
Incremental Data Association for Acoustic Structure from Motion

Tiffany A. Huang and Michael Kaess

Abstract— We provide a novel incremental data association
method to complement our previous work on acoustic structure
from motion (ASFM), which recovers 3D scene structure from
multiple 2D sonar images, while at the same time localizing
the sonar. Given point features extracted from multiple over-
lapping sonar images, our algorithm automatically finds the
correspondences between the features. Our data association
method uses information about the geometric correlations of
the entire set of landmarks to reject spurious measurements
or false positives that might otherwise have been accepted.
For each new sonar measurement, the algorithm uses a gating
procedure to narrow the landmark match search space. Using
the pruned surviving candidate correspondences, we identify
the correct hypothesis based on a posterior compatibility cost,
penalizing for null matches to avoid all measurements being
declared new landmarks. Unlike other methods, ASFM does not
require any planar scene assumptions and uses constraints from
more than two images to increase accuracy in both mapping
and localization. We evaluate our algorithm in simulation and
demonstrate successful data association results on real sonar
images.

I. INTRODUCTION

Mapping and state estimation have been widely explored
for autonomous vehicles that operate on land and in the
air. However, for an environment that spans the majority
of our planet Earth, surprisingly little progress has been
made towards the same autonomous abilities underwater.
Autonomous underwater vehicles (AUVs) open the door to
exciting new possibilities for underwater exploration such
as venturing into areas too dangerous for human divers or
exploring large areas much faster and more efficiently. Fur-
thermore, AUVs have the potential to eliminate the tedium
and high costs of remotely operated vehicle (ROV) missions.

In this paper, we discuss data association for simultaneous
localization and mapping (SLAM) underwater. One particu-
lar challenge towards SLAM for AUVs is the necessity of
non-conventional sensors such as sonar. Due to the turbidity
of some water environments as well as the short propagation
range of light in water, more common and well-studied
sensors such as cameras and LIDAR do not work well
underwater. As for localization, GPS cannot be used since
radio waves are rapidly absorbed by water. In our previous
work [6], we proposed a solution called acoustic structure
from motion (ASFM), which uses multiple, general sonar
viewpoints of the same scene to reconstruct the 3D structure
of select point features while minimizing the effects of accu-
mulating error. ASFM provides several advantages over other
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Fig. 1: Data association for imaging sonar presents several challenges.
First, sonar images are very non-intuitive to interpret. The representation
of structure in the image often does not correlate directly with the real 3D
structure, as can be seen in (a) where the order of the colored points do not
agree with our intuition based on visual imagery. Second, changing position
and angle of the sonar could produce similar images but with different
correspondences between feature points and real 3D points. The difference
between (a) and (b) serves as an example. This complication makes even
manual data association difficult.

SLAM methods for AUVs. First, unlike previous approaches,
no planar assumptions about the environment are required.
Second, ASFM is more accurate than pairwise approaches
because it uses constraints from more than two images to
eliminate drift and recover 3D landmark positions. Finally,
ASFM does not have any of the limitations associated with
cameras underwater such as shorter range or limited visibility
in turbid water. Here, we build upon the bundle adjustment
portion of the ASFM pipeline as described in [6] by adding
incremental automatic data association.

Feature extraction and data association, or finding which
measurements from different views correspond to the same
object, make up the first part of the SLAM problem. Once



feature correspondences are known, the constraints can then
be optimized to find the maximum likelihood set of robot
poses and landmark positions. Data association is crucial
because incorrect correspondences can drastically degrade
the quality of the resulting map and trajectory.

To address the challenge of ensuring the data association
is accurate and robust, we introduce a novel algorithm that to
the best of our knowledge is the first to solve data association
with an imaging sonar for this general case where the exact
sonar pose is not known and the structure is not planar. The
algorithm uses a tree of correspondences similar to that of
Joint Compatibility Branch and Bound [8]. At each level of
the tree, a feature measurement from the current image is
matched with either one of the existing landmarks or with a
“null” match, which means it becomes a new landmark. We
use a gating threshold to prune the leaves of the tree, and
each path down the tree from the top level to a leaf node is a
possible data association hypothesis. Each hypothesis has an
associated cost related to its posterior probability. We sort the
hypotheses in order of increasing number of null matches,
and then search through all paths from top level to leaf until
we find one with a small enough cost. In other words, we
return the set of correspondences with the fewest number of
null matches and smallest posterior compatibility cost under
a χ2 threshold.

