result from different method on the kitchen dataset. As Fig. 4.10 shows, the yellow line in the
graph is the average error of the result from different algorithms. We see that vision-based methods
have more accurate measurements than our method and the LiDAR-only method. Especially for
OpenMVS [4], its robust design rejects many outliers in the pipeline, which results in the high
portion of points with error smaller than 2 cm. But the incompleteness in the model is not shown
by the figure. For LiDAR measurements, the average error is 2 cm, and the distribution of the error
is broadly spread since the error value of points with peak occurrence only occupies 3 percent of all
points. Therefore, although the completeness is largely improved from vision-based methods, the
accuracy is polluted by the LiDAR noisy measurements in some parts of the scene. The statistics
results do not evalute against all points in the mesh since we reject the errors greater than 10cm.
For example, in the kitchen dataset, the estimated depth around the walls are filtered out due to
large error.

4.4.4 Outdoor Evaluation

Besides the indoor experiments, we extend our evaluation to an outdoor dataset as well. An outdoor
dataset was collected by Near Earth Autonomy in a debris with the sensors on a drone. The images
from the dataset are shown in Fig. 4.11. In this scene, extensive visual features are available for
the camera images, but there are also many occlusions in the scene due to the image viewing
angle. Different from previous experiment setting, a concatenated LiDAR point cloud is given
beforehand, so we do not need to preprocess the LiDAR raw data. On the outdoor dataset, the
LiDAR-improved point densification part does not show a boost in the point cloud density and
accuracy comparing with the baseline MVS method due to the richness of the features. But since
the data is collected by a drone, the views are mostly from top, and the occlusion is an inevitable
problem without the LiDAR prior map. As Fig. 4.12 shows, many parts are occluded, and that will
result in problems when extracting the surface mesh. Since no ground truth model is available for
the outdoor dataset, we only compare the result from our pipeline to the camera-only and LiDAR-
only method by the appearance.
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(a) Our method

(b) LiDAR-only [29]

The mesh results are shown by Fig. 4.12. For the mesh from MVS, due to occlusions, there are
many inconsistencies in the result. The unobserved surfaces are connected together such as the
two-story platform and the side of the building. The mesh from LiDAR has better coverage of
the scene because of the LiDAR’s wide field-of-view. However, since the mesh extraction steps
need line of sight to cut the space, the sparsity of the LiDAR prior map introduces the problem
of weakly observed surface. Fig. 4.13 demonstrates the problematic surface. We visualize the
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(c) OpenMVS [4]

(d) PMVS2 [15]

Figure 4.7: Shaded meshes of the kitchen dataset. By combining LiDAR and vision, our method preserves fine shapes
while reconstructing textureless surfaces.

density of the points on different surfaces. As shown in the figure, all the points inside occluded
areas have fewer than 8 neighboring points in a circle with 10cm radius, while other areas have
higher density. This will introduce weakly supported surfaces in the mesh extraction stage since
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(a) Our method precision (b) LiDAR-only [29] precision

(c) OpenMVS [4] precision (d) PMVS2 [15] precision

Figure 4.8: False-color map for precision which evaluates reconstructed models against ground truth model are shown
to the left.The color representation of the error is shown in the bottom.

intuitively the sparse visibility for the occluded points cannot make the cut happen in the graph.
Therefore, there are some missing parts in the LiDAR mesh, such as the occluded middle floor of
the platform. Compared with the LiDAR-only result, our algorithm achieves a better reconstruction
because we integrate the LiDAR and camera visibility information together, which is really helpful
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(a) Our model recall (b) LiDAR-only [29] recall

Figure 4.9: False-color map for our model and LiDAR recall. In LiDAR recall, almost all compact objects in red are
missing. The color representation of the error is shown in the bottom.

