
Compact Encoding of Robot-Generated 3D Maps for Efficient
Wireless Transmission

Michael Kaess Ronald C. Arkin Jarek Rossignac

College of Computing
Georgia Institute of Technology

Atlanta, Georgia, USA
{kaess,arkin,jarek}@cc.gatech.edu

Abstract
This work focuses on real-time compression of laser

data on board a mobile robot platform. Data is trans-
mitted from the robot over low-bandwidth channels or
incrementally in short bursts to a host, where it can
be further processed for visualization. For compres-
sion purposes, the data is represented as a gray scale
depth image. Considered are existing lossless image
and file compression schemes (Unix compress, gzip,
bzip2, PNG, Jpeg-LS), as well as wavelet transforma-
tions tailored to the specific nature of the data. Test-
ing is done on several sets of indoor data acquired by
a robot moving through rooms and hallways. The re-
sults show that Jpeg-LS compression performs best in
this setting.

1 Introduction

Mobile robots can be used to acquire 3D models
of the environment for a variety of military and com-
mercial applications. Stereo vision or laser range find-
ers can be used for acquiring the data. Laser sensors
provide more accurate 3D information, but vision sen-
sors are smaller and cheaper, and additionally provide
texture maps for more realistic 3D models. Processing
vision data, however, is usually very resource consum-
ing and can often not be done in real-time, while laser
data directly yields a 3D model.

The accuracy of models acquired with range find-
ers [12] is typically higher than of those acquired with
stereo vision [6]. Although vision systems not only
provide geometry, but also color, which may be used
as texture to enhance the acquired model, the on-
board processing and transmission of color informa-
tion may be too expensive in mobile situations. Also,
in the absence of vision data, for example in dark en-
vironments, the accuracy of the model itself is impor-
tant. Therefore the sensor chosen for this work is a
laser range finder.

Generation of the 3D model can either take place
on board the robot, or on a remote host. In either

case the data has to be transfered from the robot
to the host, typically over a wireless network con-
nection. Wireless connections are restricted in band-
width. Furthermore, the maximum bandwidth usu-
ally cannot be achieved, due to distance between
sender and receiver, walls, and interference with other
radio signals. This is made even worse in military sce-
narios, where countermeasures may be present or low
bandwidth transmitters are used [1]. This gives rise to
the question of how to minimize the amount of trans-
mitted data.

The raw data from the laser range finder can be
represented as a sequence of gray scale images. There-
fore, in addition to compression methods specific to
the nature of the laser data, existing image compres-
sion schemes may also be used.

An application of this work is a mobile robot which
can move through a building while acquiring and
transmitting a 3D model of the environment. Data
is transmitted over a low bandwidth channel, allow-
ing use of low cost hardware and coping with inter-
ferences, reducing the bandwidth. We show results
from our experimental setup with a laser range finder
mounted on top of a mobile robot platform.

A different application is data transmission in short
bursts, to make detection of the robot more difficult.
The transmitted model can be used to familiarize peo-
ple with a building before entering it, for example in
a hostage situation. The lifetime of the robot might
be reduced, since it could be destroyed by an enemy
when detected. Therefore all the data packets sent up
to a specific time must result in a complete model of
the environment scanned until then.

Furthermore, some compression schemes, like
wavelets and octrees, allow for incremental transmis-
sion. A progressive transmission of the model guar-
antees that, even if the transmission were to be in-
terrupted, the recipient will have an approximating
model suitable for use.

The next Section overviews related work. In Sec-
tion 3 the approach is discussed in detail. Section 4

describes the implementation, followed by a compari-
son of the results from different compression schemes
in Section 5. Section 6 concludes this work.

2 Related work

2.1 3D models
Acquiring compact 3D environment models was ap-

proached by different groups in very different ways.
In [6] stereo vision information is used to generate

a 3D model while at the same time robot motion is
estimated. The resulting models include texture map-
ping for realistic visualization. This algorithm works
under a “suitable planarity assumption”, which is ful-
filled for non-cluttered indoor environments like cor-
ridors. The data is processed offline, so the approach
is not suited for real-time applications.