II. RELATED WORK

Most of the related ideas on incremental data association
for imaging sonar rely on a planar assumption of the scene.
For instance, Leonard et al. [7] use a multiple hypothesis
tracking (MHT) algorithm to perform data association and
reconstruct the geometry of a static, rigid, 2D environment.
Similar to our algorithm, MHT creates a tree of possible
hypotheses matching measurements to features, and the tree
is pruned based on the likelihood of each hypothesis. MHT in
this work assumes that the landmark can be initialized with
one measurement, which is not true for 3D scenes. Hover et
al. [5] also require a planar assumption while using an AUV
and forward looking sonar to perform ship hull inspection.
For sonar image registration, they use a normal distribution
transform (NDT) to provide a measure of the likelihood that
a point will be observed by the sonar model.

Ribas et al. [11] use an individual compatibility test with
a χ2 threshold to determine which previous features could
be correspondences. A nearest neighbor criterion is then
applied to select the previously seen feature with the smallest
Mahalanobis distance. Once again, the authors in this paper
make a planar assumption by only imaging planar objects.
In addition, the nearest neighbor criterion does not take into
account the joint hypothesis of the entire set of features like
our data association algorithm and therefore is more suscep-
tible to accepting spurious features and producing incorrect
data associations. Peillot et al. [10] present methods for 2D
obstacle mapping and avoidance, the main application being
surveys of the seabed. Unlike ASFM, which uses incremental
smoothing, the authors use a Kalman filter to track objects in
the forward-looking sonar images. The smoothing performed

by ASFM has an advantage over Kalman filters because it
takes into account the entire history of the measurements and
trajectory in the optimization, resulting in a more accurate
map. In addition, even though there are more measurements
and variables, the sparsity of smoothing makes it more
efficient to compute than optimizing with the dense matrices
of Kalman filters.

Fallon et al. [4] discuss a system that uses FLS sonar
images to find and navigate to a previously mapped target.
For data association, a scoring algorithm was used that takes
into account positive information of features detected by the
sonar and negative information of features that were expected
to be seen but were not detected. Our work is similar to
some of the ideas such as scoring SLAM graph hypotheses,
but our data association applies to matching more generally
with previous sonar images for 3D reconstruction instead of
relying on a prior map. Fallon et al. also estimate whether
a sonar feature is a moored or seafloor feature, but our
ASFM covers a larger variety of landmarks at a continuous
range of elevations. Aykin et al. [3] recover elevation from
sonar images by utilizing the geometry of visual artifacts like
shadows cast by stationary objects in the environment. They
relax the planar assumption for pairwise matching of sonar
frames but still assume a locally planar surface in order to
include shadow information.

Note that all of the related work mentioned so far have
only dealt with the 2D locations of sonar features, while
our technique can deal with the more general 3D case. In
the direction of 3D reconstruction, Assalih [1] introduces
an acoustic stereo system that uses two sonars to recover
3D geometry. Given the measurement of a feature in one
pose, the author estimates the measurement of the same
feature in a different pose with a Modified Discrete Uniform
Distribution, which samples points along the elevation arc
and assigns probabilities of them being the true 3D sonar
point. Unlike this method, ASFM only requires one sonar and
can utilize information from more than two sonar images for
3D geometry recovery. More recent work by Aykin et al. [2]
presents a space-carving method for recovering 3D geometry
from multiple 2D forward-looking sonar images at known
poses. Finding the closest edge of an object in multiple
sonar images provides information about the occupancy of
3D voxels in the sonar field of view. This method achieves
3D reconstruction without the need for data association
and feature extraction. However, ASFM constrains both the
motion of the sonar as well as landmark positions, so unlike
the space-carving method, the sonar poses do not need to be
fully known a priori.

