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Abstract— We present a novel approach, entitled acous-
tic structure from motion (ASFM), for recovering 3D scene
structure from multiple 2D sonar images, while at the same
time localizing the sonar. Imaging sonar or forward looking
sonar (FLS) is commonly used for autonomous underwater
vehicle (AUV) navigation. An FLS provides bearing and range
information to a target, but the elevation of the target is
unknown within the sensor’s field of view. Hence, current state-
of-the-art techniques commonly make a flat surface (ground)
assumption so that the FLS data can be used for navigation.
Unlike other methods, our solution does not require a flat
surface assumption and is capable of utilizing information from
many frames, as opposed to pairwise methods that can only
gather information from two frames at once. ASFM is inspired
by structure from motion (SFM), the problem of recovering 3D
structure from multiple camera images, while also recovering
the position and orientation from which the images were taken.
In this paper, we formulate and evaluate the optimization of
several AUV sensor readings of the same scene from different
poses, the sonar equivalent of bundle adjustment. We evaluate
our approach on both simulated data and FLS sonar data with
the assumption that feature extraction and data association
have been completed. The acoustic equivalents of those two
important features of SFM are left for future work.

I. INTRODUCTION

In recent years, society has observed an increasing need
for autonomous vehicles that can operate underwater. Au-
tonomous underwater vehicles (AUVs) have many applica-
tions in performing tedious and potentially dangerous tasks
such as monitoring marine structures, inspecting ship hulls,
and exploring deep ocean depths.

However, much of the current technology developed for
AUVs does not yet match the vision for a vehicle that can
navigate, inspect, and explore all on its own. One area that
requires further development is long-term autonomy; current
localization methods suffer from unbounded drift, making it
increasingly difficult to precisely determine the whereabouts
of the vehicle as the duration of the mission increases. A
second significant hurdle for full autonomy is perception
underwater. Beneath the water, optical cameras are only of
limited use due to water turbidity. Without optical cameras,
sonar becomes the sensor of choice.

Towards real-time autonomous navigation and creating a
faster and more accurate 3D map with sonar, we introduce
the concept of acoustic structure from motion (ASFM), using
multiple, general sonar viewpoints of the same scene to
reconstruct the 3D structure of select point features while
minimizing the effects of accumulating error (Fig. 1). In
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Fig. 1: Multiple imaging sonar views of a scene allow recovery of 3D
position of point features, even though the individual views do not provide
elevation information about the features.

this paper, we formulate much of the theoretical basis of
the approach and focus on its integration with measurements
received from other onboard sensors. We assume for now that
feature extraction and data association can be sequentially
and incrementally completed, and we explore the feasibility
of using this information to localize the AUV and map its
surroundings. In essence, this paper explores the acoustic
equivalent of bundle adjustment [14], the geometric opti-
mization in traditional structure from motion for cameras.
The nontrivial tasks of automatic feature extraction and data
association for sonar are topics of ongoing work in our group.

ASFM has applications in real-time navigation for AUVs
in general 3D environments. The simultaneous localization
and mapping (SLAM) capabilities provided by our method
can significantly reduce drift for long-term operation and
facilitate mapping and inspection tasks. Unlike previous ap-
proaches, our solution does not make any assumptions about
the planarity of the environment in order to localize the sonar.
Additionally, ASFM is able to use information gathered from
multiple sonar images to better constrain the 3D geometry
of the scene and the motion of the vehicle. Much of the
current work regarding 3D reconstruction from sonar uses
a pairwise approach that cannot exploit constraints obtained
from multiple viewpoints for a more accurate solution.

In this paper, forward-looking sonar (FLS) is used, but
ASFM is not limited to this type of sonar. FLS is an obvious
choice because it is one of the less expensive types of sonar
and its larger field of view allows for faster imaging of



an environment. However, as an interesting topic for future
work, ASFM can be extended to other types of 2D sonar
including side-scan sonar [5]. Currently, beam-steering 3D
forward-looking sonar sensors are available (e.g. Blueview
3DFLS), but they are both more expensive and slower to
image a given volume (because of the low speed of sound in
water), requiring up to 4 seconds for a single sweep at a short
6 m range, and more time for larger ranges. Thus, for many
applications, it is advantageous to apply a 3D reconstruction
technique with an FLS rather than utilize a 3D sonar directly.