Other groups used laser range finders to acquire
similar models. In [13] concurrent mapping and lo-
calization for indoor environments is performed us-
ing a horizontally oriented laser scanner, while a sec-
ond upward-pointed laser acquires 3D information of
the environment. The resulting 3D mesh is simplified
using algorithms from computer graphics making no
assumptions about the environment. With a similar
setup for an urban environment, [3] describes map-
ping with scan matching using additional sensors to
improve dead-reckoning. An additional camera pro-
vides images for texture mapping.

[7] in contrast describes an algorithm that identi-
fies planes in the acquired data using the probabilis-
tic method of expectation maximization to reduce the
amount of data. Points which are not part of such a
plane remain in the model, allowing for non-flat sur-
faces with the drawback of increased complexity. An
omni-cam provides texture maps for realistic visual-
ization. [12] gives a comprehensive overview of related
work.

2.2 Compression
There is a vast amount of literature on compres-

sion available. Our search focused on standard text
based compression, lossless compression of gray scale
images, and wavelets.

Text-based compression schemes are typically
based on building a dictionary of symbols and assign-
ing codes to encode redundancy efficiently. Huffman
encoding [5] for example chooses the codes based on
the frequency of each symbol. The text, a sequence of
symbols, is then substituted by the corresponding se-
quence of codes, and the dictionary itself compressed
with a different algorithm. Example implementations
of text dictionary based encoders are UNIX com-
press and GZIP, which implement Lempel-Ziv-Welch
(LZW) and Ziv-Lempel (LZ77) respectively.

Image based compression can also be based on dic-
tionaries, the Portable Network Graphics (PNG) im-

age format is an example. Another simple method is
Run Length Encoding (RLE), as used in the Tagged
Image File Format (TIFF).

More successful, however, are statistical algorithms
based on non-linear predictors. Examples are JPEG-
LS and CALIC. JPEG-LS is based on LOCO-I (Low
Complexity, Context-Based Lossless Image Compres-
sion Algorithm), which is described in [14]. Efficient
implementations of JPEG-LS exist, and also provide
a “near lossless mode”, for which the maximal al-
lowed error can be specified. CALIC, in contrast, is
a complex predictive scheme, commonly only used as
a benchmark. Thus it is not suited for real-time ap-
plication on robots with restricted processing power,
and will not be considered here.

Wavelets, another family of algorithms used for im-
age compression, predict new values from the values
of previously decoded neighbors. The image is sub-
stituted by a smaller average image and a set of val-
ues representing the difference of the original from the
predicted values. The algorithm can be applied recur-
sively, resulting in a single average value and a set of
mostly small difference values. The overall number of
values needed to represent the image does not change,
but depending on the quality of the predictor, most
values are near zero, and can therefore be encoded ef-
ficiently using Huffman [5] or Arithmetic [8] encoding.
An accessible introduction to wavelets can be found
in [11], a comprehensive tutorial is given in [10].

[9] compares a set of algorithms (UNIX compress,
GZIP, LZW, old lossless JPEG, JPEG-LS based on
LOCO, CALIC, FELICS, S+P Transform, PNG and
other non-gray-scale methods) based on the perfor-
mance when applied to scanned prints of standard
CCITT images as well as gray scale pictorial images.
For gray scale images, CALIC and JPEG-LS obtained
the highest compression rates, with text based com-
pression (UNIX compress) and old JPEG performing
worst.

[2] arrives at a similar conclusion for medical gray
scale images, favoring CALIC in almost all cases, di-
rectly followed by JPEG-LS. This comparison addi-
tionally includes the lossless mode of the JPEG 2000
scheme, performing just below CALIC and JPEG-LS
in most cases.