III. INCREMENTAL DATA ASSOCIATION

A. Sonar Geometry

Before discussing further how data association is per-
formed, it is important to understand the information pro-
vided in a FLS sonar image. The imaging sonar sends out
an acoustic ping and measures the intensity of acoustic waves
reflected from objects, which is provided in the form of an
intensity image. As seen in Fig. 2, the sonar only provides



Fig. 2: Imaging sonar geometry. Any 3D point along the dashed red
elevation arc will appear as the same image point in the x–y plane. Range
r and bearing angle ψ are measured, but the elevation angle θ is lost in the
projection process.

partial information about a feature (bearing ψ and range r)
and does not provide its elevation angle θ. In a 1-D array
of receivers, the difference between the time it takes for one
receiver to gather a signal and another receiver to gather the
same signal denotes the bearing of the feature. The range
is determined by the time of flight of the sound signal. The
elevation of the point is lost, as all points along an elevation
arc within the field of view of the sonar will collapse to
the same pixel in the sonar image. Since one dimension of
the feature is missing, one sonar image is not sufficient to
recover 3D geometry.

B. ASFM Overview
Since this paper focuses on the data association aspects of

ASFM, only a brief overview is given of the ASFM problem.
See [6] for more details on the ASFM factor graph and
optimization. The goal of acoustic structure from motion is
to find the most likely set of vehicle poses and 3D landmark
positions given odometry and sonar measurements. We first
define a generative sensor model using Gaussian noise:

g(xi−1, xi) +N (0,Λi)

h(xi, lj) +N (0,Ξk) (1)

where g(xi−1, xi) is the odometry measurement prediction
between pose xi−1 and pose xi and h(xi, lj) is the sonar
measurement prediction of landmark lj observed from pose
xi. Λi is the covariance of the odometry measurement
between pose xi−1 and pose xi, while Ξk is the covariance
of the kth sonar measurement. The sonar measurement
prediction h(xi, lj) first transforms the 3D landmark location
lj = (x, y, z) in the global frame to the local pose xi frame,
obtaining the local coordinates (xs, ys, zs). Bearing ψ and
range r are then obtained by

r =
√
x2
s + y2

s + z2
s (2)

ψ = atan2(ys, xs). (3)

Using this sensor model, ASFM becomes a standard non-
linear least squares problem:

Θ∗ = argmin[
x

‖x0‖2Λ +

m∑
k=1

‖h(xi, lj)−mk‖2Ξk

+

n∑
i=1

‖g(xi−1, xi)− ui‖2Λi
] (4)

where ‖x‖2Σ = xTΣ−1x is the squared Mahalanobis dis-
tance. The first pose x0 is fixed at the origin using a prior, mk

is the kth sonar measurement involving pose xi and landmark
lj , and ui is the ith odometry measurement between poses
xi−1 and xi.

We initialize 3D landmark locations using the following
backprojection function (r is the range and ψ is the bearing):xsys

zs

 = r

cosψcosθ
sinψcosθ

sinθ

 (5)

where the unknown elevation, θ, is set to 0. The non-linear
least squares problem including the sonar poses and 3D
landmark positions is then solved using iterative linearization
with Powell’s dogleg or Levenberg-Marquardt.

C. Data Association Challenges

Unlike camera images, sonar images are much less in-
tuitive to understand and interpret. An example is given in
Fig. 1. Assume the AUV is imaging a stair-like structure
underwater and we have manually picked out some point
features that intuition would lead us to believe are stable, like
the corners along one edge of the stairs. Since the vertical
axis of the sonar image is range from the sonar and the blue
feature appears to be closest to the sonar, the blue point
appears as the bottom-most feature in the sonar image. The
next closest point to the sonar looks to be the red feature,
then the green, then the purple. Note that just looking at the
final ordering of the feature points in the sonar image does
not give a helpful indication of the true 3D structure. From
only the sonar image, it would be almost impossible to tell
that in true 3D, the blue feature point is in fact between the
green and the purple feature points.

