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Abstract
In this work, we address two current challenges in real-time visual-inertial odom-

etry (VIO) systems — efficiency and nonlinearity. To this end, we present a novel
approach to tightly couple visual and inertial measurements in a fixed-lag VIO frame-
work using information sparsification. To bound computational complexity, fixed-lag
smoothers perform marginalization of variables but consequently deteriorate accuracy
and especially efficiency. Current state-of-the-art approaches work around this by se-
lectively discarding measurements and marginalizing additional variables. However,
such strategies are sub-optimal from an information-theoretic perspective. In con-
trast, our approach formulates an optimization based on Kullback-Leibler divergence
to preserve most of the information. To validate our approach, we conduct extensive
real-time drone tests and perform comparisons to current state-of-the-art fixed-lag VIO
methods in the EuRoC visual-inertial dataset. The experimental results show that the
proposed method achieves competitive and superior accuracy in almost all trials.

In achieving a more efficient and accurate state estimator, the second part of the
work presents the on-going progress in formulating an optimization-based VIO sys-
tem using matrix Lie groups. Inspired by the recently developed Invariant-EKF frame-
work, the proposed framework presents better convergence and addresses the consis-
tency problem commonly seen in EKF-based and fixed-lag frameworks. In particular,
we provide detailed derivations of a novel IMU preintegration framework using the
group affine properties. Simulation results show our proposed formulation allows the
nonlinear optimizer to converge with significantly fewer iterations, as compared to the
state-of-the-art IMU preintegration scheme.
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Chapter 1

Introduction

1.1 Motivation

Existing and emerging technologies like mobile robotics and artificial intelligence will drastically
change how we live our daily lives. For example, autonomous cars will make transportation acces-
sible to everyone; service robots could improve the quality of children and elderly cares; agricul-
tural robots could increase general food production. With various possible applications, however,
all mobile robotics need to navigate through a known or unknown environment.

To navigate autonomously in an unknown environment, an intelligent mobile robot requires the
abilities to control, trajectory planning, obstacle avoidance, state estimation, and mapping, etc. Of
all mentioned, state estimation is the most vital part because it is the core to all the other algo-
rithms. For instances, a controller uses state estimates as feedback systems for feedback controls
[46]; a trajectory planner uses state estimates to plan shortest paths [19]; an obstacle avoidance al-
gorithm uses state estimates to calculate the relative positions of the robot and its obstacles [56]; a
mapping algorithm uses state estimates to build a consistent map of the surroundings [15]. Know-
ing the robot status from an accurate and robust state estimation algorithm enables robot operating
smoothly and correctly.

At its core, a state estimator provides information about a robot’s “states,” which definition de-
pends on the applications. In the context of robot navigation such as drone flying or autonomous
car driving, the robot states include but not limited to 3D position, orientation, and sometimes
linear and angular velocities. To estimate these quantities, a state estimator could utilize external
sensors systems such as VICON or OptiTrack [58] to provide accurate position information. How-
ever, relying on an external sensor system restrains the operational area because the fields of view
of these systems are fixed. On the other hand, a state estimator could fuse information from var-
ious onboard sensors such as global positioning system (GPS) receivers, cameras, lidars, inertial
measurement units (IMU), etc. For example, when a robot is operating in an outdoor environment,
its state estimator combines GPS with IMU to provide the location of a robot [28]. In an indoor
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and GPS-denied environments, the state estimator utilizes camera and lidar with IMU to calculate
the pose of a robot [9]. Often, when the problem of state estimation for robot localization joins
with mapping the environment, it is famously known as the simultaneous localization and mapping
(SLAM) problem [16]. SLAM is a large and on-going field of research in the robotics community,
however, this thesis focuses on the localization part of SLAM.

State estimators utilizing GPS signals are ubiquitous and well-developed. A simple example is
when a person uses his or her cellphone and Google Map to navigate through the complex envi-
ronment. However, the GPS signal easily gets shielded and undergoes multi-path reflections in an
urban or indoor environment such as in New York City or inside a tunnel. To account for these
problems, researchers have been looking for alternative solutions that utilize different onboard
sensors. In the recent years, along with the development of cameras and microelectro-mechanical
sensors (MEMS), much attention has been given to methods combining cameras and inertial sen-
sors for the complementary nature of their information. While inertial sensors are responsive
in short-term dynamic movements, cameras provide rich exteroceptive information for long-term
navigation. In particular, Visual-Inertial Odometry (VIO) has shown effectiveness in challenging
scenarios such as indoor and GPS-denied environments compared to previously existing methods.
The ability to navigate indoors is particularly important in applications such as search and rescue,
damage inspection, indoor exploration and mapping. In densely populated cities and natural envi-
ronments like forests, VIO could be used to better aid localization when combined with existing
methods that utilize GPS and other global reference points.

VIO is now widely used in technologies like virtual reality (VR), augmented reality (AR), au-
tonomous drone flying, an autonomous car driving to name a few. The current state-of-the-art VIO
for mobile robotics has demonstrated unprecedented accuracy in determining a robot’s position
and orientation using just cameras and IMUs. Couple example are OKVIS [48] and VINS-MONO
[59] However, these methods are still not perfect in providing the optimal solution from the in-
formation theoretical perspective. Often, these methods still fail in situations such as dynamics
robot maneuvers [9]. Therefore, there remain challenges ahead in achieving a “perfect” VIO state
estimator.

In this thesis, we take an in-depth and theoretical look at the VIO optimization algorithm that fuses
sensor information, and provides insights using information theory and differential geometry. We
also propose improvements upon the state-of-the-art methods. In the remainder of this chapter,
we discuss current challenges in modern VIO systems and summarize the remainder of this thesis
which details our contributions to address these challenges.

1.2 Current Challenges and Scope

Designing a real-time and robust VIO state estimator for mobile robots is challenging for the
following two reasons:

1. Limitations such as computational resources and energy capacity reduce computing power

2



available to run the algorithm.

2. Estimating orientation of a robot is complex because the mathematical functions and models
are highly nonlinear.

In considering efficiency, robustness, and accuracy with regards to the two challenges, typical
VIO systems employ either an extended Kalman filter (EKF) for or a graph-based optimization
algorithm to combine inertial information with existing visual odometry methods. Both kinds of
methods model the state estimation problem using Bayesian probabilistic theory and information
theory to deal with sensor noise. While an EKF is known for its efficiency, it is generally less
accurate for nonlinear estimation than an optimization approach [9]. However, an optimization-
based method is often expensive in computations. To combine the best of EKF and optimization-
based methods, in this thesis we focus on a fixed-lag smoothing VIO, which performs optimization
using graphical models on a fixed set of variables (optimization window). A fixed-lag smoothing
VIO is able to bound computational complexity while achieving better accuracy compared to an
EKF, as later shown in Section 4.

1.2.1 About VIO Efficiency

When performing an optimization-based VIO state estimation, like other general SLAM problems,
the optimizer exploits the sparsity of the mathematical model to solve the complex optimization
problem. This enables the state estimator to run in real-time. The sparsity comes from the assump-
tions of measurement independence (also called the Markov Assumption). The sparsity maintains
when the robot operates but the optimization problem gets larger when more sensor measurements
arrive.

In order to maintain a constant optimization window, a fixed-lag smoother performs marginaliza-
tion of variables by removing the oldest ones. Imagine at a given time, there is a set of variables we
would like to estimate, but estimating every variable is too expensive for the computer. Marginal-
ization is the process to eliminate a subset of variables for estimation to reduce the computation.
However, instead of simply discarding the variables, the optimization would consider the effects of
marginalized variables in the remaining set of variables. As state estimator runs, one could imagine
that the remaining variables accumulate more and more information from marginalizations and as
a result, the VIO system is densified. A densified system would cause the state estimator to run
increasingly slower.

Consecutive marginalization poses a major problem to a fixed-lag smoothing VIO system because
it reduces efficiency and can cause catastrophic failures to robot operation without providing timely
state estimation. The current state-of-the-art VIO solutions such as OKVIS [48] and VINS-MONO
[59] selectively discard measurements in order to avoid such issue. As opposed to existing meth-
ods, we propose a novel fixed-lag VIO system that performs sparsification in the first part of this
thesis. Our system provides a more information theoretically optimal way to reduce computation
in order to maintain efficiency.
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1.2.2 About VIO Nonlinearity

The marginalization process in a fixed-lag VIO not only reduces efficiency but also causes in-
consistency. A consistent state estimator does not underestimate the uncertainty of its solution,
which means the uncertainty captures the error between the groundtruth path and estimated path.
However, current literature has shown that marginalization potentially makes the state estimator to
wrongly estimate (underestimate) the uncertainty and therefore degrades the accuracy. Mathemat-
ically the problem stems from the nonlinearity of the state estimation problem, and affects both
EKF systems and fixed-lag smoothers [36].