II. RELATED WORK

Much of the previous work in sonar image processing has
focused on image registration, or finding matching features
from pairs of sonar images. Rooted in the image registration
problem is the need to recover the motion between frames.
To solve this problem, Johannsson et al. [9] and Hover et al.
[7] extract points with high gradients from the sonar image
and cluster the points to use as features. Next, a Normal
Distribution Transform (NDT) algorithm is applied to serve
as a model for image registration. The entire trajectory of the
AUV is put into a pose-graph formulation, and the optimized
trajectory shows significant improvements over dead reckon-
ing from the Doppler velocity log (DVL). However, to solve
the ambiguity in elevation of the points presented by sonar,
the points are assumed to lie on a plane that is level with
the vehicle. This planar assumption works well for the non-
copmlex areas of a ship hull, the main application of their
work, but induces large errors for many other environments.
ASFM does not require this assumption, making it useful for
a wider range of environments. Hurtos et al. [8] explore a
different approach, using Fourier-based techniques instead of
feature points for registration. However, the authors primarily
focus on applications in 2D mapping, so do not address 3D
geometry in detail.

Aykin and Negahdaripour [2] relax the planar assumption
for pairwise matching of sonar frames but still assume a
locally planar surface in order to include shadow information.
They show improvements over Johannsson [9] by instead
applying a Gaussian Distribution Transform to the images.
Negahdaripour [12] extends this work to feature tracking and
visual odometry in sonar video. Various other works have
explored different ways to recover 3D geometry from sonar
images. Babaee and Negahdaripour [3] use a stereo imaging
system composed of one sonar and one optical camera where
the centers of the two cameras’ coordinate systems and their
axes align. The trajectory of the stereo system is calculated
using opti-acoustic bundle adjustment. However, the use of
an optical camera reduces this system’s range due to water
turbidity. In contrast, ASFM requires only one sensor and
water turbidity is not an issue because no optical cameras
are involved.

Assalih [1] once again exploits the stereo idea, but instead
uses two imaging sonars placed one on top of the other.
Our work is more similar to Brahim et al. [4] where point-
based features are used with evolutionary algorithms to
recover 3D geometry from pairs of sonar frames. Unlike

Fig. 2: Imaging sonar geometry. Any 3D point along the dashed red arc will
appear as the same image point in the x − y plane. Range r and bearing
angle ψ are measured, but the elevation angle θ is lost in the projection
process.

Assalih and Brahim however, ASFM is capable of using
information from multiple viewpoints as opposed to only
pairs of images. Multiple viewpoints add more information
and can further constrain the problem to result in more
accurate reconstruction than pairwise matching.

A great deal of previous work has been done in computer
vision on optical structure from motion [6, 14], and we show
in this paper that many of the same ideas can be applied
to imaging sonar with a couple of important differences.
For instance, optical cameras return bearing and elevation
of a scene point, but not depth, while sonar returns bearing
and depth, but no elevation. Consequently, sonar projection
functions differ from those of optical cameras and present
several challenges that need to be addressed before structure
from motion can be applied to sonar. In this paper, we present
our solution to these challenges including an analysis of
degenerate cases, special situations in which reconstruction is
not possible without additional information. Such additional
information could be provided by other sensors on the AUV
such as an inertial measurement unit.

In summary, ASFM’s main advantages over related work
are 1) the lack of a planar assumption and 2) the ability
to use information from more than two sonar images to
automatically recover 3D structure and motion more accurate
than those recovered with only pairwise comparisons.

III. ACOUSTIC STRUCTURE FROM MOTION

We address in this work how to recover the 3D position
of features from multiple observations of the same scene,
while at the same time constraining the sensor poses. This is
a challenging problem because a single sonar image is not
sufficient to recover the 3D geometry of the scene. As seen
in Fig. 2, the sonar only provides partial information about
a feature (bearing ψ and range r) and does not provide its
elevation angle θ.

A. Problem Formulation

We represent the ASFM problem as a factor graph [11]
(Fig. 3). A factor graph is a bipartite graph with two node
types: variable nodes that represent the poses xi and point
features lj to be estimated, and factor nodes that represent
odometry ui and point feature measurements mk. An edge in
the factor graph connects one factor node with one variable



Fig. 3: Factor graph representation of the acoustic structure from motion
problem. Variable nodes consist of the underwater vehicle poses xi and the
point features lj . The black dots represent factor nodes, which are derived
from odometry measurements ui and feature observations mk . The unary
factor p represents a prior on the first pose that defines the reference frame.

node. Here, almost all factors are binary, i.e. they connect
only two variables. Only one factor, p, is unary, and defines a
reference frame, eliminating otherwise unconstrained degrees
of freedom.