To confuse data association further, moving and rotating
the sonar changes the ordering of the feature points because
the distance between the features and the sonar changes.
Therefore, in (b) of Fig. 1, the sonar moves and the resulting
sonar image contains a different ordering of feature points. In
this case, the sonar moves closer to the red feature point and
further from the blue feature point. Consequently, the blue
and red features switch places in the second sonar image.
Without knowing the exact motion of the AUV, even man-
ually assigning feature correspondences becomes difficult.
It would be very challenging to correctly associate the blue
feature point in the first image to the blue feature point in the
second image. Given the sonar projection geometry, not only
manual data association, but also manually picking features
that are stable and can be seen by multiple frames in a variety
of viewing poses is not an easy task.

D. Incremental Data Association Algorithm

Our algorithm proceeds incrementally with every new
sonar frame and odometry measurement. To initialize the
algorithm, the first pose in the data sequence is fixed and
set as a prior in the ASFM factor graph. Additionally, all
landmark measurements from the first pose are regarded
as new landmarks and stored in a landmark history. Next,



incrementally, a new odometry measurement will arrive
along with a set of feature measurements from this new pose.
If feature measurements are too close to each other, we will
discard them to avoid ambiguity. In our experiments, if two
measurements were within 1◦ bearing and 0.2 m range of
each other, both were discarded.

For each new feature measurement, we look at the repro-
jection error of each landmark in the stored landmark history
to prune possible matches. If a landmark has only been seen
once so far, it is backprojected through the pose that saw the
landmark before into 1-degree interval 3D points along the
elevation arc of possible 3D points (Fig. 2). These 3D points
are then reprojected into the current pose and the landmark
is accepted as a possible match if any of its associated
reprojected 3D points lies within a gating threshold of the
current feature measurement. If a landmark has been seen
twice or more so far, its current 3D location estimate from
the optimization is used as the 3D point that is reprojected
into the current pose. The gating threshold is empirically set
to a 0.2 m range difference and 4◦ bearing (0.07 radian)
difference between the reprojected landmark and the current
feature measurement in our experiments. To avoid keeping
unnecessary landmarks, a new landmark is removed from the
stored landmark history if it isn’t seen again, and therefore
cannot be fully constrained, in the next two sonar frames
being used for ASFM.

Once all possible matches have been determined for each
new feature measurement using the gating threshold, a search
over possible match combinations after pruning is utilized to
find the correct data association hypothesis. More specifi-
cally, we build a tree where each level represents a feature
observation and its potential matches (including a null match)
as determined by the gating threshold. Each path from a node
in the top level to a leaf node at the bottom level represents
a potential data association hypothesis. The data association
hypothesis is accepted if the sum of squared residuals for
the posterior position of the landmarks and the robot pose
given this hypothesis falls under a χ2

d,α threshold:

‖x0‖2Λ +

m∑
k=1

‖h(xik , ljk)−mk‖2Ξk
+

n∑
i=1

‖g(xi−1, xi)− ui‖2Λi
< χ2

d,α (6)

Feature measurements and landmarks are not added to
the optimization if they are not fully constrained, i.e. they
have not been seen by at least two different poses. The χ2

d,α

threshold is determined using d, the degrees of freedom of
the factor graph (number of measurements minus number
of variables) and α, the confidence parameter (set to 0.99
in our experiments). Null matches, or declaring feature
measurements to be new landmarks, are penalized such that
the algorithm picks the hypothesis that fits the χ2

d,α criterion
with the fewest null matches. If there are multiple hypotheses
that fit the χ2

d,α criterion with the same number of null
matches, the algorithm picks the hypothesis with the smallest
optimization residual. In the worst case, the algorithm has a

computational complexity of O(mlm log(l)) where m is the
total number of sonar features seen in the current pose and
l is the total number of landmarks in the landmark history.

A downside of our algorithm is that the posterior of
the entire set of landmarks and vehicle poses has to be
calculated for each hypothesis. However, before performing
the restricted search over viable candidates after pruning, the
data association hypotheses are sorted in order of increasing
number of null matches. Therefore, if small sonar motion is
assumed, which is not necessary for the algorithm to work,
but applicable to many situations, then many features will
overlap. The correct data association hypothesis will then
contain few null matches and will be found quickly.