When estimating a nonlinear system, iterative methods such as Gradient Descent or Gauss-Newton
[9] methods are employed. At each iteration, these methods first linearize the nonlinear problem
and evaluate the Jacobians using the linearization of the state variables (also called the linearization
points). Therefore, the Jacobian values depend on the state estimates. As the state variables get
updated, the linearization points also change. The problem arises when the optimization window
combines Jacobians based on previous linearization points and the updated ones. The combina-
tion of old and new linearization points was proven to greatly reduce the accuracy of the estimator
[36]. To address this issue, we propose an invariant optimization framework in the second part of
this thesis, following the recent publications on invariant EKF [4, 6]. We show that if we perform
state estimation on a different nonlinear space, the consistency issue can be eliminated, which pro-
vides better convergence and accuracy. In particular, we explore state estimation on matrix Lie
group, which considers the underlying mathematical geometry of the nonlinear problem and con-
nects optimization methods with differential geometry. We present an IMU preintegration method
on matrix Lie group based on [29], and show interesting characteristics such as faster optimiza-
tion convergence comparing to [29] while the Jacobians are independent of the state estimates.
However, the complete VIO system on matrix Lie group will be part of the future work.

1.3 Contributions and Organization

In this thesis, we focus on addressing the two challenges listed above by improving upon the state-
of-the-art VIO methods. First, we present a fixed-lag VIO system with information sparsification
that addresses the challenge of efficiency. We then formulate the state estimation problem using
group affine properties on matrix Lie group [4] and propose a novel IMU preintegration framework
using that property. The main contributions of this thesis are listed as follows:

• To the best of our knowledge, this is the first work employing sparsification in the context
of fixed-lag VIO to maintain sparsity while minimizing information loss. In this thesis, we
detail the derivation and design of our sparsification methodology, which retains the sparsity
and nonlinearity of the graphical model in the presence of marginalization.

• To evaluate the proposed VIO system, we conduct real-world experiments with our software
pipeline running onboard an Autel X-Star drone, and provide extensive comparisons of our
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approach to the current state-of-the-art fixed-lag VIO methods on the EuRoC visual-inertial
dataset [8] and simulated environment. Moreover, we provide a detailed run-time analysis to
demonstrate that the proposed VIO system is suitable for real-time application and suggest
ideas for further acceleration of the proposed algorithm.

• To the best of our knowledge, this is the first work employing the invariant framework in an
optimization-based VIO system. We formulate the IMU preintegration method on matrix Lie
group, based off the work of [29]. This thesis includes the derivations of IMU preintegration
measurement models, the jacobians, and covariance propagation using Lie Group theory.

• To evaluate the theoretical contribution, we conduct simulations to show that the proposed
IMU preintegration on matrix Lie group has better convergence characteristics compared to
the state-of-the-art from the GTSAM library [17].

The thesis is organized as follows. Chapter 2 discusses background and related work. We begin the
reviews by introducing existing VIO frameworks and their comparisons. We then delve into more
details for existing literature about the two topics covered by this thesis — efficiency and non-
linearity in VIO. Chapter 3 provides the math preliminaries for fixed-lag smoothing framework
using graphical model and optimization on manifold using Lie Group theory. Chapter 4 details
the derivations of our VIO system with information sparsification, including results from public
datasets, simulations, and real-time flight tests. In Chapter 5, we introduce the recently devel-
oped group affine system and detail the derivation of our IMU preintegration method using group
affine system. We then show simulated results and provide comparisons to the current GTSAM
implementations. Finally, Chapter 6 summarizes the thesis contributions and presents the on-going
future work.
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Chapter 2

Background and Related Work

The research of VIO belongs to the general SLAM problems, which has produced a vast amount
of literature in the last few decades. While EKF was traditionally used for the SLAM problem, the
probabilistic modeling of the SLAM problem has produced a more general graph-based formula-
tion using factor graph. Interested readers are referred to [16], which provides a detailed tutorial-
like introduction of SLAM using factor graph. In Chapter 3.1 we provide a broad overview of
performing state estimation using graphical models. In this chapter, we focus on the related work
of VIO specifically.

2.1 Visual Inertial Odometry (VIO)

Frontend
(Data Association)

Backend
(Optimization)

Loosely-Coupled: Visual Odometry

Tightly-Coupled: Visual Features

Camera 
Images

IMU 
Measurements

State 
Estimates

Figure 2.1: A general VIO system consists of a frontend model and a backend module. The frontend module pre-
processes images to output either visual features or visual odometry while the backend module performs joint opti-
mization with IMU measurements.

Existing VIO literature introduces various methods for combining visual and inertial data. In gen-
eral, all VIO algorithms consist of a frontend and a backend module as shown in Fig. 2.1. The
frontend component of a state estimator performs data processing of visual information from cam-
era or lidar. Depending on the frontend algorithms, there are both direct and indirect methods. For
example, Direct methods, such as LSD-SLAM [26], solve for camera transformation by minimiz-
ing the photometric error based on pixel intensity values. On the other hand, indirect methods like
PTAM [44] and ORB-SLAM [53, 55] compute visual features and associate the features across
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camera frames. Indirect methods then compute camera transformation using these features, hence
the name “indirect”.

Once the visual information is processed, either in the form of direct camera transformation or
visual features, the processed information is incorporated into the backend module in two ways.
A loosely-coupled system uses the frontend module such as PTAM [44] or DSO [24] to compute
visual data as odometry information [25, 45, 69]. The system then combines the odometry data
with inertial data to compute the joint solution. In contrast, a tightly-coupled system incorporates
computed visual features and inertial data in a single framework [29], [48, 54, 59, 64], which is
shown to be the more accurate approach [18, 48].

Either a loosely-coupled system or a tightly-coupled system can be further categorized into filtering-
based [7, 52, 70] and optimization-based methods [41, 48, 59, 64] depending on the backend solver.
Filtering-based methods, such as MSCKF [52], are computationally efficient; however, they are
known for accumulated linearization errors and inconsistency issues especially in highly nonlinear
systems [62]. Huang et al. [37, 38], Li et al. [49], and Hesch et al. [34] propose the First Esti-
mate Jacobian (FEJ) EKF and the Observability Constrained (OC) EKF to resolve such issues by
enforcing fixed linearization points. In contrast, optimization-based methods solve for the opti-
mal estimate by iteratively minimizing the measurement residual costs. In general, optimization-
based methods formulate the problem with a graphical model such as the factor graph, and utilizes
graphical model solvers for efficient optimization. They require more computational resources but
achieve higher accuracy. However, the sparse nature of VIO allows existing optimization-based
methods to utilize sparsity and apply efficient solvers such as iSAM2 [43], g2o [47], Ceres [1], and
SLAM++ [40] to achieve real-time performance.

Table 2.1: Categories of existing VIO methods

Frontend Backend Coupling
SVO-MSF (Faessler et al., JFR 2016) Indirect Filter-based Loosely-Coupled
MSCKF (Mourikis et al., ICRA 2007) Indirect Filter-based Tightly-Coupled
ROVIO (Bloesch et al., IROS 2015) Indirect Filter-based Tightly-Coupled
OKVIS (Leutenegger et al., IJRR 2015) Indirect Optimization-based Tightly-Coupled
VINS-MONO (Qin et al., arXiv 2017) Indirect Optimization-based Tightly-Coupled
SVO-GTSAM (Forster et al., TRO 2017) Indirect Optimization-based Tightly-Coupled
Proposed (Hsiung et al., IROS 2018) Indirect Optimization-based Tightly-Coupled

Our method, similar to [48, 59], focuses on the tightly-coupled fixed-lag smoothing framework,
which combines advantages from both filtering and batch optimization methods [20]. A fixed-lag
smoother maintains a bounded computational complexity by fixing the number of target variables
in the optimization window while allowing nonlinear optimization to solve for the optimal solution.
Table 2.1 summarizes the categories of current VIO systems and show where our proposed work
fit in the existing literature.

For more in-depth comparisons of current state-of-the-art VIO algorithms, readers are referred
to [18]. The paper provides a complete benchmark including root mean squared error (RMSE),
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memory usage, CPU usage, and computation time on a variety of hardware platforms for all the
open-source VIO systems (Fig. 2.2). From the result of the paper, it is clear to see that fixed-
lag VIO systems achieve the best accuracy of all and are able to run real-time with slightly more
computations than filtering-based methods.