The factor graph captures the dependence structure of the
ASFM estimation problem. The goal of ASFM is to find the
maximum probability set of point features and vehicle poses
Θ = {xi, lj} given all measurements Z = {ui,mk}. The set
Θ∗ that satisfies this criteria is defined as

Θ∗ = argmax
x

p(Θ|Z)

= argmax
x

p(Θ)p(Z|Θ)

= argmax
x

p(x0)

m∏
k=1

p(mk|xik , ljk)

·
n∏
i=1

p(ui|xi−1, xi). (1)

Here we have used Bayes Theorem to obtain a maximum a
posteriori (MAP) solution for Θ∗. We have also exploited the
factorization defined by the factor graph, where each term in
Eq. (1) corresponds to one of the factors in Fig. 3.

B. Sonar and Odometry Models
To evaluate the probability of a sensor measurement for a

given variable configuration, we need to define a generative
sensor model. The generative model consists of a geometric
prediction given a configuration of poses and points, in
combination with a noise model. As is standard in the
literature, we assume a Gaussian noise model.

The generative model for odometry measurements is

g(xi−1, xi) +N (0,Λi) (2)

where g(xi−1, xi) predicts the odometry measurement be-
tween poses xi−1 and xi.

Similarly, we define the generative model for sonar mea-
surements by

h(xik , ljk) +N (0,Ξk) (3)

where h(xik , ljk) predicts the sonar measurement (ψ, r).
h(xik , ljk) first transforms the landmark ljk = (x, y, z) into
the sonar frame based on pose xik , obtaining the local
coordinates (xs, ys, zs). Bearing ψ and range r are then
obtained by

r =
√
x2
s + y2

s + z2
s (4)

ψ = atan2(ys, xs). (5)

C. Nonlinear Least-Squares

Under the assumption of Gaussian noise, the MAP prob-
lem of Eq. (1) simplifies to a nonlinear least-squares problem.
Here we use Mahalanobis distance notation defined as:

‖x‖2Σ = xTΣ−1x. (6)

The nonlinear least-squares problem becomes:

Θ∗ = argmin
x

[− log p(x0)

m∏
k=1

p(mk|xik , ljk)

·
n∏
i=1

p(ui|xi−1, xi)]

= argmin[
x

‖x0‖2Λ +

m∑
k=1

‖h(xik , ljk)−mk‖2Ξk

+

n∑
i=1

‖g(xi−1, xi)− ui‖2Λi
]. (7)

Here we have made use of the monotonicity of the logarithm
function.

We find an initial estimate for the feature points by
backprojection of the sonar measurements. We use the first
observation of each feature, consisting of a range r and bear-
ing ψ measurement. We apply the backprojection functionxsys

zs

 = r

cosψcosθ
sinψcosθ

sinθ

 (8)

where we set the unknown elevation angle θ to 0. The
sonar pose xik is then used to convert the point from
sonar Cartesian coordinates (xs, ys, zs) to world Cartesian
coordinates (x, y, z), which serve as initial guesses for the
3D position of the features.

Starting from this initial estimate, the nonlinear least-
squares problem is solved by iterative linearization. For
nonlinear measurement functions, nonlinear optimization
methods such as Gauss-Newton iterations or the Levenberg-
Marquardt algorithm solve a succession of linear approxima-
tions in order to approach the minimum. A brief overview
of the nonlinear least-squares solution is given below. For a
more detailed derivation, see [10]. At each iteration of the
nonlinear solver, we linearize around the current estimate Θ
to get a new, linear least-squares problem in ∆

argmin
∆

‖A∆− b‖2 , (9)

where A ∈ RM×N is the measurement Jacobian consisting
of M = 6n + 2m measurement rows, and ∆ is an N -
dimensional vector, where N = 6n + 3m. Note that the
covariances Σi, which represent covariances such as Λi and
Ξk in Eq. (7), have been absorbed into the corresponding
block rows of A, making use of

‖∆‖2Σ = ∆TΣ−1∆ = ∆TΣ−T
2 Σ− 1

2 ∆ =
∥∥∥Σ− 1

2 ∆
∥∥∥2

.

