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SUMMARY

Incremental smoothing and mapping (iSAM) is presented, a novel approach to the si-

multaneous localization and mapping (SLAM) problem. SLAM is the problem of estimating

an observer’s position from local measurements only, while creating a consistent map of the

environment. The problem is difficult because even very small errors in the local measure-

ments accumulate over time and lead to large global errors. While SLAM is a key capability

in mobile robotics today, the problem has a long history in land surveying. And the under-

lying estimation problem was already solved by Gauss in 1809 [56, 57] for computing the

orbits of asteroids.

iSAM provides an exact and efficient solution to the SLAM estimation problem while also

addressing data association. For the estimation problem, iSAM provides an exact solution

by performing smoothing, which keeps all previous poses as part of the estimation problem,

and therefore avoids linearization errors. iSAM uses methods from sparse linear algebra

to provide an efficient incremental solution. In particular, iSAM deploys a direct equation

solver based on QR matrix factorization of the naturally sparse smoothing information

matrix. Instead of refactoring the matrix whenever new measurements arrive, only the

entries of the factor matrix that actually change are calculated. iSAM is efficient even

for robot trajectories with many loops as it performs periodic variable reordering to avoid

unnecessary fill-in in the factor matrix. For the data association problem, I present state

of the art data association techniques in the context of iSAM and present an efficient

algorithm to obtain the necessary estimation uncertainties in real-time based on the factored

information matrix. I systematically evaluate the components of iSAM as well as the overall

algorithm using various simulated and real-world datasets.

xvii
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Chapter I

INTRODUCTION

(a) iRobot Roomba (b) Mars Exploration Rover (c) Honda Asimo

Figure 1: Examples of mobile robot applications that require or would benefit from real-
time SLAM.

One of the main challenges for robots as they move out of factories is to find their

way around less controlled environments to accomplish their assigned task. For many

applications, such as service and entertainment robots (see Figure 1), it is infeasible to

generate a model of the environment in advance. The key question then is how to integrate

the robot’s own local sensor data into a consistent “picture” of its environment. This is

known as the problem of simultaneous localization and mapping (SLAM) [126, 91, 130].

A variety of SLAM algorithms have been presented, however, current solutions still have

many shortcomings when it comes to practical application in large-scale environments. The

three key issues are: 1) consistency, 2) computational complexity and 3) data association.

Current algorithms typically only address one or two of these issues. In this work I present a

novel approach to SLAM called incremental smoothing and mapping (iSAM) that addresses

all of them at the same time.
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1.1 Thesis

My thesis in this dissertation is the following:

Incremental smoothing and mapping (iSAM) provides a superior alternative

to previous SLAM approaches that is exact, is efficient, supports data association

by providing access to the exact marginal covariances, and is generally applicable

to a wide range of SLAM problems.

I split this thesis into four claims that correspond to the next four chapters of my disserta-

tion. The goal of my research is to create a SLAM system called iSAM with the following

properties:

1. iSAM is exact: No approximations are necessary and consistency is preserved even

under the presence of nonlinear measurements.

2. iSAM is efficient: Incoming data are incorporated incrementally, so that the resulting

algorithm is suitable for real-time application.

3. iSAM supports data association: Efficient access is provided to the exact marginal

covariances that are needed for data association.

4. iSAM is general: iSAM works on simulated and real-world data ranging from laser-

based landmark and pose-only applications to visual SLAM.

In the remainder of this chapter, I lay down the reasoning that leads to this thesis.

1.2 SAM: Smoothing and Mapping

Simultaneous localization and mapping (SLAM) is essential for mobile robots. Based on

local sensor data only, a robot easily gets stuck in a cul-de-sac. In order to find an efficient

way out of such a situation, the robot needs a map of its environment. However, in many

settings it is impossible or simply too expensive to obtain such a map before deploying

the robot. Therefore the robot itself needs to generate such a map from local sensor data.

However, integrating noisy local sensor data into a consistent map is difficult because the

2



Figure 2: An example of 3D laser-based mapping [76] without SLAM. Note that the 3D
model of the hallway curves to the left because of accumulated error from robot odometry.

accumulation of small local errors leads to larger global inconsistencies, see Figure 2 for

an example. Creating a consistent map also requires localization in that map, and the

combination of both is exactly what SLAM stands for.

Smoothing provides a superior solution to SLAM when compared to filtering methods.

Nonlinear measurements are almost always encountered in mobile robot applications, typ-

ically through robot orientation or through bearing to landmarks. However, as filtering

marginalizes out some variables, the linearization points of measurement equations con-

nected to those variables become fixed and cannot be changed in the future. As a conse-

quence linearization errors get introduced into the estimation process and eventually lead

to catastrophic failure. Smoothing approaches in contrast can relinearize measurement

equations at any time as they avoid marginalization and retain all variables. Therefore,

smoothing provides qualitatively better solutions than filtering in the context of SLAM.

Smoothing is efficient as the underlying smoothing information matrix is sparse and

remains sparse. The SLAM problem is naturally sparse, as it encodes the constraints

between variables that are obtained by measurements. As a measurement typically connects

only two variables, such as two robot poses or a robot pose and a landmark location, the

resulting graphical structure of the problem is always sparse. Equivalently, the information

matrix, which encodes this graph structure, is also sparse. This is in contrast to filtering,

which yields constraints between all variables due to the marginalization process. Even

though filtering only has to deal with a subset of the variables involved in the smoothing

3



process, for any non-trivial problem the number of entries in the dense filtering information

matrix still grows much faster than for the corresponding sparse smoothing information

matrix. Taking advantage of this sparse structure makes efficient solutions to smoothing

possible.

1.3 iSAM: Incremental Smoothing and Mapping

In order to be useful for the operation of a mobile robot, SLAM needs to perform in real-

time. Offline calculations are not an option for a mobile robot, as this implies stopping the

robot until calculations finish. As the map obtained by a SLAM algorithm is directly used

for robot navigation and planning, it is essential that an estimate based on all sensor data

gathered until the current time is always available. Therefore, any SLAM algorithm has to

perform in real-time in order to be useful for application on a mobile robot.

A real-time SLAM algorithm needs to incorporate new data incrementally, rather than

operate in batch mode. New measurements for SLAM typically only affect a small part of

the map. For example, receiving more data from inside an office of a large building generally

does not have any influence on the mapping process for distant parts of the building. But

a batch algorithm also recalculates the parts of the map that are unaffected. For real-time

applications this is not an option, as it performs unnecessary computations that restrict

the applicability of the algorithm to smaller environments. It is therefore essential that the

SLAM algorithm incorporates new measurements incrementally, by building on previous

calculations rather than starting from scratch after each step.

1.4 Data Association

Data association is an essential component of SLAM. When returning to a previously visited

area of the environment it becomes necessary to identify this situation and correct any

accumulated error in the robot’s pose estimate. Such loop closing requires establishing

correspondences between current and earlier observations, where earlier observations are

summarized in the map. Without loop closing, errors will continue to accumulate until the

map becomes practically useless. See Figure 3 for an example of a consistent map that

required multiple loop closings. Data association is therefore an integral part of the SLAM

4



Figure 3: Generating a consistent map such as the one shown here requires a solution to
the data association problem. For more details about this map see Section 3.5.2.

problem that cannot be ignored.

Access to the underlying uncertainties of the estimation process is needed for data as-

sociation. Establishing correspondences requires deciding if a specific observation refers to

a previously observed landmark or arises from a new landmark. In order to reduce both

ambiguity and complexity, the search has to be restricted to a region around the estimated

landmark location. However, the size and shape of this region depends on the estimation

uncertainty underlying SLAM. Therefore, to perform an efficient search without discarding

potential matches, knowledge of the exact uncertainties is essential for data association.

Identifying informative measurements is an important part of data association. Even if

hundreds of measurements are available, using all of them will not necessarily improve the

quality of the result. To the contrary, the large number of constraints might make it difficult

to obtain a solution in real-time as they make the estimation problem more expensive to

solve. Identifying which measurements significantly contribute to the accuracy of the result

is therefore an important part of data association.

5



Figure 4: 3D maps of outdoor environments generated by visual SLAM; see Chapter 5 for
more details.

1.5 General Applications including Visual SLAM

A SLAM algorithm needs to work for a wide range of SLAM settings. Different applications

of SLAM include planar motion with three degrees of freedom as well as full spatial motion

with six degrees of freedom. The application can require mapping 2D or 3D point landmarks,

as well as more general objects such as lines or line segments. Furthermore, instead of

landmarks, pose constraints might be used. And a variety of sensors with different noise

characteristics can provide the data, from sonar over laser-based range sensors to cameras.

As the underlying problems of estimation and data association are always the same, a

successful solution to SLAM is also expected to work under any such setting.

Unstructured outdoor environments in combination with vision sensors provide a partic-

ularly challenging setup for evaluation of any SLAM system. Outdoor environments, such

as the ones reconstructed in Figure 4, are challenging because they are unstructured and

require modeling six degrees of freedom, which include multiple angular measurements that

introduce significant nonlinearities. In combination with vision sensors the problem gets

complicated further by the resulting nonlinear bearing measurements and the high depth

uncertainty. Such a setting therefore provides a challenging test for any SLAM algorithm.

6



1.6 Organization

The remainder of this dissertation is organized as follows. Related work is discussed sep-

arately in each of the four main chapters. Chapter 2 presents our batch algorithm for

smoothing and mapping (SAM) that provides an exact solution by avoiding any approxi-

mations as well as dealing correctly with nonlinear measurements. In Chapter 3 I present

the incremental SAM (iSAM) algorithm that provides an efficient solution as required for

real-time applications. Chapter 4 deals with the problem of data association and shows how

iSAM provides the necessary information. In Chapter 5 I present an application of iSAM

to the problem of visual SLAM. Chapter 6 concludes this dissertation and discusses future

work.
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Chapter II

SAM: SMOOTHING AND MAPPING

In this chapter I review the formulation of the SLAM problem in the context of smoothing,

following Dellaert and Kaess [32], but using QR instead of Cholesky matrix factorization.

Formulating SLAM in a smoothing context adds the complete trajectory into the estimation

problem, thereby simplifying its solution. While this seems counter-intuitive at first, because

more variables are added to the estimation problem, the simplification arises from the

fact that the smoothing information matrix is naturally sparse. In contrast, in filtering

approaches the information matrix becomes dense when marginalizing out robot poses. As

a consequence of applying smoothing, we are able to provide an exact, yet efficient batch

solution based on a sparse matrix factorization of the smoothing information matrix in

combination with back-substitution. We call this matrix factor the square root information

matrix , based on earlier work on square root information filtering (SRIF) and smoothing

(SRIS), as recounted in [8, 96].

I start with the probabilistic model underlying the smoothing approach to SLAM. I then

present an equivalent least-squares formulation of the smoothing problem. Linearization of

the measurement functions leads to a standard linear least-squares problem. I continue

with an efficient batch solution for the linear least-squares problem based on QR matrix

factorization, and finally present results from applying SAM to a multi-camera dataset.

2.1 A Probabilistic Model for SLAM

I formulate the SLAM problem in terms of the belief network model shown in Figure 5. I

denote the robot states by X = {xi} with i ∈ 0 . . .M , the landmarks by L = {lj} with

j ∈ 1 . . . N , the control inputs by U = {ui} for i ∈ 1 . . .M and finally the landmark

measurements by Z = {zk} with k ∈ 1 . . .K. The joint probability of all variables and
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Figure 5: Bayesian belief network representation of the SLAM problem. Filled nodes
represent variables: xi is the state of the robot at time i, lj the location of landmark j.
The remaining nodes are measurements: ui is the control input at time i and zk the kth

landmark measurement.

measurements is given by

P (X,L,U, Z) ∝ P (x0)
M∏
i=1

P (xi|xi−1,ui)
K∏
k=1

P (zk|xik , ljk) (1)

where P (x0) is a prior on the initial state, P (xi|xi−1,ui) is the motion model, parametrized

by the control input ui, and P (zk|xik , ljk) is the landmark measurement model. Initially,

I assume known correspondences (ik, jk) for each measurement zk. The problem of estab-

lishing correspondences, which is also called data association, is deferred to Chapter 4.

I assume Gaussian measurement models, as is standard in the SLAM literature [131].

The process model

xi = fi(xi−1,ui) + wi (2)

describes the odometry sensor or scan-matching process, where wi is normally distributed

zero-mean process noise with covariance matrix Λi

P (xi|xi−1,ui) ∝ exp−1
2
||fi(xi−1,ui)− xi||2Λi (3)

where I use the notation ‖e‖2Σ = eTΣ−1e for the squared Mahalanobis distance given a

covariance matrix Σ. The Gaussian measurement equation

zk = hk(xik , ljk) + vk (4)
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models the robot’s landmark sensors, where vk is normally distributed zero-mean measure-

ment noise with covariance Γk

P (zk|xik , ljk) ∝ exp−1
2
||hk(xik , ljk)− zk||2Γk . (5)

2.2 SLAM as a Least Squares Problem

To obtain an optimal estimate for the set of unknowns given all available measurements, I

convert the SLAM problem into an equivalent least squares formulation based on a maxi-

mum a posteriori (MAP) estimate. As we perform smoothing rather than filtering, we are

interested in the MAP estimate for the entire trajectory X and the map of landmarks L,

given the control inputs U and the landmark measurements Z. The MAP estimate X∗, L∗

for trajectory and map is obtained by minimizing the negative log of the joint probability

from (1)

X∗, L∗ = arg max
X,L

P (X,L,U, Z) (6)

= arg min
X,L
− logP (X,L,U, Z).

Combined with the process and measurement models, this leads to the following nonlinear

least squares problem

X∗, L∗ = arg min
X,L

{
M∑
i=1

‖fi(xi−1,ui)− xi‖2Λi +
K∑
k=1

‖hk(xik , ljk)− zk‖2Γk

}
. (7)

Note that I have dropped the prior P (x0) on the first pose for simplicity.

If the process models fi and measurement functions hk are nonlinear and a good lin-

earization point is not available, nonlinear optimization methods are used, such as Gauss-

Newton or the Levenberg-Marquardt algorithm, which solve a succession of linear approx-

imations to (7) to approach the minimum [33]. This is similar to the extended Kalman

filter approach to SLAM as pioneered by [128], but allows for iterating multiple times to

convergence, thus avoiding the problems arising from wrong linearization points.

2.3 Linearization

I review how to linearize the measurement functions and collect all components of the

nonlinear least squares objective function (7) into one general least squares formulation.
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We linearize the measurement functions in (7) by Taylor expansion, assuming that either a

good linearization point is available or that we are working on one iteration of a nonlinear

optimization method. In either case, the first-order linearization of the process term in (7)

is given by

fi(xi−1,ui)− xi (8)

≈
{
fi(x0

i−1,ui) + F i−1
i δxi−1

}
−
{
x0
i + δxi

}
=

{
F i−1
i δxi−1 − δxi

}
− ai

where F i−1
i is the Jacobian of the process model fi(.) at the linearization point x0

i−1, as

defined by

F i−1
i :=

∂fi(xi−1,ui)
∂xi−1

∣∣∣∣
x0
i−1

(9)

and ai := x0
i − fi(x0

i−1,ui) is the odometry prediction error (note that ui here is given and

hence constant). The first-order linearizations of the measurement term in (7) are obtained

similarly,

hk(xik , ljk)− zk (10)

≈
{
hk(x0

ik
, l0jk) +H ik

k δxik + J jkk δljk
}
− zk

=
{
H ik
k δxik + J jkk δljk

}
− ck

where H ik
k and J jkk are respectively the Jacobians of the measurement function hk(.) with

respect to a change in xik and ljk evaluated at the linearization point (x0
ik
, l0jk)

H ik
k :=

∂hk(xik , ljk)
∂xik

∣∣∣∣
(x0
ik
,l0jk

)

(11)

J jkk :=
∂hk(xik , ljk)

∂ljk

∣∣∣∣
(x0
ik
,l0jk

)

(12)

and ck := zk − hk(x0
ik
, l0jk) is the measurement prediction error.

Using the linearized process and measurement models (8) and (10), respectively, (7)

becomes

δθ∗ = arg min
δθ

{
M∑
i=1

∥∥F i−1
i δxi−1 +Giiδxi − ai

∥∥2

Λi
(13)

+
K∑
k=1

∥∥∥H ik
k δxik + J jkk δljk − ck

∥∥∥2

Γk

}
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where we combined the pose and landmark variables into a single vector θ ∈ Rn, where n =

Mdx +Ndl with dx and dl the dimensions of the pose and landmark variables respectively.

That is, we obtain a linear least squares problem in δθ that needs to be solved efficiently.

To avoid treating δxi in a special way, we introduce the matrix Gii = −Idx×dx .

By a simple change of variables we can drop the covariance matrices Λi and Γk. With

Σ−1/2 the matrix square root of Σ, we rewrite the Mahalanobis norm as follows

‖e‖2Σ := eTΣ−1e = (Σ−T/2e)T (Σ−T/2e) =
∥∥∥Σ−T/2e

∥∥∥2
(14)

that is, we can always eliminate Λi from (13) by pre-multiplying F i−1
i , Gii, and ai in each

term with Λ−T/2i , and similarly eliminate Γk from the measurement terms. For scalar mea-

surements this simply means dividing each term by the measurement standard deviation.

Next I assume that this has been done and drop the Mahalanobis notation.

Finally, after collecting the Jacobian matrices into one large but sparse measurement

Jacobian A ∈ Rm×n with m measurement rows, and the vectors ai and ck into one right-

hand side vector b ∈ Rm, we obtain the following standard least squares problem

θ∗ = arg min
θ
‖Aθ − b‖2 (15)

where I dropped the δ· notation for simplicity.

Such sparse least squares systems are typically converted into an ordinary linear equa-

tion system by setting the derivative of ‖Aθ − b‖2 to 0, resulting in the so called normal

equations ATAθ = AT b. This equation system can be solved by Cholesky decomposition of

ATA. I use an alternative approach by applying QR factorization directly to the measure-

ment Jacobian, which will be beneficial for incremental factorization in Chapter 3. Also,

in contrast to Cholesky factorization this avoids having to calculate the information matrix

ATA with the associated squaring of the matrix condition number.

2.4 Solving by QR Matrix Factorization

I apply the standard QR matrix factorization to the measurement Jacobian A to solve the

least squares problem (15). The QR factorization of the measurement Jacobian A is defined
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as

A := Q

 R

0

 (16)

where R ∈ Rn×n is the upper triangular square root information matrix (note that the

information matrix is given by RTR = ATA) and Q ∈ Rm×m is an orthogonal matrix. I

apply this factorization to the least squares problem (15):

‖Aθ − b‖2 =

∥∥∥∥∥∥∥Q
 R

0

θ − b

∥∥∥∥∥∥∥
2

(17)

=

∥∥∥∥∥∥∥QTQ
 R

0

θ −QTb

∥∥∥∥∥∥∥
2

=

∥∥∥∥∥∥∥
 R

0

θ −

 d

e


∥∥∥∥∥∥∥

2

= ‖Rθ − d‖2 + ‖e‖2

where I define [d, e]T := QTb with d ∈ Rn and e ∈ Rm−n. Equation (17) becomes minimal

if and only if Rθ = d, leaving the second term ‖e‖2 as the residual of the least squares

problem. Therefore, the QR factorization simplifies the least squares problem to a linear

system with a single unique solution θ∗:

Rθ∗ = d. (18)

Most of the work for solving this equation system has already been done by the QR decom-

position, because R is upper triangular, so simple back-substitution [60] can be used. The

result is the least squares estimate θ∗ for the complete robot trajectory as well as the map,

conditioned on all measurements.

2.5 Experiments and Results

In [32], in addition to simulation results, I have evaluated the nonlinear incremental version

of SAM on a challenging, large-scale vision-based SLAM problem. The data was gathered

by a mobile robot equipped with eight cameras traversing an indoor office environment,
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see [78] for details. This is a challenging data-set, both because of the amount of data

that needed to be dealt with, as well as the logistical and calibration issues that plague

multi-camera rigs. In addition, dealing with visual features is complex and prone to failure.