Figure 4.10: The distribution of the errors in different methods. In the figure, the yellow vertical line in the four
individual subplots is the mean value of the error in their respective result.
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(a) (b)

Figure 4.11: The example images from NEA dataset

Figure 4.12: The dense point cloud from the pipeline. As shown in (b), the platform and the side of the building only
has the top layer, and all other parts are occluded.

in a scene with occlusions. As shown in the comparison in Fig, 4.14 the platform from our pipeline
is reconstructed well. We texture map the mesh from the proposed pipeline and the result is shown
in Fig. 4.15. Some areas are not textured due to occlusion and limited field-of-view of the images.

4.4.5 Discussion

Weight Selection

Although [29, 30, 32] all employ the graph-cut method in their pipelines, they are not explicitly
reasoning about the selection of the parameters, such as αvis. In this thesis, since we have different

28



(a) OpenMVS [4]

(b) LiDAR-only [29]
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(c) Our results

Figure 4.12: Shaded meshes of the kitchen dataset. By combining LiDAR and vision, our method preserves fine
shapes while reconstructing textureless surfaces.

αvis setting for LiDAR and camera measurements, we investigate the selection of the parameters
in the proposed pipeline. For reconstructions containing only single type of measurements, the
weight selection does not change much of the cut position of the graph for visual point cloud since
it usually has less noise compared with LiDAR points and most of the edge caps are proportional
to the parameter αvis. However, the mesh from LiDAR have different appearances with different
weight selection due to its large measurement noise. Small experiments are conducted based on a
part of the outdoor dataset. We qualitatively evaluate how the weighting affects the mesh results.
As Fig. 4.16 shows, when αvis of LiDAR points increases, more LiDAR points are kept in the
final mesh but more noisy. Although there is not a quantitative guide on how to select αvis, one
important observation is that once the weight is beyond a specific value, the appearance of the
mesh does not change much because almost all points are already vertices in the mesh.

After adding the LiDAR points to the visual point cloud, as Section 4.3.4 mentions, two parameters
γ and β are added for the LiDAR smoothing term. In the experiments, we set γ to 1 and change
the value of β to observe the change of appearance in the mesh result. Moreover, the experiments
shown here are not for the best reconstructed result but for demonstrating the function of the
weighting of the smoothing term. In the Fig. 4.17, we show the impact of a large LiDAR smoothing
term weight in the mesh result. In the red bounding box, artifacts of LiDAR scan lines can be seen.
With a larger weight, the artifacts areas are smoother in the Fig. 4.17b. But as shown, some other
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(a) (b)

Figure 4.13: The visualization of the LiDAR prior map density. We use the number of neighbors to colorize the map.
As the color bar shows in the bottom, blue represents points with 8 or fewer neighbor points in 10cm radius and red
represents points with more than 80 neighbors in the radius of 10cm.

(a) LiDAR-only (b) Ours

Figure 4.14: The comparisons between the LiDAR-only result and our result. The platform and the walls are recovered
well by our method.
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(a)

(b)

Figure 4.15: The textured mesh result from our method under no shading option. The gray areas in the figure do not
have textures due to the limited field-of-view of the camera.
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(a) Small weight (b) Large weight

Figure 4.16: The mesh appearance with different weighting in the graph-cut algorithm.

parts such as the roof are discarded since the smoothing term is too large.

(a) Small smoothing weight (b) Large smoothing weight

Figure 4.17: The figure shows how the smoothing weights affect the mesh result. The yellow points in the figure are
vertices of the mesh. In the left figure, the artifacts of LiDAR scan lines are visualized in the red bounding box. After
increasing the weight the LiDAR point are discarded in the same area.

Bottlenecks

The long running time is the bottleneck of the proposed pipeline. The graph-cut algorithm in the
mesh extraction step has the complexity O(mn2). Here m is the number of edges and n is the
number of the nodes. Therefore, the running time grows quadratically with the increasing number
of points in the scene. One solution is to use fewer images to generate the visual dense point cloud
and downsample the LiDAR point cloud to have fewer points. The other solution is to look for a
local solution instead of the global graph-cut algorithm.
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Chapter 5

Conclusions

5.1 Contributions

This thesis presents the following contributions towards joint surface reconstruction combining the
LiDAR and the camera.

