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Abstract— Simultaneous localization and mapping with in-
finite planes is attractive because of the reduced complexity
with respect to both sparse point-based and dense volumetric
methods. We show how to include infinite planes into a least-
squares formulation for mapping, using a homogeneous plane
parametrization with a corresponding minimal representation
for the optimization. Because it is a minimal representation, it
is suitable for use with Gauss-Newton, Powell’s Dog Leg and
incremental solvers such as iSAM. We also introduce a relative
plane formulation that improves convergence. We evaluate our
proposed approach on simulated data to show its advantages
over alternative solutions. We also introduce a simple mapping
system and present experimental results, showing real-time
mapping of select indoor environments with a hand-held RGB-
D sensor.

I. INTRODUCTION

The recent popularity of real-time 3D simultaneous local-
ization and mapping (SLAM) is explained by its wide range
of possible applications including mobile robot navigation,
surveying and inspection, augmented and virtual reality,
search and rescue, and reconnaissance. Laser-range finders
are commonly used for 3D mapping, but the high cost of
a 3D laser or actuated 2D laser limit their wide-spread
adoption. With the recent availability of cheap camera-based
RGB-D sensors, 3D mapping capabilities are now becoming
more widely accessible. But many mapping systems place
high demands on processing and hence also power require-
ments, negating the advantages in both mobility and price of
mobile RGB-D sensors.

When assuming the presence of structure in the surround-
ings, cheaper solutions are possible by making use of higher
level features, such as planes, rather than points or dense
volumetric representations. While there has been prior work
on using planar features for mapping, discussed in more
detail below, a least-squares estimation with planar features
faces some challenges that have so far not been addressed
in the SLAM literature.

A specific challenge for nonlinear least-squares estima-
tion is presented by the overparametrized representation of
an infinite plane. While a Gauss-Newton solver is prefer-
able to other iterative least-squares solvers because of its
fast convergence, the overparametrization leads to a rank-
deficient information matrix, causing matrix inversion to
fail. Commonly used in practice, the Levenberg-Marquardt
algorithm adds a regularization term, but is not suitable for
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Fig. 1: The stairs sequence. (top) Single frame, from left to right: raw image,
depth image and planar segmentation. (center) 3D model, showing unique
planes on the left and the colored point cloud on the right. (bottom) Enlarged
view and side view of the 3D model.

incremental inference [13, 14]. Alternatively, a Lagrangian
multiplier can eliminate the extra degree of freedom, but at
the cost of additional computation and a 67% larger state
space compared to the minimal representation. And finally,
a commonly used minimal representation using spherical
coordinates for the plane normal suffers from singularities
not unlike the well-known gimbal lock for Euler angles.

In this paper we introduce a minimal representation that
avoids all of these problems and has so far not been described
in the context of SLAM with planar features. We will
relate the overparametrization of an infinite plane to that
of a rotation represented by a quaternion and provide a
solution that is also related to our earlier work on a minimal



representation for homogeneous point parametrizations [12].
Our contributions in this paper are three-fold:

1) We introduce a minimal representation for the homo-
geneous parametrization of infinite planes suitable for
least-squares estimation with Gauss-Newton methods
and related incremental solvers.

2) We present a relative plane formulation that improves
convergence.

3) We show experimental results for mapping with planes
using a hand-held RGB-D sensor (see Fig. 1).

In the following section we discuss related work. In section
IIT we describe our approach to mapping with infinite planes,
with a focus on the minimal representation for least-squares
optimization. In section IV we provide an evaluation using
simulated data, followed in section V by experimental results
from a real-time system using a hand-held RGB-D sensor.
We summarize and offer concluding remarks in section VI.