Figure 6: Custom made camera rig, mounted on top of an ATRV-Mini mobile robot.
Eight Fire-Wire cameras are distributed equally along a circle and connected to an on-
board laptop.

Figure 7: Combined snapshot from all eight cameras, providing a 360o view. Note that
the images do not fit perfectly as the cameras have different optical centers.

The measurements I use are features extracted from eight cameras mounted on top of an

iRobot ATRV-Mini platform, as shown in Figure 6. They are matched between successive

frames using RANSAC [45] based on a trifocal camera-arrangement. The data was taken in

an office environment, with a bounding box of about 30m by 50m for the robot trajectory,

and the landmarks sought are a set of unknown 3D points. The measurements consisted

of the odometry provided by the robot, as well as 260 joint images, such as the one shown

in Figure 7, taken with variable distances of up to 2m between successive views, and an

overall trajectory length of about 190m. The unknown poses were modeled as having 6

degrees of freedom (DOF), three translational and three rotational. Even though 3DOF

seems sufficient for a planar indoor office environment, it turns out that 6DOF with a prior

on pitch, roll and height is necessary, since any small bump in the floor has a clearly visible
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Figure 8: Left: Odometry as provided by the mobile robot platform. Right: Trajectory as
reconstructed by our approach using visual input and odometry only. The trajectory has a
length of about 190m.

effect on the images. The standard deviations on x and y are 0.02m and on φ (yaw) 0.02rad.

The priors on z, θ (pitch) and ψ (roll) are all 0 with standard deviations 0.01m and 0.02rad

respectively. The camera rig was calibrated in advance.

The SAM approach was able to deal with this large problem well within the real-time

constraints of the application. My approach was to invoke the batch SAM algorithm after

every three joint images taken by the robot. In each of these invocations, the problem was

repeatedly re-linearized and factorized to yield an optimal update. I used sparse LDL [60]

as the main factorization algorithm. More importantly, for ordering the variables I used

COLAMD by Davis et al. [19] combined with the block-structured ordering heuristic.

Processing the entire sequence took a total of 11 minutes and 10 seconds on a 2GHz

Pentium-M based laptop, and the trajectory and map is shown in Figures 8 and 9. The

correspondence matching yielded in 17 780 measurements on a total of 4383 unknown 3D

points, taken from 260 different robot locations. In the final step, the measurement matrix

A had 36 337 rows and 14 709 columns, with about 350K non-zero entries. Note that the

map is three dimensional, which explains feature points in the middle of hallways, arising

for example from overhead light fixtures as shown in Figure 10.

The relevant timing results are shown in Figure 11. The unexpected result is that the

factorization, because of the good variable ordering, is now but a minor cost in the whole
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Figure 9: Projected trajectory and map after applying batch SAM incrementally using
visual input and odometry only. Each robot pose is shown as an outline of the ATRV-Mini
platform. The recovered 3D structure is represented by green points. For comparison the
manually aligned building map is shown in gray. The length of the trajectory is about
190m. Given that no loop-closing was performed and considering the large scale of the
environment and the incremental nature of the reconstruction method, this result is of very
high quality. Note that features also occur along the ceiling, and that some features outside
the building outline are caused by reflections.
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(a) 3D model view.

(b) Camera image with measurements and reprojected structure.

Figure 10: Comparison of 3D model and actual image, for the data from Figure 9. (a)
The 3D map as seen from inside a corridor showing the structure (black crosses), the robot
coordinate systems (red,green,blue axes for x,y,z), and a 3D model of the robot. (b) A real
image for comparison showing the features (magenta diamonds), image measurements (red
crosses), and optical flow (red lines). In the 3D view, the lamps along the ceiling can be
seen twice with a slight shift since the robot traversed the corridor twice and no loop closing
is performed. Note that the error is small given the large scale of the environment.
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Figure 11: Timing results for batch SAM on the sequence from Figure 9. Top: The cost
of forming the Jacobian A (linearization). Bottom: The cost for LDL factorization is less
than for forming the Hessian or information matrix I.
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optimization. Instead, the largest cost is now evaluating the measurement Jacobian A

(linearizing the measurement equations), which was done a total of 453 times. Its computa-

tional demands over time are shown in the panel at the top. Next in line is the computation

of the information matrix I= ATA, shown above by “hessian” in the bottom panel. This

is done exactly as many times as LDL itself, i.e., a total of 734 times. By the end of the

sequence, this sparse multiplication (yielding - by then - a 15K × 15K matrix) takes about

0.6 secs. In contrast, factorizing the resulting information matrix I takes just 0.1 seconds.

In the remaining part of this thesis, I completely avoid forming the information matrix

by using a QR matrix factorization on the measurement Jacobian instead of the Cholesky

factorization. This also allows for incremental factorizations that avoid the linear increase

in computational complexity that is inherent to the batch process.

2.6 Related Work

There is a large body of literature on the field of robot localization and mapping, and I

will only address closely related work as well as some of the most influential algorithms. A

general overview of the area of SLAM can be found in [36, 2, 131, 130]. Initial work on

probabilistic SLAM was based on the extended Kalman filter (EKF) and is due to Smith

et al. [128], building on their earlier work [126, 127] as well as Durrant-Whyte’s work [35].

Meanwhile it has been shown by Julier and Uhlmann [75] that filtering is inconsistent in

nonlinear SLAM settings and much later work, such as [66, 85], focuses on reducing the

effect of nonlinearities and providing more efficient, but typically approximate solutions to

deal with larger environments.

Smoothing in the SLAM context avoids these problems by keeping the complete robot

trajectory as part of the estimation problem. It is also called the full SLAM problem [131]

and is closely related to bundle adjustment [134] in photogrammetry, and to structure from

motion (SFM) [73] in computer vision. While those are typically solved by batch processing

of all measurements, SLAM by nature is an incremental problem. Also, SLAM provides

additional constraints in the form of odometry measurements and an ordered sequence of

poses that are not present in general SFM problems. The first smoothing approach to the
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SLAM problem by Lu and Milios [94] formulates the estimation problem as a network of

constraints between robot poses. The first implementation by Gutmann and Nebel [68] was

based on matrix inversion.

A number of improved and numerically more stable algorithms have since been devel-

oped, based on well-known iterative techniques such as relaxation [34, 11, 131], gradient

descent [46, 47], conjugate gradient [86], and more recently multi-level relaxation [51, 53].

The latter is based on a general multi-grid approach that has proven very successful in other

fields for solving systems of equations. While most of these approaches represent interesting

solutions to the SLAM problem, they all have in common that it is very expensive to recover

the uncertainties of the estimation process.

Recently, the information form of SLAM has become very popular. Filter-based ap-

proaches include the sparse extended information filter (SEIF) by Thrun et al. [133] and

the thin junction tree filter (TJTF) by Paskin [115]. On the smoothing side, Treemap by

Frese [52] exploits the information form, but applies multiple approximations to provide

a highly efficient algorithm. Square root SAM by Dellaert and Kaess [29, 32] provides an

efficient and exact solution based on a batch factorization of the information matrix, but

does not address how to efficiently access the marginal covariances.

While SAM includes the complete trajectory and map, this is not always the case when

smoothing is applied. Instead, the complexity of the estimation problem can be reduced

by omitting the trajectory altogether, as for example pursued by Wang et al. [137] with D-

SLAM, where measurements are transformed into relative constraints between landmarks.

Similarly, parts of the trajectory can be omitted as done by Folkesson and Christensen [46],

where parts of the underlying graph are collapsed into so-called star nodes. Alternatively,

the problem can be stated as estimating the trajectory only, which leads to an exactly sparse

information matrix by Eustice et al. [41, 44], where image measurements are converted to

relative pose constraints. While this approach is similar to my pose-only case, they employ

iterative methods to solve the estimation problem. While conservative covariance estimates

are available in Eustice’s work [41], and in fact were the inspiration for my work, efficient

access to the exact covariances is not possible based on the iterative solver.
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A completely different approach to SLAM that keeps the complete trajectory is Fast-

SLAM by Montemerlo et al. [99, 100, 69, 63], which employs a Rao-Blackwellized particle

filter that keeps multiple hypotheses of robot trajectories, each with its own map. While this

theoretically keeps a complete posterior over the robot trajectory, one problem in practice

is particle depletion, as the dimension of the state increases, while the number of particles

stays constant. Another approach to SLAM is to split the estimation problem into sepa-

rate mapping and localization problems, which are then iteratively solved in an expectation

maximization (EM) framework [132, 3]. For large-scale environments, the SLAM problem

can also be split into several smaller, connected mapping problems, or submaps, as done in

the Atlas approach by Bosse et al. [10, 11].

Recently, some SLAM algorithms employ direct equation solvers based on Cholesky or

QR factorization. Treemap [54] uses Cholesky factors to represent probability distributions

in a tree-based algorithm. However, in contrast to SAM, approximations are employed in

order to reduce the computational complexity.
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Chapter III

ISAM: INCREMENTAL SMOOTHING AND MAPPING

In this chapter I present incremental smoothing and mapping (iSAM), which performs fast

incremental updates of the square root information matrix yet is able to compute the full

map and trajectory at any time. Our previous work, SAM, is a batch algorithm that first

updates the information matrix when new measurements become available and then factors

this new information matrix. Hence, it performs unnecessary calculations when applied

incrementally as it recalculates all entries, even the ones that do not change. In contrast,

for iSAM I directly update the square root information matrix with new measurements as

they arrive using standard matrix update equations [60]. That means I reuse the previously

calculated components of the square root factor and perform calculations only for entries

that are actually affected by the new measurements. Thus, I obtain a local and constant

time operation for exploration tasks, that is for trajectories without loops for which the

robot does not revisit previously mapped locations.

For trajectories with loops, periodic variable reordering prevents unnecessary fill-in in

the square root factor that would otherwise slow down the incremental factor update as well

as the recovery of the current state estimate by back-substitution. Fill-in is a well-known

problem for sparse matrix factorization, as the resulting matrix factor can contain a large

number of additional non-zero entries that reduce or even destroy the sparsity with asso-

ciated negative consequences for the computational complexity. As the variable ordering

influences the amount of fill-in obtained, it allows us to influence the computational com-

plexity involved in solving the system. While finding the variable ordering that achieves the

lowest fill-in is infeasible, good heuristics are available. I perform incremental updates most

of the time but periodically apply a variable reordering heuristic, followed by refactoring the

resulting measurement Jacobian that can optionally also contain relinearized measurements.

It should be noted that iSAM is a general estimation method that can be applied to any
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Figure 12: Using a Givens rotation as a step in transforming a general matrix into upper
triangular form. The entry marked “x” is eliminated, changing some of the entries marked
in red (dark), depending on sparsity.

constraints between variables and does not require the presence of landmarks. In particular,

I present a pose-only variant of iSAM, where instead of landmark measurements arbitrary

pose constraints are used, for example derived from dense laser scan matching.

I evaluate iSAM on simulated and real-world datasets for both landmark-based and

pose-only settings. The results show that iSAM provides an efficient and exact solution for

both types of SLAM settings. They also show that the square root factor indeed remains

sparse even for large-scale environments with a significant number of loops.

The following sections begin with a review of Givens rotations for batch and incremental

QR matrix factorization. I then apply this technique to updating of the square root factor

and discuss how to retrieve the map and trajectory. I continue by discussing how to use

periodic variable reordering to deal with loops and how to deal with nonlinear measurements.

I provide experimental results from iSAM applied in different contexts. I finally discuss the

computational complexity of iSAM for different scenarios.

3.1 Matrix Factorization by Givens Rotations

A standard approach to obtain the QR factorization of a matrix A uses Givens rotations

[60] to zero out all entries below the diagonal, one at a time. While this is not the preferred

way to do full QR factorization, we will later see that this approach readily extends to

factorization updates, which are needed to incorporate new measurements. The process

starts from the left-most non-zero entry, and proceeds column-wise, by applying the Givens
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rotation

Φ :=

 cosφ sinφ

− sinφ cosφ

 (19)

to rows i and k, with i > k as shown in Figure 12. The parameter φ is chosen so that

aik, the (i, k) entry of A, becomes 0. After all entries below the diagonal are zeroed out in

this manner, the upper triangular entries contain the square root factor R. The orthogonal

rotation matrix Q is typically dense, which is why this matrix is never explicitly formed

in practice. Instead, it is sufficient to update the right-hand side (RHS) vector b with the

same rotations that are applied to A.

Solving a least squares system Ax = b by matrix factorization using Givens rotations

is numerically stable and accurate to machine precision if the rotations are determined as

follows [60, Sec. 5.1]:

(cosφ, sinφ) =



(1, 0) if β = 0 −α

β

r
1+
“
α
β

”2
, 1r

1+
“
α
β

”2

 if |β| > |α|(
1q

1+( βα)2
, −β

α

q
1+( βα)2

)
otherwise

(20)

where α := akk and β := aik.

3.2 Incremental Factorization Updates for SAM

When a new measurement arrives, it is more efficient to modify the previous factorization

directly by QR-updating , instead of updating and refactoring the measurement Jacobian A.

Adding a new measurement row wT and RHS γ into the current factor R and RHS d yields

a new system that is not yet in the correct factorized form: QT

1


 A

wT

 =

 R

wT

 , new RHS:

 d

γ

 . (21)

Note that this is the same system that is obtained by applying Givens rotations to the

updated matrix A′ to eliminate all entries below the diagonal, except for the last (new)

row. Therefore Givens rotations can be determined that zero out this new row, yielding the

updated factor R′. In the same way as for the full factorization, we simultaneously update
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Figure 13: Updating the square root factor for the example of an exploration task: New
measurement rows are added to the upper triangular factor R and the right-hand side
(RHS). The left column shows the updates for the first three steps, and the right column
shows the update after 50 steps. The update operation is symbolically denoted by ⊕.
Entries that remain unchanged are shown in light blue (gray). Note that for an exploration
task, the number of operations is bounded by a constant.
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Figure 14: Number of Givens rotations needed per step for a simulated linear exploration
task. In each step, the square root factor is updated by adding the new measurement
rows using Givens rotations. The number of rotations is independent of the length of the
trajectory.

the RHS with the same rotations to obtain d′. Several steps of this update process are

shown in Figure 13.

New variables are added to the QR factorization by expanding the factor R by the

appropriate number of empty columns and rows. This expansion is simply done before new

measurement rows containing the new variables are added. At the same time, the RHS d

is augmented by the same number of zeros.

Applying the Givens-rotations-based updating process to the square root factor provides

the basis for my efficient incremental solution to smoothing and mapping. In general, the

maximum number of Givens rotations needed for adding a new measurement row is n.

However, as both R and the new measurement row are sparse, only a constant number of

Givens rotations are needed. Furthermore, new measurements typically refer to recently

added variables, so that often only the rightmost part of the new measurement row is

(sparsely) populated.

For a linear exploration task, incorporating a set of new landmark and odometry mea-

surements takes constant time. Exploration means that the robot does not revisit previously

mapped areas, or at least that such a revisiting is not identified. Examples of such updates

are shown in Figure 13. The simulation results in Figure 14 show that the number of rota-

tions needed is independent of the size of the trajectory and the map. Updating the square
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root factor therefore takes O(1) time, but this does not yet provide the current least squares

estimate.

The current least squares estimate for the map and the full trajectory can be obtained

at any time by back-substitution in time linear in the number of variables. While back-

substitution has quadratic time complexity for general dense matrices, it is more efficient

in the context of iSAM. For exploration tasks, the information matrix is band-diagonal.

Therefore, the square root factor has a constant number of entries per column independent

of the number of variables n that make up the map and trajectory. Therefore, back-

substitution requires O(n) time in iSAM. In the linear exploration example from above,

this results in about 0.12s computation time after 10 000 steps.

3.3 Loops and Periodic Variable Reordering

I discuss how iSAM keeps the computational requirements low even if there are loops in

the trajectory. While realistic SLAM applications include much exploration, the robot

often returns to previously visited places, closing loops in the trajectory. I discuss the

consequences of loops on the matrix factorization and show how to use periodic variable

reordering to avoid unnecessary increases in computational complexity.

Environments with loops do not have the nice property of local updates, resulting in

increased complexity. In contrast to pure exploration, where a landmark is only visible from

a short local part of the trajectory, a loop brings the observer back to a previously visited

location. A loop introduces correlations between the current pose and previously observed

landmarks, which themselves are connected to earlier parts of the trajectory. An example

based on a simulated environment with a robot trajectory in the form of a double figure

eight loop is shown in Figure 15.

Loops in the trajectory can result in a significant increase in computational complexity

through a large increase of non-zero entries in the factor matrix. Non-zero entries beyond

the sparsity pattern of the information matrix are called fill-in. While the smoothing infor-

mation matrix remains sparse even in the case of closing loops, the incremental updating

of the factor matrix R leads to fill-in as shown in Figure 15(b).
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(a) Simulated double figure eight loop at interesting stages of loop closing.

(b) Triangular factor matrix R. (c) The same factor R after variable reordering.

Figure 15: For a simulated environment consisting of a figure eight loop that is traversed
twice (a), the upper triangular factor R shows significant fill-in (b). Some fill-in occurs at
the time of the first loop closing (A). Note that no more fill-in occurs on the subsequent
exploration along the second loop until the next loop closure occurs (B). However, the fill-
in then becomes significant when the complete figure eight loop is traversed for the second
time, with a peak when visiting the center point of the figure eight loop for the third time
(C). After variable reordering according to an approximate minimum degree heuristic, the
factor matrix again is completely sparse (c).
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Figure 16: Comparison of execution times for the examples in Figure 15, shown in both
linear (top) and log scale (bottom). Adding variables in the order that they appear in the
estimation problem yields bad performance (continuous red) due to significant matrix fill-in
as shown in Figure 15(b). Even reordering the variables after each step (dashed green) is
sometimes less expensive. However, a considerable increase in efficiency is achieved by using
fast incremental updates interleaved with only occasional variable reordering (dotted blue),
here performed every 100 steps. Note especially that in the linear time figure this curve is
near zero except for spikes caused by the periodic reordering.
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I avoid fill-in by variable reordering , a technique well known in the linear algebra commu-

nity. The order of the columns in the information matrix influences the variable elimination

order and therefore also the resulting number of entries in the factor R. While obtaining

the best column variable ordering is NP hard, efficient heuristics such as the COLAMD

(column approximate minimum degree) ordering by Davis et al. [19] have been developed

that yield good results for the SLAM problem as shown in [29, 32]. I apply this ordering

heuristic to blocks of variables that correspond to the robot poses and landmark locations.

As has been shown in [32], operating on these blocks leads to a further increase in efficiency

as it exploits the special structure of the SLAM problem. The corresponding factor R after

applying the COLAMD ordering shows negligible fill-in, as shown in Figure 15(c).

I propose fast incremental updates with periodic variable reordering, combining the

advantages of both methods. Factorization of the new measurement Jacobian after variable

reordering is expensive when performed in each step. But combined with incremental

updates it avoids fill-in and still yields a fast algorithm as supported by the timing results

in Figure 16. In fact, as the logarithmic scale version of this figure shows, my solution is one

to three orders of magnitude faster than either the purely incremental or the batch solution

with the exception of occasional peaks caused by deploying the batch solution for variable

reordering and subsequent matrix factorization. In this example I use a fixed interval of

100 steps after which I reorder the variables and refactor the complete matrix.

3.4 Nonlinear Functions

I discuss how relinearization allows iSAM to still provide an exact solution even for nonlinear

measurement functions. While I have so far only discussed the case of linear measurement

functions, SLAM applications usually are faced with nonlinear measurement functions. An-

gular measurements, such as the robot orientation or the bearing to a landmark, are the

main source for nonlinear dependencies between measurements and variables. In the non-

linear case everything discussed so far is still valid. However, after solving the linearized

version based on the current variable estimate we might obtain a better estimate resulting

in a modified measurement Jacobian A based on this new linearization point. For standard
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nonlinear optimization techniques this process is iterated as explained in Section 2.3 until

the change in the estimate is sufficiently small. Convergence is guaranteed, at least to a

local minimum, and the convergence speed is quadratic because my QR factorization based

direct solver represents a second order method.

