
Dense Surface Reconstruction from Monocular Vision and LiDAR

Zimo Li, Prakruti C. Gogia, and Michael Kaess

Abstract— In this work, we develop a new surface recon-
struction pipeline that combines monocular camera images and
LiDAR measurements from a moving sensor rig to reconstruct
dense 3D mesh models of indoor scenes. For surface recon-
struction, the 3D LiDAR and camera are widely deployed for
gathering geometric information from environments. Current
state-of-the-art multi-view stereo or LiDAR-only reconstruction
methods cannot reconstruct indoor environments accurately
due to shortcomings of each sensor type. In our approach,
LiDAR measurements are integrated into a multi-view stereo
pipeline for point cloud densification and tetrahedralization.
In addition to that, a graph cut algorithm is utilized to
generate a watertight surface mesh. Because our proposed
method leverages the complementary nature of these two
sensors, the accuracy and completeness of the output model are
improved. The experimental results on real world data show
that our method significantly outperforms both the state-of-
the-art camera-only and LiDAR-only reconstruction methods
in accuracy and completeness.

I. INTRODUCTION

Dense 3D reconstruction has gained popularity in recent
years because of its growing applications, such as inspection
[20], cultural heritage preservation [6] and urban recon-
struction [14]. In computer vision, multi-view stereo (MVS)
methods employ only cameras to accomplish dense recon-
structions. Moving cameras enable precise reconstruction and
texture mapping of object surfaces. However, the perfor-
mance of MVS highly depends on the lighting condition and
the richness of textures. Even for scenes with appropriate
lighting and rich textures, MVS may still fail in areas with
similar camera viewing angles due to insufficient baseline.
On the contrary, 3D LiDARs that are widely used in robotics
for 3D perception, provide geometric information indepen-
dent of visual features or textures. However, it is difficult
for LiDAR-only methods to reconstruct compact objects
accurately in indoor scenes since LiDAR measurements are
sparse compared with pixel measurements from cameras.
Besides, the noise of LiDAR is relatively large for close-
up objects. Therefore, the complementary nature of the two
sensors enables us to obtain precise geometric information
for both small objects and low-texture structures in indoor
environments.

In the last decade, the combination of camera and LiDAR
has been widely utilized in the field of autonomous robotics
[22]. Previous research on reconstruction that employs the

This work was supported by Autel Robotics under award number
A020215. We would like to thank Cong Li, Weizhao Shao, and Srinivasan
Vijayarangan for data collection.

The authors are with the Robotics Institute, Carnegie Mellon Uni-
versity, Pittsburgh, PA 15213, USA. {zimol, kaess}@cmu.edu,
pgogia@alumni.cmu.edu

Fig. 1. Textured mesh without shading from our reconstruction pipeline
that exploits the complementary properties of cameras and LiDARs. Our
method preserves fine shapes while reconstructing textureless surfaces.

combination of the two sensors typically adopts measure-
ments from only LiDAR in the final geometric surface
reconstruction stage, while images are only used to colorize
or texturize the surfaces. Different from previous methods,
our method utilizes measurements from both sensors to
generate 3D reconstructions in the form of a surface mesh.

The pipeline of our system consists of two main stages
as shown in Fig. 2. In the first stage, we use LiDAR mea-
surements as priors to improve point cloud densification from
images. In the second stage, for areas where the depth cannot
be estimated from images, we add LiDAR measurements to
the visual point cloud and extract a surface mesh from the
point cloud containing measurements from both sensors. Our
proposed method leverages integral advantages of 3D LiDAR
and camera, hence improves the reconstruction results over
state-of-the-art MVS pipelines. Our main contributions are:

• A new pipeline combining LiDAR and camera in a
MVS reconstruction framework to create a dense point
cloud of indoor environments;

• An extension of the Delaunay tetrahedra and graph
optimization framework described in [9] to include
both LiDAR and camera measurements in surface mesh
extraction;

• Evaluation against state-of-the-art MVS pipelines
(PMVS2 [5], OpenMVS [2]) and LiDAR-only recon-
struction on real world data.

II. RELATED WORK

Over the past few decades various algorithms that combine
LiDAR and camera data for the purpose of 3D mapping or
reconstruction have been developed [21][14]. These works

Monocular images

Camera poses

LiDAR point cloud

Depth map
computation

Depth map
fusion

Downsample and get
visibility score

Point insertion for
Delaunay triangulation

Graph­based mesh
extraction

Section III. Point densification Section IV. Surface reconstruction

Fig. 2. Diagram of our reconstruction pipeline. Boxes marked in red are the parts that we modify based on MVS pipeline. Notations are detailed in
following sections.

can be divided into two categories. The first category creates
the surface mesh or other representations using only the
LiDAR points and uses camera data for texture mapping. The
second category uses the LiDAR points as priors for multi-
view stereo to generate a dense point cloud from images.