II. RELATED WORK

We perform simultaneous localization and mapping
(SLAM) by explicitly including infinite planes into the
estimation formulation. One of the earliest works that makes
planes explicit in the estimation is presented by Weingarten
and Siegwart [19]. They use 3D laser data and odometry
derived from a 2D laser in combination with an EKF
formulation. The EKF formulation is also used by Servant
et al. [16], starting with partial knowledge and tracking a
monocular camera, and by Gee et al. [2] and Martinez-
Carranza and Calway [10] for monocular mapping. The main
problem of using an EKF formulation is the computational
cost caused by maintaining the dense covariance matrix,
which limits application to a small number of planes. Instead,
we apply a graph-based smoothing formulation that yields a
sparse estimation problem that can efficiently be solved.

Lee et al. [9] use a graph formulation in combination
with a spherical parametrization of the planes. The spherical
parametrization is commonly used [19, 16] and is attractive
because it is a minimal representation. However, the spherical
parametrization suffers from singularities that are similar in
nature to the well-known gimbal lock for Euler angles.

Another common approach uses four parameters to rep-
resent a plane by its normal and distance to the origin.
Trevor et al. [18] uses this overparametrized representation
for a smoothing solution that combines data from an RGB-
D sensor and a 2D laser range finder. The overparametrized
formulation is also used by Taguchi et al. [17] for real-
time mapping with a hand-held RGB-D sensor, combining
both mapping of points and planes. However, for an over-
parametrized system the information matrix is singular and
any attempt to invert it within Gauss-Newton will fail. Hence
Levenberg-Marquardt is typically used instead, which adds
a regularization term and thereby hides the overparametriza-
tion, negatively affecting convergence speed. In contrast, in
this paper we introduce a minimal representation for the
overparametrized homogeneous plane parametrization that is
used during optimization and is not affected by singularities.

In recent work, Salas-Moreno et al. [15] introduced a
dense planar SLAM system that generates a surfel map,
and identifies and grows planar regions over time, with
applications to augmented reality. Similar work by Whelan
et al. [21] incrementally performs planar simplification of a
triangle mesh that is built using a dense volumetric approach.
In contrast, we avoid dense mapping and explicitly represent
and optimize a graph of infinite planes.

III. MAPPING WITH INFINITE PLANES

We start by introducing the state and plane represen-
tation as well as basic operations related to those states.
For overparametrized quantities we then discuss minimal
representations. Finally, we discuss the formulation of plane
SLAM as a least-squares problem with a suitable plane
observation model.

A. State and Plane Representation

We represent the location and attitude of the sensor, or
short its pose, with respect to some global coordinate frame
g by the tuple

x=(t,q) € R® x 5%, (1)

where t is the translation and q is the spatial orientation of
the sensor represented by a unit quaternion. A unit quaternion
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represents a rotation around the vector v through angle 6.
Whenever needed, we convert pose x into the Euclidean
transformation matrix
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where for quaternion q the expression R(q) € SO(3) is the
rotation matrix

R(q) =
-3 +d+d—q; 2(q2q4 + q143)
22(¢I11124 - l]22113)2
q7 +495 — 93 — g}
“)

22(q3q42— q12q2) ,
—qy +495 —q3 +4q;
2(q293 + q194)

2(q192 + q394)
2(q193 — q2q4)

A point in projective space is represented by ho-
mogeneous coordinates p = (p1,po,p3,p4) € P3,
where the corresponding Euclidean point for py # 0 is
(p1/pa, p2/pa,p3/pa)’ € R3. A point p, in the local sensor
frame is moved into the global frame by left multiplication
with the Euclidean transformation matrix

Pg = Tga:p:v- (5)

Conversely, a global point is moved into the local frame
Pz = T;Il pg using the inverse transformation.

We represent a plane as a homogeneous vector w =
(my,me,m3,m4) € P3 in projective space. (Hartley and
Zisserman [5] provide an excellent introduction to projective
geometry and the homogeneous representation of planes used



in this work.) A point p = (p1, p2, p3,p4) | € P2 lies on the
plane iff
m1p1 + Top2 + W3p3 + maps = 0, (6)
or short w"p = 0. Mapping into R? for py # 0 yields the
more familiar plane equation
n'p™* =d, ()
where p™V* = (p”,p¥,p*) " = (p1/p4, p2/P1,p3/ps)"
T
n— (7T17 2, 7T3) (8)
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the normal vector of the plane, and
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its distance from the origin. The homogeneous plane repre-
sentation is transformed from local to global frame according
to the inverse transpose of the corresponding point transform

mg =T, m,. (10)

B. Minimal Representation

The homogeneous plane representation is over-
parametrized and therefore requires some special care
during optimization—we will apply a similar solution as is
commonly used for quaternions, and therefore start with a
review of the quaternion case.