3 Experimental Design
3.1 Acquiring Data

A SICK laser scanner is mounted on top of a No-
mad mobile robot platform, pointing upwards with
the scan plane perpendicular to the motion of the
robot, as shown in Figure 1. [13, 3, 7, 12] concen-
trate on acquiring accurate models, and simplifying
the complete model for storage, transmission and tex-
ture mapping. We, in contrast, emphasize the com-
pression of incremental portions of the data, allowing

Figure 1: Nomad 150 mobile robot platform with
SICK LMS 200 laser range finder mounted on top.

for real-time transmission from the robot to a host.
If necessary, simplification algorithms can then be ap-
plied off-line before visualizing the model. Thus com-
plex processing is postponed until arrival of the data
on the more powerful host machine, requiring only low
performance on-board processing for the robot. As a
result, the mobile part of the system can be smaller,
have lower power consumption, need smaller batteries,
and become cheaper.

Although we cannot perfectly locate the model in
space, due to the error inherent to dead-reckoning, we
focus instead on transmitting the acquired 3D infor-
mation in robot coordinates to the host, which can
then either process them or correlate them with other
calibration data, such as measurements from a sec-
ond, horizontally oriented laser scanner. Under the
assumption of flat surfaces, it might also be possible
to use the 3D information only for localization. It
needs to be noted that successive 3D scans generally
do not overlap, and therefore only the orientation of
the robot can be corrected, not the distance traveled
along a hallway for example. Since most of the odom-
etry errors originate from rotations of the robot, this
approach seems to be interesting for future work.

3.2 Compression

Although each measurement corresponds to a 3D
location and could be represented using 3 coordinates,
it is advantageous to encode it as a distance map, with
one coordinate per sample, due to the resulting data
reduction. Moreover, the raw data can be seen as a
cylindrical depth map of the environment, having one
dimension in the radial scan direction, and a second
dimension along the path of the robot. The raw data
of the laser sensor consists of 13 bit distance measure-
ments. Visualizing the data using a grey-level coding

of depth produces images similar to the one in Fig-
ure 2(a). Thus, we can treat the raw data as an im-
age. For incremental transmission, successive portions
of the data need to be compressed, corresponding to
strips of such depth images. Existing image compres-
sion algorithms can be applied.

The noise in the picture will reduce the perfor-
mance of the compression algorithm, so smoothing
of the image before compression might be appropri-
ate. This also reduces the noise in the resulting 3D
model, but it also causes loss of information. Since
the data is processed on the host side, lossless trans-
mission is preferable. Progressive transmission is de-
sirable, providing lossless transmission whenever the
connection allows. We concentrate on lossless com-
pression schemes, but also mention some lossy com-
pression methods for comparison.

Besides existing text and image compression soft-
ware, different wavelet transforms were evaluated.
Wavelets split the data into low- and high-frequency
information. They use a prediction function to pre-
dict a sample from its neighbors. The goal is to find a
suitable predictor, so that the differences are minimal.
The transform is applied recursively on the remaining
averages, finally leaving one average value from all the
data, plus a set of small difference values. The over-
all number of values does not change. However, the
set of near-zero values can be represented much more
compactly than the original data, using Huffman or
Arithmetic encoders.

Wavelet transforms are related to Fourier trans-
forms from signal processing. The main difference is
that they are easier to handle, mainly in terms of an
easily derivable inverse transform. They can also han-
dle boundaries, typically encountered in the spatial
domain of images.

The simplest wavelet transform, the Haar Wavelet,
predicts a constant function, and replaces two neigh-
boring samples a and b by their average s = a+b

2 and
the difference d = b− a. As described in [10], this can
be rewritten as

dn−1,l = sn,2l+1 − sn,2l

sn−1,l = sn,2l +
dn−1,l

2
,

allowing for efficient in-place calculation and simple
derivation of the inverse transformation.