• It presents a novel algorithm to reconstruct the scene by fusing the geometric information
from LiDAR and camera measurements together. The LiDAR points are integrated into the
multi-view stereo pipeline in a two-stage manner.

• It shows that LiDAR measurements are helpful for MVS pipeline to get the true scale and
achieve the accurate dense depth estimation even in the low-texture area.

• We utilize the graph-cut algorithm after combining the LiDAR and camera measurements
in the Delaunay tetrahedralization, which leverages the visibility from both sensors to ex-
tract the surface mesh. Besides, our formulation considers the different properties between
LiDAR and camera, and the result shows the improvement from our formulation.

• It shows the robustness and accuracy in both of the indoor and outdoor scenes with the
proposed pipeline, especially for scenes which are challenging for vision-only or LiDAR-
only methods.

5.2 Discussions and Future Work

In the mesh reconstruction stage, we apply the graph-cut algorithm to extract the surface mesh.
However, one main drawback of the graph-cut algorithm is that the running time grows quickly
with the increasing number of scene points. It is the main bottleneck for the scalability of the
reconstruction. Under our experimental setting, when the number of points excess 50 million
points, the mesh reconstruction step takes half day to process. Therefore, one potential direction is
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to make the pipeline scalable. Instead of solving the graph at once, dividing the graph into several
parts could be one solution, which will be more tractable when the number of vertices grows.

Another potential direction is to further process the extracted mesh from the graph-cut algorithm.
As mentioned in [17], the mesh can be refined using photometric information from the images
and it performs well on thin structures. As we showed in the previous sections, these structures
are generally difficult to recover in the graph-cut algorithm. The mesh refinement step will be
necessary when there are more thin or complicated structures in the environments. Besides the
mesh refinement, adding other high-level geometric features into the graph-cut framework can
potentially improve the result. As the method stated in [36], it shows impressive results on keeping
the edge features in the mesh. Similar algorithms may benefit our pipeline, since the sparsity of
LiDAR always results in broken thin structures in the mesh result.

Finally, besides the geometric information, semantics information from scene understanding is a
higher level feature to be integrated into the pipeline. If the pipeline can extract the semantics
information of the scene, it is more straightforward to select better measurements from LiDAR or
camera based on different objects to reconstruct. For instance, visual points can be utilized for
compact objects, while LiDAR points may be adopted for structural objects such as walls.
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Appendix A

Extrinsics Calibration of LiDAR and
Camera

To fuse LiDAR and camera measurements together, an accurate calibration between the two sen-
sors is necessary. The extrinsic parameters contain the rotation and translation between the two
sensors. To calibrate the extrinsics parameters, correspondences are needed between LiDAR mea-
surements and camera images. To easily obtain correspondences, checkerboards are widely used
in the literature [37, 38, 39, 40, 41]. We compare the results from two different methods which use
different correspondences to constrain the calibration. The baseline method [39] solves the trans-
formation by finding the plane correspondences from LiDAR scans to the images, which requires
at least 3 poses. In our recent improved method [7], besides the plane constraints, line correspon-
dences are incorporated to decrease the number of needed poses for calibration to 1. In this chapter
we detail the two schemes and show comparisons through experiments.

A.1 Calibration with Plane Correspondences

For calibration, we have the actual size of the checkerboard, several LiDAR scans and their corre-
sponding images with the same time stamp. The plane correspondence refers to the checkerboard
in the calibration, and the plane is represented by a normal vector n and a distance d. For LiDAR
scans, it is straightforward to extract the plane parameters since LiDAR provides 3D measurements
directly. For camera images, since we have the intrinsics parameters and the size of the box in the
checkerboard, the rotation and translation are known from the board to the camera center, and they
can be converted to the plane parameters. Rotation RC

L and translation tCL represent the calibration.
Super script L and C represent the LiDAR frame and the camera frame respectively. And the sub-
script i is the pose index of the checkerboard. m is the number of LiDAR points on the i-th scan
from index 1 to Ni. Therefore, we have the constraint equations:

RC
LnL

i = nC
i (A.1)
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nC
i ·
(
RC

LPL
im + t

)
+ dCi = 0 (A.2)

By solving above equations, we obtain the initial estimation of RC
L and tCL , then we jointly optimize

them by minimizing the cost function:

(
R̂C

L , t̂
C
L

)
= argmin

RC
L ,tCL

N∑
i=1

Ni∑
m=1

∥∥nC
i ·
(
RC

LPL
im + t

)
+ dCi

∥∥2 (A.3)

We perform Levenberg-Marquardt method to solve the nonlinear optimization and obtain the final
calibration result.