The unit sphere S° = {q € R* : ||q] = 1} can
be identified with the set of unit quaternions, which form
a 3-dimensional Lie group under quaternion multiplication
(Hamilton product)
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They are related to the set of 3D rotation matrices SO(3) as
follows: There is a two-to-one covering map from S° onto
SO(3): antipodal points in S® are identified because —q
represents the same rotation as q. The matrix Lie algebra of
SO(3) is s0(3), the set of skew-symmetric matrices

0 —Ws w2
W], = ws 0 —w (12)
—W w1 0
for an incremental rotation w = (wi,ws,ws)’, see Hall

[4]. This Lie algebra forms a tangent space R3 of SO(3)
at the identity. Because the elements have three parameters,
they provide a minimal local representation of rotations. The
exponential map

exp(w],) = T+ sinjwl] [&], + (1= cos w]) (@6 I)

(13)
is also known as Rodrigues’ formula, where w = w/ ||w||
and ||w|| are the axis and angle of rotation, respectively. The
exponential map allows updating an existing rotation R by
an increment w

R’ = exp([w], )R. (14)

Similarly, the elements of the Lie algebra su(2) of S can
be identified with the tangent space R3 of S3 at the identity.
We use the mapping of R? to S from Grassia [3]

exp (w) = ( 3sinc (1% lwl|) w )
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that coincides with the axis/angle representation above.
Here, sinc is the cardinal sine function. Note that
exp((0,0,0)7) = (0,0,0,1)" is the identity of S® as
expected. As for every minimal representation of rotations
there are singularities, here at multiples of 27, but, unlike for
Euler angles, they can be avoided by forcing w to fall into the
range (—, 7], while still allowing for all possible rotations.
An existing quaternion q is updated by an increment w using
quaternion multiplication

q = exp(w)q. (16)

Now we are ready to take on the overparametrization in
the plane representation. Note that both homogeneous and
non-homogeneous (normal and distance) representations are
overparametrized, because there are only three degrees of
freedom in a plane: its orientation, which can be specified
by two angles « and (3, and its orthogonal distance d from the
origin. But why not just use these three parameters («, 3, d)
as a minimal representation? They are indeed sufficient to
specify any plane, but there are singularities, not unlike those
for Euler angles, that cause problems when encountered
during optimization. And why is the overparametrization
problematic? The information matrix becomes rank-deficient
and cannot be inverted as needed for Gauss-Newton type op-
timization. One solution is regularization, as provided by the
Levenberg-Marquardt algorithm. However, slow convergence
can be expected because there are directions in which the cost
function is flat so that an infinite number of solutions exist,
forcing the algorithm toward linear convergence speed of the
gradient descent method instead of the quadratic convergence
of Gauss-Newton. Furthermore, overparametrization does not
allow the use of trust-region methods such as Powell’s
Dog Leg or incremental inference with methods such as
incremental smoothing and mapping (iSAM) [7, 13].

