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Abstract

Visual inertial odometry has become an increasingly popular method of obtain-
ing a state estimate on board smaller robots like micro aerial vehicles (MAVs). While
VIO has demonstrated impressive results in certain environments, there is still work
to be done in improving the robustness of these algorithms. In this work we present
a novel multi-camera VIO framework which aims to improve the robustness of a
robot’s state estimate during aggressive motion and in visually challenging environ-
ments. Our system uses a fixed-lag smoother which jointly optimizes for poses and
landmarks across all stereo pairs. We propose a 1-point RANdom SAmple Consen-
sus (RANSAC) algorithm which is able to perform outlier rejection across features
from multiple cameras. To handle the problem of noisy extrinsics, we account for
uncertainty in the calibration of each stereo pair and model it in both our front-end
and back-end. The result is a VIO system which is able to maintain an accurate state
estimate under conditions that have typically proven to be challenging for traditional
state-of-the-art VIO systems. We demonstrate the benefits of our proposed multi-
stereo algorithm by evaluating it with both simulated and real world data. We show
that our proposed algorithm is able to maintain a state estimate in scenarios where
traditional VIO algorithms fail.
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Chapter 1

Introduction

1.1 Motivation

State estimation is one of the most fundamental problems in robotics. In many cases, core func-
tionalities of a robot such as motion planning, mapping, and control all depend on a reliable state
estimate. Several different types of methods exist for the purpose of obtaining an accurate state
estimate. Robots can either rely on information from external sensors to estimate their state, such
as GPS or motion capture systems, or they can rely on information from their own sensors and
attempt to estimate their own motion. In several applications, like robots operating in subter-
ranean or dense urban environments, as seen in Figure 1.1 relying on GPS is not possible. Given
the obvious need for a robot to be able to estimate its own state, the next obvious question is what
types of sensors would be most useful for state estimation. This question is complex and depends
on a long list of different factors including the payload capacity, the available processing power
and memory, the cost of the sensors, the duration of navigation and the type of environment.
While lidar based odometry has delivered impressive results, they are heavy sensors and often
very expensive. For many robots, like micro aerial vehicles (MAVs), it’s not feasible to carry
a lidar. This motivates the need for robust state estimation using sensors which are both light
weight and low cost.

Cameras and inertial measurement units (IMUs) are two of the most popular sensors used
to obtain a state estimate, they are both relatively light weight and inexpensive, and when used
together they have a very complementary nature. IMUs provide high frequency data which can
give useful information about short-term dynamics, while cameras provide useful exteroceptive
information about the structure of the environment over longer periods of time. Visual-inertial
odometry (VIO) is a technique which uses visual information from one or more cameras, and
inertial information from an IMU to estimate the state of a robot relative to some fixed world
frame. Specifically, a VIO system aims to estimate the six degree of freedom rigid body transfor-
mation between a starting pose and the current pose of the robot. Although VIO frameworks are
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Figure 1.1: One of Team Explorer’s drones taking part in preparation for the DARPA Subter-
ranean Challenge. The drone is tasked with exploring large underground environments in order
to perform search and rescue. Being able to rely on vision as the primary means of obtaining a
state estimate would obviate the need to carry heavy sensors like lidar and buy crucial minutes
of exploration.

able to obtain accurate state estimates in many environments, improving the robustness of these
algorithms remains a significant challenge. In certain environments, such as those with sparse
visual features or inconsistent lighting, current VIO algorithms are prone to failure. Furthermore,
certain types of fast or aggressive motions can lead to failures in state estimation. In traditional
frameworks, where information from only a single monocular camera or single stereo pair is
used, a single point of failure is introduced. If the field of view of the camera were to become
suddenly occluded or experience rapid exposure changes, the accuracy of the state estimate could
drastically decrease or the VIO algorithm could fail all together.

One of the more intuitive methods of improving the robustness of visual inertial odometry is
to use more than one camera. If features from one of the cameras were suddenly lost, the VIO
algorithm could continue to maintain a state estimate using only features from the other cameras
and IMU. Furthermore, if the cameras are configured to have perpendicular optical axes, then
when the robot undergoes fast rotation it is possible that at least one of the cameras’ optical axes
will be closely aligned with the axis of rotation and will be able to track features during the
motion. Given that the use of multiple cameras clearly has the potential to improve robustness,
we aim to develop a method of using information from multiple cameras effectively.

2



1.2 Contributions and Organization

Chapter 2 of this thesis covers relevant preliminaries that aid in understanding the contributions
of this work. The main technical contributions of this thesis are contained in Chapters 3 and
4. Chapter 3 describes the design and implementation of a traditional single stereo VIO sys-
tem. Chapter 4 explains strategies to extend the traditional VIO system to incorporate multiple
cameras. Finally Chapter 5 provides a summary of the proposed work and results as well as a
discussion on relevant future work. The main contributions of this thesis are:

• The description of a smoothing based Visual Inertial Odometry pipeline designed specifi-
cally for accuracy and computational efficiency

• An outlier rejection scheme which operates jointly across features from multiple cameras
• To our best knowledge, the first VIO framework which explicitly accounts for uncertainty

in camera extrinsics in both the frontend feature handling and backend optimization
• Evaluation of our system on both real world and simulated data

1.3 Scope and Approach

One of the biggest limiting factors surrounding autonomous exploration using MAVs is the re-
liability of the state estimate. Being able to maintain an accurate state estimate for long periods
of time, and being able to trust the state estimate in challenging environments would facilitate
longer and more useful flights. Visual inertial odometry is well suited for MAVs and has shown
promising potential to solve the state estimation problem for these smaller robots. Currently, the
biggest challenges associated with VIO surround its robustness and reliability.

In this thesis we present the design of a multi-camera visual inertial odometry pipeline. The
end goal is to develop a system which is able to efficiently make use of information from multiple
cameras to achieve a more robust state estimate than traditional VIO pipelines.

The first part of this work describes the design and implementation of a traditional, single
stereo, visual inertial odometry system. It includes an in depth explanation of both the front-
end feature tracking and handling as well as the back-end optimization. We explore several key
design decision, discuss the benefits and trade-offs of several of these choices, and compare the
work to existing state of the art methods in literature. This portion of the thesis also serves as a
foundation for the later extension to multi-camera VIO. In that part of the work, we explore how
to efficiently select features for optimization from multiple cameras, how to properly account
for extrinsic uncertainty, and how to incorporate both monocular and stereo cameras into the
pipeline.

3
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Chapter 2

Preliminaries

2.1 Factor Graphs in SLAM

2.1.1 Factor Graph Fundamentals

Most current SLAM methods can be separated into two major categories: filtering and smoothing
based techniques. Filtering based methods, such as the Kalman Filter, Extended Kalman Filter,
and Particle Filter, iteratively attempt to infer the current state of a robot given a belief about
its previous states and the measurements made by the robot. Smoothing based methods differ
in that they attempt to jointly infer a set of previous states at each iteration instead of only the
current state. Factor graphs have been adopted as the state-of-the-art method of representing
smoothing based state estimate problems. Factor graphs, like the one shown in Figure 2.1 are
bipartite graphs which encode a factorization of a probability density φ(X).

φ(X) =
∏
xi∈X

φ(xi) (2.1)

Factor graphs are composed of variables to be optimized, and factors which constrain those
variables in the optimization. In applications related to SLAM, the factor graph encodes a fac-
torization of the posterior P (X|Z).

P (X|Z) ∝
∏
z∈Z

p(z|X). (2.2)

Each factor in the factor graph represents the likelihood of a measurement given the state vari-
ables corresponding to that measurement. By choosing to model each factor in the factor graph
as a Gaussian distribution over the measurement function, the problem of maximum a posteriori
(MAP) inference over the posterior P (X|Z) is equivalent to minimizing a sum of the squared
residual errors over the set of factors in the factor graph. If the measurement model function
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Figure 2.1: A sample factor graph taken from [3], made up of variables to be optimized for,
in this case poses x1, x2, and x3, as well as landmarks l1, and l2 and factors constraining these
variables.

corresponding to factor i is hi, then we can represent this relationship as,

arg max
X

∏
zi∈Z

p(zi|X) = arg min
X

∑
zi∈Z

||hi(X)− zi||2Σi
. (2.3)

Here the term ||hi(X) − zi||2Σi
is known as the residual of the factor, and Σi is the co-variance

associated with the measurement. Under this formulation we can use well known methods of
solving non-linear least squares problems, such as Gauss-Newton and Levenberg-Marquardt, to
solve the MAP inference problem and achieve a state estimate.