(10)
Once ∆ is found, the new estimate is given by Θ ⊕ ∆,
which is then used as the linearization point in the next



iteration of the nonlinear optimization. The operator ⊕ is
often simple addition, but for overparametrized quantities
such as 3D rotations, an exponential map is used instead
to locally obtain a minimal representation.

The minimum of the linear system A∆ − b is obtained
by Cholesky factorization. By setting the derivative in ∆
to zero we obtain the normal equations ATA∆ = ATb.
Cholesky factorization yields ATA = RTR, and a forward
and backsubstitution on RTy = ATb and R∆ = y first
recovers y, then the actual solution, the update ∆. See [11]
for an efficient incremental solution in a recursive setting.

D. Existence of Solution

We discuss under which conditions the system of equa-
tions is solvable by analyzing the number of feature points
that need to be observed to fully constrain the system.
Let n be the number of poses, and m be the number of
points to reconstruct. For every pose, there are 6 unknowns
(x, y, z, yaw, pitch, roll) and for every point there are 3
unknowns (x, y, z). The first pose is fixed using a prior, so
there are 0 degrees of freedom for the first pose. In case all
features are visible from each pose, there are 2n equations
for each point, and the system is fully constrained iff:

6(n− 1) + 3m ≤ 2mn (11)

Since we are not restricted to pairs of sonar views, our
simulated examples below use information from 3 sonar
viewpoints. From Eq. (11) we see that for 3 sonar views,
a minimum of 4 points are needed to fully constrain the
estimation problem. In our real sonar data below, features
from 5 poses are used; thus, a minimum of 4 points are
needed to make 3D reconstruction possible.

E. Degenerate Cases

As is the case for optical structure from motion, there are
situations in which a unique solution does not exist. We now
discuss three such cases that we have also included in the
next section’s simulation evaluation.

One of these cases is pure translation in the x-direction.
This scenario does not allow us to recover elevation of the
point features because the circular arc containing the set of
possible 3D points in the sonar geometry for the first pose
will intersect the circular arc of the same point seen in the
next pose, which differs only in x, at two points. These two
intersections cause an ambiguity in the elevation of the points
symmetric about the zero plane.

Another case is pure pitch rotation. Since all points lying
along a circular arc map to the same point in a sonar
image, all of the images from this case would be the same.
Consequently, we would not have enough information to
recover elevation. However, if the sonar pitched so much
that the vehicle would have to translate in the z-direction as
well to see the same scene, this motion would be able to
recover the points well because the overlapping arcs would
overlap in a small region.

The third situation that results in multiple solutions is pure
yaw and y-translation. Like the other two cases discussed, in

TABLE I: Simulated Data Experimental Design

Value
Number of Monte Carlo samples 1000
Orientation: stddev (rad) π

180
Translation: stddev (m) 0.01
Minimum range of sonar (m) 0.375
Maximum range of sonar (m) 9.375
Bearing FOV of sonar (degrees) 28.8
Elevation FOV of sonar (degrees) 28
Number of bearing bins 96
Number of range bins 512

this kind of trajectory, the elevation arcs would have a large
overlap region. The correct elevation of the feature point
could lie anywhere in this overlapping region.

IV. EXPERIMENTAL RESULTS

A. Simulation

We present statistical results for multiple types of vehicle
motion using simulated data. The simulation data was gen-
erated by selecting three sonar poses containing overlapping
regions in their fields of view and randomly creating 3D
points until at least 15 points were visible in all three sonar
frames. Gaussian noise was added to the bearing (σ = 0.2◦)
and range (σ = 0.005 m) components of the ground truth
sonar measurements. Similarly, Gaussian noise was added
to both rotational (σ = 1◦) and translational components
(σ = 0.01 m) of the odometry between consecutive poses.
The simulated sonar and environment specifications are listed
in Table I. Five different sonar trajectories were analyzed:

1) General Motion: In this trajectory, the sonar undergoes
an x, y, and z-translation as well as changes in yaw,
pitch, and roll.

2) Pitch + Z: To represent a well-constrained case,
we have the sonar go through purely pitch and z-
translation motion. This configuration is particularly
well-constrained because the different arcs along which
a point could lie intersect with very small overlapping
regions.