We can find a minimal representation by restricting the
ambiguity in the homogeneous representation. The homoge-
neous plane representation is not unique: all A7 represent the
same plane for A\ € R\0, which defines an equivalence class.
We identify unique representatives by normalizing the vector
7 to lie on the unit sphere of R* as 7’ = =/ ||| € S3.
The vector (0,0,0,1) " represents the north pole of the unit
sphere (think of a sphere in R?) and corresponds to the plane
at infinity [5]. The vector (1,0,0,0)T is a point on the
equator that represents a plane through the origin. In fact,
(w4, mh,74,0)T contains all the planes through the origin,
where (7}, 75, 74) T describes the normal vector. Leaving the
equator, for increasing 7j we obtain planes that are further
from the origin with distance given by (9). Equivalently,
negative 7 lead to planes with the normal pointing away
from the origin—remembering that S® is a double cover of
SO(3), an equivalent plane is found by negating both the



normal and the distance. If we want a unique representation
we can restrict 7’ to lie on the upper hemisphere, i.e. 7 > 0.
Similarly, for the unit circle/sphere at 74 = 0 opposite sites
are also identified.

How do we restrict the optimization to remain on the
unit sphere? One option is to add a Lagrangian multiplier
to enforce unit norm, adding an additional parameter to the
optimization as well as a nontrivial cost term. Instead of the
minimum of three parameters, we now need five parameters
for each plane, considerably increasing the size of the state
space, while also adding to the computational cost with the
additional constraint. A better solution is to use a minimal
representation to update a plane during optimization. Recall-
ing the unit quaternion case discussed earlier for rotations,
we realize that both can be identified with S3. We will simply
treat the normalized homogeneous plane parametrization as
a quaternion, and use the exponential map to update planes
during optimization.

We will later also need the inverse of the exponential map,
the so-called log map, that maps an element of S referenced
to the identity (0,0,0,1) T into the tangent space R3

2 cos™H(qu
w = log(q) = 20 _(m)g (17
a0l
which is  useful for measuring the distance

log(q(w)~'q(n’)) between two planes m and =’ in
the tangent space.

C. SLAM Formulation

We formulate the planar mapping problem as a least-
squares optimization, estimating the sensor poses xg, . .., Z;
and planes 7y, ..., 7, given the plane measurements.

We use a factor graph to represent the estimation problem
as a graphical model [8]. Factor graphs of three SLAM
variants are shown in Fig. 2. Planar SLAM is similar to
structure from motion, but instead of point locations we
estimate the parameters of infinite planes. And similar to
the pose graph SLAM formulation, we may include any
available odometry constraints, e.g. from a robot platform or
from inertial sensors. It is also possible to convert the planar
constraints between frames into constraints within a pose
graph formulation. However, explicit modeling is preferable
for planar mapping and is also feasible in real-time because
the number of planes visible per image is typically small.

Formally, a factor graph is a bipartite graph G = (F, 0, )
with two node types: factor nodes f; € F that relate to our
measurements and variable nodes 0; € © that represent the
poses and planes to be estimated. An edge e;; € £ connects
a factor node with a variable node. A factor graph G defines
the factorization of a function

F©) =] (00, (18)

7
where dependence relationships are encoded by the edges
e;j: each factor f; is a function of the variables in ©;. Our
goal is to find the variable assignment ©* that maximizes

(c) Planar SLAM

Fig. 2: Factor graph representation for three SLAM variants. Variable nodes
include poses x, point features [ and plane features 7. Factor nodes relate
to point measurements m, plane measurements ¢, odometry measurements
u, loop closures o, and the prior p on the first pose. While plane constraints
between pairwise frames could be converted into a pose graph formulation,
for planar SLAM, we choose to explicitly model the infinite planes,
similar to the point features in structure from motion. Additional sensor
information such as odometry can be added similar to the common pose
graph formulation of SLAM. Note that at least three general planes have
to be observed per pose for (c) to be fully constrained, and similarly the
example in (a) is underconstrained as shown.

the factorization (18)

©* = argmax [ [ £:(©), (19)
(] i

where ©; = {6;} is the set of variables 6; involved in the
factor f;. For Gaussian measurement models

1
fen xom (<3 Im©) - =1 ). o

the factored objective function to maximize (19) is equivalent
to the nonlinear least-squares problem

1
argmin (— log f(©)) = argmin - Z 1h:(©;) — zl||22 ,
© o 24 '

2n
where h;(0;) is a measurement prediction function and
2 a measurement, and [ly||3, := y”% 'y is the squared

Mahalanobis distance with covariance matrix .