In the first category methods, their reconstruction is mostly
represented as a registered LiDAR point cloud. Zhang and
Singh [24] generate a map in the form of registered LiDAR
point clouds. This system applies camera measurements to
help with the state estimation, but the final surface model
is made from only LiDAR measurements. With a 2D range
sensor and a camera, Martin et al. [13] present an algorithm
that extracts a surface model from rangefinder measurements
and maps image textures to that model. Similarly, [19] and
[16] also utilize texture mapping in their algorithms. While
they exploit the advantages of LiDAR in planar and distant
scenes, the geometric information in images is not combined
with range data in the reconstruction or mapping stage.

For methods in the second category, [12] and [15] both
utilize 3D LiDARs and cameras to estimate dense depth
maps. Although these methods adopt probabilistic methods
to generate accurate visual point clouds with LiDAR priors,
LiDAR points are not directly integrated into the recon-
struction stage. These methods also only apply to single
view depth estimation, while we are interested in larger-scale
reconstruction from a sequence.

For vision-only reconstruction, a number of MVS al-
gorithms have been developed in recent years [17]. Fu-
rukawa and Ponce [5] developed a patch-based MVS pipeline
(PMVS) to reconstruct compact objects. Since PMVS de-
pends on finding pixel-level correspondences across images,
low texture environments result in low completeness maps. In
[23], Vu et al. proposed a dense scene reconstruction pipeline
which can generate a surface mesh even under uncontrolled
imaging conditions. With global visibility taken into account,
Vu’s pipeline improves the accuracy of the surface mesh.
However, its performance still relies on a number of features
to extract a dense point cloud for generating a precise mesh.

In this paper, we use OpenMVS [2] as our baseline
method, which is implemented based on Vu’s method. We
assume the followings are provided: known camera and
LiDAR poses, sparse 3D feature points from SfM pipeline,
and the known calibration between the LiDAR and camera
for registering images and LiDAR scans into a common
coordinate frame.

III. LIDAR-IMPROVED POINT CLOUD DENSIFICATION

There are three stages in point cloud densification: depth
map initialization, refinement, and fusion. We incorporate
LiDAR measurements in the first stage to initialize the depth
map. We denote the registered LiDAR point cloud from
multiple scans using corresponding poses as Pl. Input image
frames are represented by the set I = {I0; :::; In−1}, and
corresponding depth maps are denoted by the set D =
{D0; :::; Dn−1}. Comparing to the method in [3], which
randomly initializes the depth for each pixel but can not
always converge to the correct depth, our method uses
LiDAR measurements as prior to improve the initialization.
We initialize the depth map Di, by projecting points in Pl
back to Ii’s image frame. There are several cases when we
initialize the depth for one pixel:

• Several projected LiDAR measurements available: only
the closest measurement to the camera center is used for
initialization, which accounts for occluding surfaces.

• Sparse feature points available: we take the depth infor-
mation from the sparse feature point for initialization,
even when projected LiDAR measurements exist for
the pixel. As mentioned above, the sparse feature point
is from structure from motion, which employs robust
multi-view geometry methods to calculate feature point
positions, therefore it is more accurate than LiDAR
measurements.

• Neither camera points nor projected LiDAR measure-
ments available: We use the initialized pixels which are
outputs from previous two cases as vertices to form a 2D
triangulation inside the image plane. For each triangle
facet in the triangulation, the depth of uninitialized
pixels inside it is set to the distance from camera center
to the facet.

After the initialization, we find matching patches and
perform spatial propagation for refinement as detailed in [3].
Finally, we project all depth maps in D to 3D space and
use the fusion method of [18] to reject inconsistent depths.
Fig. 3 shows that OpenMVS [2] fails to estimate depth in
textureless areas, but incorporating LiDAR measurements
improves the depth map estimation. Eventually, we generate
a dense point cloud Pc from images in I.

(a) Depth map from OpenMVS [2] (b) Depth map from our method

(c) Corresponding original image

Fig. 3. Comparison of depth maps from OpenMVS and our pipeline. (a)
Textureless areas, such as the wall and chairs, result in poor depth estimation
when using image-based MVS. (b) Fusing LiDAR measurements with the
MVS depth map signi�cantly improves depth estimation in the low texture
regions.