Figure 2.2: This figure lists current available open-source VIO systems [Image credit: [18]].

2.2 Sparsification in Graph-based SLAM Framework

To be able to efficiently solve a graph-based optimization for SLAM, existing methods exploit its
sparsity in the information form [27, 30, 67]. Sparsity is an important property of a SLAM sys-
tem [16, 30], which both filtering-based methods and optimization-based methods benefit from.
For instance, Eustice et al. [27] and Thrun et al. [63] exploit the sparse structure and develop in-
formation filters to efficiently solve the landmark-based SLAM problem. Existing graph solvers
[1, 42, 43, 47] exploit sparsity for efficient optimization. In factor graph SLAM, the information
matrix specifies the weights and connectivity between variables [16]. However, as the optimiza-
tion window grows over time, a fixed-lag smoother needs to marginalize variables to maintain a
constant computational complexity [71].

Successive marginalizations create “fill-in”, additional non-zero entries in the otherwise sparse
information matrix, which significantly reduces computational efficiency [30]. To avoid such issue,
current state-of-the-art methods such as OKVIS [48] and VINS-MONO [59] 1) selectively discard
measurements for sparsity and 2) marginalize additional variables. From an information-theoretic
perspective, the information content of the optimization window is reduced and the marginalized
variables are no longer optimize-able. The solution to the consecutive optimizations will no longer
be optimal with respect to the original problem. As opposed to existing methods, our algorithm
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addresses the aforementioned issues by incorporating information sparsification to minimize the
information loss while maintaining sparsity.

Current literature in graph sparsification focuses on the context of large SLAM pose graphs because
sparsification originates from reducing the computation for large pose graph SLAM system [14,
22, 35, 39]. Wang et al. [68] formulate the sparsification problem by minimizing Kullback-Leibler
divergence (KLD) in a laser-based SLAM application. Carlevaris-Bianco et al. [10] propose a
generic linear constraint (GLC) which utilizes the Chow-Liu tree to approximate the information
of the Markov blanket. Our work follows Mazuran et al.’s Nonlinear Factor Recovery (NFR) [51],
which uses specified nonlinear factors to approximate the dense prior by KLD optimization. To our
knowledge, our work is the first to demonstrate online sparsification in a fixed-lag VIO framework.
We show that our methodology achieves state-of-the-art performance on a public test dataset and
is suitable for real-time state estimation.

2.3 Group Affine Property on Matrix Lie Group

To marginalize out old variables, a fixed-lag VIO system first linearizes state variables and uses
Schur-Complement to compute the resultant information. However, when this linearized infor-
mation is reintroduced back to the VIO graphical model, the combination of both previous lin-
earization points and the updated ones causes inconsistency of the state estimator [36]. Using
observability gramian, [36] has mathematically shown that a traditional EKF SLAM or a fixed-lag
smoother, when solving a highly nonlinear problem, becomes inconsistent because some Jacobians
in the system are dependent on the old linearization points. To account for the issue, First-Estimate
Jacobian fixed-lag smoothing was introduced by [38], which evaluates Jacobians with their respec-
tive linearization points. Huang et al. from [36] later proposes observability-constrained fixed-lag
smoother which evaluate Jacobians at the optimal state estimates that also satisfy observability
constraints.

Barrau et al. from [4], however, has provided a different insight on the consistency issue. The
authors discovered the Jacobian evaluations are the result rather than the cause of inconsistency
issue. They showed that the root cause of inconsistency is the space where the state estimation
is performed. Rather than estimate states on the Euclidean space, the invariant EKF framework
proposed by [3] estimates states on the manifold. Utilizing tools from differential geometry, the
same authors propose a general dynamic system in [4] that satisfies the group affine property. They
have shown the traditional state estimation on Euclidean space also satisfies such property.

The techniques of optimization on manifold have nice mathematical properties to solve rigid body
transformations because of its rotation representation on vector space. There are existing literature
such as [2, 29, 50] also performs state estimation on manifold. The state space in these works,
however, are on the Special Orthogonal Group (SO(3)) or the Special Euclidean Group (SE(3)).
The invariant framework by [12] expands the state space to a larger Lie Group, and apply optimiza-
tion on manifold to solve the consistency issue. This new insight has recently promoted numerous
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related work. For example, [32] uses invariant EKF along with contact sensors for bipedal robot es-
timation. [3, 72] has shown the invariant framework resolves the consistency issue in EKF SLAM
without using observability constraints. [33] has used the invariant framework to develop a VIO
system using EKF. To the best of our knowledge, the closest related work to ours is by [12]. The
author employs the invariant framework to the optimization-based method for factor graph. How-
ever, the author provides little evaluations and the results are shown using 2D navigation problems.

Our work is based on [29], where we formulate a collection of IMU measurements as one prein-
tegrated measurement. Different from [29]. we derive the preintegration using the group affine
properties and show that it possesses better convergence, by comparison, using simulated datasets.
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Chapter 3

Math Preliminaries

3.1 State Estimation using Factor Graph

When a robot travels in a trajectory, the onboard computer would obtain information from the time
synchronized sensors at constant time intervals (assuming the sensors are time-calibrated). As
shown in Fig. 3.1, the sensor information reflects the snapshots of the robot at that particular time
instants.

Figure 3.1: (a) shows that at constant time intervals, the robot obtains information that reflects the status of the robot
at that particular time instant. We could then collect all the sensor measurements in the timely manner and solve for
the discrete robot poses as shown in (b).

Following [16], we collect all the sensor measurements ordered by time, and utilize factor graph
to formulate the VIO problem. A factor graph is a bipartite graph that consists of variable nodes
and factors. Each variable node represents a state variable that we would like to estimate, and each
factor represents a measurement model that specifies the relationship between variables.

As a simple example, suppose we are interested in solving an autonomous drone taking off using
a pose graph (a factor graph with only poses as variables), each variable node is a discrete pose ξt
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at a time instant, and each factor represents pose-to-pose measurement model. A factor graph pro-
vides mathematical representations for the underlying probabilistic inferences, but also provides a
visualization for physical robot trajectories. The example pose graph shown in Fig. 3.2 describes
the relationship between physical visualization and a factor graph.

ξ1

ξ3

ξ4

ξ5

ξ2

State Variables
(Robot Poses)

(a)

ξ1

ξ3

ξ4

ξ5

ξ2

Factors
(Measurements)

(b)

Figure 3.2: These two figures illustrate using factor graphs to represent discrete robot pose. Each pose can be modeled
as a variable, and the pose-to-pose measurement such as odomety are factors that connect pair of poses. A prior is
given to the first pose to fixate the first pose to the origin.

In the physical world, however, sensor measurements are polluted by noises. To incorporate noise
in a measurement, we formulate a general measurement model of the form

z = h(x) + v, v ∼ N (0,Σ) (3.1)

where we assume the noise itself is a zero-mean Gaussian v with the standard deviation Σ. One
can perceive a factor graph as a collection of noisy measurements and itself a high-dimensional
Gaussian distribution. We can then solve the factor graph by formulating it into a maximum a
posteriori (MAP) problem commonly known in the statistics and machine learning communities.
That is, solving for the best state estimates that matche the observations. Following the previous
example in Fig. 3.2, the posterior can be represented by

ξ? = arg max
{ξ1,ξ2,...,ξk}

P ({ξ1, ξ2, . . . , ξk}|Z)

≈ arg max
{ξ1,ξ2,...,ξk}

P (ξ1)P (Z|{ξ1, ξ2, . . . , ξk}) (Bayes rule)

= arg max
{ξ1,ξ2,...,ξk}

P (ξ1)
∏

(i,j)∈Z

P (zi|ξi, ξj) (Markov assumption)

(3.2)

where Z = {z1, z2, . . . , zi} is the collection of all measurements, P (ξ1) is the prior probability,
and P (zi|ξi, ξj) is the pose-to-pose measurement.

Using Gaussian assumption, this can be reduced into a least-squares problem by taking the negative
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log-likelihood
ξ? = arg min

{ξ1,ξ2,...,ξk}
− log

[
P (ξ1)

∏
(i,j)∈Z

P (zi|ξi, ξj)
]

= arg min
{ξ1,ξ2,...,ξk}

‖r1‖2
Σ1

+
∑

(i,j)∈Z

‖rij‖2
Σz

(3.3)

where ri = zi−hi(x) denotes the difference between the measurement and predicted measurement
using the model, and ‖r‖2

Σ = r>Σ−1r denotes the Mahalanobis distance.

Depending on whether the problem is a linear or a nonlinear system, we can use solvers such as
sparse Cholesky for a linear system or iterative methods like Gauss-Newton to solve nonlinear
systems. Generally, the pipeline of solving a nonlinear factor graph is shown in Fig. 3.3.