As relinearization is not needed in every step, I propose combining it with periodic

variable reordering. The SLAM problem is different from a standard nonlinear optimization

as new measurements arrive sequentially. First, we already have a very good estimate for

most if not all of the old variables. Second, measurements are typically fairly accurate on

a local scale, so that good estimates are also available for the newly added robot pose as

well as for newly added landmarks. We can therefore avoid calculating a new Jacobian

in each step and refactoring it, a potentially expensive batch operation. Instead, for the

results presented here, I combine relinearization with the periodic variable reordering used

for fill-in reduction as discussed in the previous section. In other words, in the variable

reordering steps only, I also relinearize the measurement functions as the new measurement

Jacobian has to be refactored anyways.

3.5 Experiments and Results

I evaluate the overall iSAM algorithm on simulated data as well as real-world datasets.

The simulated data allow comparison with ground-truth, while the real-world data prove

the applicability of iSAM to practical problems. I explore both landmark-based as well as

pose-constraint-based SLAM.

I have implemented iSAM in the functional programming language OCaml, using exact,

automatic differentiation [62] to obtain the Jacobians. All timing results in this section are

obtained on a Core 2 Duo 2.2 GHz laptop computer, using only a single core.

3.5.1 Landmark-based iSAM

I show that landmark-based iSAM works well in real-world settings, even in the presence of

many loops in the robot trajectory. I evaluate iSAM on the Sydney Victoria Park dataset

(see Figure 17), a popular test dataset in the SLAM community that consists of laser-range

data and vehicle odometry, recorded in a park with sparse tree coverage. It contains 7247
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Figure 17: Results for the full Victoria Park sequence. Solving the complete problem
including data association in each step took 3.4 minutes on a laptop computer. Since the
dataset is from a 26 minute long robot run, iSAM is over 7 times faster than real-time in
this case, calculating the complete and exact solution for each of the almost 7000 steps. The
trajectory and landmarks are shown in yellow (light), manually overlaid on an aerial image
for reference. Differential GPS was not used in obtaining my experimental results, but is
shown in blue (dark) for comparison - note that in many places GPS was not available,
presumably due to obstruction by trees.
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(a) Trajectory based on odometry only.

(b) Final matrix factor R with side length 21 187.

Figure 18: The vehicle trajectory according to odometry (a) and the final sparse square
root factor (b) for the Victoria Park dataset shown in Figure 17. Note that the final
R factor with side length over 21 000 is indeed sparse with approximately 10 entries per
column, taking about 1MB of memory including book keeping, while a dense matrix of this
size would require 1712MB of memory.
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frames along a trajectory of 4 kilometer length, recorded over a time frame of 26 minutes.

As repeated measurements taken by a stopped vehicle do not add any new information,

we have dropped these, leaving 6969 frames. We have extracted 3640 measurements of

landmarks from the laser data by a simple tree detector. The robot trajectory derived from

vehicle odometry is shown in Figure 18(a).

iSAM with known correspondences runs comfortably in real-time; results for unknown

data association are provided in Chapter 4. The incremental reconstruction including solv-

ing for all variables for each new frame that is added took 201s or 3.4 minutes, which is

significantly less than the 26 minutes it took to record the data. That means that even

though the Victoria Park trajectory contains a significant number of loops (several places

are traversed 8 times), increasing fill-in, iSAM is still over 7 times faster than real-time.

The resulting map contains 140 distinct landmarks as shown in Figure 17. Solving after

every step is in fact not necessary, as the measurements are fairly accurate locally, thereby

providing good estimates. Obtaining the exact map and trajectory by back-substitution

only every 10 steps yields a significant improvement to 93s or 1.6 minutes.

More importantly, iSAM still performs in real-time towards the end of the trajectory,

where the computations get more expensive. The average calculation time for the final 100

steps are the most expensive ones to compute as the number of variables is largest. Even

for the slow case of retrieving the full solution after every step, iSAM takes on average

50ms per step for the last 100 steps. This result compares favorably to the 220ms needed

for real-time performance. These computation times include a full linearization, COLAMD

variable reordering step and matrix factorization, which took 1.1s in total. Despite all the

loops, the final factor R as shown in Figure 18(b) is still sparse, with 207 422 entries for

21 187 variables, yielding an average of only 9.79 entries per column.

3.5.2 Pose-Constraint-based iSAM

iSAM can straightforwardly be applied to estimation problems without landmarks, purely

based on pose constraints. Such pose constraints most commonly arise from scan-matching

dense laser range data, but can also be generated from visual input [42, 87]. Pose constraints

35



either connect subsequent poses similar to odometry measurements, or they connect two

arbitrary poses when closing loops. Pose constraints are implemented in iSAM as terms

that represent the error between the predicted and the measured difference between a pair

of poses, much in the same way as odometry measurements, but without the requirement

that the pair of poses has to be two subsequent poses in the trajectory. I evaluate pose-only

iSAM on simulated as well as real-world datasets, assuming known data association, as the

generation of pose constraints by scan-matching has been well studied and good algorithms

are available [64, 69].

3.5.2.1 Simulated Data

The incremental solution of iSAM is comparable in quality to the solution obtained by

full nonlinear optimization. To allow ground truth comparison, I use the simulated Man-

hattan world from [113] shown in Figure 19(a),(b). This dataset contains 3500 poses and

5598 constraints, 3499 of which are odometry measurements. While the result in [113]

seems to be better as the left part is more straightened out, my solution has a slightly

lower normalized χ2 value of 1.0406, compared to 1.0412. After one extra relinearization

and back-substitution, the normalized χ2 is 1.0375, the same value that we obtain by full

nonlinear optimization until convergence. In Figure 20 the normalized χ2 value for every

step of the incremental solution is compared with the batch SAM solution that iterates

until convergence. Short spikes are caused by temporary linearization errors when loops are

closed and disappear during relinearization, which is performed in combination with the

batch variable reordering steps. Except for these spikes iSAM performs like a full direct

(second-order) equation solver, while other incremental (first-order) equation solvers, such

as [114] always provide a slightly increased normalized χ2 value. Monitoring the χ2 value

could provide a criterion for when to perform relinearization, although I have not done so

yet. These results show that iSAM is generally comparable in accuracy to the exact solution

provided by the batch SAM algorithm.

In terms of computational speed, iSAM also fares well for this dataset. Solving the full

problem for each newly added pose, while reordering the variables and relinearizing the
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(a) Original noisy data set. (b) Trajectory after incremental optimization.

(c) Final factor matrix R with side length 10 500.

Figure 19: iSAM results for the simulated Manhattan world from [113] with 3500 poses
and 5598 constraints. iSAM takes about 24ms per step. The resulting R factor has 187 423
entries, which corresponds to 0.34% or an average of 17.8 entries per column.
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Figure 20: iSAM generally yields an exact solution, as shown by the normalized chi-
square values for each iteration on the Manhattan world from Figure 19. I compare iSAM
with a full nonlinear batch solution that iterates until convergence. The spikes are caused
by temporary linearization errors after loop closing and always vanish during the periodic
variable reordering step that also performs relinearization – see for example steps 400 and
1000.

problem every 100 steps, takes iSAM 83.0s, or an average of 23.7ms per step. The last 100

steps take an average of 30ms each, which includes 0.76s for variable reordering and matrix

factorization. The resulting R factor shown in Figure 19(c) is sparse with 187 423 entries

for a side length of 10 500.

3.5.2.2 Real-world data

iSAM also performs well on real-world data, both in quality of the solution as well as

speed. I apply iSAM to two publicly available laser range datasets that appear in several

publications. The first one is the Intel dataset shown in Figure 21(b), providing a trajectory

with many loops with continued exploration of the same environment in increasing detail.

Preprocessing by scan matching results in 910 poses and 4453 constraints. iSAM obtains

the full solution after each step with variable reordering every 20 frames in 44.9s, or about

49ms per step. Our results are of the same order as the ones presented in state of the

art work by Olson et al. [114] (45s using a Java implementation on a 2.4GHz desktop, but

also using 1500 more constraints due to different preprocessing). The last 100 steps take

an average of 111ms including 0.51s for each of the five reordering and factorization steps.

The final R factor is shown in Figure 21(c), with 2730 variables containing 90 363 entries.
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(a) Trajectory based on odometry. (b) Final trajectory and evidence grid map.

(c) Final factor matrix R with side length 2730.

Figure 21: Results from iSAM applied to the Intel dataset. iSAM calculates the full solu-
tion for 910 poses and 4453 constraints with an average of 49ms per step, while reordering
the variables every 20 steps. The problem has 910×3 = 2730 variables and 4453×3 = 13 359
measurement equations. The R factor contains 90 363 entries, which corresponds to 2.42%
or 33.1 entries per column.
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(a) Trajectory based on odometry. (b) Final trajectory and evidence grid map.

(c) Final factor matrix R with side length 5823.

Figure 22: iSAM results for the MIT Killian Court dataset. iSAM calculates the full
solution for the 1941 poses and 2190 pose constraints with an average of 7.3ms per step.
The R factor contains 52 414 entries for 5823 variables, which corresponds to 0.31% or 9.0
per column.
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The second real-world pose-only example I use to evaluate iSAM is the MIT Killian

Court dataset shown in Figure 22(b) that features much exploration with a few large-scale

loops. Again the dataset was preprocessed, yielding 1941 poses and 2190 pose constraints.

iSAM takes 14.2s for a complete solution after each step, or about 7.3ms per step, with

variable reordering after every 100 steps. The last 100 steps take an average of 18ms

including 0.25s for reordering/refactorization. The final R factor with 52 414 entries is

shown in Figure 22(c).

3.5.3 Sparsity of the Square Root Factor

The complexity of iSAM heavily depends on the sparsity of the square root factor, as this

affects both retrieving the solution as well as access to the covariances as discussed in the

next chapter. Retrieving the solution from the square root factor requires back-substitution,

which usually has quadratic time complexity. However, if there are only a constant number

of entries per column in the square root factor as is true for the case of exploration tasks,

then back-substitution only requires O(n) time.

My results show that the number of entries per column is typically bound by a low

constant. Figure 23 shows how the density of the factor matrix R develops over time

for each dataset used in this chapter. The densities initially increase, showing very large

changes: Increases are caused by incremental updating of the matrix factor, while sudden

drops are the consequence of the periodic variable reordering. Most curves clearly converge

to a low constant, explaining the good performance of iSAM. For the Intel dataset and the

Manhattan world, the density increases more significantly because the number of constraints

per step, that is the density of measurements, increases. The Intel sequence contains fairly

dense constraints, which is also the reason for choosing a shorter interval for the periodic

variable reordering (20 steps) than for all other datasets (100 steps). Nevertheless, as the

results for that sequence show, iSAM still performs many times faster than needed for

real-time.
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Figure 23: Average number of entries per column in the R factor over time for the different
datasets in this section. Even though the environments contain many loops, the average
converges to a low constant or is at least proportional to the number of constraints per
step. This confirms my assumption that the number of entries per column is approximately
independent of the number of variables n.
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Table 1: Computational complexity of iSAM under various assumptions on the sparsity
of the R factor. Note that n = Mdx + Ndl depends on both the number of landmarks N
as well as the number of poses M .

update
back-

substitution
batch

factorization
R banddiagonal

(exploration task)
O(1) O(n) O(n)

dense blocks in R, but N constant
(remaining in the same room)

O(1) O(n) O(n)

log n entries per column avg.
(planar graph, see text)

≥ O(log n)
≤ O(n)

O(n log n) O(n1.5)

dense R
(not encountered so far)

O(n) O(n2) O(n3)

3.6 Computational Complexity

In this section I analyze the computational complexity of iSAM under various assumptions

on the nature of the mapping task. While it is difficult to make general statements about

the computational complexity, theoretical bounds are available when one makes certain

assumptions about the sparsity of the factor matrix. These assumptions again are connected

to certain types of environments and mapping tasks as discussed in this section. The results

are summarized in Table 1. As before, I use n as the number of variables in the system,

which is equal to the side length of the R factor. Note that n = Mdx + Ndl depends on

both the number of poses M and the number of landmarks N , where dx and dl are the

dimensions of individual pose and landmark variables, respectively.

3.6.1 Exploration Task

The simplest case to discuss is a pure exploration task, in which the robot never returns

to previously mapped places, or at least does not identify previously mapped places and

therefore never closes any loops. For that case the information matrix is band-diagonal,

and therefore also the factor matrix under a suitable variable ordering. For a band-diagonal

factor matrix, the fill-in per column is bounded by a constant or O(1).

Updating the square root factor R with new measurement rows takes constant time for

exploration. We have to apply Givens rotations to each entry of the new measurement

43



(a) Information Matrix (b) Factor matrix R

Figure 24: When all landmarks are visible at all times we obtain dense blocks in the
information matrix as well as in the factor matrix.

rows, and we know that there are a constant number of measurements per row. However,

these introduce new non-zero entries depending on the fill-in of the factor matrix R, which

in our case is constant, that again require Givens rotations to zero them out. Each Givens

rotation takes constant time, resulting in O(1) time for updating the factor matrix.

Recovering the solution by back-substitution for both trajectory and map takes linear

time. In general, back-substitution is a quadratic operation, but for our sparse matrix it

takes O(n) time, as n elements need to be calculated, and for each we have to substitute a

constant number of entries according to one row of the factor matrix.

Batch solution of the complete system also takes linear time. It is well known that

factorization of a band-diagonal matrix takes O(n) computation time. Additionally, back-

substitution for recovering the solution again takes O(n) time.

3.6.2 Remaining in the Same Room

The opposite of an exploration task is a robot that continuously stays in the same environ-

ment and always observes the same landmarks, thereby continuously closing loops. While

this at first seems to be a worst case scenario for iSAM, the computational complexity is

actually equal to the exploration case, but with a potentially large constant added. The

key insight is that the number of landmarks are constant in this case. Figure 24 shows the
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factor matrix R as well as the information matrix RTR for a simulated environment where

the robot is nearly stationary and continuously observes the same landmarks. The simu-

lation contains 101 poses with odometry measurements, 24 landmarks and 2326 landmark

measurements. The factor matrix R shown in Figure 24 can clearly not be considered to be

sparse anymore, with about 21% non-zero entries. The information matrix itself contains

dense blocks for this special case, and we cannot expect to obtain a more sparse factor

matrix. Note that the factor is shown after variable ordering according to the COLAMD

heuristic. The computation performed for a batch solution based on the R matrix with this

ordering corresponds to the Schur complement, where all landmarks are placed at the end

and therefore solved for first, corresponding to a dense matrix inversion of a constant size

matrix; the remaining trajectory-only estimation can then be solved efficiently.

Updating in this case takes time O(N) linear in the number of landmarksN . However, as

N is constant, this corresponds to constant time O(1) updates. Back-substitution requires

recovery of n variables, while each row of the factor matrix containsO(N) entries. Therefore,

the overall complexity is O(nN) = O(MN +N2). Using the same argument as before that

N is constant, we obtain linear time complexity O(n) but with a potentially large constant.

A batch solution based on the Schur complement takes O(MN +N3) time, where the N3

terms arises from the dense matrix inversion over the landmarks. With the same argument

as before the complexity of the batch solution reduces to linear time O(n).

3.6.3 Planar Graph

Theoretical complexity bounds are available for some typical SLAM applications for which

the estimation problem can be framed as a planar graph. While typical SLAM problems

do not have a planar graph structure, for many applications such as mapping a city or

exploring a building, a planar meta graph can be constructed as shown by Krauthausen et

al. [90]. Figure 25 shows an example of such a meta graph for an indoor SLAM scenario. In

particular, for a planar mapping problem with restricted sensor range we can always find

such a planar meta graph. Another example is a city environment for which a meta graph is

provided by a typical street map. For a planar graph, nested dissection provides a variable
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Landmark Robot Pose 

(a) Typical measurement pattern. (b) Isomorph non-planar graph.

compression 

(c) Measurement graph for a typical indoor scenario (left) and the corresponding
planar meta graph (right).

Figure 25: Many SLAM scenarios are non-planar, but have a corresponding planar meta
graph that allows us to establish bounds on their computational complexity (from [90]).
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ordering that achieves an upper bound of O(n log n) for the fill-in of the square root factor.

While this bound does not allow a statement about the maximum fill-in of an individual

column of R, we can state that the average fill-in per column is bound by O(log n).

For planar graphs, iSAM updates take between O(log n) and O(n) time. It is not

straightforward to find the exact bound. While the new measurement row has by definition

a constant number of entries, application of a Givens rotation creates new non-zero entries.

In contrast to the exploration task discussed earlier, the factor matrix has O(log n) non-zero

entries per column, and therefore the new measurement row has O(log n) non-zero entries

after the first Givens rotation is applied. Therefore, at least O(log n) more Givens rotations

are now needed to finish removing all no-zero entries in the new measurement row. However,

depending on the distribution of the non-zero entries between multiple columns of the factor

matrix, any further Givens rotation might again add new non-zero entries, between 0 and

up to O(log n). Obviously, the maximum number of non-zero entries that could be created

in the process is O(n). Therefore, without further knowledge of the sparsity pattern of the

R factor we cannot derive a tighter bound. Solving by back-substitution takes O(n log n)

time, because n variables are recovered, each requiring an average of O(log n) substitutions

based on the average number of entries in R. Furthermore, Krauthausen et al. [90] provides

an O(n1.5) bound on the batch solution.

3.6.4 Other Cases

The worst case scenario is a dense factor matrix, ie. a matrix in which the number of entries

per column directly depends on n. For a dense factor matrix, updating takes linear time,

back-substitution quadratic, and a batch solution is cubic in the number of variables. For

pose constraints a completely dense information matrix and therefore also factor matrix is

indeed possible if pose constraints are obtained between all pairs of robot poses, which of

course would not make sense to do in the first place. We have not found a practical case

in which the factor matrix actually becomes dense, partially because of the typically sparse

dependencies between robot poses in both pose-only and landmark-based SLAM. However,

we cannot guarantee that such a case might never arise in practice, especially also because
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we use a heuristic to find a good variable ordering.

While real-world SLAM applications frequently require closing of loops, they will also

constantly explore new territory, as that is the main goal of SLAM. Therefore, I do ex-

pect and have observed in my experiments that the fill-in per column is close to constant

(see Figure 23), which for practical purposes includes O(log n). However, that constant

depends on the “loopyness” of the environment, ie. on how spread out the reobservations

of landmarks are across the full length of the robot trajectory.

Other factors also influence the computational complexity, but only by constant factors.

However, that constant can of course make a huge difference in the actual execution time

and therefore determine if a specific real-time application is possible or not. One such factor

is the average number of landmarks visible per frame. Another one is the average number

of frames for which a landmark remains visible, which is clearly connected to both vehicle

speed and sensor range. Finally, the dimensionality of the variables to be estimated also

influences the factor.

3.7 Related Work

SLAM algorithms only become useful for robot deployment when processing data incre-

mentally rather than in a batch fashion. Most incremental SLAM algorithms that apply

smoothing are based on iterative solvers, such as [114, 65]. The problem with iterative

solvers is that there is no efficient method to recover the covariance matrix other than

inverting the information matrix.

Recently, some incremental SLAM algorithms employed direct equation solvers based

on Cholesky or QR factorization. Treemap by Frese [54] uses Cholesky factors to repre-

sent probability distributions in a tree-based algorithm. However, in contrast to iSAM,

approximations are employed to reduce the complexity.

To the best of my knowledge, updating of matrix factorizations has not been applied in

the context of SLAM before our initial work in [79]. We have since published an extended

article [81] that presents parts of this chapter. There are two other works, however, that

have come up with similar approaches simultaneously, and independently, of ours. One
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was performed by Folkesson et al. [49] and uses incremental QR factorization updates for

tracking features and only keeps a short history of robot poses, avoiding problems with fill-

in caused by loop closing. The other can be found in the dissertation of Wang [136], where

incremental Cholesky factorization is mentioned as an option for updating a factorization

of the D-SLAM information matrix that only contains landmarks.

