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Abstract
Although the ocean spans most of the Earth’s surface, our ability to explore and
perform tasks underwater is still limited by high costs and slow, inefficient 3D
mapping and localization techniques. Due to the short propagation range of light
underwater, imaging sonar or forward looking sonar (FLS) is commonly used for
autonomous underwater vehicle (AUV) navigation and perception. A FLS pro-
vides bearing and range information to a target, but the elevation of the target
is unknown within the sensor’s field of view. Hence, current state-of-the-art tech-
niques commonly make a flat surface (planar) assumption so that the FLS data
can be used for navigation. Towards expanding the possibilities of underwater
operations, a novel approach, entitled acoustic structure from motion (ASFM), is
presented for recovering 3D scene structure from multiple 2D sonar images, while
at the same time localizing the sonar. Unlike other methods, ASFM does not re-
quire a flat surface assumption and is capable of utilizing information from many
frames, as opposed to pairwise methods that can only gather information from
two frames at once. The optimization of several sonar readings of the same scene
from different poses, the acoustic equivalent of bundle adjustment, and automatic
data association is formulated and evaluated on both simulated data and real FLS
sonar data.

1



1 Introduction

1.1 Motivation
Mapping and state estimation have been widely explored for autonomous vehicles
that operate on land and in the air. However, for an environment that spans the
majority of our planet Earth, surprisingly little progress has been made towards
the same autonomous abilities underwater. For instance, the rift valley of the Mid-
Atlantic Ridge, an underwater mountain range and one of the largest geographical
features in the world, was not explored by humans until 1973, four years after
the first humans landed on the Moon [15]! Currently, most underwater tasks are
performed by human divers or remotely operated vehicles (ROVs). Autonomous
underwater vehicles (AUVs) open the door to exciting new possibilities for under-
water exploration such as venturing into areas too dangerous for human divers or
exploring large areas much faster and more efficiently. Furthermore, AUVs have
the potential to eliminate the tedium and high costs of ROV missions.
More specifically, in this work we focus on the problem of simultaneous local-

ization and mapping (SLAM) for AUVs, or building a map and pinpointing the
vehicle’s location without any prior knowledge about the environment. One par-
ticular challenge underwater is the necessity of non-conventional sensors such as
sonar. Due to the turbidity of some water environments as well as the short
propagation range of light in water, more common and well-studied sensors such
as cameras and LIDAR do not work well underwater. As for localization, GPS
cannot be used since radio waves do not travel well in water.
Feature extraction and data association, or finding which measurements from

different views correspond to the same object, make up the first part of the SLAM
problem. Once feature correspondences are known, the constraints can then be
fed into the second part, the optimization, to find the maximum likelihood set of
robot poses and landmark positions. Data association is crucial because incorrect
correspondences can drastically degrade the quality of the resulting map and tra-
jectory. An erroneous data association will pull the poses and landmarks in the
optimization out of their correct positions in an attempt to satisfy incorrect con-
straints. Thus, it is important for the data association algorithm to be as accurate
and robust as possible.
Due to the challenges mentioned above, SLAM algorithms using sonar have not

been well-studied or developed for general underwater environments. Towards
real-time autonomous navigation and creating a faster and more accurate 3D map
with sonar, we introduce the concept of acoustic structure from motion (ASFM),
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1.1 Motivation

Figure 1.1: Multiple imaging sonar views of a scene allow recovery of 3D position
of point features, even though the individual views themselves do not provide
elevation information about the features.

using multiple, general sonar viewpoints of the same scene to reconstruct the 3D
structure of select point features while minimizing the effects of accumulating
error (Fig. 1.1). In this work, we formulate much of the theoretical basis of the
approach and focus on its integration with odometry measurements received from
other on-board sensors. Furthermore, we explore the acoustic equivalent of bundle
adjustment [22], the geometric optimization in traditional structure from motion
for cameras. Much of this work can also be found in our conference publication [10].
To address the challenge of ensuring the data association is accurate and robust,
we additionally introduce a novel algorithm that uses a tree of correspondences
similar to that of Joint Compatibility Branch and Bound [17].
ASFM has applications in real-time navigation for AUVs in general 3D environ-

ments. Unlike previous approaches, our solution does not make any assumptions
about the planarity of the environment in order to localize the sonar. Additionally,
ASFM is able to use information gathered from multiple sonar images to constrain
the 3D geometry of the scene and the motion of the vehicle better than a pairwise
approach.
In this work, forward-looking sonar (FLS) is used, but ASFM is not limited to

this type of sonar. An interesting step for future work would be applying ASFM
to other types of sonar such as side-scan sonar [6]. FLS is an obvious choice
because it is one of the less expensive types of sonar and its larger field of view
allows for faster imaging of an environment. Currently, beam-steering 3D forward-
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1.2 Problem Statement

looking sonar sensors are available (e.g. Blueview 3DFLS), but they are both more
expensive and slower to image a given volume (because of the low speed of sound
in water), requiring up to 4 seconds for a single sweep at a short 6 m range, and
more time for larger ranges. Thus, for many applications, it is advantageous to
apply a 3D reconstruction technique with a FLS rather than utilize a 3D sonar
directly.
We explore the optimization and automatic data association of ASFM. Most

sections will be split into these two parts to discuss the methodology and results
behind each component.

1.2 Problem Statement
In order to explore and work in the watery environments that cover the vast ma-
jority of our planet, it is necessary to have a reliable way to image and map general
scenes underwater. While several methods exist to process sonar images, most re-
quire a planar assumption about the scene. How can we extend our understanding
of sonar images to encompass general scenes for 3D mapping and AUV navigation?
Our work makes the following contributions:

1. We present a novel method, acoustic structure from motion, for
localization and general-scene 3D mapping underwater using sonar.

2. We present a novel automatic data association algorithm for sonar
images.

3. We demonstrate our ability to localize the sonar and recover 3D
structure from simulation and real data sequences.
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2 Related Work

2.1 Localization and 3D Reconstruction from
Imaging Sonar

Various other works have explored different ways to localize the AUV from sonar
images, but most current methods require a planar scene assumption. Johanns-
son et al. [12] and Hover et al. [9] extract points with high gradients from the
sonar image and cluster the points to use as features. Next, a normal distribution
transform algorithm is applied to serve as a model for image registration. The
entire trajectory of the AUV is put into a pose-graph smoothing algorithm, and
the optimized trajectory shows significant improvements over dead reckoning from
the Doppler Velocity Log (DVL). However, to solve the ambiguity in elevation of
the points presented by sonar, the points are assumed to lie on a plane that is level
with the vehicle. This planar assumption works well for the non-complex areas of
a ship hull, the main application of their work, but induces large errors for many
other environments. ASFM does not require this assumption, making it useful
for a wider range of applications. Hurtos et al. [11] explore a different approach,
using Fourier-based techniques instead of feature points for registration. However,
the authors primarily focus on applications in 2D mapping, so do not address 3D
geometry in detail.
To recover 3D geometry of a scene using imaging sonar, most techniques employ

a pairwise registration approach. Babaee et al. [4] use a stereo imaging system
composed of one sonar and one optical camera where the centers of the two sensors’
coordinate systems and their axes align. The trajectory of the stereo system is
calculated using opti-acoustic bundle adjustment. Assalih [1] once again exploits
the stereo idea, but instead uses two imaging sonars placed one on top of the other.
In contrast, ASFM requires only one sensor and water turbidity is not an issue
because no optical cameras are involved. Our work is more similar to Brahim et al.
[5] where point-based features are used with evolutionary algorithms to recover 3D
geometry from pairs of sonar frames. Unlike Assalih and Brahim however, ASFM
is capable of using information from multiple viewpoints as opposed to only pairs
of images. Multiple viewpoints add more information and can further constrain
the problem to result in more accurate reconstruction than pairwise matching.
Aykin and Negahdaripour [3] relax the planar assumption for pairwise matching

of sonar frames but still assume a locally planar surface in order to include shadow
information. They show improvements over Johannsson [12] by instead applying
a Gaussian distribution transform to the images. Negahdaripour [16] extends this
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2.2 Data Association for Imaging Sonar

work to feature tracking and visual odometry in sonar video. The same authors
present a space-carving method [2] for recovering 3D geometry from multiple 2D
forward-looking sonar images at known poses. Finding the closest edge of an object
in multiple sonar images provides information about the occupancy of 3D voxels
in the sonar field of view. This method achieves 3D reconstruction without the
need for data association and feature extraction. However, ASFM constrains both
the motion of the sonar as well as landmark positions, so unlike the space-carving
method, the sonar poses do not need to be known a priori.