System Model:

Linearize around the 
current state estimates

Optimization Solver:

Solve for update
(Taking a linear step)

Update state estimates

Nonlinear  Space Linear  Space

Group Affine System:

Log map

Optimization Solver:

Solve for update
(Taking a linear step)

Retraction

Lie Group Lie Algebra

Figure 3.3: The general optimization pipeline for an nonlinear factor graph is during each iteration, the system is
linearized around the current state estimates. The solver then solves for an update step. These two steps are repeated
until convergence.

3.2 VIO System Formulation

A general VIO system includes both information from inertial sensors and cameras. Below we
first introduce the IMU measurement model and camera projection model, and then describe the
overall factor graph structure for a VIO system.

3.2.1 Camera and IMU Measurement Models

For visual measurement, we use the standard pinhole camera projection model:[
u
v

]
=

[
fxXC

ZC
+ u0

fyXC

ZC
+ v0

]
(3.4)
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where lC = [XC , YC , ZC ]> = RC
W [XW , YW , ZW ]> + tCW is the 3D point of the feature after trans-

formed by the camera pose (RW , tW ).

For inertial measurements, we adopt the IMU model by [31, 57, 60]. A standard 3-axis IMU
measures the acceleration aB and rotation rate ωB of the sensor with respect to an inertial frame.
The measurements are affected by white noise η and slowly varying bias b:

ω̃B(t) = ωB(t) + bg(t) + ηg(t)

ãB(t) = RB>
W (t)(aW (t)− gW ) + ba(t) + ηa(t)

(3.5)

Since the bias changes over time, we will also include them as state variables to be estimated. We
then assume the measurement values remains constant between time interval ∆t and use the simple
Euler method (first-order hold) for integration. In considering real-time implementation, we adopt
the preintegration scheme by [29], where we accumulate multiple IMU raw measurement into a
meta-measurement called the IMU preintegrated measurement.

When fusing multiple sensors, one needs to account for the different operation rate of each sensor.
In the visual-inertial case, IMU measurements usually arrive in a much faster rate than camera
frames, and therefore the preintegration scheme 1) performs integrations on the local-robot frame
and 2) enables integrations of multiple inertial measurements to match the rate of the camera. This
allows more efficient optimization without re-integrating all measurements if the state estimates
change. The difference between regular IMU scheme and the preintegrated scheme is illustrated
in Fig. 3.4.

ξ

Imu
Camera

GPS 

ξξ ξ ξ ξ ξ ξ ξξ ξ ξ ξ ξ ξ ξ ξ

(a) Normal Imu Formulation

Preintegrated Imu
Camera

GPS 

ξ ξ ξ

(b) Preintegration Imu Formulation

Figure 3.4: This figure shows IMU takes data much faster than Camera and GPS. The blue factor on the top represent
visual odometry connecting two camera frames. (a) shows a pose graph incorporate normal IMU measurement as
individual measurement. The total number of state variables is large and each IMU measurement needs to be re-
integrate if the state estimates change. In contrast, the preintegration scheme in (b) proposed by [29] accumulates
multiple IMU measurements into one preintegrated measurement in the local frame. This enables the solver to solve
the VIO problem efficiently.

3.2.2 VIO Graph

There are generally two types of VIO factor graph structure depending on the coupling of frontend
and backend modules. However both in common are the variables include IMU states (pose ξ,
velocity v , IMU biases b), and visual landmarks in 3D.
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For a loosely-coupled system, the visual information is pre-processed into pose-to-pose odometry
information. Therefore, the graph resembles a pose graph, with only pose-to-pose measurement
models from IMU and visual odometry as shown in Fig. 3.5a.

The factor graph for a tightly-coupled VIO system is more complex. The structure of a tightly-
couple VIO factor graph is similar to that of a bundle adjustment problem, where landmarks are
directly connected to poses by visual measurements. Fig. 3.5b shows a simple VIO system that
includes both IMU states and landmarks.

Recently proposed by [29], instead of incorporating each landmark as a variable, the landmarks are
marginalized out and become smart factors that connect multiple poses. Therefore, each landmark
becomes just one factor. This method speeds up the optimization process since landmark variables
are eliminated from the state estimation.

ξ1

v1

b1

v2

b2

ξ2

v3

b3

ξ3

v4

b4

ξ4

v5

b5

ξ5

Bias random walk
Prior

Visual Odometry
Imu preintegration

(a) Loosely-coupled VIO

ξ2ξ1

v1

b1

v2

b2

v3

b3

ξ3

v4

b4

ξ4

l1 l2 l3 lm

v5

b5

ξ5

Bias random walk
Prior

Projection factor
Imu preintegration

(b) Tightly-coupled VIO

ξ2ξ1

v1

b1

v2

b2

v3

b3

ξ3

v4

b4

ξ4

Bias random walk
Prior

Smart factor
Imu preintegration

v5

b5

ξ5

(c) VIO with smart factors

Figure 3.5: The difference between a loosely-coupled VIO (a) and a tightly-coupled VIO (b) is how the graph in-
corporate landmarks. While loosely-coupled system incorporates only visual odometry, the tightly-coupled method
direcly incorporate landmarks as part of the state variables. (c) shows a recent propsed method using smart factors
[29], which treats each landmark as one factor rather than a variable.

3.3 Fixed-Lag Smoother Formulation

The difference between a general VIO system and a fixed-lag VIO system is the marginalization
step. A fixed-lag smoother bounds computation complexity by ensuring the optimization window
being a constant size. To do so, the fixed-lag smoothing VIO system marginalizes old variables
when new variables are added. Fig. 3.6a illustrates the concept of an optimization window in a
trajectory. A fixed-lag smoother only optimizes the variables in the window so the optimization
dimensionality never gets larger.

In addition, our fixed-lag formulation follows the idea of keyframe-based VIO, which is also im-
plemented in [29, 48, 59]. Keyframes represent camera frames that retain more information, such
as larger baseline or large number of distinct features.

In details, at each time w, our fixed-lag smoother optimizes a window of states :

Xw =
{
Kw,Fw,Lw

}
(3.6)
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where the set K = {K1, . . . , Km} contains m consecutive keyframes K; F = {F1, . . . , Fn}
contains n recent frames F ; L = {L1, . . . , Lp} contains p landmarks L.

For each frame Fi or keyframe Ki, the robot state xi is defined as:

xi =
[
ξ>i ,v

>
i ,b

>
i

]> (3.7)

where ξ ∈ R6 is the minimum representation of the 3D robot pose, v ∈ R3 the velocity, b =[
b>a ,b

>
g

]> ∈ R6 the IMU accelerometer and gyroscope biases. The measurements Zi associated
with each Fi or Ki consists of a set of q camera measurements Ci = {ci1, . . . , ciq} and a relative
or marginalized IMU measurement Ii between two consecutive frames or keyframes respectively.
We follow the IMU preintegration method [29] to generate the relative IMU measurement. The
marginalized IMU measurement is detailed in Section 4.2.1. We define each landmark Lj as a 3D
point l ∈ R3 in the world frame.

Using the factor graph formulation, we represent each measurement residual r as a factor in the
graph shown in Fig. 3.6.

K1

K2

Km

F1

F2

Imu preintegration
Camera projection

Optimization Window

Marginalized poses
Future (unknown) poses

Recent frames
Keyframes

(a)

ξ2ξ1

v1

b1 b2

v2 v3

b3

ξ3

v4

b4

ξ4

l1 l2 l3 lm

v5

b5

ξ5

m keyframes (n = 2) keyframes

(b)

Figure 3.6: This figure shows our keyframe-based fixed-lag VIO system. The shaded variable frames represent the
keyframes, while the transparent variable nodes are normal frames. Keyframes are more informative and provide
larger baselines. They also store distinct features as opposed to adjacent frames.

The two main types of factors are IMU preintegration factors and stereo projection factors. The
preintegrated IMU factor between xi and xi+1 allows efficient relinearization during optimization.
Its residual consists of three terms:

rIi =
[
r>∆ξi r>∆vi

r>∆bi

]>
(3.8)

where r∆ξij and r∆vij
and r∆bij

corresponds to the residuals of pose, velocity, and biases respec-
tively. Interested readers are referred to [29] for detailed derivations for IMU preintegration.