The Linear Wavelet Transform [10] extends the
Haar Wavelet from constant to linear functions. It
needs to examine both, the left and the right neigh-
bors of a sample to predict its value, and is given by

dn−1,l = sn,2l+1 − sn,2l + sn,2l+2

2

sn−1,l = sn,2l +
dn−1,l−1 + dn−1,l

4
.

(a) The raw data of the laser scanner as depth image.

(b) 3D model view

Figure 2: Raw data and 3D model view: Darker
values in the depth image (a) represent shorter dis-
tances from the robot. Each 180◦ scan corresponds to
one pixel column in the image. The ceiling is always
visible along a horizontal line through the center of
the image, since the laser pointed upwards. The robot
drove along a corridor (left to right in the image), the
right and left walls are visible in the upper and lower
part of the depth image, respectively. Near the center
of the image, the robot turned 90◦ near a glass door
entrance, and continued into another corridor. The
white lines on the corridor walls are errors caused by
picture frames deflecting the laser ray. The 3D model
in (b) shows a view from outside the glass door en-
trance. The robot turned from the left corridor into
the center corridor of the building. Note that the 3D
model contains more data then shown in (a), and that
it was created after lossless transmission, that is from
unmodified laser data.

Assuming that flat surfaces dominate, typically the
case for indoor environments, the wavelet needs to be
able to predict lines. Therefore the Linear Wavelet
should be well suited along the direction of movement
of the robot, that is the horizontal direction in Fig-
ure 2(a). For the perpendicular laser scan direction,
lines imply a trigonometric function on the radial dis-
tance measure. The Linear Wavelet translated into
Cartesian space given the radial distances is defined
by

dn−1,l =
2 cos 0.5◦
1

sj,2l
+ 1

sj,2l+1

sn−1,l = sn,2l +
dn−1,l−1 + dn−1,l

4
.

Our Radial Line Predictor uses this wavelet for com-
pression along the scan direction, and the Linear
Wavelet along the movement direction of the robot.

Care has to be taken to correctly implement bound-
aries, allowing the compression of arbitrarily sized im-
ages, not restricted to powers of 2. The resulting data
is compressed using an adaptive Huffman encoder.

4 Implementation
The overall system architecture is shown in Fig-

ure 3.

4.1 Hardware
The SICK LMS 200 laser range finder, mounted on

top of a Nomad 150 mobile robot (see Figure 1), scans
180◦ in 0.5◦ steps from one side over the top to the
other side, returning a 13 bit integer value represent-
ing the distance to the next object for each of the 361
steps. About 38 complete 180◦ scans are performed
per second, but in the current implementation only 5
are available because of restrictions of the standard
serial RS232 interface. The robot moved on average
with a speed of about 0.25m

s , that is one scan is per-
formed every 5cm. In the perpendicular scan direc-
tion, the same resolution is achieved for objects at a
distance of 6m. Since the calculations performed on
the robot are not complex, it is possible with a differ-
ent serial interface to use all available scans with the
robot moving at 2.4m

s , resulting in the same model
quality. On the other hand, the model quality could
be increased by acquiring more data in the same time
period. It makes little sense to increase the horizon-
tal resolution above the vertical resolution for these
kinds of indoor environments. If objects on average
are about 3m distant, an optimal value for the hori-
zontal resolution is 3m · tan(0.5) = 2.6cm, yielding a
robot speed of about 1m

s .
The laser scanner operates in the non-default mil-

limeter mode. In this mode, the 13 bits returned
for every single distance measurement represent dis-
tances from 0 to 8.191 meters, where the highest value

Figure 3: System architecture: The mobile part of the system consists of a laptop and a laser scanner, both
on board a robot. hserver is running on the laptop to control the robot and acquire data from the laser.
laser server requests laser data and odometry from hserver, compresses the data, and sends it together
with the position information over a wireless network connection to the remote host. On the host side, laser3d
recovers the original data, converts it to a 3D model, and displays it.