2.2 Data Association for Imaging Sonar
Not much previous work has been done on automatic data association for imaging
sonar. Most of the related ideas once again rely on a planar assumption of the
scene. For instance, Leonard et al. [14] use a multiple hypothesis tracking (MHT)
algorithm to perform data association and reconstruct the geometry of a static,
rigid, 2D environment. Similar to our algorithm, MHT creates a tree of possible
hypotheses matching measurements to features, and the tree is pruned based on
the likelihood of each hypothesis. MHT in this work assumes that the landmark
can be initialized with one measurement, which is not true for 3D scenes. Ribas
et al. [20] use an individual compatibility test with a χ2 threshold to determine
which previous features could be correspondences. A nearest neighbor criterion is
then applied to select the previously seen feature with the smallest Mahalanobis
distance to the current test point. Once again, the authors in this paper make a
planar assumption by only imaging planar objects.
Petillot et al. [19] present methods for 2D obstacle mapping and avoidance, the

main application being surveys of the seabed. The authors use a single Kalman fil-
ter, which does not include the vehicle state, to track objects in the forward-looking
sonar images. For data association, the authors use a nearest neighbor algorithm
that takes into account both the position and area of the observations. The nearest
neighbor criterion does not take into account the joint hypothesis of the entire set
of features like our data association algorithm and therefore is more susceptible to
accepting spurious features and producing incorrect correspondences.
In [7], the authors discuss a system that uses FLS sonar images to find and

navigate to a previously mapped target. For data association, a scoring algorithm
was used that takes into account positive information of features detected by the
sonar and negative information of features that were expected to be seen but were
not detected. Our work is similar to some of the ideas such as scoring SLAM
graph hypotheses, but our data association applies to matching more generally
with previous sonar images for 3D reconstruction instead of against a prior map
for localization.
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3 Sonar Geometry

Figure 3.1: Imaging sonar geometry. Any 3D point along the dashed red elevation
arc will appear as the same image point in the x−y plane. Bearing angle ψ and
range r are measured, but the elevation angle θ is lost in the projection process.

Before discussing ASFM further, it is important to understand the information
provided in a FLS sonar image. The imaging sonar sends out an acoustic ping
and measures the intensity of acoustic waves reflected back from objects inside of
a frustum defined by the sonar’s bearing field of view (FOV) (deg), elevation FOV
(deg), and minimum and maximum range (m). The returns from one ping are put
together to form an intensity image, where each pixel represents a bearing and
range bin, discretized per the specifications of the sonar. As seen in Fig. 3.1, the
sonar only provides partial information about a feature (bearing ψ and range r)
and does not provide its elevation angle θ. In a 1-D array of receivers, which is
typical for a FLS, the difference between the time it takes for one receiver to detect
a signal and another receiver to detect the same signal denotes the bearing of the
feature. The range is determined by the time of flight of the sound wave. The
elevation of the point is lost, as all points along an elevation arc will collapse to
the same pixel in the sonar image. Since one dimension of the feature is missing,
one sonar image is not sufficient to recover 3D geometry.
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3.1 Cartesian to Polar Transformation

3.1 Cartesian to Polar Transformation
In all of the imaging sonar data sequences we use for our experiments, features
are extracted from the Cartesian sonar image. The original polar (bearing/range)
image returned by the sonar is converted to a Cartesian sonar image by finding
and solving an analytic function that describes the mapping between the pixels
of a Cartesian image of a given width in the sonar frame and the corresponding
pixels for the polar image in the sonar frame. This mapping is also used to convert
features in the Cartesian image to bearing/range measurements.
All points in the sonar field of view are projected along a circular arc onto the

plane of the sonar, so points returned by the sonar can lie anywhere along an arc
spanning the vertical aperture of the sensor. Note that this projection implies that
in the sonar point of view, all points have zs = 0. The following equations describe
the mapping between the Cartesian image coordinates (u, v) and the polar image
bearing and range bin (nb, nr).

γ = w

2rmaxsin(ψmax

2 )
(3.1)

xs =
u− w

2
γ

(3.2)

ys = rmax −
v

γ
. (3.3)

r =
√
x2
s + y2

s (3.4)

ψ = 180
π

atan2(xs, ys) (3.5)

nr = Nr(r − rmin)
rmax − rmin

(3.6)

nb = M4(Nb, ψ) (3.7)

where γ is a constant, w is the width of the Cartesian image in pixels, rmin is the
minimum range of the sonar, rmax is the maximum range of the sonar, Nr is the
number of range bins, ψmax is the bearing field of view of the sonar, andM4(Nb, ψ)
is a third-order polynomial (with 4 coefficients determined by the number of bear-
ing bins (Nb)) given by the sonar manufacturer that accounts for lens distortion.
In our experiments with the Sound Metrics DIDSON 300 m sonar, w = 200 pixels,
rmin = 0.75 m, rmax = 5.25 m, Nr = 512, Nb = 96, and ψmax = 28.8◦.
The bearing and range bins are then converted to bearing and range measure-
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3.2 Sonar and Odometry Models

ments (ψ, r) for input into the optimization:

ψ = ψmax(
nb
Nb

− 0.5) (3.8)

r = (rmax − rmin)nr
Nr

+ rmin (3.9)

3.2 Sonar and Odometry Models
To evaluate the probability of a sensor measurement for a given variable configura-
tion, we need to define a generative sensor model. The generative model consists
of a geometric prediction given a configuration of poses and points with added
noise. As is standard in the literature, we assume a Gaussian noise model.
The measurement model for odometry measurements is

g(xi−1, xi) +N (0,Λi) (3.10)

where g(xi−1, xi) predicts the odometry measurement between poses xi−1 and xi.
N (0,Λi) represents the noise sampled from a Gaussian distribution with 0 mean
and covariance Λi.
Similarly, we define the measurement model for sonar measurements by

h(xi, lj) +N (0,Ξk) (3.11)

where h(xi, lj) predicts the sonar measurement (ψ, r) between pose xi and land-
mark lj. h(xi, lj) first transforms the landmark location lj = (xg, yg, zg) into the
sonar frame based on pose xi, obtaining the local coordinates (xs, ys, zs). Bearing
ψ and range r are then obtained by

r =
√
x2
s + y2

s + z2
s (3.12)

ψ = atan2(ys, xs). (3.13)

N (0,Ξk) represents the noise sampled from a Gaussian distribution with 0 mean
and covariance Ξk.