However, updating of matrix factorizations is a well-known technique in many others

areas, with applications such as computer vision [134, 84] and signal processing [93]. Golub

and Van Loan [60] present general methods for updating matrix factorizations based on

[59, 58], including the Givens rotations I use in this work. Davis has done much research

in the areas of variable ordering and factorization updates, and provides highly optimized

software libraries [18, 19, 17] for various such tasks.

Maybe the first work in connection with robotics that used incremental matrix factor-

izations is due to Van der Merwe and Wan [97], which describes incremental updates for

an unscented Kalman filter (UKF) for general state and parameter estimation, with an

example application of training a neural network for “mapping the joint angles of a robot

arm to the Cartesian coordinates of the hand.” In the meantime, Ranganathan and Yang

[119] applied our work to obtain a fast Gaussian Process inference algorithm with visual

tracking applications.
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Chapter IV

DATA ASSOCIATION

Real-time SLAM applications require an online solution to the data association problem.

In SLAM the data association problem, which is also known as correspondence problem,

consists of matching the current measurements with their corresponding previous observa-

tions. Correspondences can be obtained directly between measurements taken at different

times, or by matching the current measurements to landmarks in the map that were created

from earlier measurements. A solution to the correspondence problem provides frame-to-

frame matching, but also allows for closing large loops in the trajectory. Loops are more

difficult as the estimation uncertainty is much larger than between successive frames, and

the measurements might even be taken from a different direction. The examples presented

in the previous chapter made use of known correspondences. However, in order to provide

a complete real-time solution to SLAM, the correspondences also have to be established in

real-time.

In this chapter I show how to perform online data association with iSAM. I start with

a general discussion of the data association problem and various state of the art solutions,

most of which require some knowledge about the underlying estimation uncertainty. This

uncertainty is represented by parts of the covariance matrix, called a marginal covariance. I

present an efficient algorithm for recovering marginal covariances from the R factor, which

avoids the prohibitive cost of calculating all entries of the dense covariance matrix. Be-

yond typical data association work, I also show how to use these marginal covariances to

determine the value of a specific measurement, allowing to drop redundant or uninforma-

tive measurements in order to increase estimation efficiency. I conclude this chapter with

detailed evaluations on simulated and real-world data.
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Figure 26: Comparison of some common data association techniques discussed in this
chapter. Nearest neighbor assigns a measurement (blue star) to the closest landmark (green
cross). Individual compatibility takes the estimation uncertainty between sensor and land-
mark into account, here indicated as green ellipses. The assignment is different as it now
corresponds to nearest neighbor under a Mahalanobis distance. Joint compatibility branch
and bound additionally takes into account the correlation between the landmarks, again
yielding in a different assignment for this example.

4.1 Data Association Techniques

Next I present some of the most common data association techniques, from the trivial

nearest neighbor method over the maximum likelihood solution to the joint compatibility

branch and bound algorithm. I also discuss the landmark-free case, where data association

is based for example on dense laser scan matching. We will see that all advanced methods

have in common that they require knowledge of parts of the overall SLAM estimation

uncertainty. In subsequent sections I show how to efficiently obtain these quantities using

iSAM.

4.1.1 Nearest Neighbor

For completeness I include the often used nearest neighbor (NN) approach to data asso-

ciation, even though it is not sufficient for most practical applications. NN assigns each

measurement to the closest landmark predicted by the current state estimate, as shown in

Figure 26. Remember that the predicted measurement zij of landmark lj taken at pose xi

is given by the measurement model

zij := hij(x) + v (22)

as defined in (4), where v is additive zero-mean Gaussian noise with covariance Γ. Note

that x is the full state vector that includes xi and lj .
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I formulate the correspondence problem for a specific measurement k in the following

way: We have an actual measurement z̃k that we know was taken at time ik and we want to

determine which landmark jk gave rise to this measurement. I define the nearest neighbor

cost D2,NN
kj of the hypothesis jk = j simply as the squared distance between the actual

measurement z̃k and its prediction ẑikj = hikj(x̂) based on the mean of the current state

estimate x̂ as follows

D2,NN
kj := ‖hikj(x̂)− z̃k‖2 . (23)

We accept the hypothesis that landmark j gave rise to measurement z̃k only if this squared

distance falls below a threshold

D2,NN
kj < D2

max (24)

where the threshold D2
max limits the maximum squared distance allowed between a measure-

ment and its prediction in order to still be considered as a potential match. The threshold

is typically chosen based on the nature of the data, ie. the minimum distance between

landmarks as well as the expected maximum uncertainty of the measurements.

When considering multiple measurements at the same time, the NN approach can be

formulated as a minimum cost assignment problem that also takes mutual exclusion into

account. Mutual exclusion means that once a landmark is assigned to a measurement it is

no longer available for other assignments. For K measurements and N landmarks, we form

a K ×N matrix that contains the cost for each possible assignment. In order to deal with

unassigned measurements, which can arise from newly observed landmarks or from noise,

we augment the matrix by K columns that all contain the threshold D2
max

D =



D2
11 D2

12 D2
1N D2

max · · ·

D2
21

. . .
...

...
...

D2
K1 D2

KN D2
max


. (25)

We use the Jonker-Volgenant-Castanon (JVC) algorithm [74] to optimally solve this assign-

ment problem.
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The biggest advantage of NN over other methods is that it does not require any knowl-

edge of the uncertainties of the estimation problem. However, that is also its biggest weak-

ness, as NN will eventually fail once the uncertainties become too large, as is the case when

closing large loops.

4.1.2 Maximum Likelihood Data Association

The maximum likelihood (ML) solution to data association [5] is based on probabilistic

considerations and takes into account the relative estimation uncertainties between the

current robot location and the landmark in the map, as indicated in Figure 26. This

technique is also known as individual compatibility (IC) [105] matching. It corresponds to

the nearest neighbor method, but with the Euclidean distance replaced by the Mahalanobis

distance based on the projected estimation uncertainty.

Probabilistically, the most general question we can ask about an individual measure-

ment z̃k is what the probability P (z̃k, jk = j|Z−) is that this measurement was caused by

landmark j, given all previous measurements Z−. This expression does not yet contain

any connection to the state estimate discussed in previous chapters. However, we can sim-

ply introduce the state x, a vector that combines all landmarks lj and poses xi, and then

integrate it out again

P (z̃k, jk = j|Z−) =
∫
x
P (z̃k, jk = j,x|Z−) (26)

=
∫
x
P (z̃k, jk = j|x, Z−)P (x|Z−)

=
∫
x
P (z̃k, jk = j|x)P (x|Z−)

where I applied the chain rule to obtain the measurement likelihood P (z̃k, jk = j|x, Z−) =

P (z̃k, jk = j|x), which is independent of all previous measurements Z− given the state x.

We already know the prior P (x|Z−), as that is the current state estimate, or in the case

of iSAM simply a normal distribution with mean x̂ and covariance Σ. We also know the

measurement likelihood P (z̃k, jk = j|x) as it is defined by the predictive distribution from

(4). The complete probability distribution is therefore an integral over normal distributions
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that can be simplified to a single normal distribution

P (z̃k, jk = j|Z−) =
∫
x

1√
|2πΓ|

e−
1
2‖hikj(x)−z̃k‖2

Γ
1√
|2πΣ|

e−
1
2
‖x−x̂‖2Σ (27)

=
1√
|2πCikj |

e
− 1

2‖hikj(x̂)−z̃k‖2

Cikj

where the covariance Cikj is defined as

Cikj :=
∂hikj
∂x

∣∣∣∣
x̂

Σ
∂hikj
∂x

∣∣∣∣T
x̂

+ Γ. (28)

I drop the normalization factor of (27) as it does not depend on the actual measurement

but is constant given the state. Further, I take the negative logarithm of the remaining

expression from (27) to obtain the maximum likelihood cost function

D2,ML
kj := ‖hikj(x̂)− z̃k‖2Cikj (29)

where again we evaluate the hypothesis that a specific measurement z̃k taken in image ik

was caused by the jth landmark. Note that this distance function is exactly the same as for

the NN problem in (23) except for that it takes into account the uncertainties of the state

estimate given by the covariance Σ. As this squared distance function follows a chi-square

distribution, we base the acceptance decision

D2,ML
kj < χ2

d,α (30)

on the chi-square test, where α is the desired confidence level and d is the dimension of

the measurement. Going back to probabilities for a moment, the threshold being exceeded

means that the difference of the sample (the actual measurement z̃k) from the mean of

the actual distribution (measurement ẑikj predicted by the measurement model based on

the state estimate given by x̂ and Σ) is statistically significant, and we can assume that

the measurement was not caused by that specific landmark as assumed by our hypothesis.

For example, for a confidence level of 95% and a three dimensional measurement, the

appropriate threshold is χ2
3,0.95 = 7.8147. The relevant chi-square values are either obtained

from a lookup table, or are calculated based on the incomplete gamma function and a

root-finding method [116].
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When considering multiple measurements simultaneously the resulting matching prob-

lem can again be reduced to a minimum cost assignment problem and solved using JVC

in much the same way as was shown for NN in the previous section. More details on this

minimum cost assignment problem and on how to deal with spurious measurements in a

more principled probabilistic framework are provided by Dellaert [28].

For implementation purposes it is important to note that for a specific predicted mea-

surement ẑij of the landmark l̂j at the pose x̂i, the equations above only consider a subset

of the mean x̂ of the full state estimate that only contains this landmark and pose pair

x̂ij =

 l̂j

x̂i

 . (31)

Similar is true for the covariance, where only the relevant components

Σxij =

 Σjj ΣT
ij

Σij Σii

 (32)

of the covariance matrix Σ of the full estimation problem are needed. iSAM provides efficient

access to these quantities as I explain later in this chapter.

4.1.3 Joint Compatibility Branch and Bound (JCBB)

Instead of making independent decisions for each measurement, we now consider all mea-

surements at the same time, which allows us to also take correlations between landmarks

into account, as shown in Figure 26. This is called joint compatibility [105], and works

in ambiguous configurations in which individual compatibility often fails. Such ambiguous

configurations are often encountered in real-world data association problems, in particular

under high motion uncertainty and when closing large loops.

This time we are interested in the probability of all measurements simultaneously given

an estimate for the landmark locations as well as the robot pose. A joint hypothesis

j =


j1

...

jK

 (33)
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Figure 27: Example of a joint hypothesis j that assigns a set of measurements to land-
marks. Measurements that are not assigned can be used to initialize new landmarks. Not
all landmarks are necessarily visible or detected. Note that mutual exclusion prevents two
measurements in the same frame from being assigned to the same landmark.

for K measurements

k =


k1

...

kK

 (34)

assigns each measurement kι to a landmark jι, see Figure 27 for an example. I combine the

individual measurement functions zij1 , . . . , zijK into the joint measurement vector zij

zij :=


zij1

...

zijK

 =


hij1(x) + v

...

hijK (x) + v

 = hij(x) + v. (35)

Analogous to the ML case we get the same expression for the probability

P (z̃k, jk = j|Z−) =
1√
|2πCij|

e
− 1

2‖hij(x̂)−z̃k‖2

Cij (36)

from (27), but the mean z̃k is now a joint measurement, and the distribution has covariance

Cij

Cij =
∂hij
∂x

∣∣∣∣
x̂

Σ
∂hij
∂x

∣∣∣∣T
x̂

+ ΓK (37)

based on the Jacobian of the joint measurement function hij at the current state estimate

x̂ with covariance Σ.
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For a specific joint measurement z̃k := (z̃k1 , . . . , z̃kK )T the joint compatibility cost or

squared distance function is now given by

D2,JC
kj = ‖hij(x̂)− z̃k‖2Cij . (38)

The joint compatibility test for the joint hypothesis j is given by:

D2,JC
kj < χ2

d,α (39)

where α is again the desired confidence level, but d is now the sum of the dimensions of all

measurements that are part of the hypothesis.

For practical purposes it is important to note that the joint prediction zij only requires

all potentially observed landmarks l̂jι and the current pose x̂i:

x̂ij =



l̂j1
...

l̂jK

x̂i


(40)

and equivalently, we only need a subset of the blocks of the full covariance matrix

Σxij =



Σj1j1 · · · ΣT
jK j1

ΣT
ij1

...
. . .

...
...

ΣjK j1 · · · ΣjK jK ΣT
ijK

Σij1 · · · ΣijK Σii


(41)

which now contains additional off-diagonal entries Σjιjι′ not contained in the set of individual

covariances Σy for the same landmarks. These additional off-diagonal entries specify the

correlation between landmarks and are essential for ambiguous situations which often arise

in large loop closings.

4.1.3.1 Branch and Bound

Because the measurements are no longer independent, the search space is too large to ex-

haustively enumerate all possible assignments. In contrast, for NN and ML data association
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Figure 28: Tree of possible joint hypotheses for a small example with 3 landmarks (green)
and 2 measurements (orange). The tree has one level per measurement, and the branch-
ing degree depends on the number of landmarks. Note that a measurement can remain
unassigned, indicated by a dash (“-”), and that mutual exclusion is enforced.

we simply enumerate each possible landmark-to-feature assignment. For K features and N

landmarks there are

Πindividual = KN (42)

different costs to evaluate. Only then do we deal with unassigned measurements and mutual

exclusion by means of the minimum cost assignment problem. For joint compatibility,

however, the measurements are not independent and we therefore have to evaluate the

cost of each joint hypothesis that either assigns each feature to a landmark or leaves it

unassigned. The overall number of these joint hypotheses is far larger than the number of

individual hypotheses. In particular, we can assign one of N landmarks to the first feature

or leave it unassigned, and at the same time one of the N − 1 remaining ones to the second

(considering mutual exclusion) or leave it unassigned and so on, yielding

Πjoint =
(N + 1)!

(N + 1−K)!
(43)

possible joint hypotheses to evaluate, which is O(NK).

The combinatorial complexity of the state space is addressed by the joint compatibility

branch and bound (JCBB) algorithm by Neira and Tardos [105]. Branch and bound repre-

sents the space of all possible hypotheses by a tree, as shown in Figure 28, where each node

represents a specific hypothesis. The goal of the algorithm is to find the hypothesis with

the highest number of jointly compatible matchings at the lowest squared distance D2,JC
kj
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# general branch and bound algorithm
# the input arguments are functions tailored to the specific application
function branch and bound(successors, bound, prunable,

cost, feasible)
best = None
heap = insert(empty node, bound(empty node), empty heap)
while not empty(heap)

# process next node
node = get min(heap)
# skip subtree if bound is worse than best
if not prunable(node, best) then

# update best if feasible and better than current best
if feasible(node) and cost(node) < cost(best) then

best = node
endif
# insert successor nodes
for all successors(node) do
insert(successor, bound(successor), heap)

done
endif

endwhile
return best

Figure 29: The general branch and bound algorithm. The functions needed for the joint
compatibility branch and bound (JCBB) algorithm are described in the text.
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according to (38).

The algorithm starts with an empty hypothesis, the root of the tree, and processes nodes

from a queue starting from the most promising one as determined by a lower bound of the

cost. For this purpose the algorithm adds to the queue new hypotheses for successors of

nodes that it encounters. Efficiency is achieved by discarding subtrees whose lower bound

is higher than the current best hypothesis. The branch and bound algorithm is shown in

Figure 29. For the JCBB algorithm the following functions have to be defined:

successors returns a list of hypotheses, for which the next unprocessed measurement is

assigned to any of the valid landmarks or alternatively left unassigned. However, only

assignments that fulfill the individual compatibility test from (30) are acceptable.

Further, the mutual exclusion constraint is enforced by not considering landmarks

that have already been assigned in this hypothesis.

cost returns the cost of a hypothesis, which is primarily defined by the number of as-

signments, where a higher number of assignments yields a lower cost. The squared

distance D2,JC
kj from (38) is used to further differentiate between hypotheses with equal

numbers of assignments.

feasible returns true if the hypothesis represents an acceptable assignment. An assign-

ment is acceptable if the cost of the node is lower than χ2
d,α following (39), ie. this is

the actual joint compatibility test.

bound returns a bound on the cost of any node in the subtree rooted at this node. The

bound is defined by the cost of the node, but in addition to the current number of

assignments we also consider the number of measurements that are still unprocessed

– none of the children can possibly achieve a lower cost.

prunable returns true if the subtree rooted at this node can be discarded. A subtree can

be discarded if its bound is higher than the cost of the current best hypothesis.

Note that JCBB might still become very expensive when a large number of landmarks and

measurements are considered. In practice it is advisable to only match against potentially
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visible landmarks, see also Section 4.1.4. To further reduce costs, the joint compatibility

has to be evaluated incrementally as described next.

4.1.3.2 Incrementally Calculating Joint Compatibility

For efficiency, the joint compatibility criterion has to be evaluated incrementally to avoid

inversion of increasingly large matrices during branch and bound. Please see the original pa-

per by Neira and Tardos [105] for the mathematical derivation. The goal is to incrementally

calculate the squared distance

D2,JC = hTC−1h (44)

where

C = HΣHT + Γ (45)

and

h := h(x̂)− z̃ (46)

with

H :=
∂h

∂x

∣∣∣∣
x̂

(47)

by using previously calculated components to avoid the inversion of an increasingly large

C matrix. Assume we have D2,JC
− , C−1

− , h−, H− from previous calculations, where the

subscript “−” refers to the current hypothesis represented by j = (j1, . . . , jK)T but with the

last entry jK unassigned, and I use the subscript “+” for the hypothesis that only contains

this last assignment jK and all other measurements are unassigned. Let us define

w := H+ΣH (48)

N :=
(
C+ − wC−1

− wT
)−1

(49)

L := −NwC−1
− (50)

K := C−1
− + LTN−1L (51)

where I assume that Γ is (block-)diagonal to simplify the expression of w. The squared

distance for the full assignment can now be calculated incrementally:

D2,JC = D2,JC
− + hT−L

TN−1Lh− + 2hT+Lh− + hT+Nh+ (52)
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and we additionally need to remember

C−1 =

 K LT

L N

 (53)

H =

 H−

H+

 (54)

h =

 h−

h+

 (55)

for future calculations.

4.1.3.3 Simplified JCBB

While I am not using the simplified joint compatibility branch and bound algorithm by

Clemente et al. [14] in this work, I mention it here as an interesting, but much cheaper

alternative to the full algorithm. The simplified JCBB algorithm starts from a known

assignment vector and makes a binary decision for each single assignment. The full JCBB

algorithm can be quite expensive. Even though large parts of the search tree are pruned by

bounding the cost, the branching factor of a single node is large in practical applications.

Other algorithms, such as ML, can provide assignment vectors that are often correct at very

low cost because they ignore joint compatibility. The simplified JCBB algorithm is then

used to identify and potentially correct wrong assignments.

Simplified JCBB starts with an hypothesis j of assignments between measurements

and landmarks. The hypothesis is then tested for joint compatibility. Branch and bound

is only performed if the test fails in order to find the largest set of jointly compatible

assignments in j, where each measurement either remains assigned to its original landmark,

or is changed to unassigned status. Note that branch and bound is still important here

because a sequential decision of which assignment is acceptable would depend on the order

in which the assignments are processed. Of course, under high uncertainty, most or all

assignments made by ML might be incorrect, and the simplified JCBB algorithm will not

be able to find a correct assignment. However, at least such a failure can then be identified.
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4.1.4 Search Region and Pose Uncertainty

How far do we need to search for potential loop closures? We face this question for example

for landmark-based data association, as we want to quickly identify landmarks that are

potential candidates for a match in a given correspondence decision. The same problem

also appears in place recognition, such as our work in [102], where restricting the search

region allows keeping the computational requirements of place recognition low even in very

large-scale applications. Furthermore, the problem appears in pose-only estimation, such

as laser-based scan matching, where we need to identify earlier parts of the trajectory (and

therefore parts of the map) that are candidates for a loop closing. While I have not done

so in this work (the scan matching based datasets in Chapter 3 were preprocessed and have

known data association), I at least want to discuss how iSAM is also helpful in this case.