Given the states and the measurement residuals, the optimal solution for the fixed-lag VIO factor
graph is

X ?
w = arg min

Xw

∥∥r0

∥∥2

Σ0
+

∑
Zi∈{Kw,Fw}

(
‖rIi‖2

ΣIi
+
∑
cij∈Ci

‖rcij‖2
Σcij

)
(3.9)
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where r0 represent the prior residual, and the corresponding measurement covariances Σ0, ΣIi , and
Σcij . To solve the nonlinear SLAM problem, optimizers such as Dogleg and Levenberg-Marquart
iterate on the linearized cost of (3.9) with respect to δXw. At iteration k, the linearized residual of
IMU and camera measurements evaluate at the linearization point X̂ (k)

w are in the forms:

δX (k+1)
w = arg minδXw

∥∥r(k)
0 + δX0

∥∥2

Σ0
+
∑
Zi∈{Kw,Fw}

(
‖r(k)

Ii
+H

(k)
Ii
δXw‖2

ΣIi
+
∑

cij∈Ci ‖r
(k)
cij +H

(k)
Cil δXw‖

2
Σcij

)
(3.10)

where
ri

(k) = hi(X (k))− zi (3.11)

is the estimation error during k-th iteration, and

H
(k)
Ii

=
∂rIi
∂Xω

∣∣∣∣∣
Xω=X̂ (k)

ω

, H(k)
cij

=
∂rcij
∂Xω

∣∣∣∣∣
Xω=X̂ (k)

ω

(3.12)

are the IMU and camera measurement Jacobians. The optimizer solves for δX (k+1)
w and updates

the window iteratively:
X̂ (k+1)
w = X̂ (k)

w ⊕ δX (k+1)
w (3.13)

3.4 Optimization on Manifold

In (3.13), we use the notation⊕. The⊕ operator follows vector addition in Rn but it has a different
meaning if the state variable is on a different space. In this thesis, we focus on matrix Lie group
since it captures the underlying representation of 3D rotations. In matrix Lie group, the⊕ operator
indicates matrix multiplication such as SO(3) for rotation and SE(3) for poses.

3.4.1 Problem with Rotation

In general, we assume the state vector lies on a some n-dimensional Euclidean space Rn, and
therefore the optimization is performed on the space. However, when dealing with 3D rotation, it
is more complicated because a rotation doesn’t lie on the Euclidean space. Even though a rotation
matrix is 3×3 ∈ R3×3, but it does not capture nine degrees of freedom (DOF). In fact, a 3D rotation
matrix only captures three DOF. Similar in the 2D case, a 2 × 2 rotation matrix only captures 1
DOF. Therefore, mathematically we say a 3D rotation matrix lies on a 3-dimensional manifold
commonly known as the Special Orthogonal Group (SO(3)):

SO(3) = {R ∈ R3×3|R>R = I, det(R) = 1} (3.14)

The SO(3) manifold is the collection of all 3 × 3 rotation matrix, and its operations are different
than those used in the Euclidean space. For example, we cannot “subtract” two rotation as R1 −
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R2 6∈ SO(3) and most importantly, rotations are not communitive R1R2 6= R2R1. Besides SO(3),
another group commonly used in robotics [2, 13] is the Special Euclidean Group SE(3), which
represent a 4× 4 transformation matrix (pose). Without using vector operations, we can, however,
perform operations using matrix Lie group, which is a set of matrices that lie on a differential
manifold that has smooth operations [2, 13]. Smooth roughly means a small change in input to a
group operation will cause a small change in the output.

Optimization with rotations is tricky as shown in Fig. 3.7. Suppose the surface is the SO(3) space,
and the red line follows the true optimization path. If we do not obey the group law and arbitrarily
optimize a 3× 3 matrix, the solutions will not guarantee to be valid rotation matrices. That is, the
solution leaves the manifold surface and no longer satisfies some properties of the rotation matrix
(such as orthonormal) shown in the blue dotted line. In traditional methods of optimizing rotation
matrix, a projection step is required to bring the blue solution back to the manifold. However, this
requires an extra step and exhibits bad convergence properties. Since rotations belong to matrix
Lie group, we will derive proper optimization using tools from differential geometry to ensure the
optimization follows the manifold path.

Figure 3.7: When optimization with rotations, it is important to ensure the resultant matrix is a rotation matrix so the
solution lies on the manifold (red). However, we we arbitrarily optimize a 3×3 matrix, the solution will not guarantee
to be a rotation matrix (blue) and might be an invalid rotation matrix.

3.4.2 Matrix Lie Group - Lie algebra Correspondences

According to [2], a group G is a set of elements that follows a group law (eg. Matrix multiplica-
tion), and also satisfy four group axioms, namely closure, associativity, identity, and invertibility.
An Lie Group is a locally flat differential manifold, and it possesses the symmetric property. For
example, an earth is locally flat but it is a sphere, and a small rotation of a sphere looks like itself.
The most important concept of a Lie group, being locally differentiable, is the correspondence to
its Lie algebra g, which is the tangent space at the identity element (in n-dimensional matrix Lie
group, the identity is the n× n identity matrix).

The idea of Lie group-Lie algebra correspondence is a powerful one illustrated in Fig. 3.8

Visually, a Lie group can be seen as the folding of a flat surface, and every coordinate on the
manifold (orange) corresponds to exactly one point on the flat tangent space (blue). The origin of
the folding (tangent point) is the “identity” element of the manifold. This idea entails that whenever
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Figure 3.8: This figure shows the Lie group-Lie algebra correspondences. Every point on the orange manifold has
a correspondence to a point on its tangent space TG. The mapping from a manifold element to a tangent element is
through the exponential map.

we perform optimization on a Lie group, we can perform the same optimization using the linear
tangent space, and therefore convert a nonlinear problem into a linear one. Moreover, a point on
the tangent space g is a linear combination of the basis called the generators, and the coefficient of
the combination is called the chart. For example in SO(3), we can then represent any point on the
tangent space so(3) using the chart ω:

ω ∈ R3

ω1G1 + ω2G2 + ω3G3 ∈ so(3)
(3.15)

Therefore, the chart represents the minimum representation of the space (eg. R3 for 3D rotation),
and is the state space we will perform optimization on for rotation.

Figure 3.9: Illustration of matrix exponential and matrix logarithm.

The mathematical conversions between chart, Lie algebra, and Lie group shown in Fig. 3.9, where

[·]∨ : g→ Rm

[·]∧ : Rm → g

exp (a) : g→ G

log (a) : G→ g

(3.16)
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where we called exp (·) the exponential map, which takes an element of the tangent space to the
corresponding manifold space; log (·) the logrithm map, which is the inverse of the exponential
map. The “hat” [·]∧ operator takes an element of the tangent space to its chart, and the inverse for
“ve” operator. For mathematical derivation of these operators, readers are referred to [13, 21].

3.4.3 3D Rotation - Special Orthogonal Group SO(3)

For SO(3) specifically used in our work and by [29], the closed-form for each operation is given
by the closed-form [21]:

[ω]∧ =

ω1

ω2

ω3

 =

 0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

 ∈ so(3) (3.17)

exp([φ]∧) = I +
sin (‖φ‖)

[‖φ‖
[φ]∧ +

1− cos (‖φ‖)
[‖φ‖2

([φ]∧)2 (3.18)

log (R) =
A · (R−R>)

2 sin(A)
, A = cos−1(

Tr(R)− 1

2
) (3.19)

If we use small angle approximation to (3.18), we get

exp([φ]∧) ≈ I + [φ]∧ (3.20)

In general, exp ([(a+ b)]∧) 6= exp ([a]∧) exp ([b]∧), but the Baker-Campbell-Hausdorff (BCH) for-
mula can be used [2]. If b is small enough, however, we can use the first-approximation suggested
by [29]. Specifically, the first-order approximation can be made to these operations using the idea
of right Jacobian Jr of exponential map [13]:

Jr(φ) = I− 1− cos (‖φ‖)
[‖φ‖2

[φ]∧ +
‖φ‖ − sin (‖φ‖)

[‖φ‖3
([φ]∧)2 (3.21)

The idea of Jr relates small perturbation in the tangent space to the right multiplicative increments
shown in Fig. 3.10 As shown, the first-order approximation for exponential map is

exp ([φ+ δφ]∧) ≈ exp ([φ]∧) exp ([Jr(φ)δφ]∧) (3.22)

Likewise, we can utilize the Right Jacobian to perform the first-order approximation on the log
map as

log (exp ([φ]∧) exp ([δφ]∧))
∨ ≈ φ+ J−1

r (φ)δφ (3.23)

where

J−1
r (φ) = I +

1

2
[φ]∧ +

( 1

‖φ‖2
+

1 + cos (‖φ‖)
2‖φ‖ sin (‖φ‖)

)
([φ]∧)2 (3.24)

Using first-order approximation, our IMU preintegration formulation in Section 5 and the works
proposed by [29] is able to solve the mathematical equations in real-time.
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Figure 3.10: The Right Jacobian of the exponential map relates small increment in tangent space to multiplicative
increment on the manifold.