IV. EXPERIMENTAL RESULTS

A. Simulation

We present statistical results for general vehicle motion
using simulated data. The simulation data was generated by
randomly creating three sonar poses and 3D points until at
least eight 3D points were visible in all three sonar frames.
The number of features used was empirically determined as
a realistic number of features that could be seen by three
sonar poses of varying viewing angle. Gaussian noise was
added to the bearing (σ = 0.2◦ for small noise, σ = 0.5◦

for larger noise) and range (σ = 0.005 m for small noise,
σ = 0.01 m for larger noise) components of the ground
truth sonar measurements. Gaussian noise was also added
to both rotational (σ = 1◦) and translational components
(σ = 0.01 m) of the odometry between consecutive poses.
The simulated sonar and environment specifications are listed
in Table I. Ten different sonar and point environments
were randomly generated for the simulation experiments.
Examples of environments are shown in Figs. 3 and 4.

Some important practical considerations relate to ambi-
guity and local minima. To avoid ambiguity, we discard
both measurements if a feature is within 1◦ bearing or
0.2 m range of another feature measurement. Without this
additional threshold, the incorrect data association confusing
these features often has a similarly small, if not better,
posterior than the correct hypothesis. Additionally, we found
that it is important to set up the factor graph in a batch
manner when testing a hypothesis. If the graph is built
incrementally, meaning when new measurements arrive, they
are used to update an existing solution, the optimization is
more likely to get trapped in a local minimum. The new

TABLE I: Simulated data experimental design

Value
Number of Monte Carlo samples 100
Orientation: stddev (deg) 1
Translation: stddev (m) 0.01
Bearing: stddev (deg) 0.2 (small), 0.5 (large)
Range: stddev (m) 0.005 (small), 0.01 (large)
Minimum range of sonar (m) 0.375
Maximum range of sonar (m) 9.375
Bearing FOV of sonar (deg) 28.8
Elevation FOV of sonar (deg) 28
Number of bearing bins 96
Number of range bins 512
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Fig. 3: Top views of examples of a random environment generated for the
Monte Carlo simulations. The red line shows the trajectory of the sonar, the
blue frustums demonstrate the frustum fields of view of the sonars, and the
black dots are the eight 3D points that can be seen by all three sonar poses.

measurements can provide essential information to resolve
previously ambiguous situations, and starting from a neutral
initialization point for the elevation angles makes it less
likely to get stuck in a local minimum.

We use Monte Carlo sampling to analyze the accuracy
and robustness of our incremental data association algorithm.
Four experiments were performed: small and large noise, in-
cluding spurious feature measurements and without spurious
features. Each sonar trajectory was simulated 100 times with
noise randomly sampled each time from the same Gaussian
distribution (µ = 0 and σ as described above). For each pose
in each trial, five of the eight 3D points that could have been
seen were randomly chosen to be measured. Consequently,
not all of the poses saw all of the same points and the
correct data association hypothesis often contained several
null matches. For the spurious feature experiment, a random
number of spurious features (0 to 2) were added for each
pose. The spurious features were generated by randomly
creating measurements in the sonar field of view.

The average accuracy of our data association algorithm
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Fig. 4: Feature measurements for environments (a) 2 and (b) 4. In envi-
ronment 2, the two red points were deemed too close, so both points were
discarded to avoid ambiguity.
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Fig. 5: Rate at which our data association algorithm found the exact correct
hypothesis with no mistakes. The mean accuracy rate with small noise (blue)
without spurious features was 0.91 with a standard deviation of 0.05, while
with larger noise (green) it was 0.79 with a standard deviation of 0.13. The
mean accuracy rate including spurious features for small noise was 0.82
with a standard deviation of 0.07, while for larger noise it was 0.72 with a
standard deviation of 0.09.



over 100 runs for each of 10 environments without the
inclusion of spurious features for small noise (σ = 0.2◦,
σ = 0.005 m) was 90.9%, meaning that the algorithm found
the exactly correct data association 90.9% of the time, while
for larger noise (σ = 0.5◦, σ = 0.01 m) the average accuracy
was 78.9%. With spurious measurements, the accuracy drops
to 81.6% for small noise and 72.4% for larger noise (Fig.
5). Many of the errors were caused by the algorithm being
a little more conservative and finding a data association
hypothesis that had more null matches than the correct one.
Tuning the χ2

d,α threshold confidence level α can change
how conservative the algorithm is. A lower α increases
the percentage of the distribution that will be thrown out
as outliers, thereby increasing the likelihood that a correct
hypothesis will be rejected.