D. Plane Measurement Model

A measurement of a plane is given by its normal and
distance from the local sensor frame, and an associated
measurement uncertainty. We model the uncertainty of the

measurement of the plane 7 from pose x
Ty = Tg_ITﬂ' dv, v~N(0,X) (22)

by zero-mean Gaussian noise v with 3 X 3 covariance .
Then, the probability of a plane estimate 7+ and a pose



Fig. 3: Relative formulation for plane measurements, based on Fig. 2c.
Planes are expressed in the local coordinate frame of a base pose, for
example the first pose from which they have been observed. Subsequent
plane observations result in ternary factors that also connect to the respective
base pose (new connections shown in red).

estimate & given an actual measurement 7, is given by the
normal distribution
. 1 . .
p(&, #|7,) = exp (-2 [7(Tys, 7) emé).
(23)
The operator © calculates the difference in the tangent space
by applying the log map. The corresponding cost function
for the least-squares formulation is simply the quadratic term
from the exponent

(2m)° 5|

Con (8, 7) = [[I(Tys, 7) © 7|5
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Taking the difference in tangent space, we treat planes as
quaternions, calculate the difference by quaternion multipli-
cation with one side inverted, and finally apply the log map.

E. Relative Formulation

We propose a relative formulation for plane measurements.
Planes are expressed relative to the first pose that observed
them, changing the cost function (24) to first express the
observing pose in the frame of the base pose

2
Cana (875, 0) = ||P(T, Ty, ) © 7|

(25)

In the factor graph, this results in ternary factors that ad-
ditionally connect to the base pose, see Fig. 3. Similar to
our relative formulation for homogeneous point features in
McDonald et al. [12], this allows for faster convergence.
Intuitively, when mapping a large building, loop closures
might cause a complete room to move, but the relative
configuration of planes and poses inside the room will
likely not be affected. Keeping planes anchored relative to
poses automatically moves the planes along with any global
changes that affect the poses.

Extraction of plane measurements from point data is
described by Weingarten and Siegwart [19]. Forstner [1]
provides a theoretical account for how the probabilistic
uncertainty of homogeneous entities (including planes) is
correctly dealt with in the context of least squares estimation.

E Solution

Solving the nonlinear least-squares problem typically in-
volves repeated linearization. For nonlinear measurement
functions h; in (20), nonlinear optimization methods such
as Gauss-Newton iterations or the Levenberg-Marquardt al-
gorithm solve a succession of linear approximations to (21)

TABLE I: Batch optimization, comparing relative and absolute formulation
as well as overparametrization and our minimal representation for a simu-
lated sequence (76 poses, 31 planes, 450 plane measurements).

Powell’s
Dog-Leg

Gauss-
Newton

Levenberg-
Marquardt
76 it (475ms)
15 it (208ms)
58 it (340ms)
5 it (106ms)

Overpar., absolute
Overpar., relative
Minimal, absolute
Minimal, relative

not possible

not possible
diverged

5 it (105ms)

not possible
not possible
17 it (126ms)
7 it (129ms)

in order to approach the minimum. At each iteration of the
nonlinear solver, we linearize around the current estimate ©
to get a new, linear least-squares problem in A

arg min (—log f(A)) = argmin ||AA — b||?, (26)
A A

where A € R™*" is the measurement Jacobian consisting

of m measurement rows, and A is an n-dimensional vector.

Note that the covariances Y; have been absorbed into the

corresponding block rows of A, making use of

2

1A% = ATSIA = ATs $n-3A = HE*%AH .

27
Once A is found, the new estimate is given by ©@G A, which
is then used as linearization point in the next iteration of
the nonlinear optimization. The operator @ is often simple
addition, but for overparametrized representations such as
quaternions for 3D orientations or our homogeneous plane
representations, an exponential map is used instead.