2.1.2 Fixed-Lag Smoothing

As a robot navigates through an environment, the amount of measurements it accumulates will
increase. This means that the size of the factor graph will increase over time as well. If we
perform batch optimization each time we want to estimate our state then time it takes to perform
inference will eventually increase to a point where real time performance is no longer possible.
Several techniques have been developed in order to address this problem. Incremental solvers
such as iSAM [15] and iSAM2 [16] attempt to make use of previous optimization results in order
to compute subsequent state estimates without having to perform a batch optimization at every
step. However, even these incremental methods cannot guarantee constant time computation,
which is an import requirement for many robot applications which rely on their state estimate for
control and obstacle avoidance.

Fixed-lag smoothing attempts to constrain the size of the factor graph by continuously marginal-
izing out previous states every time a new state enters the optimization window, as shown in

6



Figure 2.2: In fixed lag smoothing we maintain a window of a fixed number of states by marginal-
izing out previous states (in red) as new states (in green) are added to the factor graph. Figure is
from [14].

Figure 2.2. By doing this the VIO algorithm can maintain a constant number of states in the
optimization window, and only perform inference on this smaller factor graph, which is quick
to do. This technique works especially well for VIO since most systems do not perform loop
closing, and are therefore unlikely to obtain measurements that would effect states in the past,
specially if there are few common landmark observations.

While there are a number of practical reasons why fixed-lag smoothing is well suited for
visual inertial odometry, there are still drawbacks from an information-theoretic stand point.
When we marginalize out a state, it’s no longer able to be optimized for and essentially takes on
a fixed value corresponding to the current linearization point at the time of marginalization. A
draw back of fix-lagged smoothing and the frequent marginalization specifically, is the fill-in that
occurs which can slow the optimization over long periods of time. This problem is discussed in
greater detail in Section 3.5.

2.2 Paramaterizing 3D Poses

Visual inertial odometry systems typically perform optimization over 6-DOF poses. 6-DOF
poses live on a non-linear manifold known as the Special Euclidean Group SE(3). Each member
of SE(3) consists of a point in R3 and a member of the Special Orthogonal Group SO(3), which
represents an orientation. Solvers like Gauss-Newton and Levenberg-Marquardt optimize by
making incremental adjustment from a fixed linearization point until a solution satisfies some
convergence criteria. However, this presents a problem for poses since it’s unclear how to make
additive incremental changes to a rotation matrix in SO(3). If we naively represent the pose by
vectorizing the rotation matrix and concatenating the point vector to create an element in R12

then any additive increment to this vector will almost certainly correspond to a matrix that is not
a member of SE(3). This makes intuitive sense, since the the rotation matrix only has 3 degrees

7



Figure 2.3: Poses live on the non-linear manifold SE(3) (shown in blue). We perform optimiza-
tion in the Lie algebra se(3) (shown in yellow), which is a linear space. We then project the
solution back onto SE(3) using the exponential map.

of freedom instead of 9, and the pose only has 6 degrees of freedom instead of 12.

In order to properly perform optimization on 6-DOF poses, we take advantage of the fact
that SE(3) forms a Lie group. This means for each pose increment ξ ∈ R6, we can associate a
member of the Lie algebra using the hat operator. In context of Special Euclidean Group the hat
operator is a function which performs the following mapping:

R6 → g, (2.4)

where g is a member of the Lie algebra. We can use the exponential map, which performs the
following mapping:

g→ G (2.5)

where once again g is a member of the Lie algebra and G is a member of the associated Lie
group. We can use this to map a member of the Lie algebra corresponding to an incremental
pose change, ξ∧, to a neighbourhood around some initial pose estimate a ∈ SE(3).

a⊕ ξ = a · exp(ξ∧) (2.6)

This process allows us to optimize on poses directly, as a would represent a given lineariza-
tion point and ξ would represent the incremental update as part of Gauss-Newton or Levenberg-
Marquardt step. As we will see in Section 4.5, this parameterization is also extremely useful for
associating uncertainty with a 6-DOF transformation.
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2.3 RANSAC and Outlier Rejection

We’ve seen how it’s possible to formulate the inference problem on a factor graph as a least
squares minimization problem over the residuals associated with each factor. This process works
well assuming all of the factors in the factor graph are valid and consistent. However, least
squares problems are known to be extremely sensitive to outliers, and as such incorrect mea-
surements in the factor graph can drastically degrade the accuracy of the resulting state estimate.
To address this potential problem, many systems attempt to perform robust estimation. While
the theory of robust estimation and robust statistics has applications well beyond the domain
of robotics, a useful concept is that instead of using all the available measurements to form a
model, we attempt to form models based only on the subset of measurements which we deem as
“inliers”.

For applications related to geometric computer vision specifically, Random Sample Consen-
sus (RANSAC) have proven to be a useful technique for robust estimation. Given a set of discrete
points RANSAC works by iteratively repeating the following steps:

1. Randomly select a subset of points, where the size of the subset is the minimum numbers
of points required to uniquely generate a model.

2. Generate a model given the selected points.

3. Apply the model to the entire set of points, and identify inliers by determining if a point is
consistent with that model.

After repeating this process for a fixed number of iterations, we consider the largest group of
inliers to be valid measurements. If we want to obtain a robust estimate for the model then we can
take the additional step of generating a final model using all the inliers. Unless we exhaustively
iterate through all possible models, RANSAC can only provide probabilistic guarantees on the
validity of the inlier set and the corresponding final model. If we start with an assumed probabil-
ity of a point being an outlier of ε, then we can say that the chance of a randomly sampled model
being correct is:

mvalid = (1− ε)s, (2.7)

where s is the minimum number of points that define a model. A model is defined as being valid
if all the points used to generate the model are inliers. This means that the probability the model
is invalid is:

minvalid = 1− (1− ε)s, (2.8)

If we iteratively repeat this process N times, then we can assume that RANSAC will have failed
to generate a valid solution if none of the sampled models were valid. If we assume each model
was sampled independently then the probability of this occurring, p′, is:

p′ = (1− (1− ε)s)N (2.9)
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Figure 2.4: The number of iterations needed to reach a confidence of p = 0.99, with an assumed
outlier percentage of ε = 0.50 for different model sizes s computed according Equation 2.10

This means that if we want a certain level of confidence, p, that RANSAC found a valid solution,
we need to perform N iterations where

N =
log(1− p)

log(1− (1− ε)s)
, (2.10)

where p′ = 1− p. This is the standard way of determining the number of iterations necessary for
a given confidence level. An important point is that for a fixed confidence level, the number of
iterations necessary grows exponentially with the minimal number of points required to generate
a model. This can be seen in Figure 2.4. Because of this, reducing the number of points in the
minimal model is a very effective way of reducing the amount of computation needed to perform
outlier rejection.

RANSAC is especially well suited for problems related to geometric computer vision for
a number of reason. First, RANSAC works best when we can rely on the assumption that a
majority of the observed points are inliers, which is often the case with measurements from
cameras. Furthermore, in these types of problems, minimal parameterizations are often very well
defined and because these geometric principles provide straight forward ways of determining
inliers given a model.
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2.4 Multi View Geometry

2.4.1 Epipolar Geometry

Epipolar geometry is a well studied field that describes the geometric constraints provided by
two projective cameras observing the same 3D scene. We refer readers to [10] for a derivation
of the underlying principles and a broad discussion about the applications of epipolar geometry.
For the purposes of this thesis, it is enough to get an intuition about how the epipolar constraint
is derived in order to understand how it’s used in triangulation and stereo feature matching.

Given an observation of a single feature point in an image plane, the 3D position of that
feature is constrained to lie on a ray defined by connecting the optical center of camera and the
observation on the image plane. That means if we know the relative position of another camera
in the scene we can project the entire ray onto the image plane of that second camera. The
projection forms a line in the image plane, known as the epipolar line. This is illustrated in
Figure 2.5.

Figure 2.5: A visualization of how the epipolar line in the red image plane is derived by projecting
the ray defined by the observation in the green image plane.