IV. SURFACE RECONSTRUCTION FROMFUSED

MEASUREMENTS

We modify the OpenMVS pipeline to use LiDAR mea-
surement during surface reconstruction. After generating the
point cloudPc from the previous step, we combine it with a
subset of LiDAR points downsampled fromPl into one point
cloud Pall . Then, we use 3D Delaunay tetrahedralization on
Pall and �t the resulting tetrahedra into a graph fors-t cut
algorithm to label each tetradedron as either inside or outside
of the surface. Finally we generate a watertight surface mesh.

A. Point insertion

We insert all points inPc into the tetrahedralization based
on the method in [9] since they are accurate from the point
cloud densi�cation, but not insert all points fromPl . The
�rst reason is that it is expensive for graph-cut algorithm
to run through a large number of nodes. Secondly, LiDAR
points usually have larger noise1 than triangulated camera
points for short distance measurements, which make the
reconstructed surface bumpy. Therefore, we downsamplePl

to Pd by clustering points inPl within a given radiusr to
a single mean point. After downsampling, for each point
p in Pd, we project it back to every camera frameI i . If
p is inside I i 's camera view, we recordI i in a set Ip, of
which the corresponding set of depth maps is calledDp. If
the depth of projectedp is not calculated in any depth map
in Dp, p is inserted into the tetrahedralization. As a result,
inserted LiDAR measurements do not pollute the camera
measurements in the same areas.

1Up to � 3cm for Velodyne VLP-16 according to its datasheet.

B. Graph-based extraction of surface mesh

For 3D mesh generation, previous methods [10][9][7] use
a graph-cut algorithm [4] to extract a surface. In our proposed
method, we �t a set of tetrahedraT in thes-t cut framework
similar to [23]. We build a directed graphG = (V; E) and
apply thes-t cut to G. In graphG, each nodeV denotes
a tetrahedron and each edgeE between adjacent nodesV
represents the facet shared by two adjacent tetrahedra. We
add the sources and sinkt nodes connecting to each node
in V , which denote the interior and exterior of the surface
respectively [9]. InG, we assign weights for each node and
edge based on the energy function in Eq. 1. In the last step,
the labeling process is accomplished by solving the minimum
s-t cut onG.

E(T) = Evisibility + � quality Equality + � lidar E lidar (1)

TermsEvisibility + � quality Equality were �rst derived in
[10] for range data. Since two sensors are incorporated in this
framework, we introduce a new energy termE lidar , which
accounts for the different noise model of the camera and
LiDAR to smooth the bumpy surfaces from noisy LiDAR
measurements. Since we maintain the original formulation
of the quality term from [10] in our pipeline, Section IV-
C and IV-D provide details about our formulation of the
visibility and energy terms. After calculating the energy of
the whole graph based on Eq. 1, we apply the minimum
s-t cut algorithm to determine the binary label of each
tetrahedron.

C. Visibility information

Since we have camera and LiDAR measurements, the
visibility term can be divided into two parts accordingly.
For the camera visibility term, [7] has derived a weighting
scheme for tetrahedraT to be consistent with the visibility
of the camera by penalizing visibility con�icts. Speci�cally,
� vis is introduced as the unit con�dence value for each
ray from the center of camera to a visual point, which is
proportional to the number of camera views seeing the point.
For LiDAR points, � vis is calculated in a different method
since they are sparsely distributed in different locations
across different scans. Due to the downsampling of the
LiDAR point cloud during point insertion, we set� vis for
each point inPd proportional to the number of points in
r , which is calculated during downsampling for visibility
consistency. This removes redundant points while keeping
the additional visibility support that these points offer.

In three cases, the edge weight is incremented by� vis for
measurements and its corresponding sensor's center:

� For the ray from a sensor to a point inside its view
intersecting the facetf i shared by tetrahedran1 and
n2, the corresponding edge weight in the graph is
incremented.

� For the cell directly behind the line of sight which is
the line segment connecting the sensor and the point,
its edge connected to the source node is incremented.

� For the cell containing the sensor, its edge connected to
the target is incremented.

	Introduction
	Related Work
	LiDAR-Improved Point Cloud Densification
	Surface Reconstruction from Fused Measurements
	Point insertion
	Graph-based extraction of surface mesh
	Visibility information
	LiDAR smoothing term

	Experiments and Results
	Implementation
	Experimental settings
	Evaluation

	Discussion and Conclusion