3.3 Arc Reprojections
An interesting question is whether sonar has some kind of geometry similar to
the epipolar geometry found in cameras. For cameras, one point seen in one
image can be reprojected onto a single line, the epipolar line, in another image.
Unfortunately for sonar, the reprojection of a point into another image is not
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3.3 Arc Reprojections
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Figure 3.2: Elevation arc reprojections (green points) for (a) -90◦ pitch, (b) for-
ward x, and (c) 45◦ roll motion. The magenta diamond is the true measurement
of the 3D point in the current pose.

that simple. The examples shown in Fig. 3.2 demonstrate several different possible
geometries resulting from the elevation arc of one point reprojected into another
sonar image.
For −90◦ pitch (accompanied by forward x and upward z motion so that the

sonar FOVs would overlap), one could imagine that instead of the sonar rotating,
the elevation arc pitches −90◦ in the viewpoint of the new sonar frame. Conse-
quently, the elevation arc becomes a distribution of 3D points that looks like a
hill at similar bearing but different ranges. Mapped onto the 2D sonar image,
this looks like a nearly vertical line, as evidenced by Fig. 3.2a. For the forward x
motion case, the top half of the elevation arc above 0 elevation will map to the
same points as the bottom half of the elevation arc, so we see a small vertical line,
which should be proportional to the arc’s curvature. In this example (Fig. 3.2b)
the curvature was quite small, resulting in a very short vertical line. Finally, for
the 45◦ roll example, one could once again imagine that instead of the sonar ro-
tating, the elevation arc rolls 45◦ in the viewpoint of the new sonar frame. The
resulting arc (Fig. 3.2c) is now a horizontal arc instead of a vertical arc, and it is
shorter than the original arc. The new horizontal arc would be the same length as
the original arc if we had rolled 90◦ instead. From these examples, it is clear that
the reprojection of one point into another sonar image does not result in a simple
geometry that can be easily exploited. The elevation arc reprojections can appear
as many different geometries depending on the motion between sonar poses.
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4 Acoustic Structure from Motion
ASFM is inspired by a related problem in computer vision called structure from
motion (SFM), which uses multiple camera images of a scene to recover 3D ge-
ometry as well as camera locations [8]. Much of the high-level formulation of the
two problems are similar because like sonar images, camera images only give 2D
information about the scene. However, a critical difference between the two sen-
sors highlights the novelty and challenges of ASFM. Cameras provide elevation
and bearing of a feature, but not the depth, while as mentioned before, sonars
provide bearing and depth, but not elevation. This difference implies that new
sensor models, parameterizations, and degenerate cases will have to be explored
before ASFM can be used successfully.

4.1 Pose Graph Formulation

Figure 4.1: Factor graph representation of the acoustic structure from motion
problem. Variable nodes consist of the underwater vehicle poses xi and the
point features lj. The black dots represent factor nodes, which are derived from
odometry measurements ui and feature observations mk. The unary factor p
represents a prior on the first pose that defines the reference frame.

We represent the ASFM problem as a factor graph [13] (Fig. 4.1). A factor graph
is a bipartite graph with two node types: variable nodes that represent the poses xi
and landmarks lj to be estimated, and factor nodes that represent odometry ui and
point feature sonar measurements mk. An edge in the factor graph connects one
factor node with two variable nodes. Here, almost all factors are binary, i.e. they
connect only two variables. Only one factor, p, is unary, and it is a prior that
defines a reference frame, eliminating otherwise unconstrained degrees of freedom.
The factor graph was chosen because it captures the underlying dependence

structure of the ASFM estimation problem. Since the measurements ui andmk are
known, they are represented as factors of the joint probability over the unknowns,
the variable nodes xi and lj. In fact, the goal of ASFM is to find the maximum
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4.2 Nonlinear Least-Squares

probability set of landmarks and vehicle poses Θ = {xi, lj} given all measurements
Z = {ui,mk}. The set Θ∗ that satisfies this criteria is defined as

Θ∗ = argmax
x

p(Θ|Z)

= argmax
x

p(Θ)p(Z|Θ)

= argmax
x

p(x0)
M∏
k=1

p(mk|xi, lj)

·
N∏
i=1

p(ui|xi−1, xi). (4.1)

Here we have used Bayes Theorem to obtain a maximum a posteriori (MAP)
solution for Θ∗. We have also exploited the factorization defined by the factor
graph, where each term in Eq. 4.1 corresponds to one of the factors in Fig. 4.1.

4.2 Nonlinear Least-Squares
Given a set of measurements from different viewpoints, the most likely set of vehicle
poses and landmark positions can be found by solving a nonlinear least squares
problem. Nonlinear least squares suffers from several disadvantages including the
need for a good initial estimate and the possibility that the solution converges to
a local, not global, minimum. However, this type of problem has a simple, known
solution. Additionally, alternatives such as an extended Kalman filter (EKF) are
too inefficient to run in real-time.
The nonlinear least-squares problem follows directly from the MAP problem of

Eq. 4.1 under the assumption of Gaussian noise. Here we use Mahalanobis distance
notation defined as:

‖x‖2
Σ = xTΣ−1x. (4.2)

The nonlinear least-squares problem becomes:

Θ∗ = argmin
x

[− log p(x0)
M∏
k=1

p(mk|xi, lj)

·
N∏
i=1

p(ui|xi−1, xi)]

= argmin[
x

‖x0‖2
Λ +

M∑
k=1
‖h(xi, lj)−mk‖2

Ξk

+
N∑
i=1
‖g(xi−1, xi)− ui‖2

Λi
]. (4.3)
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4.2 Nonlinear Least-Squares

Here we have made use of the monotonicity of the logarithm function.
We find an initial estimate for the feature points by backprojection of the sonar

measurements. We use the first observation of each feature, consisting of a range
r and bearing ψ measurement. We apply the backprojection functionxsys

zs

 = r

cosψcosθ
sinψcosθ

sinθ

 (4.4)

where we set the unknown elevation angle θ to 0. The sonar pose xi is then used to
convert the point from sonar Cartesian coordinates (xs, ys, zs) to world Cartesian
coordinates (xg, yg, zg), which serve as initial guesses for the 3D position of the
features.
Starting from this initial estimate, the nonlinear least-squares problem is solved

by iterative linearization. For nonlinear measurement functions, nonlinear opti-
mization methods such as Gauss-Newton or the Levenberg-Marquardt algorithm
solve a succession of linear approximations in order to approach the minimum. At
each iteration of the nonlinear solver, we linearize around the current estimate Θ
to get a new, linear least-squares problem in ∆

argmin
∆
‖A∆− b‖2 , (4.5)

where A ∈ RU×V is the measurement Jacobian consisting of U = 6N + 2M mea-
surement rows, and ∆ is an V -dimensional vector, where V = 6N + 3M . Note
that each odometry measurement has 6 degrees of freedom (DOF) and each sonar
measurement has 2, while each vehicle pose has 6 DOF and each landmark has 3
DOF. Note that the covariances Σi, which represent covariances such as Λi and Ξk

in Eq. 4.3, have been absorbed into the corresponding block rows of A, making
use of

‖∆‖2
Σ = ∆TΣ−1∆ = ∆TΣ− T

2 Σ− 1
2 ∆ =

∥∥∥Σ− 1
2 ∆

∥∥∥2
. (4.6)

Once ∆ is found, the new estimate is given by Θ ⊕ ∆, which is then used as
the linearization point in the next iteration of the nonlinear optimization. The
operator ⊕ is often simple addition, but for overparametrized quantities such as
3D rotations, an exponential map is used instead to locally obtain a minimal
representation.
The minimum of the linear system A∆ − b is obtained by Cholesky factor-

ization. By setting the derivative in ∆ to zero we obtain the normal equations
ATA∆ = ATb. Cholesky factorization yields ATA = RTR, and a forward and
backsubstitution on RTy = ATb and R∆ = y first recovers y, then the actual
solution, the update ∆.