If we assume that the relative transformation between the cameras is perfectly known, and
that there is no noise in the measurements then we would expect that the observation of the fea-
ture in the second image plane would lie on the epipolar line. We can leverage this relationship
in two main ways. Given a known point correspondence we can estimate the transformation
between camera in order to minimize the distance between observations and their correspond-
ing epipolar lines. Assuming we have an estimate for the transformation we can also use the
epipolar constraint to estimate whether two candidate observations of the same feature actually
correspond to the same 3D point. We can use the Fundamental matrix, F, in order to evaluate
the epipolar constraint. We can construct the Fundamental matrix given only information about
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the camera instrinsics and the transformation between optical centers according to the following
formula

F = K−>2 [t]×RK−1
1 . (2.11)

Once we calculate F, we can determine the distance from the epipolar line as

d ∝ x̂>2 Fx̂1. (2.12)

Under perfect conditions, where the observed point lies directly on the epipolar line, we expect
to have d = 0.

2.4.2 Triangulation

Triangulation is the problem of trying to estimate the 3D position of a point given its position
in two or more images. Stereo triangulation specifically deals with an observation from two
cameras. In this section we assume that the stereo correspondence has already been made using
the methods described in Section 3.4. Geometrically the problem of triangulation can be thought
of as the problem of finding the intersection of two rays, each defined by a camera center and the
observation of the 3D point on the image plane. In situations where the rays intersect perfectly,
we can solve the triangulation easily and uniquely. However, in most situations, any noise in the
observations or camera positions means that there won’t be an exact solution, and as a result an
approximation needs to be made. There are two main strategies of estimating the 3D position of
the observed points:

1. Minimize the geometric error

2. Minimize the algebraic error

Assume we are given two observations x1 and x2, as shown in Figure 2.6, and corresponding
camera projection matrices P1 and P2. For a given 3D landmark position X̃ , we can define the
following simple relationships:

x̂1 = P1X̃

x̂2 = P2X̃
(2.13)

Using the method described in [10] we can define a cost function corresponding to geometric
error as:

C(X̃) = d(x1, x̂1)2 + d(x2, x̂2)2, (2.14)

In order to solve for the triangulated point, this cost function is minimized subject to the epipolar
constraint x̂>2 Fx̂1 = 0. This problem is typically solved using an iterative solver, and as a result
is quite expensive to compute.
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Figure 2.6: An illustration of an estimated 3D point X̃ projected into two camera images. The
re-projection error iterative approaches aim to minimize is distance of the straight line between
each projected point x̂i and the observed point xi.

An alternative method is to minimize the algebraic error. We take advantage of the fact that
the cross product of parallel vectors is zero which means that if Eq 2.13 holds then we can say
that:

x1 × x̂1 = 0

x2 × x̂2 = 0
(2.15)

If we represent row i of P1 as pi
1
> then we can create the following linear system of equations:

AX̃ = 0

A =


x1p

3
1
> − p1

1
>

y1p
3

1
> − p2

1
>

x2p
3

2
> − p1

2
>

y2p
3

2
> − p2

2
>

 , (2.16)

where xi and yi are the components of xi. This method is known as DLT. We can solve for X̃ by
taking an SVD decomposition of A, and taking the singular vector corresponding to the smallest
singular value of A.

DLT obviously has its drawbacks, since there is no guarantee that the error being minimized
corresponds to a geometric minimization. The main benefit of DLT is that since it is a linear
system, it can be solved extremely quickly. In Section 4.3, we will see how we use DLT as part
of the multi-stereo outlier rejection scheme.
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Chapter 3

Visual Inertial Odomtery

3.1 Introduction

VIO is a useful tool for estimating the state of a robot given information from a camera and
inertial measurement unit. Since VIO algorithms are often used on smaller robots with limited
payload capacities and limited computation resources, it’s important that the VIO algorithms
which are developed are done with the computational constraints in mind. This section provides
a detailed explanation of VIO algorithm we’ve implemented. It includes a discussion about:

• Other state-of-the-art methods, and how our method compares
• The different measurement models used, and how they fit into the factor graph
• The types of features that are tracked
• How we perform temporal feature tracking and stereo tracking
• Strategies to deal with the fill-in created from marginalization

While the scope of this chapter is limited to a traditional VIO system (one with a single
camera or single stereo pair), several of the design decisions carry over to the multi-camera
case.

3.2 Background and Related Work

VIO and simultaneous localization and mapping (SLAM) algorithms can be roughly categorized
into two main groups, direct and indirect methods. Direct methods [4, 5, 6, 34] estimate temporal
motion by continuously aligning consecutive camera frames as to minimize the photometric
error between them. On the other hand, indirect methods [17, 24, 27, 31] track landmarks in the
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scene and estimate motion by attempting to minimize the reprojection error between the observed
location of features in an image and the projection of their 3D estimated locations.

Qin et at.’s VINS-Mono, and its stereo extension VINS-Fusion, [27] is one of the most popu-
lar VIO systems used today. It shares several similarities to our method in both the front-end and
back-end. It performs KLT tracking on Shi-Tomasi features between consecutive images. It also
uses a fixed-lag smoother structure for its backend optimizer. Like many popular methods, the
factor graph consists of IMU pre-integration factors and projection factors, which is described
in greater detail in Section 3.3.2. For outlier rejection, this system uses a fundamental matrix
RANSAC, as described in [10].

Another popular system for visual-inertial odometry is Sun et al.’s [31] implementation of
stereo MSCKF [23]. The most fundamental difference between this method and most other
state of the art methods is that the state estimate is computed via filtering, not smoothing based
backend. The main benefit of using a filtering method is the substantially reduced computational
burden. In this implementation, FAST features [29] are used since they are extremely inexpensive
to compute. They are tracked from frame to frame and between stereo images using KLT. Despite
the fact that [31] has shown that descriptor based methods provide better accuracy overall, Sun
et al., argue that the marginal increase in performance is not worth the added computation of
descriptor based methods. Because of this we also use KLT methods in place of descriptor
matching in our system. A 2-point RANSAC approach described in [33] is used. They first
compensate for temporal rotation by integrating the IMU. Instead of performing outlier detection
on a triangulated 3D point, they apply an independent RANSAC to both the left and right image
points and only accept the feature if it is an inlier in both images.

3.3 Relevant Measurement Models

3.3.1 Camera Measurement Model

For indirect methods, camera measurements usually consist of the observation of multiple point
features in the scene. There are several methods for keeping track of these features and handling
data association. The method we use is described in greater detail in Section 3.4. The residual
corresponding to these measurements is the reprojection error between the observed location of
the feature in the image and the projection of the estimated location of the feature in the 3D world
into the estimated position of the camera. Since the robot pose, which is a variable in the factor
graph, represents the pose of the body frame, the camera extrinsics need to be used to determine
the pose of the camera at each measurement. In Section 4.5, we discuss in greater detail how the
noise model corresponding to the camera measurements accounts for uncertainty in the extrinsic
calibration of the camera. We explore two different landmark parameterizations which each have
their own benefits and drawbacks.
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Figure 3.1: A factor graph demonstrating both the full 3D and inverse depth parameterizations
of camera projection factors. These factors connect a single landmark and a single pose.

Full 3D Parameterization

The first parameterization is perhaps the most intuitive. Each landmark is represent as a 3D
point in world coordinates. We can see in Figure 3.1, that in this parameterization, the projection
factor simply connects a landmark with a pose. Given the 3D coordinates of the landmark,
we can project the feature into the image given a known body pose and camera extrinsic. The
main drawback with this parameterization compared to others is that optimizing for multiple
landmarks can be slow. As a rule of thumb, the full 3D parameterization of each landmark is
better suited for applications with less strict computational constraints.

Inverse Depth Parameterization

The inverse depth parameterization as described in [2], assumes that the landmark lies on a
ray defined by the first observation at the first pose it was observed at. The 3D position of the
landmark is completely defined by the inverse depth along that ray. The result of the optimization
corresponding to a landmark is a single number, the inverse depth, which described the position
of the landmark on the ray. The obvious drawback is that if the estimated pose at the first
observation is incorrect, or if the observation itself is wrong then the true position of the landmark
will likely not fall on the ray. If enough landmarks are initialized incorrectly, it has the potential to
significantly degrade the accuracy of the state estimate. This further motivates the need for a strict
outlier rejection step and a conservative approach to selecting features to use in an optimization.

