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Abstract

Camera-based simultaneous localization and mapping or visual SLAM has received much attention
recently. Typically single cameras, multiple cameras in a stereo setup or omni-directional cameras are
used. We propose a different approach, where multiple cameras can be mounted on a robot in an arbitrary
configuration. Allowing the cameras to face in different directions yields better constraints than single
cameras or stereo setups can provide, simplifying the reconstruction of large-scale environments. And
in contrast to omni-directional sensors, the available resolution can be focused on areas of interest
depending on the application. We describe a sparse SLAM approach that is suitable for real-time
reconstruction from such multi-camera configurations. We have implemented the system and show
experimental results in a large-scale environment, using a custom made eight-camera rig.

I. INTRODUCTION

Camera-based simultaneous localization and mapping (SLAM) has received much attention
recently. Cameras are small and cheap sensors with low power consumption, which makes
them suitable for large scale employment in commercial products such as robotic toys and
home appliances. Traditional offline approaches from structure from motion (SFM) research in
computer vision have been available for quite some time now [7], but for many applications
offline approaches are not acceptable. More recently some real-time systems were introduced
for visual odometry [13], which only recovers the camera trajectory and does not explicitly
reconstruct a map, as well as for visual SLAM [15], [2], [9]. However, all approaches are either
based on a single camera [2], [13], [9], on multiple cameras in a stereo configuration [15], [13],
where all cameras face in the same direction, or on omni-directional cameras [11]. No large
scale visual SLAM results have been presented so far. One reason is the restricted field of view
of single cameras and traditional stereo setups, that do not provide enough constraints for large
scale environments. Even though omni-directional cameras provide a large field of view, they
suffer from an unfavorable spatial distribution of the available resolution.

We propose to use a multi-camera setup that is not in any specific stereo configuration, but
where the cameras face in different directions. Such a multi-camera rig combines the advantages
of omni-directional vision with those of single cameras. In contrast to single cameras and
traditional stereo setups, a multi-camera rig covers a wider field of view, leading to better
constraints for localization. And in contrast to omni-directional cameras, that distribute the
available pixels over the complete scene, a multi-camera rig can focus the available resources



Fig. 1. Custom made 8-camera rig, mounted on top of an ATRV-Mini mobile robot platform. The FireWire cameras are
distributed equally along a circle and connected to an on-board laptop.

on areas of interest depending on the application. And similar to stereo setups, a multi-camera
rig supports metric reconstructions, unlike single omni-directional sensors.

We present an algorithm to perform simultaneous localization and mapping with a multi-
camera rig in constant time. No specific assumptions on the configuration of the rig, like over-
lapping views or equal spacing of the cameras, are made, so that an advantageous configuration
for a specific application can be chosen, while obeying any potential constraints. In particular it
is not necessary to place all cameras in a central location. Furthermore, including back facing
cameras not only provides better constraints, but also allows the robot to drive backwards, which
is essential for wheel based robots, but is not addressed by most current methods. A more general
configuration, as we will use for this work, is shown in Fig. 1, where the cameras are distributed
equally along a circle.

In terms of related work, multi-camera rigs appear in the literature in the context of image-
based rendering and SFM. A theoretical treatment of multi-camera systems in SFM is presented
in [14]. Localization with one or more cameras is presented in [12]. Levin [10] uses the Point
Grey Ladybug six-camera rig in combination with a hand drawn map for offline loop closing
in the context of visual odometry, which does not create a map. In terms of the underlying
SLAM algorithm, our work is closely related to the large field of SFM in computer vision [7].
Furthermore, there is some related work on visual SLAM [15], [2], [3], [9]. Se [15] uses a
trinocular stereo sensor to recover depth of SIFT features. The recovered structure is integrated
over time into sub-maps that are assumed to be consistent by themselves, and which can be
aligned with respect to each other. Results from inside a laboratory are shown. Davison [2]
presents single-camera mapping and localization in real-time at a high frame rate, but restricted
to a desk-like environment. In an extension in [3], the benefits of using a single wide-angle
camera over a normal camera are shown. [9] uses a single camera to generate landmarks as 3D
structure of special locations in a home environment. Nister [13] tracks a single or stereo camera
in real time at a high frame rate to obtain visual odometry, without explicitly creating a map.