13



4.3 Existence of Solution

4.3 Existence of Solution
We discuss under which conditions the system of equations is solvable by analyzing
the number of feature points that need to be observed to fully constrain the system.
Let N be the number of poses, and M be the number of points to reconstruct.
For every pose, there are 6 unknowns (x, y, z, yaw, pitch, roll) and for every point
there are 3 unknowns (x, y, z). The first pose is fixed using a prior, so there are
0 degrees of freedom for the first pose. In the case where all features are visible
from each pose, there are 2N equations for each point, and the system is fully
constrained iff:

6(N − 1) + 3M ≤ 2MN (4.7)

Since we are not restricted to pairs of sonar views, our simulated examples in later
sections use information from 3 sonar viewpoints. From Eq. 4.7 we see that for 3
sonar views, a minimum of 4 points are needed to fully constrain the estimation
problem. In our real sonar data experiments, features from 5 poses are used; thus,
a minimum of 4 points are needed to make 3D reconstruction possible.

4.4 Relative Parameterization

."."."p x0 x1 xn-1 xn 

l1 l2 

u1 un 

m1 m2 m3 m4 

Figure 4.2: The SLAM factor graph using a relative parameterization. All of the
landmark measurements are represented relative to the first sonar pose that has
seen that landmark.

Depending on the shape of the optimization function and the quality of the
initial estimate, the nonlinear optimization can take a long time to converge. In
ASFM, this problem is exacerbated by complicated posterior densities created from
the parameterization of the landmarks in Cartesian coordinates. As the elevation
of a landmark is being optimized, the landmark must move along an elevation arc,
which is nonlinear. Additionally, three Cartesian coordinates have to be changed
each time the landmark is moved. A similar issue exists in optical SFM, and
to improve convergence properties, homogeneous coordinates were introduced as
a solution. Along the same lines, we explore an alternative parameterization of
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the sonar measurements in hopes of reducing the nonlinearity of the optimization
function. As sonar measurements naturally arrive in polar bearing-range coordi-
nates, we investigate a spherical parameterization for features relative to the first
sonar pose that has seen that particular landmark. The factor graph with this
parameterization is shown in Fig. 4.2.
For this new relative parameterization, the optimization still takes on the form

of Eq. 4.3. However, the landmark positions are now stored in spherical coordi-
nates in the frame of the first sonar pose that saw that landmark. Thus, h(xi, lj)
now involves first converting the landmark position from spherical coordinates to
Cartesian coordinates, both in the first sonar pose’s frame, as in Eq. 4.4. The
landmark is then transformed to the new poses’s frame and projected into the new
pose to predict the landmark measurement (Eq. 3.12 and Eq. 3.13). In this new
relative parameterization, when the landmark’s elevation is being optimized, only
one coordinate has to change (the elevation angle). Consequently, the spherical
parameterization should be much more linear compared to the Cartesian case.

4.5 Degenerate Cases
As is the case for optical structure from motion, there are situations in which a
unique solution does not exist. We now discuss three such cases that we have also
included in our simulation evaluation.
One of these cases is pure translation in the x-direction. This scenario does

not allow us to recover elevation of the point features because the circular arc
containing the set of possible 3D points in the sonar geometry for the first pose
will intersect the circular arc of the same point seen in the next pose, which
differs only in x, at two points. These two intersections cause an ambiguity in the
elevation of the points symmetric about the zero plane (Fig. 6.1).
Another case is pure pitch rotation. Since all points lying along a circular arc

map to the same point in a sonar image, all of the images from this case would
be the same. Consequently, we would not have enough information to recover
elevation. However, if the sonar pitched so much that the vehicle would have to
translate in the z-direction as well to see the same scene, this motion would be
able to recover the points well because the overlapping arcs would overlap in a
small region.
The third situation that results in multiple solutions is pure yaw and y-translation.

Like the other two cases discussed, in this kind of trajectory, the elevation arcs
would have a large overlap region. The correct elevation of the feature point could
lie anywhere in this overlapping region.
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5 Automatic Data Association

5.1 Data Association Challenges
Unlike camera images, sonar images are much less intuitive to understand and
interpret. An example is given in Fig. 5.1. Assume the AUV is imaging a stair-like
structure underwater and we have manually picked out some point features that
intuition would lead us to believe are stable, like the corners along one edge of the
stairs. Since the vertical axis of the image denotes distance along the viewing axis
of the sonar and the blue feature appears to be closest to the sonar, the blue point
appears as the bottom-most feature in the sonar image. The next closest point to
the sonar looks to be the red feature, then the green, then the purple. Note that
just looking at the final ordering of the feature points in the sonar image does not
give a helpful indication of the true 3D structure. From only the sonar image, it
would be almost impossible to tell that in 3D, the blue feature point is in fact
between the green and the purple feature points.
To confuse data association further, moving the sonar angle changes the order-

ing of the feature points because the distance between the features and the sonar
changes. Therefore, in (b) of Fig. 5.1, the sonar moves and the resulting sonar
image contains a different ordering of feature points. In this case, the sonar moves
closer to the red feature point and further from the blue feature point. Conse-
quently, the blue and red features switch places in the second image. Without
knowing the exact motion of the AUV, even manually assigning feature correspon-
dences becomes difficult. It would be very challenging to correctly associate the
blue feature point in the first image to the blue feature point in the second image.
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5.1 Data Association Challenges

(a)

(b)

Figure 5.1: Data association for imaging sonar presents several challenges. First,
sonar images are very non-intuitive to interpret. The representation of structure
in the image does not follow the visual image projection that we are familiar with
in camera images. This can be seen in (a) where the order of the colored points
do not agree with our intuition based on visual imagery. Second, different angles
of sonar viewing could produce similar images but with different correspondences
between feature points and real 3D points. The difference between (a) and (b)
serves as an example. This complication makes even manual data association
difficult.
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5.2 Incremental Data Association Algorithm

5.2 Incremental Data Association Algorithm
To initialize the algorithm, the first pose in the data sequence is fixed using a prior
in the ASFM factor graph. Additionally, all landmark measurements from the
first pose are regarded as new landmarks and stored in a landmark history. Next,
incrementally, a new odometry measurement will arrive along with a set of feature
measurements from this new pose. If feature measurements are too close to each
other, we will discard one to avoid ambiguity. Close feature points often do not
add much information about the scene, so not much value is lost by discarding one
of the features. In our experiments, if two measurements were within 1◦ bearing
and 0.2 m range of each other, one was discarded.
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Figure 5.2: An example of finding matches for a given landmark measurement.
(a) In the first pose, the two red landmarks are too close together, so one is
discarded. The magenta cross is the landmark that is visualized in the next pose.
(b) The marked feature is backprojected into an arc of possible 3D points and
reprojected into the new pose as the green points. If any of these green points
lie within a gating threshold (the circle) of the current feature measurement
(diamond), then the landmark seen in pose 1 is considered a possible match.