Another relevant parameterization, shown in Figure 3.2 is the one used in VINS-Mono and
VINS-Fusion [27]. It follows an inverse depth parameterization, but also includes the pose of
the first observation as part of the factor. It has the added benefit of being an inverse depth

17



Figure 3.2: An alternative parameterization of the inverse depth factor. The main difference is
that the pose of the first observation is included as part of the optimization of each factor. While
this may provide improved accuracy, it creates a more densely connected structure which may
slow down optimization.

parameterization which is efficient for optimization, but also allows for the initial pose to be
refined during optimization which in turn refines the ray on which the landmark is constrained
to. While this parameterization could be a useful middle ground the two approaches we explored,
we found that in most applications either the full 3D or inverse depth parameterization suffices.

3.3.2 IMU Measurement Model

Data from inertial measurement units are extremely useful in VIO frameworks. Since IMUs are
typically sampled at a higher rate than cameras, they provide information about the short term
dynamics that can often be missed by visual measurements alone. IMU measurements between
consecutive poses in the factor graph are collected and combined into a single factor. A naive
measurement model corresponding to the inertial measurements would be to start at the first
pose, integrate the IMU measurements to arrive at an estimated pose and then compute a residual
between that estimate and the actual value of the pose at a given particular linearization point.
However, this method requires reintegration of the IMU measurements every time the residual
corresponding to that IMU factor needs to be evaluated. Since the residual is re-computed for
different linearization points several times during a single optimization, this method becomes
extremely inefficient and in practice makes this type of factor unusable for real time applications.
In 2012 Lupton et al. [21] introduced the theory of IMU preintegration, and in 2016 Forster et
al. [7], extended the theory to cover optimization on the SE(3) manifold. We refer to [7] for a
derivation of this preintegrated IMU factor. The main benefit of the preintegrated factor is that
under that particular formulation IMU measurements only need to be integrated once, in the body
frame of the robot, rather than each time the residual is evaluated. This significantly reduces the
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Figure 3.3: A factor graph depicting a detailed structure of the IMU preintegration factor used
for this work. Often this structure is simplified by combining the preintegation factor and bias
random walk factor into a single constraint between consecutive states.

computational burden required to use IMU measurements in a factor graph and have therefore
become the standard method of using inertial data for localization.

The IMU preintegration factor connects consecutive states in the factor graph and computes
a residual based on the previous pose, velocity, IMU bias, and the next pose and velocity. Some
implementations of the IMU preintegration factor will also include a “random walk” factor be-
tween consecutive bias values, while other require that factor to be declared separately. Figure
3.3 is an illustration of how the preintegration factor connects two consecutive states. For clarity
we explicitly represent the pose, velocity, and bias terms as separate nodes.

We choose to model the noise associated with the IMU factor with 4 parameters. The pa-
rameters are the white noise and bias random walk parameters for both the accelerometer and
gyroscope. Noise from IMU data is modelled by a time varying bias and an additive zero-mean
Gaussian white noise. The white noise parameter is the standard deviation of the additive white
noise, while the random walk parameter describes how quickly the bias term changes. It’s the
random walk parameter which constrains two consecutive bias terms in the factor graph. All of
these parameters can either be obtained from a manufacturer data sheet or estimated through an
IMU calibration procedure such as [28].

3.4 Feature Tracking

A important aspect of the frontend of the VIO system is the feature tracking pipeline. There are
several key design choices in the feature tracker that impact the overall performance of the state
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estimate. These decision range from the types of features that are tracked, methods of tracking
features temporally, and methods of determining stereo correspondences.

3.4.1 Types of features

Several computer vision applications require the detection of important pixels in the image. One
of the most important properties of these image points is that they must be easy to identify, and
locally unique so that they aren’t confused with nearby image points during tracking. Visually
these points usually correspond to corners in the image. Corners are points that have strong
spatial gradients in more than one direction. There are several existing types of corners which
vary in how they are extracted from the image. Popular features include Harris corners, Fast
features, SURF features, SIFT features, and Shi-Tomasi corners. We will focus on Shi-Tomasi
corners since they were used in this work.

In [30] Shi and Tomasi propose the notion that the features which should be used in structure
from motion problems are more than those points which exhibit a high corner response, but
specifically those points which are easy to track. This may seem like a minor distinction, since
often points with a high corner response are also the easiest to track, but in their work they
demonstrate that the assumption is not always true. Shi-Tomasi corners introduce a quality factor
associated with each feature related to how well it can be tracked by accounting for the texture
of the image patch surrounding the feature. We refer to [30] for a full derivation.

3.4.2 KLT Tracking

The Kanade-Lucas-Tomasi (KLT) feature tracker is combination of the work in [30] as well
as the work in [20]. Features are tracked by performing Lucas-Kanade registration on local
patches surrounding each corner. In our application we use KLT tracking to get both temporal
correspondences and stereo matches.

In order to reduce the number of features which need to be tracked, we perform feature buck-
eting. We separate each image into a fixed number of rectangular bins, and set a minimum and
maximum limit on the number of features allowed in each rectangle. If the number of features
in a bucket falls below the minimum threshold, we initialize new features in that bucket. If the
number of features in a rectangle exceeds the maximum threshold, we discard features starting
with the most recently initialized features. This is done on the assumption that older features
which were observed by the most number of previous poses provide the strongest constraints on
the optimization. In general feature bucketing provides a straight forward way of limiting the
number of features in the image while still ensuring that features are evenly distributed so that
the measurements don’t provide redundant constraints. Temporal matching is performed using
the following procedure:
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Figure 3.4: A example of the stereo matching between the left and right images of the forward
facing camera on the experimental camera rig shown in Figure 4.5. The arrows show the temporal
motion of the features, and red features denote outliers from the joint RANSAC.

1. Perform KLT tracking between features in the previous left image and features in the cur-
rent left image. We initialize KLT according the the temporal rotation of the robot as
measured by the IMU.

2. Perform stereo matching between the features which were successfully tracked temporally.

3. Replenish buckets which lost features with new Shi-Tomasi corners.

The main benefit of using KLT for stereo matching as opposed to descriptor based methods
is the saved computation, a trade-off which is also made by [31]. However, this method relies
on the assumption that the disparity of the observed features is relatively small. If our stereo
baseline is too large, or if the robot gets too close to objects in the scene then KLT may fail to
find valid stereo correspondences. Although features are tracked using KLT, we still verify the
distance between each tracked feature and the epipolar line before accepting the match.

3.5 Marginalization and Sparsification

As we discussed in Section 2.1.2, the process of fixed-lag smoothing requires us to marginalize
out a previous state every time a new state enters the optimization window in order to maintain a
window of states of constant size. For a general joint probability distribution p(x, y), the process
of marginalizing out variable x can be achieved simply by integrating the entire probability den-
sity function over all values of x to obtain a new probability density function which only depends
on y.

p(y) =

∫
x

p(x, y) (3.1)

Since a factor graph represents a factorization of joint probability density function as discussed
in Section 2.1.1, marginalizing out variables in the factor graph is analogous to marginalization
for general probability distributions. If we represent our probability function in covariance form,
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Figure 3.5: The variables to be marginalized are shown on the left. On the right we see the dense
prior which is created after marginalization. Also shown is the fill-in created in the information
matrix. The image is taken from [14].

then we can obtain the new covariance matrix after marginalization trivially since it exists as a
sub-block of the original covariance matrix. However, if we choose to represent our probability
distribution in information form then we need to take a Schur complement in order to obtain the
new information matrix after marginalization. A more detailed explanation of this process can
be found in [3].

A major draw-back of constantly marginalizing out variables is that over time the resulting in-
formation matrix becomes less sparse. This is because marginalization creates densely connected
priors as is illustrated in Figure 3.5. Since the efficiency of back-end solvers relies heavily on
the sparsity of the information matrix, over time it will take longer to perform inference on the
factor graph. This can pose a problem for applications where a robot needs to navigate for longer
periods of time. To address this issues, several existing methods, such as VINS [27] and OKVIS
[19] selectively discard measurements. While this approach succeeds in maintaining sparsity, it
throws away what could be valuable information that can’t be recovered.