8191 represents all distances of 8.191m and more. Ac-
cording to the technical information of the scanner,
the statistical error in the range from 1m to 8m is
at most ±15mm. Nevertheless, the resulting models
show much more detail compared to the ones gener-
ated in centimeter mode. Some experiments with the
laser pointed at a planar surface reveals this statistical
error as shown in an example scan in Figure 4. The
distance to the wall is 270mm, the statistical error
from the first 30 points averaged over several frames
is in the order of ±8mm, where this value increases
slightly with the distance.

Figure 4: The dots on the right represent a straight
wall as seen by the laser scanner. A scale is shown
with a distance of 1cm between adjacent lines.

4.2 Software

To control the movement of the robot and record
the data from the laser scanner, hserver and a mod-
ified version of laserfit, called laser server, are
used, both part of the freely available MissionLab1

software from Georgia Tech. hserver can either be
used directly to teleoperate the robot, or be inter-
faced to MissionLab to allow autonomous execution
of missions.

The data from the laser together with odome-
try and time stamps can be recorded to a file to
simplify the testing of different compression algo-
rithms. Recorded data can then be replayed with
laser server in real-time, making it possible to
test the software for time constraints. Additionally,
laser server can be used to compress and trans-
mit the data incrementally over network in real-time
to the visualization software laser3d, which is de-
scribed next.

The modified version of laser server, and the vi-
sualization software laser3d are also freely available2

on the web.
Compression and decompression are built into

laser server and laser3d, respectively. This al-
lows for real-time compression and transmission of
the data over a (wireless) network connection from
the robot to a host. A special mode allows for fast
compression of the data, without actually displaying
a 3D model, printing statistical results for comparison
of the different algorithms.

1http://www.cc.gatech.edu/ai/robot-lab/research/

MissionLab/
2http://www.cc.gatech.edu/ai/robot-lab/research/3d/

Implemented and tested lossless compression
modes include uncompressed, bit stuffing, UNIX com-
press, GZIP, BZIP2, JPEG-LS, and different kinds of
wavelets. Additionally, nearly lossless JPEG-LS with
specifiable maximal error is provided as a lossy com-
pression mode.

Each packet starts with one byte specifying the
compression algorithm used. The next three bytes
contain the byte length of the complete packet. The
next byte specifies the number of scans n in the packet,
followed by 3n floats representing the poses of all
scans. The pose information should also be com-
pressed, but since it represents only about 2% of the
uncompressed data, this is omitted for now. The sec-
ond part of the packet contains the compressed laser
range data.

Uncompressed mode sends 361 measurements (2
bytes each) per scan. This sums to 722 bytes for each
scan. Bit stuffed mode uses only 13 bits per mea-
surement, resulting in 361 · 13

8 = 587 bytes. UNIX
compress3 , GZIP4 and BZIP25 call the correspond-
ing shell command on the 16 bit raw data (PGM im-
age format without header). PNG calls ImageMag-
ick6 on 16 bit raw PGM format. JPEG-LS is im-
plemented by calling the 16 bit encoder and decoder
loco16e/loco16d7 and nloco16e/nloco16d for lossless
and near lossless mode, respectively.

The wavelet transforms are implemented in
laser server/laser3d, while compression is done
by calling a command line Huffman encoder8 .

4.3 Visualization

After decompression on the host side, the model is
displayed using OpenGL. The raw data of each scan
is converted from cylindrical to Cartesian coordinates.
The raw integer data d representing the distance to
the next object in millimeters is scaled to meters and
transformed to Cartesian floating point coordinates
using the pose of the robot x, y, θ, the angle α de-
scribing the direction of the scan within the scan plane
from −π