The question about restricting the search region can again be answered by recovering

parts of the covariance matrix. In the simplest case we only recover the uncertainty of

the current pose, which is the bottom right-most block of the full covariance matrix and

therefore trivial to recover from the square root factor R. However, imagine a vehicle driving

in a straight line for a long distance and then performing a small loop. The absolute pose

uncertainty is very large as we are far from the starting point. This would result in a large

search region for loop closing. However, the actual uncertainty within the small loop is

much smaller and is obtained by taking into account the marginal covariances between the

current pose and some previous pose along the loop. The off-diagonal blocks describe the

correlation between poses, and therefore the search region will now be much smaller.

Analogous to the ML data association case, the question to ask is how likely it is that

two poses xi1 and xi2 are identical given all measurements Z that we have seen so far. With

the same argument as before we obtain

P (xi = xi′ |Z) =
∫
x
P (xi = xi′ |xZ)P (x|Z) (56)

=
∫
x

1√
|2πΛ|

e−
1
2
‖f(xi′ ,0)−xi‖2Λ

1√
|2πΣ|

e−
1
2
‖x−x̂‖2Σ

=
1√
|2πCii′ |

e
− 1

2
‖f(x̂i′ ,0)−x̂i‖2Cii′
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where f is the process model from (2) and the covariance Cii′ is defined as

Cii′ :=
∂f

∂x

∣∣∣∣
x̂

Σ
∂f

∂x

∣∣∣∣T
x̂

+ Λ. (57)

4.2 Selecting Informative Measurements

Which measurements provide the most information about the state estimate? The answer

certainly depends on the application requirements in terms of processing speed, and there is

a tradeoff between omitting information and the quality of the estimation result. However,

often there are also redundant or uninformative measurements that do not add any valuable

information and can therefore safely be discarded. An answer to this question allows us

to only use informative measurements in the estimation process, reducing computational

complexity. It can also be used to guide the search for measurements, as exploited by

Davison [22] for active search, but that is not the goal of my work. In this section I discuss

the theory of how to determine the information that a measurement contributes following

the work by Davison [22], but diverging in important points.

Let us start by identifying from a set of measurements the single measurement that,

if applied, results in the state estimate with lowest uncertainty, or in other words, results

in the highest gain in information. The current state estimate is given by the probability

distribution P (x|Z−) over the state x given all previous measurements Z−. The posterior

P (x|zj , Z−) provides the distribution over the state x after applying a measurement zj

on landmark j. The measurement zj follows the distribution zj = hij(x) + ν from (4).

Note our new notation zj : We do not use a specific measurement, but rather the expected

measurement ẑj = hij(x̂)+ν for a specific landmark j given the state estimate x̂, as we want

to identify the measurement that is expected to yield the largest reduction in uncertainty

before the measurement is actually made. The expected reduction in uncertainty or gain

in information about the state x when making measurement zj is given by the mutual

information [16]

I(x; zj) := H(x)−H(x|zj) (58)

=
∫
x,zj

P (x, zj) log
P (x, zj)
P (x)P (zj)

,
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where H(x) is the entropy of the current state and H(x|zj) is the conditional entropy of

the state after applying the measurement.

As iSAM represents Gaussian distributions, we obtain an expression for mutual infor-

mation for this special case. We start with a random variable a with Gaussian distribution

P (a) =
1√
|2πΣa|

e−
1
2
‖a−â‖2Σa (59)

that is partitioned into two random variables α and β so that the joint mean â and covari-

ance Σa are given by

â =

 α̂

β̂

 , Σa =

 Σαα Σαβ

Σβα Σββ

 (60)

It is shown by Davison [22] that the mutual information between the two Gaussian distri-

butions P (α) and P (β) is given by

I(α; β) = E

[
log2

P (α|β)
P (α)

]
(61)

=
1
2

log2

|Σαα|∣∣∣Σαα − ΣαβΣ−1
ββΣβα

∣∣∣ .
Note that the result is given in bits as we use the logarithm base 2.

To obtain the mutual information between the state space x and any of the N measure-

ment functions zj we combine these random variables into a new one

w =



x

z1

...

zN


(62)

that follows a Gaussian distribution with mean ŵ = (x̂, ẑ1, . . . , ẑN )T and covariance

Σw =



Σ Σ∂h1
∂x

T · · · Σ∂hN
∂x

T

∂h1
∂x Σ ∂h1

∂x Σ∂h1
∂x

T
+ Γ1 · · · ∂h1

∂x Σ∂hN
∂x

T

...
...

. . .
...

∂hN
∂x Σ ∂hN

∂x Σ∂h1
∂x

T · · · ∂hN
∂x Σ∂hN

∂x

T
+ ΓN


(63)

where some of the terms were defined in (28) based on (27), and the remaining ones follow

by analogy.
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It is now easy to select the best measurement by calculating all I(x; zj), but how do we

treat the remaining measurements? We identify three different possibilities:

1. We calculate the mutual information between the state vector and all possible com-

binations of measurements. This is the correct solution as the measurements are not

independent. However, unless the number of measurements is very small this solution

is infeasible because the number of possible combinations 2N is exponential in the

number of landmarks N that can be measured.

2. We select the best measurement, then use the measurement to update the state space

and start the feature selection again with the remaining measurements as done in [22].

Instead of taking the expected reduction in uncertainty into account, this solution uses

the actual measurement to update the state space. However, the decision is sequential

and therefore not guaranteed to be optimal. This solution is practical if updating the

state space and recovering the necessary covariances are cheap operations.

3. We select the best measurement without updating the state space, and then ask the

same question as before: Which of the remaining measurements is expected to yield

the lowest uncertainty? This avoids the combinatorial complexity as well as updating

of the state space with a measurement. While this solution is also not optimal, it is

much cheaper than the other solutions. I make use of this approach as described next.

One idea for finding the best measurement from the remaining ones is to look at the mu-

tual information between measurements in order to decide which ones are redundant, as

suggested in [22]. However, from these quantities we cannot directly calculate the correct

information gains, as they do not consider mutual information between combinations of

measurements.

Instead, I calculate the mutual information I(x; z, z1) of the state space x and mea-

surements z1 and z for each remaining measurement z. After selecting a measurement

z2 I continue with the mutual information I(x; z, z1, z2) for the remaining measurements

and so on. My approach requires the same quantities as in [22], although the calculations
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Figure 30: Only a small number of entries of the dense covariance matrix are of interest for
data association. In this example, both the individual and the combined marginals between
the landmarks l1 and l3 and the latest pose x2 are retrieved. As I show here, these entries
can be obtained without calculating the full dense covariance matrix.

get slightly more expensive as increasingly large blocks from the covariance matrix Σw are

needed. However, the increase in cost is not significant because the size of the state space

x is of the same order as the size of all measurements together. Note that my approach

correctly takes care of redundant features.

We are not only interested in the order of the measurements in terms of their value

for the estimation process, but also want to omit measurements that are not informative

enough. For that purpose we ignore features that fall below a certain threshold, for example

2 bits.

For practical purposes we again only need the subset x̂ij of the mean of the full state

estimate x̂ that only contains the components for visible landmarks l̂j and the current pose

x̂i. Similarly, only a subset Σxij of the blocks of the full covariance matrix are needed

x̂ij =



l̂j1
...

l̂jK

x̂i


, Σxij =



Σj1j1 · · · ΣT
jK j1

ΣT
ij1

...
. . .

...
...

ΣjK j1 · · · ΣjK jK ΣT
ijK

Σij1 · · · ΣijK Σii


. (64)

Note that these are the same quantities that were already used for joint compatibility in

(40) and (41). In the next section I discuss how to efficiently obtain these entries from

iSAM.
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4.3 Marginal Covariances from iSAM

Knowledge of the relative uncertainties between the current pose xi and any visible land-

mark lj is needed for all but the NN solution to the data association problem. The marginal

covariances

 Σjj ΣT
ij

Σij Σii

 ,


Σj1j1 · · · ΣT
jKj1

ΣT
ij1

...
. . .

...
...

ΣjKj1 · · · ΣjKjK ΣT
ijK

Σij1 · · · ΣijK Σii


(65)

needed above for individual and joint compatibility as well as for information theoretic

decisions about the value of a measurement contain various blocks from the full covariance

matrix, as is shown in Figure 30. The diagonal blocks contain the uncertainties of individual

variables. However, the off-diagonal blocks are essential, because the uncertainties are

relative to an arbitrary reference frame, which is often fixed at the origin of the trajectory.

An example makes it easy to see why the off-diagonal entries of the covariance matrix

are important for data association. Imagine a robot driving down a long hallway. The

uncertainty of the current robot location, and therefore also of nearby landmarks, will

continuously grow, as they are measured with respect to the starting point of the trajectory,

and no loop closing takes place. Imagine further that the robot now performs a small loop

at the end of this long trajectory. The absolute uncertainties are very high, making data

association decisions very ambiguous. However, the actual uncertainty of this small loop is

fairly small and data association should be simple. We obtain these actual uncertainties by

taking the relative uncertainties between robot poses (and landmarks) into account, which

are represented by the off-diagonal blocks in the covariance matrix.

Calculating the full covariance matrix to recover these entries is not an option because

the covariance matrix is always densely populated with n2 entries, where n is the number

of variables. However, I show in the next section that it is not necessary to calculate all

entries in order to retrieve the exact values of the relevant blocks. Further, for the ML data

association case, we can also obtain conservative estimates as I show in Section 4.3.2.
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4.3.1 Exact Marginal Covariances

Recovering the exact values for all required entries without calculating the complete co-

variance matrix is not straightforward, but can be done efficiently by again exploiting the

sparsity structure of the factor matrix R. In general, the covariance matrix is obtained as

the inverse of the information matrix

Σ := (ATA)−1 = (RTR)−1 (66)

based on the factor R by noting that

RTRΣ = I (67)

and performing a forward, followed by a back-substitution

RTY = I, RΣ = Y. (68)

Because the information matrix is not band-diagonal in general, this would seem to require

calculating all n2 entries of the fully dense covariance matrix, which is infeasible for any

non-trivial problem. This is where the sparsity of the factor R is of advantage again. Both,

Golub and Plemmons [61] and Triggs et al. [134] present an efficient method for recovering

only the entries σij of the covariance matrix Σ that coincide with non-zero entries in the

factor R = (rij):

σll =
1
rll

(
1
rll
−

n∑
j=l+1,rlj 6=0

rljσjl) (69)

σil =
1
rii

(−
l∑

j=i+1,rij 6=0

rijσjl −
n∑

j=l+1,rij 6=0

rijσlj) (70)

for l = n, . . . , 1 and i = l−1, . . . , 1, where the other half of the matrix is given by symmetry.

Note that the summations only apply to non-zero entries of single columns or rows of the

sparse matrix R. This means that in order to obtain the top-left-most entry of the covariance

matrix, we at most have to calculate all other entries that correspond to non-zeros in R. The

algorithm has O(n) time complexity for band-diagonal matrices and matrices with only a

small number of entries far from the diagonal, but can be more expensive for general sparse
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Figure 31: Comparison of marginal covariance estimates projected into the current robot
frame (robot indicated by red rectangle) for a short trajectory (red curve) and some land-
marks (green crosses). Conservative covariances (green, large ellipses) as well as the exact
covariances (blue, smaller ellipses) obtained by my fast algorithm are shown. Note that the
exact covariances based on full inversion are also shown (orange, mostly hidden by blue).

R. In particular, if the otherwise sparse matrix contains a dense block of side length s,

the complexity is O(nk+ s3) and the constant factor s3 can become dominant for practical

purposes.

Based on a dynamic programming approach, my algorithm as shown in Figure 32 pro-

vides access to all entries of interest for data association. While most of the upper triangular

blocks of R are fully populated, any required entries that correspond to zeros in R are au-

tomatically obtained. An example of how the recovery proceeds is shown in Figure 33.

Figure 31 shows the marginal covariances obtained by this algorithm for the first part of

the Victoria Park sequence. Note that they coincide with the exact covariances obtained

by full matrix inversion.

4.3.2 Conservative Estimates

For ML data association in particular, a cheap substitute for my exact covariance recovery

is obtained by using conservative estimates of the block diagonal entries. The exact values

of the off-diagonal blocks that are related to the current pose can be recovered using back-

substitution, because I always add the most recent robot pose at the end.

The recovery of the last columns of the covariance matrix from the square root factor can
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# recover marginal covariance of variables given by indices
function recover(R, indices) =

n = rows(R)
for i=1:n do # precalculate, needed multiple times
diag[i] = 1 / R[i,i]

done
# recover one entry, hashed for fast random access
function hash entry(i, l) =

# sum over sparse entries of one row
function sum j(i) =
sum = 0
for each entry rij of sparse row i of R do
if j<>i then

if j>l then
lj = entry(l, j)

else
lj = entry(j, l)

endif
sum += rij * lj

endif
done
return sum

if i = l then # treat diagonal entries differently
return (diag[l] * (diag[l] - sum j(l)))

else
return (- sum j(i) * diag[i])

endif
# recover square marginal covariance matrix
n indices = length(indices)
for r=1:n indices do
for c=1:n indices do
P[r,c] = entry(indices[r],indices[c])

done
done
return P

Figure 32: Dynamic programming algorithm for marginal covariance recovery inspired by
Golub’s partial sparse matrix inversion algorithm. The argument indices provides the
indices of variables for which the marginal covariance should be recovered. I have chosen
to use a hash table for fast random access to the sparse entries calculated by recover.
For practical implementations, care also has to be taken to avoid stack overflows caused by
the recursive calls. For example if we first ask for the left top-most entry of the covariance
matrix, all other required entries (the ones that correspond to non-zeros in R) will be
calculated recursively. It is therefore advantageous to process entries starting from the
right-most column, while taking the variable ordering into account.
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(a) First 8 steps. (b) Steps 245 to 252. (c) Last 8 steps.

Figure 33: The process of recovering marginal covariances: The three columns show
successive steps of recovering the entries of the covariance matrix that correspond to non-
zero entries in the R factor. The overall process takes 716 steps. For each step the R factor
is shown in the left half and the partially computed covariance matrix in the right half. The
matrix entry to be calculated is shown in red, while blue are accessed entries and green are
the remaining non-zero entries.
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be done efficiently by back-substitution. The exact pose uncertainty Σii and the covariances

Σij can be recovered in linear time, based on the sparse R factor. As I choose the current

pose to be the last variable in the factor R, the last block column X of the full covariance

matrix (RTR)−1 contains Σii as well as all Σij as observed in [42], but instead of having

to keep an incremental estimate of these quantities, we retrieve the exact values efficiently

from the factor R by back-substitution. With dx the dimension of the last pose, I define

B ∈ Rn×dx as the last dx unit vectors

B =

 0(n−dx)×dx

Idx×dx

 (71)

and solve

RTRX = B (72)

by a forward and a back-substitution

RTY = B, RX = Y. (73)

The key to efficiency is that we never have to recover a full dense matrix, but due to R

being upper triangular immediately obtain

Y = [0, ..., 0, R−1
ii ]T . (74)

Recovering these columns is efficient, because only a constant number of dx back-substitutions

are needed, each of which is performed in linear time because of the sparsity of R.

Conservative estimates for the structure uncertainties Σjj are obtained from the initial

uncertainties as proposed by Eustice [42]. As the uncertainty can never grow when new

measurements are added to the system, the initial uncertainties Σ̃jj provide conservative

estimates. These are obtained by

Σ̃jj = J̄

 Σii

Γ

 J̄T (75)

where J̄ is the Jacobian of the linearized back-projection function (an inverse of the mea-

surement function is not always available, for example for the bearing-only case), and Σii
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(a) Ground truth. (b) ML data association fails. (c) JCBB succeeds despite high
noise.

Figure 34: A simulated loop with high noise that requires the JCBB algorithm for suc-
cessful data association.

and Γ are the current pose uncertainty and the measurement noise, respectively. Figure 31

provides a comparison of the conservative and exact covariances. A more tight conservative

estimate on a landmark can be obtained after multiple measurements are available, or later

in the process by means of the exact algorithm from the previous section.

4.4 Experiments and Results

I present timing results for recovering exact marginal covariances as well as conservative

estimates. I analyze data association for the Victoria Park dataset, shown in Figure 17,

which was discussed in more detail in Section 3.5.1 for the case of known correspondences.

And I analyze the effect of measurement selection based on expected information gain.

4.4.1 Exact Marginals Covariances

To show the merits of JCBB, I use a simulated environment with 100 poses, 27 landmarks

and 508 measurements in Figure 34. The trajectory length is about 50m and all standard

deviations are 0.1m and 0.1rad. Maximum likelihood data association fails to successfully

close the loop, as a wrong data association decision is made. JCBB on the other hand

successfully establishes the correct correspondences.

Table 2 shows execution times for JCBB data association applied to the Victoria Park

sequence, with different thresholds on the information content that a measurement needs

to provide in order to be added to the estimation problem. For reference, I also show
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Table 2: Execution times for the Victoria Park sequence under different data association
techniques. The number of measurements declines with increasing threshold on the mini-
mum information a measurement has to provide, until data association eventually fails as
shown in Figure 35.

Execution time Number of measurements
NN 207s 3640

JCBB 590s 3640
JCBB, 2 bit threshold 588s 3628
JCBB, 3 bit threshold 493s 2622
JCBB, 4 bit threshold fails -

(a) 2 bit threshold (b) 3 bit threshold (c) 4 bit threshold

Figure 35: Maps resulting from omitting measurements with expected information below
a threshold according to Table 2. For 2 and 3 bit thresholds the maps are visually identical.
For a 4 bit threshold data association fails in the rightmost part of the trajectory, yielding
an inconsistent map.
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Figure 36: Number of entries of the covariance matrix that have to be recovered compared
with the number actually required for data association, both in linear (top) and log scale
(bottom). For reference I also show the number of entries in R and the number of entries if
R was dense (log scale only). Note that a significantly lower number of entries are calculated
than there are non-zero entries in R.

results for nearest neighbor data association, which does not require access to the marginal

covariances. A threshold of 2 bit only removes a few measurements yielding only a slightly

lower execution time. The result also shows that the selection of measurements does not

add a significant overhead as the marginal covariances are already recovered for JCBB

data association. For a 3 bit threshold the number of measurements is significantly lower,

resulting in a significant speedup due to lower complexity of both the estimation and the

marginal covariance recovery. Finally, for a 4 bit threshold too many measurements are

removed and the data association fails to close loops correctly, leading to an inconsistent

map as shown in Figure 35.
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Table 3: Execution times for different marginal covariance recovery methods for a simu-
lated loop. The times include updating of the factorization, solving for all variables, and
performing the respective data association technique, for every step.

Execution time
Overall Avg./step Max./step

NN 2.03s 4.1ms 81ms
ML conservative 2.80s 5.6ms 95ms

ML exact, efficient 27.5s 55ms 304ms
ML exact, full 429s 858ms 3300ms

Marginal covariance recovery is quite efficient with my dynamic algorithm. In Figure 36

I compare the number of entries of the covariance matrix that have to be recovered with

the number of actually required entries for JCBB data association. The figure shows both

linear (top) and log scale (bottom). The number of recovered entries is much lower than

the actual number of non-zero entries in the factor matrix because my dynamic algorithm

for marginal covariance recovery only calculates the entries that are actually needed. If,

lets say no variables from the left half of the covariance matrix are needed, then the entries

corresponding to non-zero entries in the right half of R also do not have to be calculated.

Furthermore, from the remaining part of the matrix not all entries corresponding to non-

zeros in the factor matrix are necessarily required, as some variables might not depend on

others even if those are further to the right.

The number of entries calculated by the dynamic approach stays almost linear in this

example. This really depends on the order of the variables in the R factor, as it is more

expensive to obtain covariances for entries that are further to the left side of the matrix.

The spikes often coincide with an increased number of non-zero entries in R, which are

caused by incremental updates during loop closing events. The significant increase on the

right is a combination of a denser R factor (see spikes in blue curve) with required variables

being further to the left of the matrix and additionally more entries are requested (see green

curve).
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4.4.2 Conservative Estimates

While JCBB based on exact marginal covariances is fast enough for most cases, I still include

an evaluation of the recovery of conservative estimates for completeness. All results of this

section were obtained on a Pentium M 2GHz laptop.