Instead of selectively discarding measurements, we adopt the marginalization strategy pro-
posed in [14]. This method maintains sparsity by enforcing a sparse topological factor graph
structure around the marginalized variables and then minimizing the Kullback-Leibler diver-
gence between the probability density function induced by the original densely connected prior
and the new sparse factor graph structure. This maintains sparsity while also maintaining more
of the information contained in the original dense prior.
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Chapter 4

Incorporating Multiple Cameras

4.1 Introduction

Visual inertial odometry often suffers from a lack of robustness, and is prone to failure in certain
types of environments such as those with sparse visual features or inconsistent lighting. Fur-
thermore, certain types of fast or aggressive motions can lead to failures in state estimation. In
indirect systems which track features in the scene, these failures can often be attributed to poor
feature tracking which results in incorrect camera measurements being used in back-end opti-
mization. In traditional frameworks, where information from only a single monocular camera or
single stereo pair is used, a single point of failure is introduced. If the field of view of the camera
were to become suddenly occluded or experience rapid exposure changes, the accuracy of the
state estimate could drastically decrease or the VIO algorithm could fail all together.

To address these problems we explore the possibility of using information from multiple
cameras in order to improve the robustness of a robot’s state estimate. If features from one of
the cameras were suddenly lost, the VIO algorithm could continue to maintain a state estimate
using only features from the other cameras and IMU. Furthermore, if the cameras are configured
to have perpendicular optical axes, then when the robot undergoes fast rotation it is possible that
at least one of the cameras’ optical axes will be closely aligned with the axis of rotation and
will be able to track features during the motion. Since a major focus of this work is to improve
the overall robustness, we decided to develop a method which uses information from multiple
cameras in a single optimization. This is in contrast to other methods, which are expanded on in
greater detail in Section 4.2, which obtain independent state estimates from different cameras and
fuse them together. While these methods may achieve a relatively accurate state estimate, each
estimation running on individual cameras suffers from potential issues with robustness. In fact,
these methods are often prone to failure if even one of the estimates is significantly inaccurate.

Having established that using multiple cameras can be useful for visual inertial odometry
pipelines, there are still questions about the best ways of using this information. This chapter
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describes a methods of incorporating measurements from multiple cameras and an inertial mea-
surement unit into a single joint optimization. While there are several aspects of a traditional
VIO framework that are transferable to the mutli-camera case, there are still several components
of the pipeline which need to be specifically addressed. The main contributions of this chapter
are as follows:

1. A description of the necessary modifications to a traditional VIO framework in order to
accommodate multiple cameras

2. The design of an outlier rejection scheme which is able to jointly consider features from
all cameras

3. A demonstration of the problems which arise from uncertain extrinsic calibrations and a
proposed strategy to handle them

4.2 Background and Related Work

While the idea of improving the robustness of localization using multiple cameras isn’t new, the
methods in which the information is fused varies. Oskiper et al. [25] proposed a multi-stereo
VIO which extracts frame-to-frame motion constraints through a 3-point RANSAC and used
an extended Kalman filter (EKF) to fuse those constraints with data from an IMU. Houben et
al. [13] explored using a multi-camera system in a graph based SLAM framework with their
proposed extension of ORB-SLAM [24]. Their system added a factor in the pose graph between
key-frames observed from different cameras at the same time step based on the known extrinsic
calibration of the multi-camera system. Tribou et al. [32] proposed a multi-camera extension of
Parallel Tracking and Mapping [17] (PTAM) using a spherical camera model.

In [9], Müller et al. propse a multi-camera VIO system which calculates independent odom-
etry estimates for each camera and fuses them with data from an inertial measurement unit using
a Kalman filter. They perform outlier rejection on each odometery measurement by thresholding
the Mahalanobis distance between the actual odometry measurement and the predicted measure-
ment from the filter. They claim that a main advantage of fusing independent odometries is they
are able to select key-frames for each camera independently.

For joint multi-camera outlier rejection, most existing methods use the generalized camera
model (GCM) and generalized epipolar constraint (GEC) introduced by Pless in [26]. In this
framework, feature points are parameterized by Plücker vectors which pass through the optical
center of the camera in which the feature was observed and the normalized image point. Lee
et al. [18] propose a 4-point solution based on the GEC for a multi-camera setup on board an
autonomous vehicle. This system assumes the roll and pitch can be directly measured from
the IMU but estimates the temporal yaw as part of the RANSAC formulation. In [12] Heng
et al. propose a similar 3-point algorithm for a multi-stereo system on board a MAV. Like our
proposed method, they also use an estimated rotation from IMU integration, but their algorithm
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is degenerate in the case of no temporal rotation and no inter-camera correspondences. Although
their platform contains stereo cameras, they do not triangulate feature points and instead must
treat each camera in the stereo pair independently to ensure there will always be inter-camera
correspondences.

In a separate work [11], Heng et al. describe a 1-point RANSAC scheme similar to ours
in that it uses rotation measured from the IMU and estimates the relative translation between
3D features observed from a RGB-D camera as the RANSAC model. Our work extends theirs
by formulating how this 1-point RANSAC scheme can be used for joint multi-camera outlier
rejection. We also characterize uncertainty in both stereo triangulation and camera extrinsics as
part of our RANSAC.

4.3 Multi-Stereo RANSAC

4.3.1 Motivation

Determining the correct set of features to use in a back-end optimization is a non-trivial task.
Although several outlier rejection algorithms exist in traditional VIO pipelines, most of these
methods cannot take advantage of the strong constraints provided by a calibrated multi-stereo
system, and as a result perform outlier rejection independently for each camera. Outlier rejection
methods which rely on RANSAC attempt to find the largest subset of consistent features, and
assume that these features are consistent with the global motion of the robot. However, there are
several scenarios where the largest subset of features which are locally consistent for a particular
camera may not be globally consistent with the entire set of features across multiple cameras.
We can imagine a situation where a camera’s field of view largely captures a moving object,
and a majority of the features tracked in that camera lie on the moving object. In this scenario,
which is plausible in certain dynamic environments, an outlier rejection scheme which is unable
to identify these inconsistent features as outliers, would add them as constraints in the back-end
optimization which would likely result in a unreliable state estimate. However, if other cameras
on the robot were able to obtain accurate feature tracks of static features in the environment, then
by performing a joint RANSAC on all of the features would make it much more likely to identify
outliers.

As with most aspects of a VIO pipeline, the computational resources demanded by the outlier
rejection scheme needs to be considered. The number of iterations necessary for a given confi-
dence level scales exponentially with the numbers of correspondences required in the minimal
model according to Equation 2.10. A main advantage of our proposed outlier rejection scheme is
that the RANSAC algorithm only requires a single correspondence for the minimal model. This
is done by taking advantage of the stereo observation of each feature. This means that we can
satisfy a given confidence level of RANSAC with the smallest amount of iterations possible.
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4.3.2 Assumptions and Limitations

Figure 4.1 provides an outline of the structure of the multi-stereo VIO pipeline.

Figure 4.1: A flowchart describing the multi-stereo VIO pipeline. Features are tracked in each
stereo pair individually using the method described in Section 3.4. We then perform joint outlier
detection and pass inliers to a backend for optimization. An extension of this pipeline to the
integration of monocular cameras is described in Section 4.4.