The minimum of the linear system AA — b is obtained
by Cholesky or QR matrix factorization. By setting the
derivative in A to zero we obtain the normal equations
ATAA = ATb. Cholesky factorization yields ATA =
RTR, and a forward and backsubstitution on RTy = ATb
and RA =y first recovers y, then the actual solution, the
update A. Alternatively we can skip the normal equations
and apply QR factorization directly to A, yielding RA = d,
which is solved by backsubstitution. Note that () is not
explicitly formed; instead b is modified during factorization
to obtain d, see [7] for details.

When considering a sequence of measurements, as is
typical for SLAM, it is possible to obtain a more efficient
solution by updating the previous solution with the new
measurements. iISAM [7] appends the new linearized mea-
surement rows to the previous factorization R and applies
Givens rotations to again form an upper triangular matrix.
A fully nonlinear incremental algorithm is also possible by
exploiting the connection between sparse linear algebra and
probabilistic graphical models, see iISAM2 [8] for details.

IV. EVALUATION

First we show the advantages of our minimal represen-
tation as well as the relative plane formulation. We use a
simulated dataset of 76 poses distributed in 1m steps along
a straight line with 31 random planes yielding 450 plane
measurements based on a maximum sensor range of Hm.
We simulate the measurements from the ground truth and
add Gaussian noise with standard deviations of 0.1m in
translation, 0.01rad in orientation and 0.005 on the plane
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Fig. 4: Cumulative computation time for GN compared to incremental
solution by iSAM, using our minimal representation and relative formulation
for a simulated sequence (343 poses, 28 planes, 2736 plane measurements).

measurements. In Table I we compare batch optimization
using Gauss-Newton (GN), Levenberg-Marquardt (LM) and
Powell’s Dog-Leg (PDL). Neither GN nor PDL can handle
overparametrization, because the information matrix is rank
deficient and cannot be inverted. Intuitively, the cost function
locally is not bowl shaped with a single minimum, but
resembles a valley of infinitely many minima. While LM
does find the correct solution, its regularization masks the
underlying problem at the cost of convergence speed. In
contrast, the minimal representation also allows use of GN
and PDL. Generally, PDL has a slightly higher cost, but is
more stable, as can be seen by comparing with the second
to last row, where GN diverges. In summary, our minimal
representation combined with the relative formulation out-
performs the alternatives.

Second, we demonstrate the performance advantage of
incremental optimization enabled by our minimal represen-
tation. In SLAM, measurements arrive sequentially, and at
every time step a solution is calculated. Exploiting this
sequential nature, an incremental solver such as iSAM [7]
reuses previous calculations to significantly lower compu-
tational cost compared to performing a batch solution at
every step. Using the same sensor range and artificial noise
as in the previous experiment, we have simulated a longer
random robot trajectory through a Manhattan world with
random planes. Fig. 4 compares per step cumulative timing
for batch Gauss-Newton and the incremental solver iSAM.
The results indicate that incremental optimization is possible
with our minimal representation, which is not true in the
overparametrized case. The plot further confirms that incre-
mental optimization significantly reduces computational cost,
which is consistent with our prior results [7] for landmark-
based and pose graph SLAM.

V. EXPERIMENTAL RESULTS

We present experimental results with a hand-held RGB-
D sensor. We use the ASUS Xtion Pro Live sensor at
640 x 480 resolution. Experiments are run on a laptop
computer with 17-3920XM 2.9GHz CPU. No GPU is used.
The implementation is multi-threaded, with separate threads
for plane detection, graph optimization, and visualization.
The system runs at 15 frames per second.