2 to +π
2 , the height of the center of the laser

scanner HR = 0.52, and the offsets xO, yO, zO:

x = xR +
1

100
d · cos(α) cos(θ) + xO

y = yR +
1

100
d · cos(α) sin(θ) + yO

3Linux compress 4.2.4
4Linux gzip 1.3.3, 2002-03-08
5Linux bzip2, Version 1.0.2, 30-Dec-2001
6Linux ImageMagick 5.4.7, “convert -quality 100 x.pgm

x.png”
7Linux loco16e/d, JPEG-LS Reference En/Decoder -

V.1.00X, freely available for testing and evaluation, see http:

//www.hpl.hp.com/loco
8Compressors, Version 1.5, David Bourgin, dbour-

gin@ufrima.imag.fr

z = HR +
1

100
d · sin(α) + zO

To get the actual mesh, two adjacent scan points
P1 and P2 taken at angles α and α + 0.5◦ of the same
complete scan and the corresponding two points Q1

and Q2 of the next scan are connected to form two tri-
angles P1P2Q1 and Q1P2Q2. For each triangle ABC
the corresponding normal vector

n =
AB ×AC

||AB ×AC||
is calculated. To safe time the triangles are not passed
separately to OpenGL but in strips, where a strip
consists of all triangles between two scan planes. n+2
points are necessary to describe n triangles. Besides
the first 2 points, each following point describes an-
other triangle and is passed together with the corre-
sponding normal vector. To avoid transmission of that
data for every updated view of the model, OpenGL
lists are used to store the data and the necessary trans-
formations are then performed on these lists.

Different display modes allow for shaded models as
well as visualization of underlying data by assigning
random colors to triangles, quads or strips. The pro-
gram also allows for different floor modes including a
checker board to allow better estimation of distances.

Since the laser scanner is mounted on top of the
robot with its center at a height of 52cm, the resulting
mesh starts at that height. Connection to the floor is
done by projecting the first and the last scan point
of every 180◦ scan down to height 0. This makes the
model look more realistic, but is also dangerous since
it may pretend a free space were obstacles actually
are.

At the beginning the observer is located in the
model at the same point the robot started, with the
same orientation. The height of the eyes are assumed
to be at 1.7m, more than a meter above the actual
location of the laser scanner.

The light source used to make the model more real-
istic is positioned in a height of 0.8m over the eyes of
the observer. Usage of the OpenGL two-sided light
model and the front-and-back polygon mode makes it
possible to see scanned surfaces also from the other
side.

The user can navigate through the model in arbi-
trary directions and orientations.

5 Results
To compare the different algorithms, five data sets

were recorded. Data Set 1 and 2 were acquired mainly
along corridors, Set 3 in a mixture of rooms and corri-
dors, and 4 and 5 inside rooms. For a given bandwidth
of 10 kBytes per second, the resulting transmission
times for a packet of 20 scans are compared in Ta-
ble 1.

Table 1: Transmission times for packets containing 20 scans, including header and uncompressed odometry
information. Assumed is a transmission rate of 10 kBytes per second. Evaluation is done on five different data
sets. Data Sets 1 and 2 are mainly corridors, 4 and 5 are inside a room, and 3 is a mixture of rooms and corridors.

Data Set 1 2 3 4 5 Average
Number of scans 5600 4500 800 800 1400

Size of raw data in bytes 4043200 3249000 577600 577600 1010800
Compression method Transmission time in seconds (rounded)

Raw formats Raw data 1.469 1.469 1.469 1.469 1.469 1.469
Bit stuffing 1.197 1.197 1.197 1.197 1.197 1.197

Text based compr. Unix COMPRESS 1.112 1.149 1.222 1.382 1.326 1.238
GZIP 0.848 0.874 0.914 1.028 0.995 0.932
BZIP2 0.686 0.724 0.768 0.910 0.864 0.790

Image based compr. PNG 0.870 0.907 0.953 1.102 1.058 0.978
Haar Wavelet 0.854 0.891 0.904 0.985 0.948 0.917
Linear Wavelet 0.814 0.865 0.861 0.970 0.917 0.886
Radial Line Predictor 0.812 0.864 0.859 0.969 0.915 0.884
JPEG-LS 0.501 0.545 0.529 0.618 0.572 0.553