4.3.3 Notation and Conventions

Table 4.1 is a summary of the notation used in this section. We start by defining a set of camera
measurements Ot that contains all the measurements across the K stereo cameras:

Ot =
K⋃
j=1

Oj
t . (4.1)

Oj
t is the subset of Ot containing the measurements observed in stereo pair j. The goal of the

proposed outlier rejection algorithm is to filter the set of candidate landmarks, Ot, and extract
a smaller subset of features Ct, to be added as stereo projection factors in the optimization such
that each feature in Ct is consistent with the motion of the robot. With this formulation we can
define Oj

t as follows,
Oj

t = Cjt−1 ∪N
j
t−1, (4.2)
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Table 4.1: Summary of the notation used to describe the multi-stereo RANSAC algorithm in
Section 4.3

Problem Formulation

pt
L,p

t
R ∈ R2 Left and right candidate feature image

coordinates for stereo pair at time step t

pt−1
L ,pt−1

R ∈ R2 The time step t− 1 image coordinates
corresponding to pt

L,p
t
R

Si The i-th stereo pair

TSi

Extrinsics of the left camera of Si with respect
to the body frame

Oj
t

Set of potential features to track at time step
t in stereo pair j

N j
t

Set of new feature points added at time step
t in stereo pair j

Ct
Final set of image points to be used for VIO at
time step t

Multi-Camera RANSAC

Ft
Set of successfully temporally tracked image
point pairs

Pt
B ∈ R3 Triangulated 3D coordinate of a feature in the

body frame at time step t

Pt−1
B ∈ R3

The time step t− 1 triangulated 3D feature
coordinate corresponding with Pt

B represented
in the body frame

P
(t−1)′

B ∈ R3 The 3D feature coordinate Pt−1
B after being

rotated into the current (time t) frame via R̂t

I Set of candidate inliers for a given
iteration of RANSAC

X Set of triangulated feature points

R̂t ∈ SO(3)
Estimated temporal rotation matrix produced
via IMU integration

Υ̂p̃L
Covariance matrix in image pixel space

t̂ ∈ R3 Candidate temporal translation from RANSAC

δ RANSAC threshold

πj Projection function into stereo pair j
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where N j
t−1 represents the new features that were added at the previous iteration. This is to

say that at any time step t, Oj
t will contain the features that were successfully tracked from the

previous image, and new features that were added. At each new image we:

(i) Perform KLT tracking from features in previous left image (Oj
t ) to the current left image.

(ii) Perform KLT tracking from the successfully tracked features in the current left image to
the current right image. The result is F j

t .

(iii) Replenish the buckets which lost features during Steps i and ii by adding new Shi-Tomasi
features (N j

t ).

The set F j
t contains the features that were successfully tracked, while Cjt is the subset of F j

t that
were marked as inliers during RANSAC.

4.3.4 Algorithm

The multi-stereo RANSAC process is described with reference to Algorithm 1. We triangulate
each candidate feature point in Ft in its respective stereo frame. This is done for the features in
the current image (line 7) as well as the corresponding features from the previous image (line
6). We estimate the temporal rotation, R̂t between consecutive camera frames by integrating
measurements from the on board gyroscope (line 3). Using this estimate for temporal rotation we
rotate the triangulated points from the previous time step into the current time frame (line 10). At
this point we expect that the landmarks in P

(t−1)′

B and Pt
B only differ by the temporal translation

of the robot. We obtain an estimate for the temporal translation by randomly selecting a single
feature correspondence and subtracting their 3D positions (line 16 and 17). Using this estimate
for translation, we then project all the triangulated feature points in the previous temporal frame
into the current image frame (line 20). In this step we also calculate a covariance in the pixel
space of the image based on the uncertainty of the extrinsic parameters. This is described in more
depth in Section 4.5. We perform outlier rejection by thresholding the Mahalanobis distance
between the projected points in the left camera frame and the tracked points (line 21). Our
RANSAC based outlier rejection scheme iteratively repeats this process and selects the largest
set of inliers to insert as measurements in the factor graph.

4.4 Incorporating Monocular Cameras

4.4.1 Assumptions and Limitations

In order to generalize our system to be a true multi-camera VIO algorithm it’s necessary to
incorporate monocular cameras. While stereo cameras provide extremely valuable information
about observed features that monocular cameras cannot, in real world applications there are
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Algorithm 1: Multi-Stereo RANSAC
1 X ← ∅
2 Ct ← ∅
3 R̂t ← IMUIntegration()
4 for j := 1 to K do
5 for (pt−1

L ,pt−1
R ,pt

L,p
t
R) ∈ F

j
t do

6 Pt−1
Sj
← Triangulate(pt−1

L ,pt−1
R )

7 Pt
Sj
← Triangulate(pt

L,p
t
R)

8 Pt
B ← TB

Sj
Pt

Sj

9 Pt−1
B ← TB

Sj
Pt−1

Sj

10 P
(t−1)′

B ←
[
R̂t 0
0 1

]
Pt−1

B

11 X ← X ∪ {(P(t−1)′

B ,Pt
B ,p

t
L,p

t
R, j)}

12 end
13 end
14 for i := 1 to N do
15 I ← ∅
16 (P̂

(t−1)′

B , P̂t
B , . . . )

Rand←−−− X
17 t̂← P̂t

B − P̂
(t−1)′

B

18 for (P
(t−1)′

B ,Pt
B ,p

t
L,p

t
R, j) ∈ X do

19 P̃B ← Tt̂P
(t−1)′

B

20 (p̃t
L,Υp̃L

)← πj(T
Sj

B P̃B)
21 if (||p̃t

L − pt
L||2Υp̃L

< δ) then
22 I ← I ∪ {(pt

L,p
t
R)}

23 end
24 end
25 if (|I| > |Ct|) then
26 Ct ← I
27 end
28 end
29 return Ct

several practical reasons why monocular cameras may be used instead of stereo cameras. On
small mobile robots with both limited compute and limited payload capacity, it’s often difficult to
include the extra hardware required for stereo cameras and allocate the necessary computational
resources to process images from the extra cameras. In order to integrate monocular cameras
into the system there are 3 key considerations that need to be made.

1. Measurement model and integration into the factor graph

2. Landmark initialization

3. Integration into outlier rejection scheme

As will be discussed greater detail in subsequent sections, we notice that monocular features
can be easily integrated into the factor graph, but it is less obvious how they fit into the multi-
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stereo RANSAC algorithm. This is because a key aspect of the multi-stereo RANSAC is the
ability to triangulate features and retrieve the scale of translation. Because of this our system
accepts monocular cameras with the assumption that the robot has at least one stereo camera
pair.

4.4.2 Landmark Initialization

Given an observation of a 3D landmark from a stereo camera, it’s possible to triangulate that
landmark and use the extrinsic calibration of the camera to obtain an estimate of either the 3D
position of the landmark or the associated inverse depth, depending on the parameterization being
used. For monocular cameras this isn’t possible. Given only a single observation of a landmark
from a monocular camera, the position of that features is only constrained to lie on a ray but it’s
impossible to determine where on that ray the landmark is located.

Since a single observation of from a monocular camera doesn’t provide enough information
to constrain either the 3D position or inverse depth of the landmark, it’s not possible to initialize
the landmark in the factor graph on the first observation. Because of this, when dealing with
monocular cameras there is additional book-keeping step that needs to happen in the back-end.

Once we have an initial observation of a monocular feature, we keep track of the measure-
ment and the associated pose of the robot at the time of the observation. The front-end feature
tracker will continue to track the feature over incoming frames and provide measurements from
subsequent poses. We store each incoming measurement and associated pose. At each new mea-
surement we check to see if there is enough parallax between the current pose and the pose of
the robot during the original observation such that triangulation will be well constrained. If we
are able to triangulate we do so and obtain an estimate of the location of the landmark. At this
point we can initialize the landmark variable in the factor graph. When this happens we iter-
ate through the previously stored measurements and add factors if the associated poses are still
in the optimization window. Once this initialization step is complete additional measurements
can be added as they come in and monocular observations are treated the same way as stereo
observations.

4.4.3 Outlier Rejection

The multi-stereo outlier rejection scheme has the benefit of being able to jointly select inliers
from multiple stereo cameras. However, as part of the multi-stereo RANSAC formulation, it’s
necessary to triangulate features using DLT. Since this step is obviously not possible given only
monocular observations of feature points, we must determine how to incorporate monocular
features into the joint RANSAC.

As explained previously, the RANSAC model used to determine inliers is the temporal trans-
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lation of the robot between consecutive frames. Given feature correspondences from a single
monocular camera, it is only possible to solve for this translation up to scale. If we once again
assume the rotation of the robot is known from short term integration of the IMU measurements,
then the translation up to scale can be solved with a 2-point algorithm as described in [33]. While
we can use an epipolar constraint to determine inliers among features in that camera, it’s not pos-
sible to use the model to jointly determine inliers from other cameras. However it is possible to
use the RANSAC model from a single stereo correspondence (which gives exact translation) to
evaluate inliers in a monocular camera. Therefore, in order to perform joint RANSAC, we can
only sample models from the stereo cameras. In the scenario where there are few or no valid cor-
respondences observed in a stereo camera then a 2-point RANSAC is performed independently
on the features from each monocular camera. We identify this scenario when the total number
of inliers generated from the best stereo model is less than the total number of features observed
from a monocular camera.