For each new feature measurement, we look at the reprojection error of each
landmark in the stored landmark history to prune possible matches. Each land-
mark seen so far is backprojected through the most recent pose that has seen the
landmark into 1-degree interval 3D points along the elevation arc of possible 3D
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5.2 Incremental Data Association Algorithm

points (Fig. 3.1). These 3D points for each landmark are then reprojected into
the current pose and the landmark is accepted as a possible match if any of its
associated reprojected 3D points lies within a gating threshold of the current fea-
ture measurement (Fig. 5.2). The gating threshold, which is Euclidean distance
in bearing-range space between the reprojected landmark and the current feature
measurement, is set to 0.1 in our experiments. To keep the number of landmark
reprojections (and consequently computational time) from growing unboundedly,
a landmark is not tested if it has not been seen in the last two frames.
Once all possible matches have been determined for each new feature measure-

ment using the gating threshold, a brute-force exhaustive search over possible
match combinations is utilized to find the correct data association hypothesis.
More specifically, we build a tree where each level represents a feature observation
and its potential matches (including a null match) as determined by the gating
threshold. Each path from a node in the top level to a leaf node at the bottom
level represents a potential data association hypothesis. The data association hy-
pothesis is accepted if the sum of squared residuals for the posterior position of the
landmarks and the robot pose given this hypothesis falls under a χ2

d,α threshold:

‖x0‖2
Λ +

M∑
k=1
‖h(xi, lj)−mk‖2

Ξk
+

N∑
i=1
‖g(xi−1, xi)− ui‖2

Λi
< χ2

d,α (5.1)

Feature measurements and landmarks are not added to the optimization if they
are not fully constrained, i.e. they have not been seen by at least two different
poses. The χ2

d,α threshold is determined using d, the degrees of freedom of the
factor graph (number of measurements minus number of variables) and α, the
confidence parameter (set to 0.99 in our experiments). Null matches, or declaring
feature measurements to be new landmarks, are penalized such that the algorithm
picks the hypothesis that fits the χ2

d,α criterion with the fewest null matches. If
there are multiple hypotheses that fit the χ2

d,α criterion with the same number of
null matches, the algorithm picks the hypothesis with the smallest optimization
residual.
A downside of our algorithm is that the posterior of the entire set of land-

marks and vehicle poses has to be calculated for each hypothesis. However, before
performing the brute-force exhaustive search, the data association hypotheses are
sorted in order of increasing number of null matches. Therefore, if small sonar mo-
tion is assumed, which is not necessary for the algorithm to work, but applicable to
most situations, then many features will overlap and the correct data association
hypothesis will contain few null matches. Thus, the algorithm will not have to
search through many hypotheses because once it finds the correct hypothesis, it
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5.2 Incremental Data Association Algorithm

Figure 5.3: The hypothesis tree that is searched through to find the correct data
association hypothesis. Each path from the root to a leaf represents one possible
data association hypothesis. Each level in the tree represents one measurement
(the orange boxes on the left). The nodes at each level are the possible matches
determined by the arc reprojection error of the existing landmarks and the gating
threshold. In addition, each level has a null-match node signifying the possibility
that the measurement corresponds to a new landmark.

will not continue to search through the other possibilities with a larger number of
null matches.
In summary, the algorithm goes through the following steps:

1. Set first pose as prior, insert all sonar measurements from first pose into
landmark history.

2. For each new pose, insert odometry measurement into the SLAM factor
graph. Discard a new sonar measurement if it is too close to another feature
seen in this pose.

3. For each sonar measurement from the new pose, backproject each landmark
in the landmark history to a set of possible 3D points. Project these candi-
date 3D points into the new sonar pose and accept the landmark as a possible
match if at least one of its candidate 3D points lies within a gating threshold
of the current sonar measurement.

4. Find all combinations of data association hypotheses including null matches
and sort them in order of increasing number of null matches.

5. Perform a brute-force search through the data association hypotheses. Ac-
cept the hypothesis with the smallest posterior residual less than the χ2

d,α

threshold with the fewest number of null matches.
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6. Discard landmarks in the landmark history that have not been seen in the
last two frames.
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6 Experimental Results

6.1 ASFM Optimization and 3D Reconstruction
6.1.1 Simulation Setup

Table 6.1: ASFM Simulated Data Experimental Design

Value
Number of Monte Carlo samples 1000
Orientation: stddev (deg) 1
Translation: stddev (m) 0.01
Bearing: stddev (deg) 0.2
Range: stddev (m) 0.005
Minimum range of sonar (m) 0.375
Maximum range of sonar (m) 9.375
Bearing FOV of sonar (deg) 28.8
Elevation FOV of sonar (deg) 28
Number of bearing bins 96
Number of range bins 512

We present statistical results on 3D reconstruction using ASFM for multiple
types of vehicle motion. The simulation data for this experiment was generated by
selecting three sonar poses containing overlapping regions in their fields of view and
randomly creating 3D points until at least 15 points were visible in all three sonar
frames. Gaussian noise was added to the bearing (σ = 0.2◦) and range (σ = 0.005
m) components of the ground truth sonar measurements. Similarly, Gaussian noise
was added to both rotational (σ = 1◦) and translational components (σ = 0.01 m)
of the odometry between consecutive poses. For the 3D reconstruction simulations,
a pose at the origin (0, 0, 0, 0, 0, 0) was added to the factor graph with a prior factor.
The prior had the same uncertainty as the odometry and the pose at the origin
did not have any landmark measurements. The simulated sonar and environment
specifications are listed in Tab. 6.1. Five different sonar trajectories were analyzed:

1. General Motion: In this trajectory, the sonar undergoes an x, y, and z-
translation as well as changes in yaw, pitch, and roll.

2. Pitch + Z : To represent a well-constrained case, we have the sonar go through
purely pitch and z-translation motion. This configuration is particularly
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6.1 ASFM Optimization and 3D Reconstruction

well-constrained because the different arcs along which a point could lie
intersect with very small overlapping regions.

3. Forward Motion: One degenerate case is shown through this trajectory of
pure x-translation (2 m total) (Fig. 6.1). For this motion, the arcs along
which the points could lie intersect in two regions, which creates an ambiguity
as to whether the point lies in an elevation above or below the zero elevation
plane.

4. Yaw + Y : Another degenerate case is explored using a pure yaw and y-
translation trajectory. The elevation arcs in this case have a large overlap-
ping region, making the z-coordinate of feature points difficult to recover
accurately.

5. Roll: For this trajectory, the sonar undergoes pure roll motion, 45◦ in total.
This case is fairly well-constrained because the motion rotates the elevation
arc about the actual elevation point.

Figure 6.1: An example of a degenerate case, pure forward motion, where the
elevation arcs from the different sonar poses overlap in multiple regions, creating
an ambiguity of the elevation of the feature point symmetric about the sonar
plane.

We use Monte Carlo sampling to compare the variations in recovered point
features for each motion type. Each sonar trajectory was simulated 1,000 times
with the same 3D points and noise randomly sampled each time from the same
Gaussian distribution with µ = 0 and σ as described above.
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6.1 ASFM Optimization and 3D Reconstruction

6.1.2 Simulation Results
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Figure 6.2: Monte Carlo simulation results for the different motion sequences.
(a-e) Cluster of point estimation results from 100 random noise trials of the five
different simulations. The black dots denote ground truth. (f) Standard devia-
tion of the error for the recovered x, y, and z coordinates over 1,000 Monte Carlo
simulations, clearly indicating degenerate motion cases for pure x translation as
well as for yaw + y motion.
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6.1 ASFM Optimization and 3D Reconstruction