3) Forward Motion: One degenerate case is shown
through this trajectory of pure x-translation (2 m total).
For this motion, the arcs along which the points could
lie intersect in two regions, which creates an ambiguity
as to whether the point lies in an elevation above or
below the zero elevation plane.

4) Yaw + Y: Another degenerate case is explored using
a pure yaw and y-translation trajectory. The elevation
arcs in this case have a large overlapping region,
making the z-coordinate of feature points difficult to
recover accurately.

5) Roll: For this trajectory, the sonar undergoes pure
roll motion, 45◦ in total. This case is fairly well-
constrained because the motion rotates the elevation
arc about the actual elevation point.

We use Monte Carlo sampling to compare the variations in
recovered point features for each motion type. Each sonar
trajectory was simulated 1,000 times with the same 3D



2 3 4 5 6 7
−1

−0.5

0

0.5

1

1.5

X (m)

Z
 (

m
)

(a) General motion

4 5 6 7 8 9
−1.5

−1

−0.5

0

0.5

1

1.5

X (m)

Z
 (

m
)

(b) Pitch and z-translation

4 5 6 7 8 9 10
−3

−2

−1

0

1

2

3

X (m)

Z
 (

m
)

(c) Pure x-translation

4 5 6 7 8 9
−3

−2

−1

0

1

2

3

X (m)

Z
 (

m
)

(d) Yaw and y-translation

2 3 4 5 6 7 8 9 10
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

X (m)

Z
 (

m
)

(e) Roll

X Y Z
0

0.2

0.4

0.6

0.8

1

1.2

1.4

S
ta

n
d
a
rd

 D
e
v
ia

ti
o
n
 (

m
)

 

 

General Motion

Pitch + Z

X Translation

Yaw + Y

Roll

(f) Summary: Standard deviations

Fig. 4: Monte Carlo simulation results for the different motion sequences. (a-e) Cluster of point estimation results from 100 random noise trials of the five
different simulations. The black dots denote ground truth. (f) Standard deviation of the error for the recovered x, y, and z coordinates over 1000 Monte
Carlo simulations, clearly indicating degenerate motion cases for pure x translation as well as for yaw + y motion.

points and noise randomly sampled each time from the same
Gaussian distribution with µ = 0 and σ as described above.
The standard deviation for the recovered points for each case
over the 1,000 runs can be seen in Fig. 4f. The variation in
z is greater than the variations in x and y for all the cases
as expected. The ambiguity in elevation that is not resolved
from the information gained in the degenerate cases causes
the variation in z for those situations to be much greater than
the other two trajectories. Variations in x and y-coordinates
can be attributed to the optimization changing the odometry
slightly to meet the measurement constraints.

A visualization of the variation for each individual motion
provides further insights. The x, z-coordinate distributions
for 100 runs of each of the 15 points in each simulation are
shown in Fig. 4 with the ground truth marked for comparison.
Only 100 runs are shown to avoid cluttering the graph. As
seen by the thin bands, the elevation varies much more than
the x-coordinate for each point. Note also that the bands are
not vertical, but rather trace an arc, which is the elevation
arc along which all the points would map to the same point
in the sonar image. For the degenerate cases of pure x-
translation and pure yaw and y-translation, the symmetric
ambiguity about the zero plane is clearly seen. Points were
equally likely to appear at the correct elevation or at the same
elevation on the opposite side of the zero plane.

Another insight into how well-constrained a trajectory
and set of landmarks are is the number of Levenberg-
Marquardt (LM) iterations needed until convergence, and the

resulting residual. Over 1,000 simulations of each trajectory,
the general motion case converged in an average of 2 LM
iterations, the pitch and z case converged in an average of
2 LM iterations, and the pure x translation case converged
in an average of 74 LM iterations. The yaw and y example
converged in an average of 95 LM iterations and the roll case
converged in an average of 3 LM iterations. A representative
example of the residuals after each LM iteration for the
first three simulation trajectories can be seen in Fig. 5. The
residuals for the first two simulation cases started off high,
but quickly dropped after just one LM iteration to 46.5419
for the general motion case and 60.1548 for the pitch and
z case. This indicates that the cost functions for these two
trajectories are close to quadratic. The high number of LM
iterations needed for the pure x-translation trajectory, which
eventually reaches a residual of 33.2952, as well as the
yaw and y case implies that the optimization function is
not quadratic, but presumably close to flat in at least one
direction. The flatness is due to the degenerate geometric
configuration, which leads to much slower convergence.