I compare different methods for obtaining the marginal covariances for ML data as-

sociation in Table 3. The results are based on a simulated environment with a 500-pose

loop and 240 landmarks, with significant measurement noise added. Undetected landmarks

and spurious measurements are simulated by replacing 3% of the measurements by ran-

dom measurements. The nearest neighbor (NN) approach is dominated by the time needed

for factorization updates and back-substitution in each step. As those same calculations

are also performed for all covariance-based approaches that follow, these times are a close

approximation to the overall calculation time without data association.

The results show that while my exact algorithm is much more efficient than full inversion,

my conservative solution provides a high frame rate solution. In the second and third rows,

the maximum likelihood (ML) approach is evaluated for my fast conservative estimate and

my efficient exact solution. The conservative estimate only adds a small overhead to the

NN time, which is mostly due to back-substitution to obtain the last columns of the exact

covariance matrix. This is computationally the same as the back-substitution used for

solving, except that it covers a number of columns equal to the dimension of a single pose

instead of just one. Recovering the exact marginal covariances becomes fairly expensive

in comparison as additionally the block-diagonal entries have to be recovered. My exact

efficient algorithm is an order of magnitude faster compared to the direct inversion of the

information matrix, even though I have used an efficient algorithm based on a sparse LDLT

matrix factorization [60]. However, this does not change the fact that all n2 entries of the

covariance matrix have to be calculated for the full inversion. Nevertheless, even my fast

algorithm is expensive when calculated in every step. But as the uncertainties can never

grow when new measurements are added, an alternative solution is to calculate exact values

when time permits and use them to update the conservative estimates.

iSAM with conservative estimates also runs comfortably in real-time for the Victoria
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Park sequence. Performing ML data association based on conservative estimates, the incre-

mental reconstruction including solving for all variables after each new frame is added took

464s or 7.7 minutes, which is significantly less than the 26 minutes it took to record the data.

That means that iSAM is still over 3 times faster than real-time. Obtaining the exact map

and trajectory by back-substitution only every 10 steps yields a significant improvement to

270s or 4.5 minutes. The difference to known data association is not significant. Under

known correspondences the time reduces to 351s or 5.9 minutes. The difference is mainly

caused by the back-substitution over the last three columns to obtain the off-diagonal entries

in each step that are needed for data association. The decrease is not significant because

a similar back-substitution over a single column still has to be performed to solve for all

variables in each step.

iSAM with conservative estimates also still performs in real-time towards the end of the

trajectory, where the computations get more expensive. Even for the slow case of retrieving

the full solution after every step, iSAM including data association takes on average 0.120s

per step for the final 100 steps. These results compare favorably to the 0.22s needed for

real-time performance. Again, this average includes a full linearization, COLAMD variable

reordering step and matrix factorization, which took 1.8s in total.

4.5 Related Work

Common approaches to the data association problem assume known correspondences or use

a maximum likelihood assignment. However, reverting to a specific correspondence assign-

ment involves the danger of choosing a wrong correspondence, often leading to catastrophic

failure of the system. In laser-based applications, correlation based approaches based on

scan matching, such as presented by Gutmann and Konolige [67], are used for 2D data, and

the iterative closest point (ICP) algorithm by Besl and McKay [7] for 3D data. However,

these approaches do not apply to sparse landmark-based SLAM.

Another way of dealing with unknown correspondences is to generate a set of candidate

assignments, and then prune inconsistent ones. This is typically done using random sample

consensus (RANSAC) by Bolles and Fischler [9], a probabilistic algorithm that repeatedly
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selects a minimum number of candidates needed to constrain the given problem, and deter-

mines the support from the remaining candidates. It is frequently used in SFM [6], visual

SLAM [120, 21, 82] and visual odometry [110].

A more direct way of dealing with unknown correspondences is to consider multiple

hypotheses. This can be based on combinatorial considerations [4], tree search [105], or

lazy search that revises decision only if needed [70]. It can also be achieved in the con-

text of particle-based representations [69, 98, 108, 38], where each particle carries its own

correspondences, typically based on a per-particle maximum likelihood assignment or ran-

dom sampling. The joint compatibility branch and bound algorithm by Neira and Tardos

[105] has proven particularly successful [2, 131]. However, it requires access to the marginal

covariances, and besides the EKF with its consistency problems, efficient direct access to

these marginals was not available before our work.

An approach that avoids the combinatorial nature of the problem samples from proba-

bility distributions over correspondences [28, 31] in a batch structure from motion context.

SLAM, however, requires an incremental solution. We have adapted the approach accord-

ingly in [77], which could now be combined with iSAM.

We have presented simple data association and marginal covariance recovery for iSAM

in [80, 81]. However, this dissertation contains more details and an improved dynamic

programming algorithm for recovering marginal covariances. Furthermore, the joint com-

patibility branch and bound algorithm as well as the selection of informative measurements

have not been explored before in connection with iSAM.
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Chapter V

APPLICATION: VISUAL SLAM

Visual SLAM is more challenging than other SLAM problems presented in this work. First,

a large number of landmarks need to be mapped, which makes EKF-based solutions un-

suitable. Second, the measurement functions are highly non-linear, which is another reason

against using filter-based SLAM approaches. Consequently a smoothing based solution

seems appropriate. Furthermore, data association is required to close large loops, eliminat-

ing most smoothing algorithms that do not provide access to the estimation uncertainties.

And finally, loop closing constraints need to be incorporated into the estimation problem

with the associated global correction of the map, rendering fixed-lag smoothing approaches

useless.

The visual SLAM system that I present here consists of two parts: The first part is

visual odometry, which estimates the ego-motion of a moving camera by tracking features

between subsequent frames. The second part is the actual SLAM system based on iSAM.

It uses a subset of the input frames and therefore only uses features that were successfully

tracked over multiple frames. It also uses a subset of the remaining features to integrate over

time and for closing loops. I follow up with experimental results for challenging outdoor

sequences.

Throughout this chapter I assume that we have rectified images with known calibration

matrix

K =


fu s u0

fv v0

1

 (76)

for both cameras of the stereo pair, where fu and fv are the focal lengths, s the skew

(typically 0), and (u0, v0) the principal point. I define the reference camera to be the one

whose pose is tracked. The other view is defined by the baseline b of the stereo pair. Camera

poses are represented by a translation vector t and the three Euler angles yaw φ, pitch θ
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and roll ψ, or alternatively the corresponding rotation matrix R.

5.1 Visual Odometry

I present a novel approach to visual odometry that is fast and robustly deals with nearly

degenerate data. The expression “degenerate data” refers to data that is insufficient for

constraining a certain estimation problem. “Nearly degenerate data” means that there

are only a few data points without which the remaining data is degenerate. Almost all

visual odometry work use the random sample consensus (RANSAC) algorithm [9] for robust

model estimation, and are therefore susceptible to problems arising from nearly degenerate

situations. It is well known that RANSAC fails when directly applied to nearly degenerate

data [13, 50], but no visual odometry work addressed this so far. In visual odometry nearly

degenerate data occurs for a variety of reasons, such a ground surfaces with low texture

(see Figure 37(b)), bad lighting conditions that result in overexposure (which resulted in

the example in Figure 37(a)), and motion blur. The consequence is that multiple runs of

RANSAC on the same data yield different results, as the example in Figure 37(a) shows.

While no previous visual odometry work has dealt with the problem of degeneracy, Frahm

and Pollefeys [50] present a general method called QDEGSAC for robust estimation in such

cases. However, their general method is not suitable here because of the hard real-time

constraints of visual odometry.

An overview of our approach is shown in Figure 38. Based on extracted image features

I first establish stereo correspondences as well as putative matches between two successive

frames. I then separate the stereo features based on their disparity and the vehicle speed

into two sets. The set with low disparity is used to recover the camera rotation with a

two-point algorithm. Based on the recovered rotations, I then use the second set of features

to recover the vehicle translation with a one-point algorithm. I have implemented this

algorithm as well as a reference three-point algorithm on an outdoor robot with a stereo

rig. I show that this algorithm is faster than the reference system, and that it successfully

deals with nearly degenerate data.
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(a) Two runs of standard visual odometry on the same data yield different sets
of inliers in degenerate situations.

(b) Another example where a ground surface with low texture results
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Figure 37: Examples of nearly degenerate data based on low availability of features close
to the camera, which are needed to estimate the translation. (a) An example in which the
inliers for two different runs of RANSAC significantly differ, as shown by the red plus signs
and green crosses. In this case, patches of strong light in otherwise dark areas of the image
lead to overexposure resulting in only a small number of close features along a line. (b)
A different scenario that causes a standard three-point RANSAC approach to fail because
most of the structure is too distant to provide translational constraints, but a high inlier
ratio can be achieved from the features in the background.
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Figure 38: Our approach consists of four steps that are performed for each new frame:
(1) Sparse stereo and putative matching. (2) Separate the sparse flow by disparity based
on the threshold θ that adapts to the vehicle speed. (3) Recover the rotational component
of the camera motion from two distant points At and Bt using RANSAC to robustly deal
with outliers. (4) Recover the translational component of the camera motion from one close
point Ct again using RANSAC.
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5.1.1 Stereo Odometry by Sparse Flow Separation

As shown in Figure 38 our algorithm performs the following four steps on each new stereo

pair:

1. Perform sparse stereo and putative matching.

2. Separate features based on disparity.

3. Recover rotation with two-point RANSAC.

4. Recover translation with one-point RANSAC.

Next I describe these steps in detail.

5.1.1.1 Sparse Stereo And Putative Matches

I extract features in the current frame and establish stereo correspondences between the

left and right image of the stereo pair. For a feature in one image, the matching feature

in the other is searched for along the same scan line, with the search region limited by a

maximum disparity. As there are often multiple possible matches, appearance is typically

used and the candidate with lowest difference in a small neighborhood accepted, resulting

in the set of stereo features F = {(ui, vi, u′i)}i, where (u, v) is the location of a feature in

the reference frame and (u′, v) the corresponding feature in the other frame.

Based on the stereo features Ft from the current frame and the features Ft−1 from the

previous frame I establish putative matches. For a feature in the previous frame, I predict

its location in the current frame by creating a 3D point using disparity and projecting it

back. For this reprojection we need to have a prediction of the vehicle motion, which is

obtained in one of the following ways:

• Odometry: If wheel odometry or IMU are available.

• Filter: Predict camera motion based on previous motion.

• Stationary assumption: At high frame rate we obtain a small enough motion to ap-

proximate by a stationary camera.
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As the predicted feature locations are not exact in any of these cases, I select the best

of multiple hypotheses. I use the approximate nearest neighbors (ANN) algorithm [1] to

efficiently obtain a small set of features within a fixed radius of the predicted location. The

best candidate based on template matching is accepted as a putative match. I denote the

set of putative matches with M. As some putative matches will still be wrong, I use a

robust estimation method below to filter out incorrect matches.

5.1.1.2 Separate Features

I separate the stereo features based on their usefulness in establishing the rotational and

the translational components of the stereo odometry. The key idea is that small changes in

the camera translation do not visibly influence points that are far away. While points at

infinity are not influenced by translation and are therefore suitable to recover the rotation

of the camera, there might only be a small number or even no such features visible due to

occlusion, for example in a forest or brush environment. However, as the camera cannot

translate far in the short time between two frames (0.067 seconds for my 15 frames per

second system), we can also use points that have disparities somewhat larger than 0. Even

if the camera translation is small, however, if a point is close enough to the camera its

projection will be influenced by this translation.

I find the threshold θ on the disparity of a point for which the influence of the camera

translation can be neglected. The threshold is based on the maximum allowed pixel error

given by the constants ∆u and ∆v, for which values in the range of 0.1 to 0.5 seem reason-

able. It also depends on the camera translation t = (tx, ty, tz), which can again be based

on odometry measurements, a motion filter, or a maximum value provided by physical con-

straints, for example of a mobile robot platform. Considering only the center pixel of the

camera as an approximation, we obtain the disparity threshold

θ = max

{
b

tx
∆u −

tz
f

,
b

ty
∆v −

tz
f

}
. (77)

I separate the putative matches into the set Mrot = {M|disparity ≤ θ} that is useful

for estimating the rotation, and the set Mtrans = {M|disparity > θ} that is useful for

estimating the translation. Note that we always have enough putative matches in Mrot
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even if the robot is close to a view obstructing obstacle, due to physical constraints. As the

robot gets close to an obstacle, its speed has to be decreased in order to avoid a collision,

therefore increasing the threshold θ. On the other hand, it is possible that all putatives

have disparities below the threshold θ, in particular for t = 0. In that case we still have

to use some of the close putatives for calculating the translation, as we do not know if the

translational speed of the camera is exactly 0 or just very small. I therefore always use a

minimum number of the closest putative matches for translation estimation, even if their

disparities fall below θ.

5.1.1.3 Rotation: Two-point RANSAC

I recover the rotational component R of the motion based on the set of putative matches

Mrot that are not influenced by translation. For points at infinity it is straightforward to

recover rotation based on their direction. Even if points are close to the camera such that

reliable depth information is available, but the camera performs a pure rotational motion,

the points can be treated as being at infinity, as their depths cannot be determined from the

camera motion itself. Even though the camera’s translation is not necessarily 0 in our case,

I have chosen the threshold θ so that the resulting putative matchesMrot can be treated as

points at infinity for the purpose of rotation estimation. I will therefore take a monocular

approach to rotation recovery.

While the set of putative matches contains outliers, let us for a moment assume that

the matches (zRi,t, z
R
i,t−1) ∈Mrot with zRi,t = (uRi,t, v

R
i,t) and zRi,t−1 = (uRi,t−1, v

R
i,t−1) are correct

and therefore correspond to the homogeneous directions (ie. wRi = 0)

XR
i =

[
xRi yRi zRi 0

]T
. (78)

Two such matches are necessary to determine the rotation of the camera for either of the

following two methods:

• We estimate the rotation R together with n directions XR
i (2 degrees of freedom,

because XR
i is homogeneous with wRi = 0), yielding 3+2n degrees of freedom (DOF).

Each match yields 4 constraints, therefore n = 2 is the minimum number of corre-

spondences needed to constrain the rotation.
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• We estimate only the rotation R, by using the features from the previous time t − 1

to obtain the direction of the points. This yields 3 DOF, with only 2 remaining

constraints per match, again yielding n = 2.

For pure rotation, ie. t = 0, the reprojection error E simplifies to

E =

∥∥∥∥∥∥∥∥∥∥
zRi − νR(R, 0,


xRi

yRi

zRi

)

∥∥∥∥∥∥∥∥∥∥

2

(79)

=

∥∥∥∥∥∥∥∥∥∥
zRi − νR

R,

xRi

yRi

zRi



∥∥∥∥∥∥∥∥∥∥

2

where (u, v) = νR(R, t, X) is the monocular projection of point X into the camera at

pose R, t. We numerically obtain an estimate for the rotation R and optionally the point

directions by minimizing the nonlinear error term

Rt,

{[
xRi yRi zRi

]T}
i︸ ︷︷ ︸

t′i

= = argmin
Rt,t′i

∑
i,τ∈{t,t−1}

∥∥∥∥∥∥∥∥∥∥
zRi,τ − νR

Rτ ,

xRi

yRi

zRi



∥∥∥∥∥∥∥∥∥∥

2

(80)

where Rt−1 = I and therefore Rt the rotational component of the visual odometry. Note

that we also need to enforce

∥∥∥∥∥
[
xRi yRi zRi

]T∥∥∥∥∥
2

= 1 in order to restrict the extra degree

of freedom provided by the homogeneous parametrization.

While I have assumed correct matches so far, the putative matches in Mrot are in

fact noisy and contain outliers. I therefore use the random sample consensus (RANSAC)

algorithm [9] to robustly fit a model. The sample size is two, as two putative matches

fully determine the camera rotation, as discussed above. RANSAC repeatedly samples two

points from the set of putatives and finds the corresponding rotation. Other putatives are

accepted as inliers if they agree with the model based on thresholding the reprojection

error E from (79). Sampling continues until the correct solution is found with some fixed

probability. Subsequently, a better rotation estimate is determined based on all inliers.
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Finally, this improved estimate is used to identify inliers from all putatives, which are then

used to calculate the final rotation estimate R̂.

5.1.1.4 Translation: One-point RANSAC

Based on the now known camera rotation, I recover the translation from the close putative

matches Mtrans. I denote a putative match as zt
i,t and the corresponding 3D points as

Xt
i . Each measurement imposes 2 × 3 = 6 constraints, i.e. zt

i,t = (ut
i,t, v

t,
i,t, u

′t
i,t) and

zt
i,t−1 = (ut

i,t−1, v
t
i,t−1, u

′t
i,t−1), which now includes stereo information in contrast to Section

5.1.1.3. Intuitively we can recover the translation from a single putative match, as each of

the two stereo frames defines a 3D point and the difference between the points is just the

camera translation. Practically we again have two different approaches:

1. We estimate both the translational component t with 3 DOF and the 3D points{
Xt
i

}
i

with 3 DOF each. Each measurement contributes 6 constraints, therefore a

single match will make the system determinable.

2. We estimate only the translation t yielding 3 DOF, by using the previous stereo feature

to generate the 3D point. Each measurement then only contributes 3 constraints,

again requiring only a single match to constrain the camera translation.

Similar to Section 5.1.1.3, the translation is recovered by optimizing over the translation

and optionally also the 3D points:

tt,
{
Xt
i

}
i

= argmin
tt,{Xt

i }i

∑
i,τ∈{t,t−1}

∥∥∥zt
i,τ − νt

(
R̂τ , tτ , Xt

i

)∥∥∥2
(81)

where (u, v, u′) = νt(R, t,X) is the stereo projection function, and I choose Rt−1, tt−1 to be

a camera at the origin, and Rt = R̂ is the rotation recovered by the two-point algorithm.

Consequently, tt is the translation of the camera that we are interest in. Again, I use

RANSAC to robustly deal with outliers, where each sample defines a translation according

to (81) and the final model is also determined by (81) using all inliers.
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(a) Multiple runs yield different trajectories for three-point.
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(b) Our algorithm returns nearly stable results.

(c) Camera images.

Figure 39: Trajectories from multiple runs on the San Antonio dataset of (a) the reference
three-point implementation and (b) our algorithm. Some images of the environment are
shown in (c). It is apparent that the three-point algorithm returns inconsistent trajectories,
while our algorithm provides almost the same result in each run.
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5.1.2 Experiments and Discussion

I compare both efficiency and accuracy of our algorithm with a reference three-point algo-

rithm based on multiple datasets from an outdoor robot equipped with a stereo camera.

For our reference three-point algorithm I again use nonlinear optimization, but this time to

simultaneously recover rotation, translation and optionally the 3D points by

R, t, {Xi}i = argmin
R,t,{Xt

i }i

∑
i

∥∥∥∥zi − ν (K [ R t

]
Xi

)∥∥∥∥2

(82)

where I use the measurements zi and corresponding points Xi from all putative matches

Mrot ∪Mtrans. The implementation is shared between the two algorithms to make com-

parison as fair as possible.

In my implementation, I use the Harris corner detector [71] to obtain features in the

reference frame and use dense stereo information to establish stereo correspondences for

those features. Based on images with a resolution of 512×384 pixels, I extract a maximum of

600 features per image, by detecting a maximum of 50 features in each region of a 3×4 grid to

ensure that the features are well spread out over the image. I use the Levenberg-Marquardt

algorithm for all nonlinear optimizations. For RANSAC, I use a 99% confidence, with a

maximum number of 1000 iterations to guarantee real-time performance even for frames

where no consistent model can be found. I do not estimate 3D points and directions, but

instead generate them based on the previous frame to speed up the nonlinear optimization.

For sparse stereo flow separation I use the constant threshold of θ = 8 pixels determined

from (77) with a baseline of 0.12m and based on the maximum speed of the mobile robot

platform. Timing results are obtained on a Core 2 Duo 2.2GHz laptop computer.