A box plot of the squared and weighted landmark factor
residuals with and without spurious features for small noise
is shown in Fig. 6. The landmark factor residual is the
reprojection error of the final 3D point recovered and the
original feature measurement. Note that the squared land-
mark factor residual is weighted by the inverse covariance
matrix, so it becomes a unitless value. The average landmark
factor residual over all trials without spurious features was
0.55 with a standard deviation of 0.29. Including spurious
features, the average reprojection error was 0.47 with a
standard deviation of 0.29. As expected, the addition of
spurious features does not affect the landmark residuals very
much because the spurious features should rarely ever be
added to the factor graph as they do not correspond to real
landmarks.

One of the environments that consistently has lower accu-
racy rates is environment 4. As shown in Fig. 3, the sonar
motion between poses is quite large. Compared to a more
well-behaved environment such as environment 2, the largest
motion between poses in environment 4 is about 0.5 m larger
in the x−direction, 0.7 m larger in the y−direction, and
has about 40◦ more change in roll. These larger changes
in sonar motion between frames could contribute to more
ambiguity amongst features even if they do not appear very
close to each other because the geometry and correlation of
the features can change significantly between more radically
different points of view. In a real application, it is usually
safe to assume that the sonar motion between frames is
small because for mapping purposes AUVs typically move
very slowly. For instance, the Bluefin Hovering Autonomous
Underwater Vehicle (HAUV) we use in our real data exper-
iments usually travels at speeds of about 0.3 m/s.

Runtime of our algorithm over the different randomly
generated environments with small noise is shown in Fig. 7.
The order of the inputs into the search reduces the runtime
significantly given that we favor hypotheses with fewer null
matches. Without spurious features, the average runtime
using a C++ implementation on a 2.5 GHz Intel i7 processor
was 14ms with a standard deviation of 23ms. Including
spurious features, the average runtime was 16ms with a
standard deviation of 25ms. Environment 9 stands out in
terms of longer runtime because the feature points were
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Fig. 6: Box plots of individual squared landmark residuals (weighted
reprojection error) per environment. The average squared landmark residual
(unitless) over all environments for small noise without spurious features
was 0.55 with a standard deviation of 0.29. Including spurious features, the
average landmark residual was 0.47 with a standard deviation of 0.29.

relatively close together. Therefore, each feature matched up
to many of the landmarks in the landmark history and more
hypotheses needed to be tested to find the correct one.

B. Imaging Sonar Sequence

We demonstrate 3D structure recovery with incremental
data association from several imaging sonar frames recorded
with a Bluefin Hovering Autonomous Underwater Vehicle
(HAUV) (Fig. 8) in Boston, Massachusetts. Five sonar
frames were selected from the dataset to perform ASFM and
point features were manually selected from all five sonar
frames. We also randomly generated a random number of
spurious features (0 to 2) in each sonar image to test the al-
gorithm’s robustness on real data (Fig. 9). Although features
were extracted manually, point correspondences were found
automatically using our data association algorithm.

In our experiments, we use a Sound Metrics DIDSON
300m forward-looking sonar [12]. It has a ψmax = 28.8◦

bearing field of view (FOV) and a 28◦ vertical FOV (using
a spreader lens). The DIDSON sonar discretizes returns into
w = 96 bearing bins and h = 512 range bins. The DIDSON
mode used for this dataset provides a minimum range of
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Fig. 7: Box plots of runtime in milliseconds per environment for the
data association algorithm using a C++ implementation on a 2.5GHz Intel
i7 processor. The average runtime over all environments for small noise
without spurious features was 14ms with a standard deviation of 23ms.
With spurious features, the average runtime was 16ms with a standard
deviation of 25ms.