The poses and overall error (geometric distance from
the estimated point to the true point) for each simulation
can be found in Table II. Note that the point errors for
fully constrained situations are less than 0.23 m and general
motion has the smallest geometric error of only about 0.11
m. The point errors are much larger in the degenerate
cases because the z-coordinates of the recovered points were
symmetric about z = 0. The odometry is recovered well,



TABLE II: Monte Carlo Simulation Results

General Motion Pitch + z x Yaw + y Roll
Feature mean error (m) 0.1090 0.1551 0.9425 1.0549 0.2266
Feature stddev (m) 0.0662 0.0888 0.8339 0.8120 0.1586
Pose 1 (m, m, m, rad, rad, rad) (0, 0, -1, 0, -0.4, 0) (0, 0, -2, 0, -0.4, 0) (0, 0, 0, 0, 0, 0) (0, 0, 0, 0, 0, 0) (0, 0, 0, 0, 0, 0)
Pose 2 (m, m, m, rad, rad, rad) (-1, 0, 0, 0, 0, 0.3) (0, 0, 0, 0, 0, 0) (1, 0, 0, 0, 0, 0) (0, 2, 0, -0.3, 0, 0) (0, 0, 0, 0, 0, 0.4)
Pose 3 (m, m, m, rad, rad, rad) (-0.5, 2, 2, -0.4, 0.4, 0) (0, 0, 3, 0, 0.5, 0) (2, 0, 0, 0, 0, 0) (0, 4, 0, -0.4, 0, 0) (0, 0, 0, 0, 0, 0.8)
Pose position mean error (m) 0.0144 0.0153 0.0133 0.0132 0.0103
Pose position stddev (m) 0.0062 0.0065 0.0062 0.0062 0.0052
Pose orient. mean error (rad) 0.0141 0.0135 0.0211 0.0239 0.0232
Pose orient. stddev (rad) 0.0082 0.0085 0.0097 0.0110 0.0102
Avg. number of LM iterations 2 2 74 95 3

(a) General motion and pitch + z

(b) x-translation

Fig. 5: Sample residuals for simulation data after each Levenberg Marquardt
iteration for a representative run of (a) the general motion case and the pitch
+ z trajectory and (b) the pure x translation case. The final residual for each
case is labeled. Iterations without a residual in (b) indicate a rejected LM
step due to an increase in error.

largely due to a good initial guess (perfect odometry with
added Gaussian noise (σ listed in Table I)). A promising
result is that the general motion simulation performs very
well, suggesting that ASFM could work well for inspection
and surveying applications.

B. Imaging Sonar Sequence

We demonstrate 3D structure recovery from several imag-
ing sonar frames recorded with an underwater robot. This
sequence of a ladder on a dock was taken on a Bluefin
Hovering Autonomous Underwater Vehicle (HAUV) (Fig. 6)
in Boston, Massachusetts. Five sonar frames were selected
from the dataset to perform ASFM, three of which can
be seen in Fig. 7. Corresponding features were manually
selected and matched from all five sonar frames.

The imaging sonar used is a SoundMetrics DIDSON 300m
forward-looking sonar. It has a ψmax = 28.8◦ bearing field
of view (FOV) and a 28◦ vertical FOV (using a spreader
lens). Note that the theory behind ASFM would not be
affected by a sonar with a narrower vertical FOV. The

only problem that may arise with a smaller FOV is that it
may be more challenging to find enough matching features
between sonar frames. The DIDSON discretizes returns into
w = 96 bearing bins and h = 512 range bins. The DIDSON
mode used for this dataset provides a minimum range of
rmin = 0.75 m and a maximum range of rmax = 5.25
m. Let (u, v) be the image coordinates of a feature in the
Cartesian sonar image, and γ be a constant describing the
number of pixels per meter in the Cartesian image. Then, the
bearing ψ and range r are obtained using:

γ =
w

2rmaxsin(ψmax

2 )
(12)

xs =
u− w

2

γ
(13)

ys = rmax −
v

γ
. (14)

r =
√
x2
s + y2

s (15)

ψ =
180

π
atan2(xs, ys). (16)

Next, we partition the sonar field of view into discrete range
and bearing bins and find the bins that contain the desired
point using the following expressions:

nr =
h(r − rmin)

rmax − rmin
(17)

nb = M4(w,ψ) (18)

where nb is the bearing bin, nr is the range bin, and
M4(w,ψ) is a third-order polynomial (with 4 coefficients
determined by w) given by the sonar manufacturer that
accounts for lens distortion.