5.1.3 Degenerate Data and Robustness

I show that the algorithm deals well with nearly degenerate data, which is often encountered

in outdoor visual odometry settings, but has not been addressed by any visual odometry

work so far. Figure 39(a) shows how degeneracy influences the recovered trajectory by

returning inconsistent results. This San Antonio sequence consists of putative matches

(without images) recorded at 15 frames per second during a live demo of my work. As
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Figure 40: Standard deviations for the x, y and z components of 15 runs over the first
200 frames of the San Antonio sequence for both the reference three-point algorithm (left
column) and our algorithm (right column). While the three-point algorithm shows signif-
icant variation on some frames, our algorithm yields almost stable results, in agreement
with Figure 39.
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can be seen, each run on the same data yields a different trajectory. Figure 39(b) shows

that our algorithm returns nearly consistent results over multiple runs. Figure 40 analyzes

the problem in more detail for the first 200 frames of this sequence. While our algorithm

suffers only minor variations (right column), the three-point algorithm suffers significant

variations for some frames (left column). The variations are mainly in the forward (x)

direction that is most difficult to constrain, but also in the other two directions. Figure 37(b)

shows an example of two different sets of inliers for one frame, which results in significantly

different translation estimates. As discussed earlier, the problem is that RANSAC quickly

finds a large number of inliers, most of which constrain the rotation, while only a few

matches provide a possibly wrong translation estimate. Based on the large number of

inliers, RANSAC severely underestimates the number of samples needed to achieve a certain

confidence in the results. Our algorithm instead splits the problem and therefore avoids the

degeneracy as is apparent from the results presented here.

5.1.4 Speed and Accuracy

I show that the algorithm performs faster than the standard three-point algorithm, while

producing at least comparable results. Figure 41 shows results from my construction site

dataset, for which the images have been recorded at 15 frames per second. Figure 41(a)

shows the recovered robot trajectory together with the combination of wheel odometry and

inertial measurement unit (IMU), as well as combined with GPS. Figure 41(b) shows sample

images from this challenging sequence, which features vastly changing lighting conditions.

In Figure 41(c) I show comparisons for the execution times and inlier ratios. Our algorithm

performs faster than the three-point algorithm, even though we perform RANSAC twice,

once for rotation and once for translation. The faster execution is explained by the smaller

sample size for each case as compared to three-point. Therefore it is more likely to randomly

select a good sample and consequently RANSAC needs less iterations, assuming that both

have the same inlier ratio. The inlier ratios for the two-point component of our algorithm

as well as for the three-point algorithm are very similar as shown in the bottom diagram.
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(c) Timing and inlier ratios comparing three-point with our algorithm.

Figure 41: Results from my construction site dataset that compare our algorithm with
the reference three-point algorithm, showing increased efficiency under comparable quality.
(a) The start and end points of the actual trajectory are at the origin. (b) The robot was
driven over grass and gravel under difficult lighting conditions. (c) Top: Time required for
RANSAC for our approach (one-point and two-point together) and the reference three-point
implementation. Bottom: Inlier ratios for the two-point component of our algorithm and
the reference three-point algorithm. The inlier ratio is comparable for all, but RANSAC
converges faster for a smaller sample size, and therefore our algorithm is faster.
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5.2 Visual SLAM

To perform visual SLAM, I use the features tracked by our visual odometry system in

combination with iSAM and the JCBB algorithm for data association. In contrast to other

applications in this dissertation, it is too expensive to apply iSAM and JCBB directly to

the full high frame rate input data because of the large number of feature points tracked by

visual odometry. Instead we have to be intelligent about which features to include in the

process, which I describe in detail below.

5.2.1 Feature Selection and Landmark Creation

Due to the large number of features provided at a high frame rate by visual odometry we

have to select which ones to use for visual SLAM. Visual odometry tracks an average of

about 300 features per frame, 15 times per second. First, there is no gain from performing

SLAM at 15 frames per second, in fact, it might be rather difficult to do so. Instead, we

incorporate data only from every mth frame, where typically m = 7. Second, as we are

interested in feature tracks obtained from visual odometry, we extend those tracks across

the frames we omit and only use features that were successfully tracked over those m frames.

To create new landmarks we use some of the features that have not been matched in

the data association described below. In particular, for the first frame, all features are

candidates for new landmarks. In order to provide good constraints on the camera pose

we force the measurements to be spread out over the complete image. For that purpose

we tile the image (here in a 3 × 4 grid) and for each region we check if we already have a

measurement based on data association. If not, we select from the remaining features of

this region the one with highest Harris response in order to create a new landmark. Using

the highest Harris response makes it more likely that the corresponding feature is also found

in the next frame.

5.2.2 Data Association

We use the JCBB algorithm to obtain local data association with respect to recent frames.

Instead of using the tracks provided by visual odometry, we perform data association from
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scratch. To keep computations simple, we only match against landmarks that have been

observed in at least one of the previous n frames, and we are intelligent about which features

to insert as described below.

There are multiple reasons for performing data association from scratch. First, the

feature tracks obtained from visual odometry by connecting frame by frame tracks across

multiple frames might be wrong. While RANSAC in visual odometry ensures that they

confirm with the geometry on a frame by frame basis, wrong correspondences can still

be generated. Connecting tracks with one wrong correspondence between can lead to a

track that does provide wrong geometric constraints, therefore influencing the quality of

the result. However, we still make use of the information provided by visual odometry by

adding all features predicted by VO based on the landmarks observed in the previous frame.

A second reason for performing data association from scratch is that we can extend

feature tracks that visual odometry was not able to continuously provide. Reasons for

failing to track a feature for one or a few frames include noise and occlusion. Again we add

features intelligently by adding the closest feature for each reprojection of a landmark seen

in the last n frames. Taking the closest feature is sufficient as locally the pose estimates

provided by visual odometry are of a high quality.

JCBB combines confirming tracks provided by visual odometry with extending tracks

that visual odometry failed to provide. In particular it uses the correlation between land-

marks to make an informed decision. While this improves the quality of the SLAM estimate

locally, it does not yet allow to close large loops.

5.2.3 Closing Large Loops

Because JCBB cannot handle a large number of landmarks and features, we have to be

careful when closing large loops. We cannot simply match all features of the current frame

to all potentially visible landmarks in the map. In particular, we have to consider the

uncertainty of the camera and also include landmarks that are not necessarily visible in the

image based on the mean pose estimate. Therefore I have chosen to perform loop closing in

an analogous way to the incremental data association. I use the current image features and
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Figure 42: The DARPA LAGR mobile robot platform with two front-facing stereo camera
rigs, a GPS receiver as well as wheel encoders and an inertial measurement unit (IMU).

the landmarks seen from a specific frame in the past. That frame can be determined based

on the motion uncertainty described in Section 4.1.4. When another pose of an earlier part

of the trajectory comes into this uncertainty region, we test for loop closing against the

landmarks that were observed from that frame, using JCBB to provide robust matching.

5.3 Experiments and Results

I have evaluated my algorithm on the DARPA LAGR platform shown in Figure 42. The

robot features two forward-facing stereo cameras, one of which I use in these experiments.

Visual odometry was run online on the robot (Core Duo 2GHz, multithreaded). The SLAM

results are obtained on a Core 2 Duo 2.2GHz laptop computer, using only one core (iSAM

is single threaded).

5.3.1 Incremental Data Association

I present results for a large indoor lab environment in Figure 43. The size of the L-shaped

room is about 20m by 20m, with a robot trajectory length of 46m. I use every fourth frame

processed by visual odometry, resulting in 220 frames at close to 4Hz. Visual SLAM with

a complete solution in every step took about 23s, corresponding to an average of 0.10s per
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(a) One input image as seen by the robot. (b) Enlarged point of loop closing.
Visual odometry (shown in blue) was
not able to close the loop.

(c) Robot trajectory and landmarks after performing visual SLAM. The loop is successfully
closed, and the outline of the L-shaped room is clearly visible.

Figure 43: Incremental data association for track joining increases the accuracy as shown
by the results on this large indoor lab environment. Visual odometry is shown in blue, the
trajectory from iSAM in red and landmarks appear green.
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(a) Trajectory as recorded by the robot. There is a significant drift in height
from the IMU.

(b) After optimization, the trajectory is now clearly planar as expected.

Figure 44: Side view of the trajectory for the indoor environment from Figure 43.
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frame. The map contains 1643 landmarks based on 4499 image measurements.

Visual SLAM without loop closing already provides an accurate solution as can be seen

in Figure 43(c) due to longer range constraints. Note that the resulting elevation is also

correct as shown in Figure 44(b). In contrast, Figure 44(a) shows the trajectory as recorded

by the robot, which suffers from significant drift of the inertial measurement unit (IMU).

5.3.2 Loop Closing

I evaluate my visual SLAM on data recorded during the final DARPA LAGR program demo

in San Antonio, Texas. Another dataset following the same path is shown in Figure 39,

with a trajectory length of about 80m. This dataset was chosen for this experiment because

of its bad quality. Note that visual odometry was running in real-time on the robot (Core

Duo 2GHz) and therefore only the resulting feature tracks are available. In particular,

visual odometry failed over a number of frames, and only vehicle odometry is available in

those places. Even with extended tracks for the remaining frames the loop remains far from

closed, see Figure 45(top).

Despite the large error at the end of the loop, JCBB succeeds in closing the large

loop, with the result shown in Figure 45(bottom). Note that I have hard coded at which

frame JCBB is used to close the loop. After the loop closing, two batch steps are needed

because of the high nonlinearity of the measurement function to arrive at the trajectory as

shown. Nevertheless, the results show how iSAM allows for data association even under such

difficult circumstances with non-descriptive features. And it shows how iSAM successfully

deals with a large loop closure under highly nonlinear measurement models.

5.3.3 Live Demo

While for previously presented results iSAM was run on recorded data, I have also shown

iSAM performing live on the DARPA LAGR platform. The trajectories for one of the

live demo runs are shown in Figure 46. The run took 121s and covered a trajectory of

70m length, partially on black top and partially on a sloping surface with tall grass. Note

that this includes the robot being stuck with significant wheel slippage while backing up.

The internal vehicle state (IMU+odometry) drifted and ended up meters away from the
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Figure 45: San Antonio sequence just before (top) and after (bottom) loop closing using
JCBB. The vehicle internal trajectory estimate with GPS is shown in black, without GPS
in magenta, the trajectory according to my visual odometry in blue and finally the result of
my visual SLAM algorithm in red. The robot is shown as rectangular outline and the gray
lines represent a grid with 10m spacing. Note that GPS drifted before the vehicle started
to move.
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Figure 46: Robot trajectories from live demo of iSAM on the LAGR platform. The tra-
jectory length is about 70m and includes a place where the robot got stuck and had to back
up with significant wheel slippage. Note that the vehicle’s internal state (IMU+odometry)
is significantly off, while visual odometry provided a much better estimate and iSAM closed
the loop.

goal, which was identical with the starting point. Visual odometry performed much better,

but was still off. iSAM finally closed the loop by matching against landmarks seen at

the beginning of the trajectory. However, the robot was stopped before the solution fully

converged.

5.3.4 3D Maps

While so far we have focused on a sparse map that only serves for finding the robot trajectory

and closing loops, we now present some results of dense 3D maps. Figure 47 shows a

batch reconstruction of points corresponding to Harris features tracked by visual odometry.

Figure 48 shows a much faster reconstruction based on dense stereo based on known robot

poses after application of visual SLAM.
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Figure 47: Batch 3D point cloud reconstruction based on the feature tracks provided by
visual odometry. Every frame and all successfully tracked features from visual odometry
where used, resulting in longer computation times. Each sphere corresponds to one feature,
which is colored based on the corresponding pixels in the input images. All spheres have
the same size, so that their reprojected size is due to perspective effects. A robot camera
image from a similar view point is shown for reference.
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Figure 48: 3D ground surface reconstruction from dense stereo data, based on pose infor-
mation from visual odometry. All pixels with available stereo information were used from
frames selected at 3m intervals along the trajectory. A ground surface was fit by imposing
a regular grid and taking the median of the height for each cell with a sufficient number
of points. Only points not well described by the ground surface remain in the view. The
result for this long sequence took only a few seconds to calculate.
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5.4 Related Work

Visual odometry and visual SLAM are very active fields. I address some of the most

important work here, but this overview is by no means complete.

5.4.1 Visual Odometry

Visual odometry is at its heart a camera pose estimation [73], and has seen considerable

renewed attention in recent years. Olson [112] uses visual odometry and incorporates an

absolute orientation sensor to prevent drift over time. Nister et al. [110] present a real-time

system using a three-point algorithm, which works in both monocular and stereo settings.

Levin and Szeliski [92] use loopy belief propagation to calculate visual odometry based on

map correlation in an off-line system. Some systems [12, 15] also use omni-directional sensors

to increase the field of view. Ni and Dellaert [106] present an image-based approach that has

high computational requirements and is not suitable for high frame rates. Large-scale visual

odometry in challenging outdoor environments is presented by Konolige et al. [88, 87, 89]

and Nister et al. [111], but the problem of degenerate data is not addressed. Recent work

by Zhu et al. [138] remembers landmarks to improve the accuracy of visual odometry.

While accuracy of the presented system can further be improved by applying fixed-

lag smoothing [111], by using key frames to prevent drift [89], and by using landmarks to

provide longer range constraints [138], in our case visual SLAM takes care of the long range

consistency. Note that fixed-lag smoothing does not solve the problem of degeneracy, as

only frame-to-frame correspondences are used. As those frame-to-frame correspondences

are affected by a failure of RANSAC to find correct matches that constrain the translation,

the same error will also be present after fixed-lag smoothing as no new matches will be

added by fixed-lag smoothing.

5.4.2 Visual SLAM

One of the first visual SLAM systems is described by Harris and Pike [72], using one EKF

per feature. More advanced systems were based on monocular [104], stereo [135, 103], and

omnidirectional vision [55].
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Visual SLAM is deeply related to bundle adjustment, a structure from motion approach

in computer science. Triggs et al. [134] is probably the most complete seminal work on

bundle adjustment, and covers a large range of important aspects, many of which are also

useful for visual SLAM. The work provides insights into how to correctly implement bundle

adjustment. It includes an overview of different numerical optimization methods for solving

the underlying estimation problem. Matrix decompositions and incremental techniques

are also addressed, as well as error modeling, preconditioning, and the problem of gauge

freedoms.

More recently, several interesting lines of work can be identified. One thread of work

started with Se et al. [120, 121] that uses SIFT features in combination with a trinocular

sensor. The estimation process is based on the Kalman filter, and real-time loop closing

results are shown, assuming loop-closure with the first submap. In [122, 39, 124], this

work was recently combined with FastSLAM to apply to larger scale environments. Sim et

al. [123] provide a general framework for vision-based SLAM based on Rao-Blackwellized

particle filters. Experimental results compare the algorithm’s behavior for the cases of

visual odometry only for monocular as well as stereo sensors.

Another line of work was started by Davison, using high frames rather than complex

feature descriptors. Davison [20] presents a real-time 3D SLAM system that starts from

a known state, tracking known features to avoid the initialization problem. This work is

based on their previous active vision work [24, 26, 25]. In later work, Davison [21] extends

the system to a desk-like environment, running at 30Hz. The size of the environment is

restricted by the number of features that can be tracked by the EKF in real-time, stated to

be around 100. As matching is performed against structure, the search region for matching is

restricted based on a motion model. Davison et al. [23] compares performance of the system

with a wide-angle camera version. Recent work by Davison [22] analyzes information-

theoretic guided search for Gaussian measurement and model uncertainties as a substitute

for RANSAC. Their system has recently been applied to humanoids in [129]. Montiel et

al. [101] presents an alternative feature initialization that allows points at arbitrary depths.

Smith et al. [125] claims to be first monocular real-time SLAM using lines, and shows
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preliminary results. Davison et al. [27] provides a good summary of their previous work.

Davison’s work was also combined with FastSLAM by Eade and Drummond [37] for

use with larger environments. Still, experiments with only 200 landmarks are shown, and a

questionable analysis of the required number of particles is presented. vSLAM by Karlsson

et al. [83] is another FastSLAM based approach based on monocular vision and is available

as commercial software. However, map learning is a lengthy process, and the size of the

environment is restricted to a small room. Marks et al. [95] presents another approach

to visual SLAM based on FastSLAM that uses grid-based mapping of height variances for

outdoor environments.

Another line of work focuses on reconstructing the trajectory only [110, 88], which

became known as visual odometry. Nister et al. [110] estimates the motion of a single camera

or stereo head incrementally. A robust estimation scheme is presented that is based on

preemptive RANSAC [109] in connection with the 5-point and 3-point algorithms. Results

are shown for outdoor sequences, comparing to DGPS and INS. Mapping can be performed

by using the trajectory information to plot down the map. However, since landmarks are not

part of the estimation problem, it is not suitable for loop closing. However, the incremental

accuracy achieved is remarkable [111]. Konolige et al. [88] present an overview and results

of SRIs software for the DARPA LAGR program, including visual odometry and mapping.

Engels et al. [40] propose that fixed-lag smoothing using bundle-adjustment is fast

enough for real-time applications if implemented correctly. The resulting constant size

linear system is completely solved by Cholesky factorization in each step. We have pre-

sented a batch mode bundle adjustment approach in [78, 32] that works at low frame-rate

by making use of the superior constraints provided by a multi-camera rig.

Recovering the complete robot trajectory without landmarks leads to an exactly sparse

information matrix as observed by Eustice et al. [42, 43]. Landmarks are omitted by con-

verting the image measurements into constraints between poses. This is very similar to my

work if applied to a pose-only setting, but cannot recover the exact marginal covariances.

An iterative process is proposed instead that keeps track of conservative estimates.

Clemente et al. [14] presents an interesting approach to visual SLAM that uses the

109



simplified version of JCBB (see Section 4.1.3.3) in combination with an EKF. I am using

the full JCBB algorithm for data association in this chapter. Additionally, my approach

allows recovery of the exact values from a smoothing approach that avoids the problems

inherent to the EKF.
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Chapter VI

DISCUSSION

I have presented iSAM, a fast incremental solution to the SLAM problem that updates

a factorization of the sparse smoothing information matrix. By employing smoothing,

ie. keeping all pose variables in the estimation problem instead of performing marginaliza-

tion, we obtain a naturally sparse information matrix. My approach is based on a direct

equation solver using QR matrix factorization, which provides advantages over iterative

solvers. Most importantly, iSAM allows for efficient access to the exact marginal covari-

ances. I have presented applications of iSAM to well-known data association techniques

such as joint compatibility, and I have shown how to use iSAM to determine how much

information a measurement provides about the state estimate. I have evaluated iSAM for

a variety of SLAM problems, on both simulated and real data, for different environments

and sensors, in landmark and pose-only settings.

6.1 Thesis

The thesis statement presented in Chapter 1 can now be restated with all the claims de-

fended through experimental results:

Incremental smoothing and mapping (iSAM) provides a superior alternative

to previous SLAM approaches that is exact, is efficient, supports data association

by providing access to the exact marginal covariances, and is generally applicable

to a wide range of SLAM problems.

In particular, the four claims contained in my thesis are defended by the results provided

in this dissertation:

1. iSAM is exact: I have shown that iSAM provides results that are very close to the

maximum likelihood solution. iSAM does not perform any approximations, leaving
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linearization errors as the only source of temporary inaccuracy. iSAM is based on a

nonlinear equation solver that finds the maximum likelihood solution even for nonlin-

ear functions in multiple iterations, as long as it is started from a good initial estimate,

which is typically available in incremental SLAM. However, iSAM only performs one

iteration per step, and performs relinearization less frequently. Nonetheless, my ex-

periments show that most of the time iSAM provides results that are very close to

the least-squares solutions. The intuitive explanation is that variable estimates get

refined over time, which requires only a few steps because of the quadratic conver-

gence of the direct solver. Therefore only the most recently added variables are not

fully converged yet.

2. iSAM is efficient: I have shown that iSAM compares favorably with state of the art

SLAM algorithms. Incrementally adding new measurements into the factor matrix

is a constant time operation for exploration tasks. As SLAM frequently explores

previously unvisited areas (otherwise we could just do localization!), it operates at low

cost most of the time. When loops are closed the variable reordering helps to keep costs

low, even though some batch steps are necessary. Overall, my experimental results

show that iSAM performs much faster on standard SLAM datasets than required for

real-time application, and also compares well with other state of the art solutions to

SLAM.