The standard deviation for the recovered points for each case over the 1,000 runs
can be seen in Fig. 6.2f. The variation in z is greater than the variations in x and
y for all the cases as expected. The ambiguity in elevation that is not resolved
from the information gained in the degenerate cases causes the variation in z for
those situations to be much greater than the other two trajectories. Variations in
x and y-coordinates can be attributed to the optimization changing the odometry
slightly to meet the measurement constraints.
A visualization of the variation for each individual motion example provides

further insights. The x, z-coordinate distributions for 100 runs of each of the 15
points in each simulation are shown in Fig. 6.2 with the ground truth marked for
comparison. Only 100 runs are shown to avoid cluttering the graph. As seen by
the thin bands, the elevation varies much more than the x-coordinate for each
point. Note also that the bands are not vertical, but rather trace an arc, which
is the elevation arc along which all the points would map to the same point in
the sonar image. For the degenerate cases of pure x-translation and pure yaw and
y-translation, the symmetric ambiguity about the zero plane is clearly seen. Points
were equally likely to appear at the correct elevation or at the same elevation on
the opposite side of the zero plane.
Another insight into how well-constrained a trajectory and set of landmarks are

is the number of Levenberg-Marquardt (LM) iterations needed until convergence,
and the resulting residual. Over 1,000 simulations, the general motion case con-
verged in an average of 2 LM iterations, the pitch and z case converged in an
average of 2 LM iterations, and the pure x translation case converged in an av-
erage of 74 LM iterations. The yaw and y example converged in an average of
95 LM iterations and the roll case converged in an average of 3 LM iterations. A
representative example of the residuals after each LM iteration for the first three
simulation trajectories can be seen in Fig. 6.3. The residuals for the first two sim-
ulation cases started off high, but quickly dropped after just one LM iteration to
46.5 for the general motion case and 60.2 for the pitch and z case. This indicates
that the cost functions for these two trajectories are close to quadratic near the
minimum. The high number of LM iterations needed for the pure x-translation
trajectory, which eventually reaches a residual of 33.3, as well as the yaw and y
case implies that the optimization function is not quadratic, but presumably close
to flat in at least one direction. The flatness is due to the degenerate geometric
configuration, which leads to much slower convergence.
The poses and overall error (geometric distance from the estimated point to

the true point) for each simulation can be found in Tab. 6.2. Note that the point
errors for fully constrained situations are less than 0.23 m and general motion has
the smallest geometric error of only about 0.11 m. The point errors are much
larger in the degenerate cases because the z-coordinates of the recovered points
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6.1 ASFM Optimization and 3D Reconstruction

(a) General motion and pitch + z

(b) x-translation

Figure 6.3: Sample residuals for simulation data after each Levenberg-Marquardt
iteration for a representative run of (a) the general motion case and the pitch
+ z trajectory and (b) the pure x translation case. The final residual for each
case is labeled. Iterations without a residual in (b) indicate a rejected LM step
due to an increase in error.

were not able to be uniquely resolved. The odometry is recovered well, largely
due to a good initial guess (perfect odometry with added Gaussian noise (σ listed
in Tab. 6.1)). A promising result is that the general motion simulation performs
very well, suggesting that ASFM could work well for inspection and surveying
applications.

26



6.1 ASFM Optimization and 3D Reconstruction

Table 6.2: Monte Carlo Simulation Results

General Motion Pitch + z

Feature mean error (m) 0.109 0.155
Feature stddev (m) 0.0662 0.0888
Pose 1 (m, m, m, deg, deg, deg) (0, 0, -1, 0, -22.5, 0) (0, 0, -2, 0, -22.5, 0)
Pose 2 (m, m, m, deg, deg, deg) (-1, 0, 0, 0, 0, 15) (0, 0, 0, 0, 0, 0)
Pose 3 (m, m, m, deg, deg, deg) (-0.5, 2, 2, -22.5, 22.5, 0) (0, 0, 3, 0, 30, 0)
Pose position mean error (m) 0.0144 0.0153
Pose position stddev (m) 0.0062 0.0065
Pose orient. mean error (deg) 0.808 0.774
Pose orient. stddev (deg) 0.470 0.487
Avg. number of LM iterations 2 2

x Yaw + y Roll
0.943 1.05 0.227
0.834 0.812 0.159

(0, 0, 0, 0, 0, 0) (0, 0, 0, 0, 0, 0) (0, 0, 0, 0, 0, 0)
(1, 0, 0, 0, 0, 0) (0, 2, 0, -15, 0, 0) (0, 0, 0, 0, 0, 22.5)
(2, 0, 0, 0, 0, 0) (0, 4, 0, -22.5, 0, 0) (0, 0, 0, 0, 0, 45)

0.0133 0.0132 0.0103
0.0062 0.0062 0.0052
1.21 1.37 1.33
0.556 0.630 0.584

74 95 3
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6.2 Relative Parameterization
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Figure 6.4: Average number of iterations until convergence for all five motion
cases over 1,000 runs without (blue) and with (red) relative parameterization
using (a) Levenberg-Marquardt and (b) Powell’s Dog Leg to solve the nonlinear
least squares.

A relative spherical parameterization was tested on the same simulation as de-
scribed above with the five different vehicle motions in an attempt to improve the
optimization convergence properties. The simulation was run 1,000 times as be-
fore with and without relative parameterization using both Levenberg-Marquardt
and Powell’s Dog Leg (PDL), two different nonlinear least-squares algorithms. As
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6.2 Relative Parameterization

shown in Fig. 6.4, these two graphs show that in the well-defined cases, general,
pitch+z, and roll motion, relative parameterization results in the same number
or slightly fewer iterations. However, the number of iterations required was small
regardless, so there was not much room for reduction. For the degenerate cases
however, the two methods both show a drastic reduction in the number of itera-
tions required for the relative parameterization. In general, the degenerate cases,
forward and yaw+y motions, result in many more iterations due to the ambiguity
of the elevation symmetric about zero elevation. Since we initialize the landmarks
at zero elevation, the optimization starts on a hill in the cost function between
two local minima. There the gradient is close to 0, so progress towards a mini-
mum will initially be slow to reach one of the solutions. Note that which solution
is reached will only depend on the measurement noise since one solution is not
more likely than the other. As we expect, it seems that the relative parameteri-
zation reduces the nonlinearity of these degenerate cost functions and allows the
optimization to converge with up to about 67% fewer iterations in the case of
Levenberg-Marquardt.
Taking a look at the optimization residuals (Fig. 6.5), we predict that the resid-

uals would not be dependent on the parameterization. The optimization should
still find the same solution, but the hope is that the relative parameterization
will allow the optimization to converge faster. Our results show that indeed, for
both LM and PDL, the residuals for both parameterizations are not significantly
different.
The simulations overall demonstrate a very promising potential benefit for us-

ing relative parameterization in ASFM. It’s important to note that during our
experiments, we found that the degenerate cases can lead to very poorly condi-
tioned square root information matrices that will cause numerical issues during
nonlinear optimization. The ill conditioning stems from the high uncertainty of
the 3D position of the landmarks due to the elevation arcs having large regions of
overlap. In addition, we found that in some instances of the degenerate cases, near
the zero elevation hill in the cost function where the 3D points are initialized, LM
steps will keep getting rejected until the update vector becomes so small that the
optimization stops without moving very much toward either solution symmetric
about the zero plane.
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Figure 6.5: Average optimization residual for all five motion cases over 1,000 runs
without (blue) and with (red) relative parameterization using (a) Levenberg-
Marquardt and (b) Powell’s Dog Leg to solve the nonlinear least squares.