II. LOCALIZATION AND MAPPING

We want to find the map and trajectory that best explain the image and odometry measurements
of the robot. This corresponds to the structure from motion problem, but additionally odometry
is available as a further constraint. The robot’s trajectory, or its motion, M = {m,}", specifies
its pose m; at each time i. Each robot pose m = (R,t) consists of a 3D translation t and
a 3D rotation R, that can be specified by the three Euler angles yaw ¢, pitch 6 and roll .
The odometry O = {o;}7;' consists of measurements o; of the difference in pose between
subsequent steps. The map X = {x;}}_, contains 3D translations x; for certain points in the
environment that we can observe through the visual input V. The problem can now be formulated
as finding the best map X and trajectory M given some visual input V' and odometry O. This
can be transformed via Bayes law to a likelihood term L(X,M;V,0) o< P(V,0|X, M) that
can be defined by a generative model, and a prior P(X, M) that can be based on the odometry.
This is equivalent to the minimization of the sum of the log-likelihoods:

X*,M* = argmax P(X,M|V,0)
M
= argmax L(X,M|V,0)P(X, M)
X,M

= argmin (log L(X, M;V,0) +log P(X, M)) (1)
XM

A. Camera Rig Projections

Before we can define a generative model for the log-likelihood L(X, M;V,O) as needed in
(1), we first have to take a closer look at how images are generated by a multi-camera rig. A
multi-camera rig is a set of ¢ cameras fixed with respect to each other and the robot. Note that
we make no assumptions about the orientation of the cameras. They can face in any direction
that seems suitable for a specific application, as long as they do not move with respect to each
other and the robot. An image set is obtained by synchronously acquiring an image from each
camera. It can be thought of as a single joint image, where the pixel p = (u,v) in rig camera
r is addressed by the tuple (r, p). Note that this corresponds to a single camera with multiple
optical centers, ie. a single point in the environment can have more than one projection in the
joint image.

Projecting a 3D world point x into a rig camera is a two-step process. First, the world point
is transformed to rig coordinates x; = RZ-T(X — t;), where the 3D rotation R; and translation t;
determine the pose of the camera rig at time ¢. Second, this point X, is projected into rig camera
r € {1...c} using standard methods [7]. The overall projection II, .(x) is given by

Hiﬂ”(X) = KT[RT|tT]RzT(X_ti) (2)
with
ay S U
K = ay Vg
1

where K contains the intrinsic calibration parameters of the camera, that usually include the
two focal lengths o, and «, in terms of pixel dimensions, the skew s, and the principal point



Fig. 2.  An example of radial distortion removal, comparing the original image (left) with the corrected image (right).

pPo = (ug,vp). The extrinsic calibration parameters consist of the 3 x 3 rotation matrix R and
the translation vector t of the camera with respect to the center of the robot. The overall rig
calibration can then be summarized as {K,, R,,t,}¢_, and can be determined in advance or by
automatic calibration.

Additionally it is often necessary to model radial distortion. We approximate radial distortion
by the quadratic function rp = 7 + kr? with a single parameter r, as well as the center of
distortion pp = (up,vp) that might be different from the principal point py. r and rp are
the radii of the projected point in ideal coordinates before and after distortion, respectively. To
remove radial distortion, the incoming images are warped efficiently using a look-up table that
is calculated only once. Fig. 2 shows an example image with significant radial distortion and its
corrected counterpart.

B. Trajectory and Map

We can now define the log-likelihood from (1) in terms of generative models for image and
odometry measurements, in order to find the best trajectory and map given the measurements. The
image measurement p; . = I1; ,.(x) + v of 3D point x in rig camera r at time ¢ is the sum of the
geometric prediction II; ,(x) from (2) and measurement noise v, that we assume to be i.i.d. zero-
mean Gaussian v = N (p;0, ). Similarly, the odometry measurement o; = §(m;, m;, ) + w is
given by the difference 0(m;, m; ) of two successive poses m; and m;,; with measurement
noise w = A (0;0,Z) added. Assuming known correspondences 7' = {(ix, jx, (T, Px)) tors
where the triple Ty, = (ig, Jx, (Tx, Px)) describes an image measurement py of map point j; as
observed by rig camera r; at time 7, equation (1) simplifies to the minimization of a sum of
terms over [ correspondences and m — 1 odometry measurements

m—1

!
D 1Pk = M (5[5, + D llog — 6(my, myp)|I2,
k=1

=1
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Fig. 3. Correspondences are shown as templates of the measurements of different points (columns) over time (rows). To provide
more context in the visualization, much larger templates are shown than the ones that are actually used in the matching process.
Note that objects appear larger or smaller over time depending on the motion of the robot and the bearing at which the feature
is observed.

where ||y||%2 = y?¥~y. We apply Levenberg-Marquardt, a non-linear minimization algorithm
that can achieve fast convergence to the global minimum based on a good initial estimate obtained
from odometry and triangulation.