3.4.4 Uncertainty on SO(3) and Concentrated Gaussian Distribution

Using differential geometry tools introduced in Section 3.4.2, a Gaussian distribution can be de-
fined directly on the manifold as shown in Fig. 3.11. This allows the state estimation problem to
be formulated directly using Lie group, which will be important for the invariant VIO framework
presented in Section 5.

(a) (b) (c)

Figure 3.11: We can use the manifold tools to define a Gaussian distribution with mean X̃ on the manifold, and the
variance ε on the tangent space (a). This distribution is called the Concentrated Gaussian Distribution (CGD) [2]. (b)
and (c) show an example of CGD on the tangent plane and the manifold respectively.

Specifically, in matrix Lie group, there are both left multiplication and right multiplication depend-
ing on whether the noise is multiplied through the left or right of the group element:

Left Multiplication : X̂L = X̃ exp (ε), Right Multiplication : X̂R = exp (ε)X̃ (3.25)

The two formulations are slightly different and affects the mathematical derivations. Interested
readers are referred to [2] or [13] for details. In our formulation in Section 5, we use the left-
multiplication framework, which follows [29] but not [2].
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Chapter 4

Information Sparsification in Visual Inertial
State Estimation

In Section 3.2.2 and Section 3.3, VIO factor graph structures and the concept of a fixed-lag
smoother are introduced (Fig. 4.4a). Currently, there are several known drawbacks in a fixed-
lag framework (FEJ-FL) [36].

1. In order to bound computational complexity, a fixed-lag smoother marginalizes out variables,
which requires linearizing the system by fixing linearization points. As a consequence, it no
longer describes the original nonlinear optimization.

2. Marginalization limits the ability for the fixed-lag smoother to converge to the optimal solu-
tion in future optimizations because marginalized variables are no longer optimizable.

3. Consecutive marginalizations create a densely connected prior in the graphical model, which
significantly decreases computational efficiency.

To address these problems, in this section we detail our first main contribution: a novel information-
theoretic approach for a fixed-lag VIO system by online sparsification. The proposed method
maintains the original nonlinear VIO optimization while preserves most of the information and its
sparsity.

4.1 Problem Formulation

To bound computational complexity, a fixed-lag smoother marginalizes out selected states to main-
tain a fixed-size optimization window. Marginalization on the Gaussian distribution is typically
done by Schur complement on the linearized information matrix Λ, which corresponds to the in-
verse covariance, Λ = Σ−1.
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4.1.1 Information Matrix and Covariance Matrix

Remember when performing nonlinear optimization, at each iteration we linearized the VIO resid-
uals from (3.9) to below:

δX (k+1)
w = arg minδXw

∥∥r(k)
0 + δX0

∥∥2

Σ0
+
∑
Zi∈{Kw,Fw}

(
‖r(k)

Ii
+H

(k)
Ii
δXw‖2

ΣIi
+
∑

cij∈Ci ‖r
(k)
cij +H

(k)
Cil δXw‖

2
Σcij

)
(4.1)

Using the definition of the Mahalanobis distance from (3.3) and the symmetric property of mea-
surement covariance matrix, each residual ‖r(k) +HδX ‖2

Σ can be simplified to least-squares. This
is called the statistical whitening step, which corresponds to normalization of multivariate Gaus-
sian. ∥∥r(k)
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∥∥2
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(4.2)

We can then stack each linearized residual from (4.2) into a concatinated form of ‖AδXw + b‖2

shown in Fig. 4.1. Because of the Markov assumption, the stacked Jacobian matrix (and therefore
the A>A matrix) is inherently sparse. Tools such as sparse Cholesky, QR factorization can be
utilized to solve the normal equation (A>A)−1X (k+1)

w = A>b until convergence. The converged
estimates represents a high dimensional multivariate Gaussian distribution. The first moment is the
estimates itself, and the second moment is the inverse of linearized A>A matrix.
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Figure 4.1: This figure shows we could concatinate (4.1) into an AδXw = b form. (b) is a real example of a Jacobian
matrix of a VIO factor graph.

The A>A matrix is called the (Fisher) Information Matrix. To see the connection between a Fisher
Information matrix and a covariance matrix, we look at factor graph optimization as solving the
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maximum a posteriori. From statistical theories, the Fisher Information is the second derivative
of the log-likelihood with respect to the states, which tells us the curvature of the estimation. The
higher the information, the “sharper” the estimation is, which makes the solution more certain.
Therefore, the information matrix represents the inverse of covariance matrix.

4.1.2 Marginalization and Sparsity

In a multivariate Gaussian, a marginal distribution of a subset of random variables is the probability
distribution contained in this subset of variables. This is typically done by summing or integrating
the joint probability distribution over the marginalized variables. The covariance matrix already
specifies the marginals of each variable in the diagonal block.

As an example, suppose there is a bivariate Gaussian with the joint mean µα,β and joint covariance
matrix Σα,β we can represent the joint distribution as

µα,β =

[
µα
µβ

]
, Σα,β =

[
Σαα Σαβ

Σβα Σββ

]
α, β ∼ N (µα,β,Σα,β)

(4.3)

Suppose now we would like to marginalize α, the marginal distribution is simply β ∼ N (µβ,Σββ).
However, from Section 4.1, the optimization maintains the sparse information matrix Λ = Σ−1.
Instead of extracting the main diagonal matrix to the corresponding variable, we perform the Schur
Complement with the following formula:

Σα,β =

[
Σαα Σαβ

Σβα Σββ

]
=

[
Λαα Λαβ

Λβα Λββ

]−1

Σββ = Λ′−1
ββ = (Λββ − ΛβαΛ−1

ααΛαβ)−1

(4.4)

Marginalization reduces the dimensionality of the problem. Visually in Fig. 4.2, we can treat

(a) Uncorrelated α and β (b) Correlated α and β

Figure 4.2: This figure shows a bivariate Gaussian distribution and the marginal distribution in each axis. In (a), the
two random variables α and β are uncorrelated, meaning that the distribution of one does not depend on the other, as
opposed to the correlated case in (b).
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marginalization as a mathematical projection. The dimensionality is reduced by projecting the
distribution to the axis of remaining variables. In our example, the distribution is project to the β
axis. In fact, the equality between shur-complement marginalization and null-space projection in
SLAM is presented in [71].

In a high dimensional Gaussian, the correlation between variables (off diagonal blocks of the
information matrix) affects the correlation of the resultant distributions shown in Fig. 4.3. In this
3-variable example, we look at three different cases, with their corresponding information matrix
at the bottom of each graph. The marginalization is perform on Z, so we look at the blue resultant
distribution in the X − Y plane. In Fig. 4.3a and Fig. 4.3b, because there is no correlation term in
the Z−Y block, the resultant distribution shows X and Y are independent. However, in Fig. 4.3c,
even if originally there is no correlation between X and Y , but because the Z − Y cross term, the
resultant variable is dense.

It means that the cross term relates the entries of marginalized variables into the resultant matrix
and transfers the information. Mathematically from (4.4), the cross term affects the sparsity of the
resultant information Λ′ββ . This example explains two very important concepts about marginaliza-
tion in a factor graph:

1. While the dimensionality is reduced through marginalization, the the resultant information
matrix will no longer be sparse. In a factor graph, it means the resultant factor will be
connecting to more variables defined by the cross terms.

2. Only variables that are correlated to the marginalized variables get effected by marginaliza-
tion.

Marginalize Z Marginalize Z Marginalize Z
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(a) X,Y, Z are independent
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(c) X − Z, Y − Z are dependent

Figure 4.3: This figure illustrate the effect of marginalization to the sparsity of the resultant information, which is
largely determined by the off-diagonal blocks. In this case, we are marginalizing Z, and the resultant blue X − Y
distribution is either correlated or not, depending on the Z − Y off-diagonal term. This tells us that marginalization
can potentially result a dense information matrix.
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4.1.3 Marginalization in Fixed-Lag VIO

In a VIO factor graph such as Fig. 4.4a, the information matrix is much larger. The cross terms
relating the marginalized variables to the remaining variables only has non-zero terms defining
by the measurement Jacobians. These are variables nodes that are incident to the marginalized
variables. Therefore, when performing marginalization, we only need to consider the specific set
of variables called the Markov blanket (X(MB)). We denote the Markov Blanket information matrix
as Λ(MB). In Fig. 4.5a, the red variables and factors show an example of the Markov blanket with
respect to the marginalized robot states of keyframe Kk−m.