The manually selected feature points were placed into the
factor graph optimization using the mapping described in
Eq. (13)-(18). Odometry readings from the vehicle were also
used in the optimization to further constrain the problem.
Because of the short time elapsed between the sonar frames,
drift in vehicle navigation is minimal, and the odometry
readings from the vehicle are very accurate. We chose uncer-
tainties of σ = 1◦ for odometry rotation and σ = 0.1 m for
odometry translation. For bearing and range measurements
from the DIDSON sonar we use σ = 0.2◦ and σ = 0.005 m
respectively.

Fig. 8 shows how the optimization reduces errors in the
location of the point features initially very quickly over a few
iterations. Near the minimum, each iteration reduces errors



Fig. 6: Bluefin Hovering Autonomous Underwater Vehicle (HAUV) used in
our real data experiments. The DIDSON sonar is pictured attached to the
front of the vehicle.

Fig. 7: Manually marked features (red circles) for three of the five raw
sonar frames that were used to reconstruct the ladder geometry.

more slowly. The final reprojection error is shown in the last
frame. Since no ground truth is available for this dataset, we
use reprojection error on the Cartesian image as one indicator
for ASFM’s performance. As seen in Fig. 8, each recovered
point is only off from the manually selected point by one or
two pixels. The optimization for this imaging sonar sequence
took 27 LM iterations and had an ending residual of 52.8032.

The 3D geometry of the ladder in the imaging sonar
sequence was recovered as shown in Fig. 9. Before opti-
mization, the ladder is initialized as a flat object lying in the
x−y plane. The structure in the x−y plane looks convincing,
but from the x−z view, it is clear that the initialization does
not capture the reality that the ladder’s rungs are at different
z elevations. An important note is that the Cartesian sonar
images are flipped up-down, meaning that the top of the
image is in fact at a lower elevation in the world than the
bottom of the image. Because the sonar is tilted down (about
15◦), the first returns encountered are from the top of the
ladder, while the last returns (top of the image) are from
a piling. The recovered structure of the ladder shows the
distinct ladder rungs. Without ground truth, it is difficult to
determine the geometric error between the recovered points

Fig. 8: Reprojection error for the last sonar frame (left) from initialization,
(center) after 5 LM iterations, and (right) after a solution was found (27
LM iterations). The red circles indicate the manually selected features and
the green circles indicate the reprojected features. The blue lines show the
reprojection error used in the ASFM optimization.
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Fig. 9: (a, b) Front and (c, d) top views of 3D ladder structure (a, c) before
and (b, d) after optimization from five imaging sonar frames.

and the true 3D points. Going off the assumption that the
steps are spaced evenly on the ladder, we can estimate our
maximum error to be about 0.2 m given that the top point
on the left side of the ladder is spaced about 0.2 m farther
than the spacing between the other points.



V. CONCLUSION

We have presented a novel algorithm for recovery of
3D point features from multiple sonar views, while also
constraining the poses from which the images are taken. In
contrast to previous solutions, we do not make any planar
surface assumption. Simulations of several types of sonar
trajectories show the ability of ASFM to recover 3D structure
with low uncertainty for general trajectories. They also show
a limitation of ASFM in its failure to recover elevation
of points for motions that provide poor constraints such
as in the case of pure x-translation. An experiment with
real sonar data and manually extracted feature points further
demonstrates ASFM’s 3D reconstruction capabilities.

From the imaging sonar sequence, we note that good
initialization is needed for reliable reconstruction. Conse-
quently, of great interest for future work is automatic feature
extraction and incremental data association. These problems
present several challenges, including the characteristically
low number of feature points in a sonar image and sonar’s
typical low signal to noise ratio. In addition, due to the
elevation ambiguity present in sonar, another challenge is
how to determine whether a point seen in one sonar image
is really the same point seen in another sonar image. For
instance, two different points on a vertical, arced object
would map to the same point if seen straight on, but would
map to two different points if seen from a non-zero yaw or
roll angle.