A real-time application will not be able to optimize the complete map and trajectory after each
new measurement is incorporated. Instead, we use fixed-lag smoothing, that only optimizes over
a constant number of steps, an operation with complexity constant in the size of the map and
the length of the trajectory. The SLAM literature provides many other approximation algorithms
that can be used here.

C. Correspondences

So far we have assumed known correspondences between image measurements. We will now
explain how to obtain them automatically from the data. We first identify interest points in the
incoming images, then generate putative matches between different images, and finally remove
any outliers to obtain a set of correct correspondences.

To identify features in the input images, we use the Harris corner detector [6]. After thresh-
olding on the Harris response, we perform non-maximum suppression, selecting the best feature
in any 5 x 5 neighborhood. To prevent an overly large number of features in highly textured
environments, only a limited number of features corresponding to the highest Harris responses
are accepted.

To generate putative matches, we compare features based on the appearance of their local
neighborhood. We define a template v to be the vector of intensity values of a square region
centered on the feature. The dissimilarity d,;, of two templates v, and v, is given by their sum
of square differences dy, = (vq — v4)? (v, — v3). To match the features of two images A and
B we employ the mutual consistency check. For each feature in image A we select the feature
of image B that minimizes the dissimilarity. We repeat this step with A and B swapped. The
matches that agree in both directions are putative matches. Note that, for a camera rig, A and B
are joint images that each consist of multiple real images. Matches cannot only occur between
images taken by the same rig camera over time, but can also stretch across different rig cameras.
To make the matching process more efficient, we restrict the search region to some area around
the odometry-based epipolar prediction.



Typically, the resulting set of putatives still contains wrong matches, especially in the presence
of repetitive textures. To find the correct correspondences from the putative matches, a random
sampling based algorithm like RANSAC [4] can be used in combination with a geometric
constraint, like the fundamental matrix between image pairs. A more robust constraint [1] is
provided by the trifocal tensor, where the features have to geometrically agree over three images.
To obtain the necessary putative matches across triples of images (A, B, C'), we combine the
pairwise matches of A — B, B — C, and A — C' by again using the mutual consistency check.
RANSAC is implemented according to [7]. For a minimal sample of putative matches we need
to find the corresponding camera poses. A DLT solution using Singular Value Decomposition
(SVD) is not directly available for the multi-camera rig. Instead we apply bundle adjustment,
which performs equally well when implemented correctly [16]. The inlier check is based on the
residual error for a putative match. The inliers either overlap with an existing feature track, in
which case the track is extended by one, or they define a new track, in which case a new point
is added to the map. Fig. 3 shows an example of correspondences extracted by our method.

D. Summary

Our algorithm as described in detail above, can be summarized in terms of a pipeline, which
is executed for each incoming joint image:

1) Radial distortion removal

2) Feature detection: Harris, non-maximum suppression, limit number

3) Trifocal matching across cameras and time: SSD, mutual consistency, epipolar prediction

to restrict search region
4) Robust outlier removal: RANSAC over three time steps
5) Map and trajectory update: fixed-lag smoothing

III. RESULTS

We have implemented and tested our method using a custom made eight-camera rig. The
cameras are evenly distributed along a circle on the rig, facing outwards as shown in Fig. 1.
The rig is mounted on top of an ATRV-Mini mobile robot platform and connected to an on-
board laptop. Each camera has a field of view of slightly over 45 degrees, yielding complete
coverage of the surroundings of the robot. We use cheap FireWire cameras that allow streaming
of 640 x 480 color images at up to 7.5 fps for all cameras simultaneously. The robot additionally
provides odometry data. For efficient computation, we use sparse matrix operations to allow for
fast non-linear optimization of systems with hundreds of variables. An automatic differentiation
framework [5] allows us to calculate a Jacobian at any particular given value, efficiently, and
free of numerical instabilities.