Λ(MB) is constructed by the measurement Jacobian in the Markov blanket:

Λ(MB) = H>0 Σ−1
0 H>0 +H>Ii Σ

−1
Ii
HIi +

∑
cij∈Ci

H>cijΣ
−1
cij
Hcij (4.5)

Note that Λ(MB) is sparse and its entries correspond to the connectivity in the graph. Define XR ∈
X(MB) the remaining states, and XM ∈ X(MB) the marginalized states, we can perform Schur-
Complements on XM :

Λ(MB) =

[
ΛXRXR

ΛXMXR

ΛXRXM
ΛXMXM

]
Λt =ΛXRXR

− ΛXRXM
Λ−1
XMXM

ΛXMXR

(4.6)

where Λt is the target information corresponding to the dense resultant matrix (prior). Marginal-
ization degrades the algorithm efficiency as the factor graph loses its sparse structure. To cope
with such issue, keyframe-based VIO methods such as OKVIS [48] and VINS-MONO [59] selec-
tively discard measurements to maintain sparsity during marginalization. For landmarks that are
not observed by the recent frames, they are marginalized altogether with the marginalized robot
states. It is important to note that such marginalize strategies while maintaining efficiency, poten-
tially lose the capabilities re-estimating the positions of the landmarks and therefore become less
accurate. This motivates the main contributions of our work in minimizing information loss during
marginalization.

4.2 Sparsification in VIO

4.2.1 Marginalization Strategy

Shown in Fig. 4.4a, the proposed method maintains n recent frames, and m keyframes. When
a new frame Fi enters the window, we check whether frame Fi−n is a keyframe to select the
following midframe marginalization or keyframe marginalization strategy. In order to enforce
consistency, we adopt the First-Jacobian Estimate method from Dong-Si et al. [20] by using the
prior linearization points when corresponding measurement Jacobians are first evaluated.
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(a) (b) (c)

Figure 4.4: (a): The proposed fixed-lag VIO factor graph. Each camera frame corresponds to a robot state is x =
[ξ>, v>, b>]>, where ξ ∈ R6 is the minimum representation of the robot pose. v ∈ R3 is the velocity. b ∈ R6 is
the IMU bias. The l’s are the visual landmark variables. Measurement factors are represented by solid black circles,
including prior factors, IMU factors, and stereo projection factors. (b): Suppose we define the recent frame window
size n = 2. When a new frame Fi arrives (green), the proposed algorithm looks at frame Fi−2 being a keyframe
(shaded circle), or a regular frame (transparent circle). In this case, Fi−2 is not a keyframe, the proposed method
employs midframe marginalization including only the IMU constraints while discarding all visual measurements. (c):
If Fi−2 frame is a keyframe, the proposed method employs keyframe marginalization with sparsification. It includes
all variables and measurement information in the Markov blanket (in red).

Midframe Marginalization

Fig. 4.4b shows an example of the midframe marginalization strategy. Follow both OKVIS and
VINS-MONO on midframe marginalization, we discard all projection factors but only include
inertial constraints. This is to keep sparsity but also avoid repeated observations on the landmarks
when the robot is stationary. The resulting factor is a marginalized IMU measurement that connects
to the two corresponding robot states.

Keyframe Marginalization

Fig. 4.4c shows an example of the keyframe marginalization strategy. If frame Fi−n is a keyframe,
we perform marginalization on the oldest keyframe at Kk−m and landmarks that are only con-
nected to the frame. Unlike existing methods, the rest of the landmarks are preserved during the
marginalization step, so that they remain in the optimization window for further nonlinear updates.
The result is a dense prior connecting to the next state and all the landmarks defined by the Markov
blanket. The blue prior factor in Fig. 4.5b shows an example connectivity of this prior. In the
real system, the associated information Λt can be large as shown in Fig. 4.7a, which significantly
reduces computational efficiency. However, keeping landmarks as variables in the optimization
window allows further nonlinear updates for subsequent optimizations to reach the optimal so-
lution. To reintroduce sparsity to the graph, our method applies sparsification to the dense prior
information.
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(a) (b) (c) (d)

Figure 4.5: (a): The proposed method first calculates the Markov blanket information Λ(MB) from the oldest keyframe.
(b): The new target information is then calculated by methods such as Schur-Complement. The resultant matrix
corresponds to a dense prior factor that connects to every variables in the Markov blanket. (c): Given Λt, we employ
sparsification with the designed nonlinear factor topology, which we will recover the corresponding information Λr for
each measurement. (d): The proposed method re-insert the sparsified topology back to the original fixed-lag window,
which retains sparsity and structural similarity.

4.2.2 Information Sparsification

The dense prior information Λt defines a multivariate Gaussian p(Xt) ∼ N (µt,Λt), with the mean
equals to the current linearization point Xt of the Markov blanket. We use the global linearization
point for the Markov blanket since global priors are included in the marginalization.

Our method first specifies a factor graph topology T for the Markov blanket, which induces a
sparsified distribution ps(Xt) ∼ N (µs,Λs). We follow NFR [51] to recover the approximate dis-
tribution such that the KLD from ps(Xt) to p(Xt) is minimized:

DKL(p(Xt)‖ps(Xt)) =
1

2

(
〈Λs,Σt〉 − log det(Λs) + ‖Λ

1
2
s (µs − µt)‖2

2 − d
)

(4.7)

where Σt = Λ−1
t .

PDF

KLD

Target Info
Approx Info

(a)

PDF

KLD

Target Info
Approx Info

(b)

Figure 4.6: Illustration of KL-Divergence minimization in both mean ((a)) and covariance ((b)). The goal is to
minimize the integral curve (KLD) to match the sparsified distribution in blue to the original one in red.

For each factor in T , one must define the measurement zs, the measurement model hr and the
measurement covariance Σs = Λ−1

s , such that zs = hr(µs) + v, v ∼ N (0,Σs). First, we set
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the measurements zs of each factor to be the expected measurement considering the current state
estimate zs = hr(µt) since it induces approximate distribution µs = µt which minimizes (4.7).
Next we look explain the definition of the measurement models. Section 4.2.3 details the method
to recover Λr for every measurement.

(a) (b) (c) (d)

Figure 4.7: The diagram illustrates the sparsity of the corresponding matrix in pairs of images. (a) is the target
information from the Markov blanket. (b) is the measurement Jacobian matrix corresponding to (4.10). (c) is the
sparsified information corresponding to (4.11). (d) is the recovered measurement information corresponding to (4.10).
In each image pair, the left image, the height in the 3D bar graph represent the magnitude of the log absolute value.
The corresponding right image shows the informative entries above 10−5 threshold.

To design the topology, we consider that 1) Λs should best approximate Λt and 2) T maintains the
sparsity of the graph for future optimizations and 3) T retains structural similarity to the original
graphs. Because of the structure of the Markov blanket in our VIO formulation, the most informa-
tive entries of Λt (see Fig. 4.7a) are located at the main diagonal blocks and off-diagonal entries
corresponding to robot state and landmarks. In Fig. 4.4 where we marginalize keyframe Kk−m
in the example, the corresponding topology is shown in Fig. 4.5b. The topology consists of inde-
pendent unary prior factors and binary relative measurement factors. The dense prior information
always include the remaining robot state xR corresponding to frame Kk−m+1 and all the landmarks
LR = {lp ∈ Xt} .

Denote RR the rotation, and pR the translation of the pose represented by ξR. We design two types
of nonlinear topological measurement models to encapsulate the most informative entries in Λt.
The first is the individual priors for the robot state xR,

hr(ξR) = ξR, hr(vR) = vR, hr(bR) = bR (4.8)

and the second is the relative pose-to-landmark measurement model

hr(ξR, lp) = R−1
R (lp − pR), ∀lp ∈ Xt (4.9)

To construct the sparse information Λs of the topology using (4.8) and (4.9), we first define Hr and
Λr as

Hr =


...

H
(j)
r
...

 , Λr =


. . . 0

Λ
(j)
r

0
. . .

 (4.10)
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where H(j)
r and Λ

(j)
r are the Jacobian and the unknown information matrix of the j-th nonlinear

topological measurement model. An example of Hr is shown in Fig. 4.7b. Then Λs can be written
as,

Λs = H>r ΛrHr (4.11)

The independent nonlinear topological measurements ensure Λr to be block-diagonal, which can
be recovered as described in the following section.