rmin = 0.75 m and a maximum range of rmax = 5.25
m. Let (u, v) be the image coordinates of a feature in the
Cartesian sonar image, and γ be a constant describing the
number of pixels per meter in the Cartesian image. Since
we extract features from Cartesian space, the bearing ψ and
range r are obtained using:

γ =
w

2rmaxsin(ψmax

2 )
(7)

xs =
u− w

2

γ
(8)

ys = rmax −
v

γ
. (9)

r =
√
x2
s + y2

s (10)
ψ = atan2(xs, ys). (11)

ψ additionally needs to be corrected with a lens distortion
function provided by the manufacturer. Odometry readings
from the vehicle were used in the optimization to further
constrain the problem. The odometry was obtained from a
ring-laser gyro and a Doppler Velocity Log (DVL). We chose
odometry uncertainties of σ = 1◦ for rotation and σ = 0.1

Fig. 8: Bluefin Hovering Autonomous Underwater Vehicle (HAUV) used in
our real data experiments. The DIDSON sonar and Doppler Velocity Log
(DVL) are pictured attached to the front of the vehicle.

Fig. 9: Manually marked features (red circles) for the five raw sonar frames
that were used to reconstruct the ladder geometry with the addition of 0 to
2 randomly generated spurious features. The sonar images show the entire
Cartesian FOV of the sonar (height of image spans 4.5 m).

m for translation. For bearing and range measurements from
the DIDSON sonar we use σ = 0.2◦ and σ = 0.005 m
respectively.

The 3D geometry of the ladder in the imaging sonar
sequence was recovered as shown in Fig. 10. The algorithm
correctly ignored the spurious features and found the true
hypothesis in 232ms. Without spurious features, we were
also able to generate the correct data association in 230ms.
Before optimization, the ladder is initialized as a flat object
with no elevation. The structure in the x–y plane looks
convincing, but from the x–z view, it is clear that the initial-
ization does not capture the reality that the ladder’s rungs are
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Fig. 10: (a) Top and (b) front views of 3D ladder structure before (green
’×’) and after (red ’+’) optimization from five imaging sonar frames. While
initially the ladder’s rungs are collapsed in elevation, ASFM recovers the
actual structure, albeit with some remaining noise.

at different z elevations. Since the data association algorithm
was successful in finding the correct point correspondences,
we get the same results as described in our previous work
[6]. The difference in this result is that we were able to
discard spurious features as outliers and everything besides
the feature extraction was done automatically.

V. CONCLUSION

We have presented a novel incremental data associa-
tion algorithm for finding point correspondences between
multiple 2D sonar images of nonplanar structures. To our
knowledge, no other data association method currently exists
for 3D reconstruction of general scenes using an imaging
sonar and uncertain sonar poses. Simulations of randomly
generated sonar trajectories show the ability of our algorithm
to find the correct data association hypothesis with a high
success rate. The inclusion of spurious measurements in our
simulation experiments further demonstrates the robustness
of our data association. An experiment with real sonar data
containing spurious features and manually extracted feature
points shows the successful incorporation of the algorithm
into the ASFM pipeline for 3D geometry recovery.

A possible improvement to our incremental data associa-
tion algorithm is the use of the Incremental Posterior Joint
Compatibility Test (IPJC) [9], which uses the same ideas
as our current algorithm by searching a tree of hypotheses
and computing a posterior compatibility cost. However, IPJC
approximates the χ2

d,α error with an Extended Kalman Filter
(EKF) update step instead of using a full optimization. If
the correct data association most often includes very few

null matches, our pruned search would already be very fast.
Nevertheless, more generally if there are many spurious
features or not many overlapping features with recent sonar
poses, IPJC could reduce the computational time of our
algorithm significantly.

Of course, the automatic ASFM pipeline would not be
complete and practical for real-time applications without
an automatic feature extractor. What kind of features are
most stable and useful in imaging sonar images remains
an open problem. Many computer vision features have been
developed for cameras, but they might not be the best fit for
the unique projective geometry of the sonar. Further research
is needed to determine suitable features for sonar images.
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