A possible solution to automatic data association is the
use of Joint Compatibility Branch and Bound [13], which
takes into account geometric relationships between feature
points and is computationally feasible for sonar where few
feature points are available. With data association, ASFM
becomes a potential method for registering loop closures and
improved navigation, even for AUVs whose primary motion
is in the forward x-direction. For such AUVs, the loop
closure trajectory will most likely not be a degenerate case,
making ASFM feasible. Further investigation is also needed
into different parametrizations with the goal of reducing
nonlinearity to improve convergence properties. Currently,
good initial pose estimates are needed to ensure convergence.
Future work also includes applying acoustic structure from
motion to side-scan sonar.

ACKNOWLEDGMENT

The authors would like to thank Dr. Jason Stack for his
support, Pedro Vaz Teixeira for recording the ladder sequence
and the anonymous reviewers for their helpful and detailed
comments.

REFERENCES

[1] H. Assalih, “3D reconstruction and motion estimation using forward
looking sonar,” Ph.D. dissertation, Heriot-Watt University, 2013.

[2] M. Aykin and S. Negahdaripour, “On feature matching and image
registration for two-dimensional forward-scan sonar imaging,” J. of
Field Robotics, vol. 30, no. 4, pp. 602–623, Jul. 2013.

[3] M. Babaee and S. Negahdaripour, “3-D object modeling from occlud-
ing contours in opti-acoustic stereo images,” in Proc. of the IEEE/MTS
OCEANS Conf. and Exhibition, Sep. 2013.

[4] N. Brahim, D. Gueriot, S. Daniel, and B. Solaiman, “3D reconstruction
of underwater scenes using DIDSON acoustic sonar image sequences

through evolutionary algorithms,” in Proc. of the IEEE/MTS OCEANS
Conf. and Exhibition, Santander, Spain, Jun. 2011.

[5] E. Coiras, Y. Petillot, and D. Lane, “Mutliresolution 3-D reconstruction
from side-scan sonar images,” IEEE Trans. on Image Processing,
vol. 16, no. 2, pp. 382–390, Feb. 2007.

[6] R. Hartley and A. Zisserman, Multiple View Geometry in Computer
Vision. Cambridge University Press, 2003, second Edition.

[7] F. Hover, R. Eustice, A. Kim, B. Englot, H. Johannsson, M. Kaess,
and J. Leonard, “Advanced perception, navigation and planning for au-
tonomous in-water ship hull inspection,” Intl. J. of Robotics Research,
vol. 31, no. 12, pp. 1445–1464, Oct. 2012.

[8] N. Hurtos, X. Cufi, Y. Petillot, and J. Salvi, “Fourier-based registra-
tions for two-dimensional forward-looking sonar image mosaicing,” in
IEEE/RSJ Intl. Conf. on Intelligent Robots and Systems (IROS), Oct.
2012.

[9] H. Johannsson, M. Kaess, B. Englot, F. Hover, and J. Leonard,
“Imaging sonar-aided navigation for autonomous underwater harbor
surveillance,” in IEEE/RSJ Intl. Conf. on Intelligent Robots and
Systems (IROS), Taipei, Taiwan, Oct. 2010.

[10] M. Kaess, A. Ranganathan, and F. Dellaert, “iSAM: Incremental
smoothing and mapping,” IEEE Trans. Robotics, vol. 24, no. 6, pp.
1365–1378, Dec. 2008.

[11] M. Kaess, H. Johannsson, R. Roberts, V. Ila, J. J. Leonard, and
F. Dellaert, “iSAM2: Incremental smoothing and mapping using the
Bayes tree,” The International Journal of Robotics Research, vol. 31,
pp. 217–236, Feb. 2012.

[12] S. Negahdaripour, “On 3-D motion estimation from feature tracks in
2-D FS sonar video,” IEEE Trans. Robotics, vol. 29, no. 4, pp. 1016–
1030, Aug. 2013.

[13] J. Neira and J. D. Tardos, “Data association in stochastic mapping
using the joint compatibility test,” IEEE Trans. Robotics and Automa-
tion, vol. 17, no. 6, pp. 890–897, Dec. 2001.

[14] B. Triggs, P. McLauchlan, R. Hartley, and A. Fitzgibbon, “Bundle
adjustment – a modern synthesis,” in Vision Algorithms: Theory and
Practice, ser. LNCS, W. Triggs, A. Zisserman, and R. Szeliski, Eds.,
vol. 1883. Springer Verlag, 2000, pp. 298–372.