4.5 Accounting for Extrinsic Uncertainty

4.5.1 Motivation

Obtaining an accurate extrinsic calibration between multiple sensors is a significant challenge
in robotics in general, and is especially difficult for systems with multiple cameras and inertial
sensors. In the context of our RANSAC based outlier rejection scheme, an uncertain extrinsic
calibration can lead to a higher re-projection error. In the traditional single camera case, extrinsic
uncertainty can usually be dealt with by adjusting the inlier selection threshold in RANSAC.
However, in the multi-camera case, we have the added problem that some cameras may have
a more accurate calibration than others. In these scenarios simply adjusting the inlier selection
threshold does not resolve the problem. Without addressing this issue directly, our RANSAC
scheme will have an inherent bias towards cameras with more accurate extrinsics.

We demonstrate the problem using a simulated MAV in an outdoor environment using the
RotorS simulator. In the simulated environment we have direct control over the camera extrinsics,
and can easily perturb them to see the effects. The results are shown in Figure 4.2. In this
demonstration 3 different experiments were run:

1. Both cameras with perfect extrinsics

2. One stereo pair with noise artificially added to extrinsics running without uncertainty com-
pensation

3. One stereo pair with noise artificially added to extrinsics running with uncertainty com-
pensation

In this two stereo configuration, we will analyze the percentage of inliers identified in each stereo
pair. We notice that when we add noise to the extrinsics of one of the cameras, the amount of
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Figure 4.2: This graph displays the percentage of identified inliers in single stereo pair which has
a noisy extrinsic calibration. Without compensating for uncertainty, our outlier rejection scheme
has a bias towards features observed in cameras with stronger calibration. After compensating
for uncertainty we see that the feature distribution more closely matches the original distribution,
which are the results with perfect extrinsics.

32



inliers in the stereo pair decrease significantly. If we use the uncertainty compensation method
described in this Section, we can see that the feature distribution returns to a similar level as the
original even with the noise added.

4.5.2 Derivation

We choose to represent the uncertainty in the extrinsics by modeling uncertainty in the trans-
formation between the left camera of each stereo pair and the IMU. Using the same convention
as [1], we represent each of these estimated transformations TB

Si
as a member of the special

Euclidean group SE(3). We can model each transformation as some “true” transformation T̄B
Si

perturbed by some noise:

ξi ∈ R6

ξi ∼ N (0,ΣB
Si

).
(4.3)

Our proposed method propagates the uncertainty in the transformation through both the
camera-to-IMU transformation as well as the reprojection to obtain an uncertainty in the pixel
space of the image. With an uncertainty in the pixel space, we can determine inliers by setting a
threshold on the Mahalanobis distance between the projected features and their actual observed
locations.

We refer readers to [1] for a detailed derivation of uncertainty propagation used in this section.
We start with a triangulated 3D point in one of the camera frames of the robot. It is well known
that the error in triangulation is quadratic with respect to the depth of the point. We model an
initial uncertainty on the triangulated 3D point by propagating the pixel noise in the image using
the method described in [22]. We propagate the uncertain point through the uncertain camera-
to-IMU transformation:

P̄B = T̄B
Si

P̄Si
(4.4)

If P̄B = [h>, λ]> then the 4 × 9 Jacobian of the homogenous transformed point with respect to
the parameters of both the transformation and the original point is:

J =

[
λI3 −h∧ RB

Si

01×3 01×3 01×3

]
(4.5)

We obtain a covariance matrix estimating the uncertainty of the point in the body frame using a
first order approximation.

ΣPB
= J

[
ΣB

Si
06×3

03×6 ΣPSi

]
J> (4.6)

We use the method described in [1] to propagate the uncertainty of the extrinsics and the un-
certainty of the point in the body frame through projection into a nonlinear camera model. For
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each candidate motion model in RANSAC, we obtain a 3D point in the body frame, P̃B, which
needs to be projected back into the original image to determine inliers. We model an uncertain
3D point as:

P̃B = ¯̃PB + Dζ (4.7)

where ζ ∈ R3 and ζ ∼ N (0,ΣP̃B
) and D is the 4× 3 matrix defined by:

D =

[
I3×3

0>

]
. (4.8)

The projection function π : R4 → R2 is a nonlinear function which takes a homogeneous 3D
point in the left camera frame and projects it to an image pixel. We define the Jacobian of the
projection function with respect to the homogenous points in the camera frame as

Π =
∂π

∂w
w =

[
fx
w3

0 −fxw1

w3
2 0

0 fy
w3
−fyw2

w3
2 0

]
(4.9)

Similarly to Eq.4.5 we define G as the Jacobian of the transformed homogenous point with
respect to the parameters of the transformation and original point. In this case the transformation
we are considering is from the body frame back to the camera frame.

G =

[
λI3 −d∧ RSi

B

01×3 01×3 01×3

]
(4.10)

where P̃′Si
= TSi

B P̃B = [d>, λ]>. We make the important distinction that PSi
is the original

triangulated point in the camera frame, while P′Si
is the point after it has been transformed back

into the camera frame as part of the RANSAC scheme. From here we define the Jacobian of the
entire reprojection function, from the point in the body frame to a pixel in the image as:

H = ΠG (4.11)

and the covariance in the image space as:

Υp̃L
= HΞH> (4.12)

Ξ =

[
ΣSi

B 06×3

03×6 ΣP̃B

]
(4.13)

It’s worth exploring why a bias towards cameras with a more accurate calibration is a bad
thing, as it is not immediately obvious. Intuitively features from cameras with more accurate
calibrations would provide better constraints on the optimization than features observed from
cameras with noisy calibrations. It’s tempting to think that the bias might be a benefit to the
overall performance of the system. While this intuition may seem correct, it’s important to re-
member that the only goal of outlier rejection is to address the issue of incorrect data association.
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So long as tracked features still correspond to the same 3D point, then they should be considered
inliers.

In order to ensure that features observed in cameras with noisy calibrations don’t degrade
the quality of the state estimate, we also account for the extrinsics uncertainty in the back-end
optimization. This is done by altering the noise model of the projection factors associated with
each feature. Most of the popular projection factors used for indirect visual SLAM systems use
a measurement noise model associated with some small pixel error in the image. We build on
this by adding an uncertainty propagated from the noisy extrinsics. Specifically, we modify Eq.
4 in [14] such that the residual associated with each projection factor is weighted by Σm rather
than Σcij :

Σm = Σcij + Υp∗L
(4.14)

where Σcij is the noise model of the camera and Υp∗L
is the covariance of the given landmark

projected from the current linearization point of the optimization into the left camera. Since
we are projecting an estimate of the 3D landmark position we have ΣP∗B

= 0. To our best
knowledge, this is the first work which explicitly models extrinsic uncertainty as part of a VIO
pipeline.

4.5.3 Quantifying Uncertainty

While there are several works which specifically aim to improve the quality of the calibration
[8, 12, 28] some uncertainty will always remain. This remaining uncertainty can be attributed
to the noisy sensor data used to perform calibration and the physical deformation of the camera
rig that can vary with time and temperature. Knowing that it is impossible to obtain a perfect
calibration, we decide to model and account for the uncertainty. Although this paper does not
specifically focus on strategies to obtain a measurement of extrinsic uncertainty, it can generally
be done by either extracting it from a tool which formulates calibration as the optimization of
a nonlinear least squares problem or by estimating it based on the physical parameters of the
camera rig.