We have driven our robot in a double loop through the hallways of the second floor of the
Technology Square Research Building at Georgia Tech. The bounding box of the robot trajectory
is about 30m by 50m. 260 joint images were taken with variable distances of up to 2 meters
between successive views. We perform fixed-lag smoothing with a lag of 10. All processing takes
less than 5 seconds per joint image (Pentium M 2GHz laptop) and is constant in the size of the
map. Even though 3DOF seems sufficient for this office building environment, it turned out that



Fig. 4. Left: Odometry as provided by the robot platform. Right: Trajectory as reconstructed by our approach using visual
input and odometry only.

6DOF with a prior on pitch, roll and height is necessary, since any small bump in the floor has a
clearly visible effect on the images. The standard deviations on x and y are 0.1m and on ¢ (yaw)
0.2rad. The priors on z, 6 (pitch) and v (roll) are all 0 with standard deviations 0.01m, 0.02rad,
0.02rad respectively. Only 3DOF odometry was available from the robot’s wheel encoders.

On average 320 features were detected per image, of which 68 got matched over time, with
an average track length of 4.06. The final map consists of 4383 points constraint by 17780
measurements. The odometry as measured by the robot is shown in Fig. 4, together with the
trajectory as output by our system based on visual input and odometry only. The same trajectory
together with the map of sparse features is shown in Fig. 5, manually overlayed with the floor
plan for comparison. The same sparse 3D map is shown from the side in Fig. 6, while Fig. 7
provides an inside view of the map.

The localization error after a trajectory length of 190 meters is about one meter (note that the
actual start and end points are not the same for this data set). The algorithm does not perform
explicit loop closing, as only incremental matching is applied. Loop closing could be performed
by additionally matching against previous frames that are geometrically close in the current
estimate. However, this adds computation and requires optimization along the complete loop,
resulting in a time complexity that is not independent of the map size.

One reason for the short average track length is the pairwise matching between three images,
and especially the mutual exclusion constraint applied to each pair. A similar feature in one
of the three images can prevent a correct correspondence from being considered as a putative
match. The use of SSD rather than a more viewpoint invariant matching criterion also plays a
roll. However, we observed that SSD on small templates is a reasonably good metric for our
successive matching process, since changes in view point are limited.



Fig. 5. Trajectory and map as reconstructed by our approach using visual input and odometry only. Each robot pose is shown
as the projection of the axes of the local 3D coordinate system (X axis in red facing forward, Y axis in green to the left, Z axis
in blue facing up). The sparse structure is shown as black points. For comparison the manually aligned building map is shown
in gray. Even though the trajectory does not line up exactly, it is very close considering the large scale of the environment and
the incremental nature of the reconstruction method.

Fig. 6. A side view of the 3D reconstruction using the same colors as in Fig. 5. Note that we do not make any assumptions
about the environment, like the presence of flat walls or a limited height of rooms.
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Fig. 7. Comparison of 3D model and actual image. Top: The 3D map as seen from inside a corridor showing the structure
(black crosses), the robot coordinate systems (red,green,blue axes for x,y,z) and a 3D model of the robot. Bottom: A real image
for comparison, showing the features (magenta diamonds), image measurements (red crosses) and optical flow (red lines). In
the 3D view, the lamps along the ceiling can be seen twice with a slight shift, since the robot traversed the corridor twice, and
no loop closing is performed. Note that the error is small, given the large scale of the environment.



IV. CONCLUSION

We have presented a novel approach to camera-based SLAM with multiple cameras in a
general, non-stereo setting. We have implemented and successfully tested the system in a large-
scale environment using a custom made 8-camera rig. Even though no explicit loop closing
is performed at this time because of the incremental nature of the algorithm, the reconstructed
trajectory is topologically correct, and metrically close to the correct solution. Our results exceed
previous work in visual SLAM in terms of the size of the environment and quality of the
reconstruction. The algorithm already runs in time constant in map size and trajectory length,
but further improvements are necessary to achieve real-time on a single on-board computer. The
main limitation of this work is the lack of explicit loop closing, which is subject to future work,
where we plan to extend our previous laser based approach [8] to the visual domain.
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