3. iSAM supports data association: I have shown how iSAM provides efficient access to

the exact marginal covariances needed by state of the art data association techniques.

In particular, I have presented results using the joint compatibility branch and bound

algorithm for both laser-based and camera-based datasets. I have further shown how

iSAM provides a measure of the information theoretic value of individual measure-

ments. For both cases, my dynamic programming approach for obtaining the required

marginal covariances provides an efficient solution based on the sparse factor matrix.

4. iSAM is general: I have shown that iSAM works for a range of SLAM applications. I

have shown indoor and outdoor applications, using laser-range sensors and cameras.
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I have solved for trajectories based on pose constraints derived from laser-based scan

matching. And I have solved for the location of landmarks, where landmarks were

obtained from Harris features in images, or from laser data by a tree detector. For

quantitative evaluations I have also made use of simulated data in order to have

ground truth information available.

6.2 Assumptions

The first assumption I make is that the measurement noise is Gaussian or at least can be

well approximated by a Gaussian distribution. Assuming Gaussian measurement noise is

common and reasonable for SLAM algorithms. A potential disadvantage is that outliers

might have a large influence on the final estimation result. One way to deal with this prob-

lem is to identify outliers and remove them. However, identifying outliers is not always easy,

as a measurement that for example yields a large residual is not necessarily an outlier, but

can instead represent a particularly informative measurement. An alternative to Gaussian

distributions is to use heavy tailed error functions as occasionally done in the structure from

motion community; however, this has not been applied to iSAM so far. When making a

Gaussian assumption it is also important to make the correct choice in parametrization, for

example when dealing with depth information from stereo in visual SLAM. It is apparent

that the noise distribution on the depth by no means follows a Gaussian distribution. How-

ever, when one chooses the original image measurements instead of the depth to represent

the disparity then the Gaussian assumption becomes reasonable once again.

The second assumption I make is that the error function to be optimized is locally

convex. Because the SLAM error function is all but convex in general we have to start

from a reasonable initial estimate if we expect a standard nonlinear optimization algorithm

to converge to the global optimum. Fortunately, SLAM is an incremental process, and in

every step we only add a small number of new variables for which we have locally very

accurate measurements available. However, it is always possible to find a scenario in which

this assumption will not hold. If the sensors are very noisy, for example, we might get stuck

in a local optimum. While I have not encountered such data in my work, there might be
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a solution based on work by Olson et al. [113], which represents a batch SLAM algorithm

that uses a local parametrization to avoid global minima.

Another assumption I make is that application of the variable ordering heuristic CO-

LAMD results in a sparse factor matrix. As discussed in Section 3.6, for some special cases

of SLAM applications no variable order exists that produces a sparse factor matrix, as the

original information matrix already contains dense blocks. But beyond these special cases

it is not clear if there are SLAM settings for which a sparse factor matrix exists, but for

which COLAMD produces a suboptimal ordering that leads to a dense factor matrix.

It is important to point out that I do not have to make assumptions about the linearity of

the measurement functions in order to guarantee consistency of the solution. Because iSAM

does not marginalize out any variables, it can and does relinearize measurement equations

based on improved variable estimates. iSAM is equivalent to full nonlinear optimization,

even though the iterations are spread over multiple steps. Therefore, iSAM correctly deals

with nonlinear measurement functions, that is it converges to the correct solution even for

nonlinear measurements under the assumption of a locally convex error function discussed

above.

Do we have to assume the availability of range measurements, or can iSAM deal with

bearing-only measurements? iSAM implements sparse bundle adjustment, a technique com-

monly used in the structure-from-motion community to perform 3D reconstructions from

images only, including determining the camera poses and optionally their calibration. How-

ever, not having range available raises the issue of how to initialize a new landmark, as a

single measurement is not sufficient to provide any depth information. Before initializing

a new landmark, one can wait until at least two measurements with a sufficient baseline

become available, providing a reasonable initialization for the landmark. A better approach

is to reflect the lack of range information in the parametrization of the landmarks. One

example of such work is the so-called measurement subspace by Folkesson et al. [48].
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6.3 Contributions

The major contribution of this work is the exact incremental solution to the SLAM prob-

lem in real-time based on a direct equation solver. Direct equation solvers are preferable

to other solutions because of their quadratic convergence rate. Convergence to the correct

solution of course assumes that a good initial estimate is available, but that can be expected

for incremental SLAM applications. While many have discarded direct equation solvers as

too expensive for real-time SLAM applications, my work clearly shows that direct equation

solvers provide a very competitive solution when one understands how to apply them cor-

rectly in the SLAM context. The key to efficiency is to exploit the sparsity of the problem,

and to ensure that the resulting factor matrix remains sparse during the estimation process

by ordering the variables in a suitable way. The combination of factorized smoothing infor-

mation matrix with variable ordering and incremental factorization updates using Givens

rotations makes my real-time direct solver based solution to SLAM possible, and I have

shown that it compares favorably with other methods, especially also methods based on

iterative equation solvers.

A second major contribution of this work is to provide efficient access to marginal co-

variances. It would seem that the EKF is suitable for this task as it directly operates on the

covariance matrix. However, for nonlinear SLAM problems, the EKF provides inconsistent

results and is therefore not a useful approach to obtaining estimation uncertainties. Also,

by explicitly representing the dense covariance matrix the EKF severely restricts the size

of problems it can handle. Using the information form instead allows for efficient as well as

exact solutions to SLAM. However, typical exact solutions based on the information form

are based on iterative equation solvers which do not allow access to the covariances without

simply inverting the complete information matrix, an operation that is infeasible for any

non-trivial application. That is where my approach shows its advantages: By using the

factorized information matrix, I exploit the sparsity of the information matrix, while at

the same time allowing efficient access to any parts of its inverse, the covariance matrix.

Calculating all entries of this dense covariance matrix would again render the approach

useless, because their number scales with the square of the number of variables. Instead I
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have shown how to selectively calculate entries of interest without having to calculate the

complete dense matrix.

Introducing methods from the sparse linear algebra literature into the field of SLAM

can be seen as another contribution. While matrix factorizations have been used before

in other contexts, updating of matrix factorizations for SLAM estimation has not been

presented before. In particular the combination of matrix factorization, variable reordering

and incremental factorization updates for efficiency is novel and opens new possibilities that

start to be exploited in other robotics applications, such as [119].

I present different state of the art data association techniques and show how they work

in connection with iSAM. In particular, I examine which components of the covariance

matrix are required in order to perform these various methods. Most interesting is the joint

compatibility branch and bound (JCBB) algorithm by Neira and Tardos [105] that has

proven very successful in SLAM applications. It is successful because it takes into account

the coupling between multiple measurements, making it very robust against wrong matches.

Wrong matches in SLAM often lead to failures that an estimation algorithm cannot recover

from, therefore being able to use JCBB is a major advantage of iSAM over many other

SLAM algorithms.

I approach the problem of which measurements are useful in the estimation process by

applying an information theoretic approach pioneered by Davison [22]. Not all measure-

ments provide useful information, and simply adding all potentially available measurements

only complicates the estimation problem without necessarily improving the quality of the

result. I found that the same parts of the covariance matrix are required as for JCBB,

which makes those methods complimentary in SLAM applications. I present results on how

omitting measurements affects the computational complexity.

I finally show that iSAM successfully works in general SLAM settings including visual

SLAM. I show experiments for settings including estimation problems such as landmark

based and pose-only, different environments such as indoor and outdoor, as well as different

sensor modalities, such as laser range scanners and cameras. In particular, visual SLAM
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in unstructured outdoor environments provides a very challenging test for any SLAM algo-

rithm, because range information is very uncertain and data association very ambiguous.

Previous algorithms have either been restricted to a very small number of landmarks, or if

they tracked many landmarks they were not able to close loops. iSAM combines advantages

from both methods, even though there are still many improvements possible towards a truly

robust visual SLAM system.

6.4 Sensor Calibration

While sensor calibration can be included in the estimation process, it is generally easier to

separately calibrate before the actual application. Sensor calibration is performed by adding

a small number of variables into the estimation process. These might be as simple as an

offset of a laser range finder on the vehicle, or full 6 DOF sensor pose including rotations,

and can also extend to intrinsic camera parameters such as focal lengths and principal

point. Typically a prior is used as the approximate parameters are known, for example by

measuring the sensor’s location on the vehicle, or from the data sheet of a camera. A prior

is sometimes also needed for weakly constraint parameters such as the principal point of a

camera.

iSAM directly supports sensor calibration, but the estimation problem naturally be-

comes more expensive to solve. The additional measurement equations necessary for cali-

bration can be added like any other measurement. However, the same calibration variables

are used continuously, creating relatively direct constraints between all pose variables of

the estimation problem. This leads to increased fill-in, and therefore makes the estimation

process more expensive. However, the smoothing information matrix still remains sparse

except for one dense block column that will also be reflected in the R factor.

Typically a good calibration is obtained from a short sequence, assuming a relatively

general motion of the vehicle. Therefore, when done incrementally, calibration would be

stopped after a certain time, and normal estimation as presented in this work continues.

This, however, is equivalent to first estimating the calibration, and then actually running

the application.
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6.5 Future Work

At which time should the batch reordering be performed? My current solution is to reorder

after a constant number of steps, where that constant might be adjusted depending on the

nature of the specific SLAM problem. Instead, one can imagine to monitor the fill-in that

arises from incrementally adding new measurements, and to automatically determine the

best time for a batch reordering step. There will need to be a balance between the cost of

reordering and the increased cost of updates based on growing fill-in.

Can one modify the variable ordering so that adding new measurements becomes cheaper?

My current batch variable reordering based on the COLAMD heuristic targets the variable

ordering that produces the lowest fill-in for the current matrix. However, it does not take

into account that more measurements and new variables will be added at the end of the

current trajectory. In particular, COLAMD might move the previous pose to the left side

of the matrix, which will produce a dense column when the next pose is added because the

odometry measurement has to connect both poses. It might be possible to slightly modify

the COLAMD ordering without incurring much additional fill-in, but making incremental

updates much cheaper as a consequence. Such an ordering is used by Frese [54] in a tree-

based data structure, however, the overall algorithm performs approximations to reach that

goal.

If we extend this thought it leads to the question if an incremental variable ordering

exists that produces low fill-in. I currently add new variables at the end of the R factor, but

I could also insert them anywhere in the middle of the matrix. However, it is not clear if

a SLAM specific incremental ordering can be found, because this might require knowledge

about when and where loops will be closed in the future. An alternative is to modify the

variable ordering incrementally by changing the position of individual variables. Removing

variables to insert them somewhere else requires QR-downdating [60] of the factor matrix

in addition to updating, which I have not explored yet.

One could also perform incremental relinearization, which in combination with incre-

mental variable ordering would lead to an algorithm that is completely free of batch steps.
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Figure 49: The Wildfire algorithm [118] only updates nodes which significantly change,
starting from the most recently added node. In normal operation (left) only the most
recently observed nodes are updated. But during loop closings (right) most of the variables
require an update. Updated variables are shown in brown (dark), the remaining ones in
yellow (light).

Relinearization is typically only required for a small number of variables, because measure-

ments are local and only affect a small number of variables directly, with their effects rapidly

declining while propagating through the constraint graph. An exception is a situation such

as a loop closing event, which can affect many variables at once. But in most cases it is

sufficient to perform selective relinearization only over variables whose estimate has changed

by more than some threshold. While I have not implemented this yet, the solution is to

remove first the affected measurement rows from the current factor by QR-downdating, and

then adding the relinearized measurement rows by QR-updating as described earlier.

We can also reduce the cost for back-substitution by only calculating entries that are actu-

ally needed. A constant time approximation can be obtained in most cases, as only the most

recent variables change significantly enough to warrant recalculation. Back-substitution can

for example be stopped once the change in the variable estimate drops below a threshold,

which is the matrix equivalent to the wild-fire algorithm in Loopy SAM [118], see Figure 49.

It is expected that this constant time approximation would be sufficient for most cases, and

the full calculation would only become necessary when large loops are closed.
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Figure 50: Out-of-core submap-based variant of SAM applied to the Victoria Park dataset
(from [107]).

How can we deal with the ever increasing number of variables due to the inclusion of the

complete robot trajectory in the smoothing formulation? I have already addressed how to

reduce the number of measurements to simplify the estimation problem, by analyzing the

information provided by specific measurements. For the number of poses the problem is

somewhat different as the robot trajectory is represented by a chain. One potential solution

is to combine multiple poses, similar to the star nodes in Graphical SLAM [46]. A further

idea to deal with increasing complexity over time is to split the problem into multiple

subproblems. A common approach is to use submaps, however, these approaches typically

make approximations that we would like to avoid. An exact batch solution to submapping

in connection with SAM has been presented in [107], with an example shown in Figure 50.

When a robot operates continuously in the same environment, a different solution needs

to be found to bound the growth of the estimation problem over time. One way is to

stop mapping once a certain quality of the state estimate is reached, and then continue

with robot localization only based on the estimated map. The decision of when to stop

might be based on the uncertainty remaining in the system, or on a measure of how much
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information new measurements would add to the estimate. Following this thought further

leads to a system that only adds new robot poses when a measurement is encountered that

warrants inclusion into the map because it has not been seen before or because it contradicts

information already contained in the map.

A significant improvement in the implementation of iSAM is expected from using better

data structures targeted towards large-scale problems. In particular, the sparse matrix

implementation requires careful consideration of which operations need to be supported

efficiently. An equivalent formulation to iSAM could be based on graphs instead of sparse

matrices. Given enough memory, it is expected that iSAM could deal with two to three

orders of magnitude larger data-sets than presented here. At some point however, memory

(and the batch steps I currently perform) will become the limiting factor. One possibility

then is to perform out-of-core computations similar to the batch SAM algorithm presented

in [107].

In addition to adding measurements at any time, iSAM should also be able to remove

them as needed. Again, downdating is necessary to remove measurements, and potential

applications include reversing data association decisions when they are later found to be

incorrect, and removing earlier parts of the trajectory for example to keep the size of the

estimation problem constant. I also have not addressed adding measurements to earlier

parts of the system, which is for example necessary for delayed data association techniques

that allow more robust decisions about when a loop closing occurs.

Extending iSAM to a distributed SLAM algorithm would allow multi-robot mapping as

well as exploiting multi-core processors. A good starting point might be the batch solution

of multi-frontal QR factorization for SAM [30], with a simple example shown in Figure 51.

Especially the recovery of marginal covariances and data association would need to be

addressed.

My work currently does not deal with dynamic scenes. Moving objects need to be

identified as they will otherwise lead to inconsistencies in the SLAM estimate by introducing

constraints that conflict with the static components of the scene. Dealing with moving

objects is currently an active area of research, and existing and future methods might be
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Figure 51: Multi-robot mapping using multi-frontal QR factorization for SAM (from [30]).
Landmarks are shown as squares, robot poses as circles, and the three different robots are
identified by different colors.

applicable to iSAM. JCBB data association helps to some degree in avoiding negative impact

of moving objects as long as most of the scene is static.

The real-time properties of iSAM provide data necessary for autonomous operation of

mobile platforms. I imagine commercial applications of my work on consumer mobile robot

products, but it would also be useful when using robots for mapping buildings or entire

cities for virtual reality applications.

Significant portions of this work arose from looking at both the graphical model underly-

ing the SLAM problem, as well as the sparse linear algebra formulation. The combination of

different fields is typically a very fruitful approach, and including other fields might provide

novel and better solutions. But there is still also potential in formulating iSAM completely

as a problem on graphs rather than matrices.

There are applications of this work beyond robotic SLAM. One interesting application

is tracking a sensor in unknown settings for augmented reality, as a cheap alternative to in-

strumenting the environment. My visual SLAM applications of iSAM benefits from scalable

and exact solutions, especially for unstructured outdoor environments.
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(a) Linearized fixed-lag smoothing system. (b) The R factor obtained when solving the sys-
tem on the left.

Figure 52: Our fixed-lag smoothing algorithm [117] based on square root information
smoothing. The prior distribution on xt−p in (a) is obtained by remembering Rlast from
(b) from solving the system p steps earlier.

Incrementally adding new measurements to a factorized representation of a Gaussian

distribution is generally of interest in a number of areas. Ranganathan and Yang for example

applied our method to online Gaussian process estimation [119] and used the technique for

visual tracking of objects. And Folkesson [49] shows in concurrent work how to track

features in underwater applications using incremental QR updates.

Another application of incremental updates is fixed-lag smoothing. We have presented

a fixed-lag smoother for pose estimation with out-of-sequence measurements [117], see Fig-

ure 52. While the problem was handled in a different way, for more expensive estimation

problems the incremental solution provided by iSAM can become necessary.

Instead of fixed-lag smoothing, as commonly used to improve the quality of visual odom-

etry, one can also imagine to use full incremental smoothing. In fact, the solution will be

constant time because of the absence of loops, as long as only a constant number of most

recent variables are recovered. However, when needed, the full optimization problem is

available at the cost of storing and maintaining the necessary data structures.

My efficient marginal covariance recovery algorithm is more generally applicable than

just in the context of iSAM. Whenever a square root information matrix is available or can

be calculated efficiently, such as in the original batch SAM work, my algorithm will allow
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efficient access to components of the covariance matrix without calculating the complete

matrix.

6.6 Final Thoughts

iSAM improves upon the state of the art by providing a superior approach to SLAM that

is exact, is efficient, supports data association, and is generally applicable to a wide range

of SLAM problems. I hope it will prove useful as a basis for future research and that it will

eventually find its way into commercial applications. It could well be a step on our way to

a future in which robots are omnipresent and help us in everyday life.

124



REFERENCES

[1] Arya, S., Mount, D., Netanyahu, N., Silverman, R., and Wu, A., “An optimal
algorithm for approximate nearest neighbor searching,” Journal of the ACM, vol. 45,
no. 6, pp. 891–923, 1998. 88

[2] Bailey, T. and Durrant-Whyte, H., “Simultaneous localisation and mapping
(SLAM): Part II state of the art,” Robotics & Automation Magazine, Sep 2006. 20,
81

[3] Baltzakis, H. and Trahanias, P., “An iterative approach for building feature maps
in cyclic environments,” in IEEE/RSJ Intl. Conf. on Intelligent Robots and Systems
(IROS), pp. 576–581, 2002. 22

[4] Baltzakis, H. and Trahanias, P., “Closing multiple loops while mapping features
in cyclic environments,” in IEEE/RSJ Intl. Conf. on Intelligent Robots and Systems
(IROS), pp. 717–722, 2003. 81

[5] Bar-Shalom, Y. and Li, X., Estimation and Tracking: principles, techniques and
software. Boston, London: Artech House, 1993. 54

[6] Beardsley, P., Torr, P., and Zisserman, A., “3D model acquisition from ex-
tended image sequences,” in Eur. Conf. on Computer Vision (ECCV), pp. II:683–695,
1996. 81

[7] Besl, P. and McKay, N., “A method for registration of 3-D shapes,” IEEE Trans.
Pattern Anal. Machine Intell., vol. 14, no. 2, 1992. 80

[8] Bierman, G., Factorization methods for discrete sequential estimation, vol. 128 of
Mathematics in Science and Engineering. New York: Academic Press, 1977. 9

[9] Bolles, R. and Fischler, M., “A RANSAC-based approach to model fitting and
its application to finding cylinders in range data,” in Intl. Joint Conf. on AI (IJCAI),
(Vancouver, BC, Canada), pp. 637–643, 1981. 80, 84, 90

[10] Bosse, M., Newman, P., Leonard, J., Soika, M., Feiten, W., and Teller,
S., “An Atlas framework for scalable mapping,” in IEEE Intl. Conf. on Robotics and
Automation (ICRA), pp. 1899–1906, Sep 2003. 22

[11] Bosse, M., Newman, P., Leonard, J., and Teller, S., “Simultaneous localization
and map building in large-scale cyclic environments using the Atlas framework,” Intl.
J. of Robotics Research, vol. 23, pp. 1113–1139, Dec 2004. 21, 22
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