4.6 Results

The proposed multi-camera VIO pipeline was evaluated using a MAV in a simulated Gazebo
environment as well as on real world data collected in the Robotics Institute’s Highbay. The
simulated environment allowed us to obtain ground truth extrinsics and manually add noise to
test our system, while the Highbay data allowed us to verify the robustness of our algorithm on
real data. For both types of experiments we evaluate the accuracy of the trajectory against VINS-
Fusion running on both stereo pairs individually. VINS-Fusion was run with default parameters
and the option to optimize for extrinsics enabled. As a comparison we also compare against a
version of our full VIO pipeline which uses a fundamental matrix RANSAC for outlier rejection
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Table 4.2: Average Computational Time for Outlier Rejection
Proposed Proposed with Fundamental Matrix RANSAC

Sim Easy 0.0138 s 0.0435 s
Sim Difficult 0.0118 s 0.0418 s

Highbay 0.00774 s 0.0418 s

Table 4.3: Average Trajectory Error in Simulated Environments

Proposed
Proposed without

Uncertainty Compensation
Proposed with

Fundamental Matrix RANSAC
VINS-Fusion

Primary
VINS-Fusion

Secondary

Easy 0.179 m 0.144 m 0.167 m 0.131 m 0.128 m
Difficult 0.791 m 0.954 m 0.810 m Failed 7.510 m

on each stereo pair individually. For the simulated data the primary stereo pair was facing for-
wards and the secondary pair was facing backwards. For the Highbay data, the primary stereo
pair was facing forwards the secondary pair was facing downwards. We also compare against our
proposed algorithm without uncertainty compensation in order to precisely observe the effects of
uncertainty compensation. Each reported result is the median over 5 trials. Errors are reported
in Tables 4.3 and 4.6. Failure is defined as an error over 10% of the length of the trajectory.
To demonstrate the computational benefit of our 1-point RANSAC formulation, a comparison of
computational time required to run the proposed outlier rejection scheme and the fundamental
matrix RANSAC is shown in Table 4.2.

4.6.1 Simulated Results

The simulated data was recorded on a MAV in an outdoor Gazebo environment. Noise was
randomly added to the extrinsics of each stereo pair. The results of two simulated flights were
recorded. One flight was a relatively easy trajectory with no aggressive motion or sudden scene
occlusions. Another simulated flight included aggressive turns and flight very close to obstacles
which could partially occlude the fields of view of the cameras on board. Images and IMU
measurements from the simulator were taken as inputs to the VIO pipeline. All methods are able
to achieve a similarly low ATE on the easy flight. The main benefit of our proposed system is
apparent in the difficult dataset. A plot of the trajectories on the easy dataset is shown in Figure
4.3 and of the hard dataset in Figure 4.4.

Table 4.4: Final Trajectory Error in NSH Highbay

Proposed
Proposed without

Uncertainty Compensation
Proposed with

Fundamental Matrix RANSAC
VINS-Fusion

Primary
VINS-Fusion

Secondary

Highbay 1.694 m 6.980 m 5.217 m Failed Failed
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Figure 4.3: The trajectory results on the easy simulated environment. The left image shows an
overhead view of the trajectory while the right image shows a side profile. This trajectory was
generally slow moving, with no aggressive motion and no sudden occlusions from the camera.
Plotted and the results from the proposed method, VINS-Mono running on both pairs individu-
ally, and ground truth.

Figure 4.4: The trajectory results on the hard simulated environment. The left image shows an
overhead view of the trajectory while the right image shows a side profile. This trajectory was
generally fast moving, with aggressive motion and several instances of sudden occlusions of the
camera field of view from objects in the scene. Plotted and the results from the proposed method,
VINS-Mono running on both pairs individually, and ground truth.
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Figure 4.5: The multi-stereo camera rig used to collect experimental results. Images were cap-
tured at 25 Hz and inertial data was collected at 200 Hz. All cameras were synchronized using
the on-board FPGA.

4.6.2 Highbay Data

Our real world data was collected using a two stereo camera rig with time synchronized images
and IMU data, seen in Figure 4.5. Time synchronization was performed using an FPGA, and the
camera operated at approximately 25 Hz. Each individual camera had an on-board IMU which
operated at 200 Hz. For our experiments we only used the data from a single IMU and discarded
information from the other sensors. The multi-camera rig was moved around the Highbay and
returned precisely to its original starting position. To test the robustness of our VIO the data
was intentionally made to be extremely challenging, with several points of sudden occlusion
occurring during the run. We evaluated each algorithm by returning to the same starting location
and measuring Final Trajectory Error (FTE), which is the absolute drift of the final position. A
visualization of two trajectories is shown in Figure 4.6 for a reference of scale.
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Figure 4.6: Experimental results in the NSH highbay. The trajectory generated from our pro-
posed system is shown in red and the result from VINS-Fusion running on a single stereo camera
is shown in blue.
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Chapter 5

Conclusion

Contributions In this thesis we presented a method of incorporating information from multiple
cameras into a visual inertial odometry framework. The main goal of using multiple cameras
is to improve the robustness of VIO and by doing so, expand the number of real world uses
cases. We described a framework for using features from multiple cameras which is a simple
extension of traditional smoothing based indirect VIO methods. We show that using multiple
cameras does improve the robustness of the state estimating by evaluating on both real world and
simulated datasets which present difficult to traditional VIO pipelines. Specifically we show how
performing efficient joint outlier rejection is an important consideration in multi-camera VIO
systems, and propose a novel 1-point RANSAC algorithm specific to multi-stereo configurations.
We also explain why the problem of uncertain extrinsic calibrations is not only a problem in VIO
in general but especially problematic in multi-camera configurations. We deal with the issue of
uncertain extrinsics by proposing, what is to our best knowledge, the first VIO pipeline which
explicitly models extrinsic uncertainty in both the outlier rejection and back-end optimization
step.

Chapter 3 outlines the basic design of a VIO system. This includes details about both the
front-end and back-end. For the front-end we described how features were tracked, the types of
features that were tracked, and how we used feature bucketing to reduce computation. Related
to the back-end we discussed the measurement model for both IMU data and camera data. We
described the preintegrated IMU factor, and why it offers such a significant computational advan-
tage over alternative methods of incorporating inertial information. We discussed two different
parameterizations for visual measurements, full 3D and inverse depth, and discussed the benefits
and drawbacks of each method. We also described the marginalization strategy we used which is
based on information sparsification to maintain a fast real-time system without having to discard
useful information.

Chapter 4 outlined how we could extend the traditional VIO system described in Chapter
3 to the mutli-camera case. We first describe a joint RANSAC model which is applicable to
multi-stereo configurations. We describe the benefits of performing joint outlier detection rather
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than independent outlier rejection, and derive the 1-point RANSAC model. This outlier rejec-
tion scheme exploits the constraints provided by a calibrated multi-camera rig, the benefits of
having stereo observations of the scene, and the measured rotation from the IMU to create an
efficient and effective outlier rejection system. We then outline the need to model uncertainty in
the extrinsic calibration of each camera and account for uncertain extrinsics by propagating the
uncertainty through each step of the RANSAC process to obtain an uncertainty in the pixel space
of the image. We do the same in the back-end and modify the noise model associated with each
projection factor to include this newly obtained pixel space uncertainty. The result is a RANSAC
system which is more lenient when selecting features from cameras with more uncertain extrin-
sics but a back-end system which compensates for this by trusting those measurements less. We
argue that this is the correct way of dealing with uncertain calibrations, since we will ideally not
reject otherwise valid features simply because of a poor calibration, but we will also no let the
noise in the measurement deteriorate the result of the optimization.

5.1 Futue Work

There are several interesting areas of potential future work. The first, and most obvious, is
a more extensive evaluation of this system on real-world data, and specifically datasets with
corresponding ground truth trajectories. This has proven to be a significant challenge since multi-
camera and specifically multi-stereo datasets are not widely available to evaluate against.

Another interesting direction would be to explore strategies to limit the number of features
to be used by the back-end beyond just outlier rejection. As the number of cameras in a multi-
camera system increases so does the number of tracked features. There will inevitably come a
point where even with feature bucketing and strict outlier rejection, it won’t be computationally
possible to use all the features for optimization and still maintain real-time performance. Ideally
a strategy could be developed which would only optimize the features which provide strong con-
straints of the current state, and the number of features used could dynamically scale depending
on the amount of remaining compute.

While we’ve explored the use of multiple cameras in VIO, another emerging area of research
is the use of multiple IMUs. Since IMU data typically comes in at a very high frequency (usually
in the range of hundreds of Hz), processing data from multiple IMUs is a significant challenge
that would need to be addressed before multi-IMU systems can be used in real-world applica-
tions. Despite these limitations, there is still interesting work going on in the field of multi-IMU
navigation, as each different IMU helps provides a constraint that could help improve the state
estimate accuracy.

Finally, an important next direction of work is to create workarounds to address some of the
assumptions made in the proposed pipeline. For example, we assume we have time synchronized
cameras which simplifies the structure of our factor graph. Implementing a system to estimate a
time offset between images and to compensate for this offset would allow the system to be used
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on more real world systems which often don’t have hardware synchronized cameras.
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