Lossy compression JPEG-LS, max err 1 0.350 0.395 0.385 0.475 0.428 0.407
JPEG-LS, max err 2 0.291 0.332 0.325 0.413 0.367 0.346
JPEG-LS, max err 4 0.237 0.277 0.264 0.346 0.303 0.285

The results confirm [9] and [2] in JPEG-LS as be-
ing the best compression scheme, and text-based com-
pression algorithms Unix COMPRESS and GZIP per-
forming the worst. BZIP2 does significantly better
than the latter two, but is still far behind JPEG-LS.
It also needs to be mentioned that BZIP2 compression
takes a multiple in time of the other algorithms. As
one would expect, lossy compression schemes perform
significantly better, even for a maximum error of only
±1mm.

As one would expect, the Linear Wavelet Trans-
form performs better than the Haar Wavelet Trans-
form. However, the difference is relatively small. Haar
should not be a good predictor for the data, because
at least in scan direction the data will in general not
be constant. The small difference in performance sug-
gests that the Linear predictor is also not suited. Ra-
dial Line Prediction performs only marginally better
than the Linear Wavelet, since a linear function in
the measured distance is a good approximation to the
lines in radial space. All three algorithms perform
better than GZIP, but are significantly below the per-
formance of JPEG-LS.

Table 2 shows results for Data Set 3, including
theoretical transmission times calculated from the en-
tropy values for Linear Wavelets before Huffman en-
coding. Even the theoretically optimal encoding does
not reach the JPEG-LS result. This suggests that
there are better predictors for the data. One possible
explanation for the bad performance provides the in-
herent noise of the data, visible in Figure 4, which is

Table 2: Transmission time in seconds for packets
of size 20 for Data Set 3. For the output of Linear
Wavelet application, specified are results from Huff-
man and Arithmetic encoders, as well as theoretical
limits of compression given by the entropy of the data.
JPEG-LS performance is listed for comparison.

Transmission
Compression Method time (in s)

Linear Wavelet + 8 bit Huffman 0.861
Linear Wavelet + Arithmetic 0.804

theoretical limit arithmetic, 8 bit 0.734
theoretical limit arithmetic, 16 bit 0.537

JPEG-LS 0.529

not addressed by our approach.
Beyond the comparison of different algorithms, Ta-

ble 1 also shows a difference between corridor and
room data. Corridors contain less complex surfaces
compared to rooms, the data can therefore be easier
compressed, speeding up transmission.

Another interesting view is provided in Table 3,
showing the dependence of compression ratio on the
packet size. Note that transmission time is given for
sets of 20 scans, even though the packets have different
sizes. For big packets, the packet length has not much
influence on the time. For small packets, increasing
by a few scans reduces transmission time significantly.
The values suggest that packet sizes between 20 and
50 should be chosen as a compromise between update
frequency and compression ratio.

Table 3: Influence of packet size (in number of scans)
on transmission time (in seconds for 10 kBytes per
second transmission rate) for selected algorithms. For
evaluation all five data sets were used and the average
is reported.

Packet size
10 20 50 100

Compr. method Transmission time (in s)
BZIP2 0.888 0.790 0.702 0.659

JPEG-LS 0.578 0.553 0.537 0.530
Linear Wavelet 0.927 0.886 0.857 0.847

6 Conclusion
This paper compared compression methods in

terms of transmission time of laser generated 3D
maps. The goal was compact incremental transmis-
sion of the data, not simplification of a complete 3D
model, as is commonly used for visualization pur-
poses. Compared were transmission times using ex-
isting image and text based compression algorithms,
and wavelet algorithms tuned to the specific nature of
the raw laser data.