Plane segmentation follows Holz et al. [6] with some
modifications. The top row in Fig. 5 shows the raw sensor
data (color and depth) for a single frame. We only use
depth information for the segmentation. We start by find-
ing surface normals for each available depth measurement

Fig. 5: Plane segmentation. (top) Raw image and depth image. (bottom left)
Voxelization of normal vectors on the unit sphere with clusters indicated by
different colors. (bottom right) Final plane segmentation after additional
clustering for each normal direction along distance from origin.

by smoothing over neighboring measurements. We use the
PCL 1.7 implementation of IntegrallmageNormalEstimation
with depthChangeFactor=0.01, smoothingSize=20 and depth
dependent smoothing enabled. We then cluster the points
in normal space (surface of the unit sphere S? in R3) by
computing a three dimensional voxel grid (cube of side
length 20) and merging neighboring voxels that exceed a
threshold (1500) for the number of binned normals. For each
cluster, we then perform clustering in depth by discretizing
in one dimension (0.05m steps) and merging of neighboring
cells that exceed a second threshold (1000). Finally, we
fit planes to each cluster of points using the eigenvector
corresponding to the smallest eigenvalue as normal direction
and filter out points that lie more than 0.02m from the plane.

We use a simple approach to data association. The opti-
mized previous pose is used to initialize the new pose. Planes
detected in the current frame are matched against all planes
in the map, selecting the best match for each plane within
a given threshold of both angle (8°) and distance (0.1m).
While not sufficient in general, this approach is suitable for
simple environments such as those presented here.

Results from walking up a flight of stairs with the RGB-D
sensor are shown in Fig. 1. For a single frame, the top row
shows the raw color and depth image as well as the detected
planes, where each plane is assigned a random color. The
center row shows the final 3D model of the stairs, both as
randomly colored planes and as point cloud with color taken
from the input frames. In the bottom row, the closeups of
the 3D model from front and side show the quality of the
reconstruction. Statistics and timing for this sequence are
provided in Table II. Parallelization allows running at 15
frames per second with about 1.5 frames of lag.

Results from an office environment are shown in Fig. 6.
Even though the floor has been observed in two disconnected
components left and right of the table, data association has



TABLE II: Statistics and per frame timing for the stairs sequence in Fig. 1.

[ Length of sequence [ 58s |
Number of planes 81
Number of poses 868
Number of plane observations 5,934
Time for normal computation 34ms
Time for plane segmentation 33ms
Time for data association < 1lms
Time for graph optimization 24ms

Fig. 6: Office sequence. (left) The 3D model with a random color assigned
to each plane. (right) The 3D model with color from the input images.

combined those into a single infinite plane. Similarly, the two
disconnected components of the ceiling have been merged.

VI. CONCLUSION

We have presented a novel minimal representation for
planar features that, unlike previous formulations, is suitable
for least-squares optimization with Gauss-Newton, Pow-
ell’s Dog-Leg and iSAM. Our minimal representation is
based on a mapping from the standard homogeneous plane
parametrization to a quaternion. Using simulated data we
have demonstrated that our minimal representation allows
for a faster and more stable optimization. We have also
introduced a relative formulation for planes and shown that
it improves convergence properties. We have presented real-
time experimental results for a simple planar 3D mapping
system using a hand-held RGB-D camera.

Our planar mapping system is suitable to demonstrate
the planar mapping concept but can be improved in many
aspects. Plane detection could be sped up by prediction, or,
to also work at lower frame rates, integration of inertial mea-
surements. Data association will need to take into account
the boundaries of the physical planar surfaces to successfully
work over larger environments. And a standard keyframe
approach could further reduce computational cost. While the
plane optimization provides an efficient formulation of the
estimation problem, its expressiveness in terms of dense 3D
models is limited when compared to more general volumetric
solutions [20]. A promising approach may be to locally use
TSDF methods or surfels, anchored relative to the planes, so
that they automatically adapt to any large-scale adjustments
of the plane graph.

While presented in isolation here, the planar features
can be combined with other geometric entities to handle
frames with insufficient planar constraints. Examples include
point features using a similar homogeneous parametrization
introduced in our prior work [11, 12], or line features using

Pliicker coordinates. Beyond homogeneous 4-vectors, finding
a minimal representation for objects of other dimensions can
be generalized even in absence of a suitable Lie algebra, as
described by Forstner [1]. And even for the homogeneous
4-vector, there are alternative minimal representations, for
example based on Householder matrices as described for
general homogeneous entities in the appendix of [5].
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