A.2 Calibration with Plane and Line Correspondences

Besides the plane of checkerboard, four edges of the checkerboard are also proposed to be adopted
as the correspondences [7]. Extracting lines is more tricky than calculating the plane parameters.
In the LiDAR scans, after we extract all the points on the plane, we find the end points of LiDAR
scan lines (16 lines or fewer here because Velodyne VLP-16 is used in our setting) then fit them
into 4 boundary lines. For images, LSD (Line Segment Detection) algorithm [42] is performed to
detect a set of line segments in the image, and we select the 4 boundaries based on their position
to the checker board. In terms of notations, besides the defined ones in Section A.1, notations
relevant to lines are stated as following. Lines Lij (j = 1, 2, 3, 4) is the 4 boundaries of the i-th
pose, represented as [dij;pij]. d is the direction of the boundary and p is a point on the same
boundary. For LiDAR boundaries, since there are few points on each boundary,we represent the
points on LL

ij as QL
ijk(k = 1, ..., Kij), in which Kij means the total number of points on one

boundary. Therefore, besides the plane constraints, we have the equations for boundaries as well.

RC
LdL

ij = dC
ij (A.4)(

I− dC
ij

(
dC
ij

)T) (
RC

LQL
ijk − pC

ij + tCL
)
= 03×1 (A.5)

The Equation A.5 indicates that the LiDAR points on the boundary should have distance 0 to
the corresponding boundary in the image after transformation. The

(
I− dC

ij

(
dC
ij

)T) part is the
projection to the direction of the boundary in the image. To solve the equations together with
the plane constraints, the initial estimation of RC

L is obtained by stacking the Equation A.1 and
A.4 together and solving the linear system. And estimated tCL can be obtained using following
equations from Equation A.2 and A.5.

nC
i · tCL = −nC

i ·RC
LP̄L

i − dCi (A.6)(
I− dC

ij

(
dC
ij

)T)
tCL = −

(
I− dC

ij

(
dC
ij

)T) (
RC

LQ̄L
ij − pC

ij

)
(A.7)
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In above equations, P̄L
i and Q̄L

ij are the mean point of the all points on the plane and on the
boundary respectively. Having obtained the initial estimation of the transformation, we further
optimize them using LM method with the following cost function.

(
R̂C

L , t̂
C
L

)
= argmin

RC
L ,tCL

N∑
i=1

1

Ni

Ni∑
m=1

∥∥nC
i ·
(
RC

LPL
im + t

)
+ dCi

∥∥2+
N∑
i=1

4∑
j=1

1

Kij

Kij∑
k=1

∥∥∥(I− dC
ij

(
dC
ij

)T) (
RC

LQL
ijk − pC

ij + tCL
)∥∥∥2 (A.8)

In [7], the scale factor is also introduced in consideration of the measuring error in the checkerboard
size. In that case, we need to add the scale factor into Equation A.7 and A.6, and the nonlinear
optimization as well. Therefore, we rewrite the equations as following:

nC
i · tCL = −nC

i ·RC
LP̄L

i s− dCi (A.9)(
I− dC

ij

(
dC
ij

)T)
tCL = −

(
I− dC

ij

(
dC
ij

)T) (
RC

LQ̄L
ijs− pC

ij

)
(A.10)
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C
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= argmin
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A.3 Experiments and Results

A.3.1 Synthetic Results

In the simulation, we randomly generate the configuration of LiDAR, camera and checkerboard
poses. Specifically, the roll, pitch and yaw angle of the camera are within±45◦, and the translation
elements are uniformly distributed in ±0.3m w.r.t the LiDAR. For the checkerboard frame, its x
and y components of the translation are within ±0.5m, its z component is within [1.5m, 2.5m],
and its orientation is within ±45◦ relative to the camera. The checkerboard pose is generated in
the view of the camera.