For most such applications, the usage of lossless
JPEG-LS is recommended, resulting in lowest trans-
mission times compared to all lossless compression
schemes tested. Since it is a complex predictor
scheme, some demand of on-board processing can be
expected. If on-board processing is severely restricted,
wavelets with Huffman encoding should be preferred.

If real-time is an essential part of the application,
and certain minimum transmission rates cannot be
guaranteed at all times, then progressive transmission
methods should be used. Wavelets are suitable, but
this application was not further explored here.

If very small errors can be accepted, lossy JPEG-
LS should be used to reduce transmission times sig-
nificantly. Of advantage is the guaranteed maximum
error, specifiable by the user.

Acknowledgments
The authors would like to thank Jonathan F. Diaz

and Alexander Stoychev for their implementation of
laserfit. The Georgia Tech Mobile Robot Labora-
tory is supported from a variety of sources including
DARPA, Honda R&D, C.S. Draper Laboratory, and
SAIC.

References
[1] R. Arkin, R. Burridge, and T. Collins, “Control

Systems for Semiautonomous Robot Groups”, in
submission, 2003.

[2] D. A. Clunie, “Lossless Compression of Grayscale
Medical Images - Effectiveness of Traditional and

State of the Art Approaches”, SPIE Medical
Imaging, 2000.

[3] C. Frueh, A. Zahkhor, “Fast 3D Model Gener-
ation in Urban Environments”, In International
Conference on Multisensor Fusion and Integra-
tion for Intelligent Systems, Baden-Baden, Ger-
many, pp. 165-170, August 2001.

[4] J.-S. Gutmann, K. Konolige, “Incremental Map-
ping of Large Cyclic Environments”, In Interna-
tional Symposium on Computational Intelligence
in Robotics and Automation (CIRA), pp. 318-
325, 1999.

[5] D. A. Huffman, “A Method for the Construction
of Minimum Redundancy Codes”, Proceedings of
the IRE, pp. 1098-1101, 1952.

[6] L. Iocchi, K. Konolige, M. Bajracharya, “Visu-
ally Realistic Mapping of a Planar Environment
with Stereo”, International Symposium on Ex-
perimental Robotics (ISER), pp. 521-532, 2000.

[7] Y. Liu, R. Emery, D. Chakrabarti, W. Burgard,
S. Thrun, “Using EM to Learn 3D Models of In-
door Environments with Mobile Robots”, In Pro-
ceedings of the International Conference on Ma-
chine Learning (ICML), pp. 329-336, 2001.

[8] W. B. Pennebaker and J. L. Mitchell, “An
Overview of the Basic Principles of the Q-Coder
Adaptive Binary Arithmetic Coder”, IBM J. Res.
Dev., pp. 717-726, 1988.

[9] A. E. Savakis, “Evaluation of Lossless Compres-
sion Methods for Gray Scale Document Images”,
International Conference on Image Processing,
Vancouver, Canada, September 2000.

[10] P. Schroeder, “Wavelets in Computer Graphics”,
SIGGRAPH Course Notes, 1996.

[11] E. J. Stollnitz, T. D. Derose, D. H. Salesin,
“Wavelets for computer graphics: theory and ap-
plications”, Morgan Kaufmann Publishers, 1996.

[12] S. Thrun, “Robotic Mapping: A Survey”, In G.
Lakemeyer and B. Nebel, editors, Exploring Ar-
tificial Intelligence in the New Millenium, 2002.

[13] S. Thrun, W. Burgard, D. Fox, “A Real-Time Al-
gorithm for Mobile Robot Mapping with Applica-
tions to Multi-Robot and 3D Mapping”, In Pro-
ceedings of the IEEE International Conference on
Robotics and Automation (ICRA), 2000.

[14] M. J. Weinberger, G. Seroussi, G. Sapiro,
“LOCO-I: A Low Complexity, Context-Based
Lossless Image Compression Algorithm”, IEEE
Data Compression Conference, 1996.