6.3 Data Association
6.3.1 Simulation Setup
To test our data association algorithm, we ran simulations for general vehicle
motion using simulated data. The simulation data was generated by randomly
creating three sonar poses and 3D points until at least eight 3D points were visible
in all three sonar frames. Gaussian noise was added to the bearing (σ = 0.2◦)
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and range (σ = 0.005 m) components of the ground truth sonar measurements.
Similarly, Gaussian noise was added to both rotational (σ = 1◦) and translational
components (σ = 0.01 m) of the odometry between consecutive poses. The simu-
lated sonar and environment specifications are the same as those listed in Tab. 6.1
except we only used 100 Monte Carlo samples. Ten different sonar and point
environments were randomly generated for the simulation experiments.
We use Monte Carlo sampling to analyze the accuracy and robustness of our

automatic data association algorithm. Two experiments were performed: one
including spurious feature measurements and one without. Each sonar trajectory
was simulated 100 times with noise randomly sampled each time from the same
Gaussian distribution (µ = 0 and σ as described above). For each pose in each
trial, five of the eight 3D points that could have been seen were randomly chosen
to be measured. Consequently, not all of the poses saw all of the same points and
the correct data association hypothesis often contained several null matches. For
the spurious feature experiment, a random number of spurious features (0-2) were
added for each pose. The spurious features were generated by randomly creating
measurements in the sonar field of view.
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Figure 6.6: Top views of examples of a random environment generated for the
Monte Carlo simulations. The red line shows the trajectory of the sonar, the
blue frustums demonstrate the frustum fields of view of the sonars, and the
black dots are the eight randomly generated 3D points that can be seen by
all three sonar poses. Environment 2 had consistently high accuracy and small
landmark residuals while environment 4 had lower accuracy and higher landmark
residuals. The AUV in environment 4 goes through larger changes in translation
and orientation.
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Figure 6.7: Feature measurements for environments (a) 2 and (b) 4. In environ-
ment 2, the two red points were deemed too close, and one of the points was
discarded to avoid ambiguity.

6.3.2 Simulation Results
Examples of two environments are shown in Fig. 6.6 and Fig. 6.7. Error analysis
on our simulation data showed that another gating threshold needs to be applied
before data association begins to ensure that all feature measurements are suffi-
ciently far apart from each other to avoid ambiguity. We discard one measurement
if it is within 1◦ bearing or 0.2 m range of another feature measurement. Without
this additional threshold, the incorrect data association confusing these features
often has a similarly small, if not better, posterior than the correct hypothesis.
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6.3 Data Association

Additionally, we found that it is important to set up the factor graph in a batch
manner when testing a hypothesis. If the graph is built incrementally, meaning
when new measurements arrive, they are put in on top of an existing graph for
optimization, the optimization can get trapped in the wrong local minimum if
there are insufficient constraints. In this situation, even if the new measurements
pull the optimization in the correct direction, leaving the wrong local minimum
will result in a higher residual so the optimization will stay trapped. Therefore,
we solve this problem by inserting all measurements and correspondences from the
entire history of the trajectory into a new graph all at once.
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Figure 6.8: Rate at which our data association algorithm found the exact correct
hypothesis with no mistakes. The mean accuracy rate without spurious features
was 0.941 with a standard deviation of 0.04. The mean accuracy rate including
spurious features was 0.867 with a standard deviation of 0.05.

The average accuracy of our data association algorithm over 100 runs each of
10 environments without the inclusion of spurious features was 94.1%, meaning
that the algorithm found the exactly correct data association 94.1% of the time.
With spurious measurements, the accuracy drops to 86.7% (Fig. 6.8). Many of
the errors were caused by the algorithm finding a data association hypothesis that
had fewer null matches than the correct one but still had a residual below the χ2

d,α

threshold. Since adding spurious features increases the number of null matches
in the correct hypothesis, more of these kinds of errors were made, reducing the
accuracy rate. A possible solution to reducing these mistakes would be to tighten
the χ2

d,α threshold by decreasing the confidence level α. However, there is a trade-
off because decreasing α means a larger percentage of the distribution will be
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6.3 Data Association

thrown out as outliers, increasing the likelihood that a correct hypothesis will be
rejected.
A box plot of the average landmark factor squared residuals with and without

spurious features for each simulation environment is shown in Fig. 6.9. The land-
mark factor residual is essentially a reprojection error between the final 3D point
recovered and the original feature measurement. The average landmark factor
squared residual over all trials without spurious features was 0.50 with a standard
deviation of 0.27. Including spurious features, the average reprojection error was
0.45 with a standard deviation of 0.29. As expected, the addition of spurious
features does not affect the landmark residuals very much because the spurious
features should rarely ever be added to the factor graph, as they do not correspond
to real landmarks. The chance that two poses both have spurious measurements
that could correspond to the same 3D point is small, and therefore the spurious
feature will rarely be fully constrained and added to the graph.
One of the environments that consistently has lower accuracy rates and large

landmark residual outliers is environment 4. As shown in Fig. 6.6, the sonar motion
between poses is quite large. Compared to a more well-behaved environment such
as environment 2, the largest motion between poses in environment 4 is about
0.5 m larger in the x−direction, 0.7 m larger in the y−direction, and has about
40◦ more change in roll. These larger changes in sonar motion between frames
could contribute to more ambiguity amongst features even if they do not appear
very close to each other because the geometry and correlation of the features can
change significantly between more radically different points of view. In a real
mission, it is usually safe to assume that the sonar motion between frames is small
because for mapping purposes AUVs typically move very slowly. For instance,
the Bluefin Hovering Autonomous Underwater Vehicle (HAUV) we use in our real
data experiments usually travels at speeds of about 0.5 m/s.
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Figure 6.9: Box plots of individual landmark squared residuals (reprojection
error in bearing-range space) per environment. The average landmark squared
residual over all environments without spurious features was 0.50 with a standard
deviation of 0.27. Including spurious features, the average landmark squared
residual was 0.45 with a standard deviation of 0.29.

Runtime of our algorithm over the different randomly generated environments
is shown in Fig. 6.10. Even though we use a brute-force exhaustive search, the
order of the inputs into the search reduces the runtime significantly given that we
favor hypotheses with fewer null matches. Without spurious features, the average
runtime using a C++ implementation in Linux on a 2.5 GHz Intel i7 processor
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6.3 Data Association

was 15ms with a standard deviation of 22ms. Including spurious features, the
average runtime was 16ms with a standard deviation of 27ms. Environment 7
stands out in terms of longer runtime because it needed to throw out two feature
measurements to avoid ambiguities so the correct hypothesis always had more null
matches than the other environments, which usually only needed to discard one
measurement at the most.
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Figure 6.10: Box plots of runtime in milliseconds per environment for the data
association algorithm using a C++ implementation on a 2.5GHz Intel i7 pro-
cessor in Linux. The average runtime over all environments without spurious
features was 15ms with a standard deviation of 22ms. With spurious features,
the average runtime was 16ms with a standard deviation of 27ms.
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6.4 Imaging Sonar Sequence
6.4.1 Imaging Sonar Experimental Setup

Figure 6.11: Bluefin Hovering Autonomous Underwater Vehicle (HAUV) used
in our real data experiments. The DIDSON sonar and Doppler Velocity Log
(DVL) are pictured attached to the front of the vehicle.

We demonstrate 3D structure recovery with automatic data association from sev-
eral imaging sonar frames recorded with a Bluefin Hovering Autonomous Under-
water Vehicle (HAUV) (Fig. 6.11) in Boston, Massachusetts. Five sonar frames
were selected from the dataset to perform ASFM and point features were manu-
ally selected from all five sonar images. We also randomly generated a random
number of spurious features (0-2) in each sonar image to test the algorithm’s ro-
bustness on real data (Fig. 6.12). Although features were extracted manually, point
correspondences were found automatically using our data association algorithm.
In our experiments, we use a Sound Metrics DIDSON 300m forward-looking

sonar [21]. It has a ψmax = 28.8◦ bearing field of view (FOV) and a 28◦ vertical
FOV (using a spreader lens). The DIDSON sonar discretizes returns into Nb = 96
bearing bins and Nr = 512 range bins. The DIDSON mode used for this dataset
provides a minimum range of rmin = 0.75 m and a maximum range of rmax = 5.25
m.
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6.4 Imaging Sonar Sequence

Figure 6.12: Manually marked features (red circles) for the five raw sonar frames
that were used to reconstruct the ladder geometry with the addition of 0 - 2
randomly generated spurious features.