We add zero mean Gaussian noise to LiDAR and camera measurements to test the performance
of different algorithms under various noise levels. The standard deviation of the LiDAR noise is
set to 1cm, 2cm and 3cm, while the standard deviation of the image noise is fixed at 1 pixel. The
number of checkerboard poses N is within [1, 10]. We run each algorithm 200 times for each N .
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Fig. A.1 gives the results. It is clear that our algorithm has smaller rotation and translation errors
under different noise levels compared to [39]. Additionally, our rotation and translation error are
around 1.5◦ and 12% when only one pose is used and the standard deviation of the LiDAR noise is
3cm. It verifies that our algorithm is able to provide accurate result using a single snapshot under
large noise.

(a) Rotation result

(b) Translation result

Figure A.1: The result of calibration from the synthetic dataset
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A.3.2 Real-world Results

Figure A.2: Velodyne VLP-16 LiDAR and ZED stereo camera used in our experiments.

We use a Velodyne VLP-16 LiDAR and a ZED stereo camera to verify our algorithm, as shown
in Fig. A.2. The Velodyne VLP-16 LiDAR has 16 scan lines, ±3cm range error and 360 degree
horizontal and ±15◦ vertical field of view. The threshold of the RANSAC algorithm is set to
3cm for plane fitting in the experiments. The ZED stereo camera has about 12cm baseline and
1280× 720 resolution.

As we do not have the ground truth of the extrinsic parameters of the LiDAR and the camera,
we use the extrinsic parameters of the stereo camera to evaluate the performance of the algorithm
as in [43]. Specifically, we estimate the extrinsic parameters of the LiDAR and the left camera
(R̂Cl

L , t̂
Cl
L ), and the extrinsic parameters of the LiDAR and right camera (R̂Cr

L , t̂Cr
L ), respectively.

Then we compute the relative pose (R̂s, t̂s) between the left and right camera from (R̂Cl
L , t̂

Cl
L ) and

(R̂Cr
L , t̂Cr

L ). (R̂s, t̂s) is compared with the stereo extrinsic parameters (Rs, ts) calculated by the
MATLAB tool box. We also calculate the similarity transformation, and compute the error as the
rigid transformation.

We collected 32 LiDAR and image pairs for the experiment. N LiDAR and image pairs are ran-
domly chosen from them. N is within [1, 25] for our algorithm and [3, 25] for Unnikrishnan’s
algorithm. For each N ∈ [2, 25], we run the experiment 200 times. For N = 1, we estimate the ex-
trinsic parameters for all the 32 poses of the checkerboard. Fig. A.3 gives the result. Our algorithm
yields more accurate results. The result of our algorithm from one pose is comparable to the result
of Unnikrishnan’s algorithm when 6 poses are used. Using similarity transformation, we get very
similar rotation error, but smaller translation error than using rigid transformation. This is because
there exists inevitable measurement error for the checkerboard size. These measurement errors
mainly affect the estimation of the translation rather than the rotation, since the rotation matrix
can be decoupled from the scale factor. Unnikrishnan’s algorithm has large translation estimation
error when N = 3. This is because there exist some planes with similar orientations. These planes
are degenerate for Unnikrishnan’s algorithm, but they are valid for our algorithm. The 3D line
constraints significantly increase the diversity of the measurements. Therefore, our algorithm is
more robust to the configuration of the poses and can get better result with fewer number of poses.

For the calibration of the system applied in the thesis, the calibration result is shown in Fig. A.4.
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(a) Rotation result

(b) Translation result

Figure A.3: The result of calibration from the real-world dataset.
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(a) Result from [39]

(b) Result from [7] (c) Result from [7] with similarity transformation

Figure A.4: The visualization of the calibration methods on the device used for reconstruction.
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