6.4.2 3D Reconstruction with Automatic Data Association
The feature measurements were incrementally introduced to the automatic data
association algorithm and a hypothesis for the feature correspondences was found.
Using this hypothesis, the measurements were placed into the factor graph op-
timization for 3D reconstruction. Odometry readings from the vehicle were also
used in the optimization to further constrain the problem. The odometry was
collected from a Doppler Velocity Log (DVL), which uses acoustic pings to mea-
sure the velocity of the vehicle. The orientation of the HAUV is measured using
the DVL’s on-board compass, pitch, and roll sensors. We chose odometry uncer-
tainties of σ = 1◦ for rotation and σ = 0.1 m for translation. For bearing and
range measurements from the DIDSON sonar we use σ = 0.2◦ and σ = 0.005 m
respectively.
Fig. 6.13 shows how the optimization reduces errors in the location of the point

features initially very quickly over a few iterations. Near the minimum, each
iteration reduces errors more slowly. The final reprojection error is shown in the
last frame. Since no ground truth is available for this dataset, we use reprojection
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6.4 Imaging Sonar Sequence

Figure 6.13: Reprojection error for the last sonar frame (left) from initialization,
(center) after 5 LM iterations, and (right) after a solution was found (27 LM
iterations). The red circles indicate the manually selected features and the green
circles indicate the reprojected features. The blue lines show the reprojection
error used in the ASFM optimization.

error on the Cartesian image as one indicator for ASFM’s performance. As seen
in Fig. 6.13, each recovered point is very close to the manually selected point. The
optimization for this imaging sonar sequence took 27 LM iterations and had an
ending residual of 52.8.
The 3D geometry of the ladder in the imaging sonar sequence was recovered as

shown in Fig. 6.14. Before optimization, the ladder is initialized as a flat object
lying in the x−y plane. The structure in the x−y plane looks convincing, but from
the x− z view, it is clear that the initialization does not capture the reality that
the ladder’s rungs are at different z elevations. The algorithm correctly ignored
the spurious features and found the true hypothesis in 232ms. Without spurious
features, we were able to generate the correct data association in 230ms. The
extra computational time needed by introducing spurious features ended up being
very small as the features should have very few potential matches. Thus, the
spurious features should not increase the data association hypothesis search space
by a significant amount.
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Figure 6.14: (a) Top and (b) front views of the 3D ladder structure before (green
’×’) and after (red ’+’) optimization from five imaging sonar frames.

Without ground truth, it is difficult to determine the geometric error between
the recovered points and the true 3D points. Going off the assumption that the
steps are spaced evenly on the ladder, we can estimate our maximum error to be
about 0.2 m given that the top point on the left side of the ladder is spaced about
0.2 m farther than the spacing between the other points.
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7 Conclusion
We have presented a novel algorithm for recovery of 3D point features from multiple
sonar views, while also constraining the poses from which the images are taken.
In contrast to previous solutions, we do not make any planar surface assumptions.
Simulations of several types of sonar trajectories show the ability of ASFM to
recover 3D structure with low uncertainty for general trajectories. They also show
a limitation of ASFM in its failure to recover elevation of points for motions that
provide poor constraints such as in the case of pure x-translation. An experiment
with real sonar data and manually extracted feature points further demonstrates
ASFM’s 3D reconstruction capabilities.
Furthermore, we have presented a novel automatic data association algorithm

for finding point correspondences between multiple 2D sonar images. Simulations
of randomly generated sonar trajectories show the ability of our algorithm to find
the correct data association hypothesis with a high success rate. The inclusion
of spurious measurements in our simulation experiments further demonstrates the
robustness of our data association algorithm. An experiment with real sonar data
containing spurious features and manually extracted feature points shows the suc-
cessful incorporation of the algorithm into the ASFM pipeline for 3D geometry
recovery.
The nonlinear least-squares optimization used in ASFM has two main disad-

vantages: the solution returned may only be a locally optimal solution and our
assumption that the posterior distribution is Gaussian may not hold. For the first
issue, we have investigated a relative parameterization of the sonar measurements
that showed very promising results for reducing the nonlinearity of the optimiza-
tion function and increasing the rate of convergence. More experiments in sim-
ulation and on real data will need to be done to verify the benefits of this new
parameterization. As for the second problem, it is clear that in some cases, such
as the degenerate cases where the elevation remains ambiguous symmetric about
the zero plane, the posterior is not Gaussian. In fact, for the degenerate cases,
the distribution is bimodal. A possible solution would be to use multi-modal in-
ference to capture an arbitrary distribution using a combination of many different
Gaussians.
A possible improvement to our automatic data association algorithm is the use

of the Incremental Posterior Joint Compatibility Test (IPJC) [18], which uses the
same ideas as our current algorithm by searching a tree of hypotheses and com-
puting a posterior compatibility cost. However, IPJC approximates the χ2

d,α error
with an Extended Kalman Filter (EKF) update step instead of using a full opti-
mization. If the correct data association most often includes very few null matches,
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our brute-force search would already be very fast. Nevertheless, more generally
if the sonar has many spurious features or not many overlapping features with
recent sonar poses, IPJC could reduce the computational time of our algorithm
significantly.
Of course, the automatic ASFM pipeline would not be complete and practical

for real-time applications without an automatic feature extractor. What kind of
features are most useful in imaging sonar images remains an open problem. Many
computer vision features have been developed for cameras, but they might not be
the best fit for the unique projective geometry of the sonar. Further research is
needed to determine suitable features for sonar images.
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Nomenclature
Abbreviations

ASFM Acoustic structure from motion

AUV Autonomous underwater vehicle

DIDSON Sound Metrics DIDSON 300 m sonar

DOF Degrees of freedom

DVL Doppler velocity log

FLS Forward looking sonar

FOV Field of view

GPS Global positioning system

HAUV Hovering autonomous underwater vehicle

LIDAR Light radar, or light detection and ranging

LM Levenberg-marquardt

MAP Maximum a posteriori

MHT Multiple hypothesis tracking

PDL Powell’s dog leg

ROV Remotely operated vehicle

SFM Structure from motion

SLAM Simultaneous localization and mapping

Mathematical Symbols

α X2 confidence level parameter

γ Transformation constant

N (0,Λi) Gaussian noise for odometry between pose xi−1 and xi with 0 mean
and covariance Λi
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Nomenclature

N (0,Ξk) Gaussian noise for sonar measurement k with 0 mean and covari-
ance Ξk

ψ Bearing angle

ψmax Bearing field of view of the sonar

θ Elevation angle

Θ∗ Maximum probability set of landmarks and poses

A Measurement Jacobian

d Number of degrees of freedom of the SLAM factor graph

g(xi−1, xi) Odometry measurement between poses xi−1 and xi

h(xi, lj) Sonar measurement of landmark lj from pose xi

lj Landmark j

M Total number of landmarks

M4(Nb, ψ) DIDSON lens distortion function

mk Sonar measurement k

N Total number of poses

Nb Total number of bearing bins

nb Bearing bin in polar sonar image

Nr Total number of range bins

nr Range bin in polar sonar image

p Prior factor

r Range

rmax Maximum range of the sonar

rmin Minimum range of the sonar

u, v Cartesian image coordinates

ui Odometry measurement i
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Nomenclature

w Width of the Cartesian sonar image

xg, yg, zg Global coordinates

xi Pose i

xs, ys, zs Local sonar frame coordinates

deg Degrees

m Meters
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