4.2.3 Topology Measurement Covariances Recovery

With Λt and Hr provided, one can formulate a convex optimization based on KLD to recover the
information Λr from (4.10) [51][22]:

min CKL = 〈H>r ΛrHr,Σt〉 − log det(H>r ΛrHr)

s.t. Λr � 0, Λr is block diagonal
(4.12)

Typically this constrained optimization requires either Interior Point methods (IP) or limited-
memory Projected Quasi-Newton (PQN) [61] and the recently proposed Factor Descent Algo-
rithm [65]; however, PQN is only super linear convergence while IP method requires Hessian.
Both methods are costly in terms of computational resources. Because our measurement model
always provide a full-rank and invertible Jacobian matrix Hr, we are able to solve for (4.12) in
closed-form:

Λ(i)
r =

(
{HrΣtH

>
r }(i)

)−1 (4.13)

where (·)(i) denotes the i-th matrix block. The solution from (4.13) is unique and optimal by the
convexity of (4.12). The proof is shown in [51] by examining the gradient of (4.12):

∂CKL

∂Λ
(i)
r

=
{
Hr[Σt − (H>r ΛrHr)

−1)]HT
r

}(i)

=
{
HrΣtH

T
r −HrH

−1
r Λ−1

r H−>r HT
r

}(i)

=
{
HrΣtH

>
r − Λ−1

r

}(i)

(4.14)

Since (4.12) is an instance of MAXDET problem [66], the optimal solution is given by the suffi-
cient and necessary condition for (4.14) to be 0.

Fig. 4.7c shows the recovered sparse information Λs, where each block corresponds to a nonlinear
topological measurement. Our method then replaces the original dense prior Λt with sparsified
topology T shown in Fig. 4.5d. The updated smoothing window from (3.9) now includes the
sparsified measurement residuals rs with the corresponding covariance Σ

(i)
r = Λ

(i)−1
r .

33



4.3 Experimental Results

4.3.1 Implementation

We implement our method in a complete VIO pipeline that includes a visual frontend that matches
stereo features, and a backend optimizer. The visual frontend implementation using OpenCV
follows the typical pipeline of Shi-Tomashi Corner detector and KLT optical flow tracking for both
temporal and stereo images. We implemented a Levenberg-Marquart optimizer and a factor graph
based fixed-lag smoother using the GTSAM library [17]. All experiments are run on an Ubuntu
desktop with Intel i7-6700 @3.40GHz CPU.

(a) (b)

(c) (d)

Figure 4.8: (a) Our custom built Autel X-Star Premium drone and DJI M100 (b) with the visual-inertial payload. It
consists of two uEye UI-3241LE-M-GL cameras running at 10Hz and a synchronized Epson G364 IMU running at
250Hz. (c) An outdoor data sequence with the proposed algorithm running onboard. The corresponding stereo images
are shown above the trajectory. The total distance is approximately 48m with the final drift 0.55m (1.11% error). (d)
A walk through of 4th floor Newel Simon Hall of Carnegie Mellon University. The total distance is approximately
170m, with the final drift about 0.3m (0.17% error)

4.3.2 Real-time Hardware Test

We have demonstrated our algorithm running real-time onboard using a custom built Autel X-
Star Premium drone as shown in Fig. 4.8a. The visual-inertial payload includes two uEye UI-
3241LE-M-GL cameras recording at 10Hz and a synchronized Epson G364 IMU recording at
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250Hz. Fig. 4.8d shows a trajectory walking through the Newell Simon Hall of Carnegie Mellon
University. The total length of the sequence is≈170 meter with the final position drift of 0.3 meter
(0.17% error). We have also tested the proposed algorithm outdoor. One such example is shown in
Fig. 4.8c. The total distance traveled is ≈48 meter with the final drift of 0.55 meter (1.11% error).
For visualizations, we have included a link to a video showing the proposed algorithm running
onboard with dynamic motions and trajectory plots.

Figure 4.9: The figure shows the trajectories of the proposed method and the groundtruth on EuRoC Vicon Room 2
dataset [8]. The result shows the proposed algorithm achieves highly accurate state estimation in real-time.

4.3.3 Public Test Dataset

We evaluate the proposed method using the EuRoC visual-inertial dataset [8] by the metric of the
Absolute Trajectory Error (ATE). ATE indicates the global consistency of the estimated trajectory
by comparing the absolute distance to the ground truth.

ATE =

√√√√ 1

n

n∑
i=1

‖trans(X i
gt −X i

est)‖2

The EuRoC dataset is recorded by a VI sensor with synchronized 20Hz stereo images and 200Hz
IMU data. The dataset consists of three major sets of trajectories, Machine Hall (MH), Vicon
Room 1 (V1), and Vicon Room 2 (V2), which vary in smooth and aggressive motions in large and
small indoor environment. The V1 and V2 dataset present motion blur and lighting change that
produce challenges to the state estimator.

We compare our method against stereo OKVIS [48] and monocular VINS-MONO [59], which
are the state-of-the-art fixed-lag VIO systems. The loop-closure and online calibration of VINS-
MONO functionality are deactivated to compare pure odometry performance. We have included
ROVIO [7] to compare fixed-lag VIO approaches with a filtering-based approach. Lastly, to our
best knowledge, we implemented OKVIS’s marginalization strategy using our GTSAM frame-
work. This is to directly compare the proposed algorithm with OKVIS’s marginalization strategy
by standardizing the frontend visual module, since OKVIS’s frontend module utilizes its backend
information for robustness. All results are generated offline in order to ensure the results are the
comparison of pure accuracy.
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Table 4.1: Root-Mean-Square ATE (meter) on the EuRoC Dataset

MH V1 V2
01 easy 02 easy 03 medium 04 difficult 05 difficult 01 easy 02 medium 03 difficult 01 easy 02 med.

Proposed 0.059 0.060 0.099 0.238 0.187 0.060 0.094 0.257 0.080 0.212
OKVIS 0.160 0.106 0.176 0.208 0.292 0.050 0.061 0.127 0.055 0.081
OKVIS (ours) 0.182 0.144 0.278 0.310 0.401 0.272 0.292 0.353 0.153 0.270
VINS-MONO 0.284 0.237 0.171 0.416 0.308 0.072 0.120 0.159 0.058 0.097
ROVIO 0.354 0.362 0.452 0.919 1.106 0.125 0.160 0.170 0.220 0.392
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Figure 4.10: The diagram shows the comparison of the proposed method against other state-of-the-art algorithms on
the EuRoC datasets [8]. Each color represents the result of an algorithm specified by the legend on the top right.
The bar value specifies the Root-Mean-Square Error (RMS) on the Absolute Trajectory Error (ATE) matric in meter.
Overlaying on each bar, there is an error bar that shows the mean and the standard deviation (Std) of the ATE.

The ATE result is shown in Table. 4.1, and to better visualize we include a bar graph in Fig. 4.10.
The result illustrates our proposed method outperforms the existing methods in four out of five tri-
als in the MH dataset, and achieves comparable results in most of the V1 and V2 datasets. However,
in V1 03 difficult and V2 02 medium datasets, the proposed method results in errors significantly
larger than those from OKVIS and VINS-MONO. In both cases, the dynamic lighting change has
caused the stereo camera images vary in grayscale. Consequently it significantly decreases the per-
formance of our frontend matching algorithm. The sudden loss of visual information has caused a
discrepancy in the state estimate. However, prior to the loss of features, our method out performs
the existing method. It is important to note that both OKVIS and our proposed algorithm fail in
running the V2 03 difficult dataset because of the motion blur. Both our frontend modules have
failed to matched stereo features and the state estimate eventually diverges. One idea is to compute
both sparse features and direct photometric odometry to handle the blurry images.

4.3.4 Run-time Analysis

To demonstrate that our algorithm is appropriate for real-time application, we conduct time pro-
file on the proposed method on the EuRoC dataset with 300 feature cap. The result is shown
in Fig. 4.11 and Table. 4.2. The statistics illustrate that the factor graph optimization maintains
around 0.02 to 0.05 second and is independent of the difficulty of the dataset. This is expected as
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Table 4.2: Run Time Analysis on the EuRoC Dataset

Optimization Marginalization
Mean (s) RMSE (s) Std (s) Mean (s) RMSE (s) Std (s)

M
H

01 easy 0.054 0.066 0.039 0.248 0.308 0.182
02 easy 0.043 0.051 0.027 0.230 0.279 0.158
03 medium 0.053 0.064 0.037 0.151 0.211 0.147
04 difficult 0.034 0.042 0.024 0.088 0.129 0.094
05 difficult 0.040 0.048 0.026 0.115 0.163 0.115

V
1

01 easy 0.021 0.025 0.016 0.018 0.031 0.026
02 medium 0.023 0.026 0.012 0.020 0.029 0.021
03 difficult 0.021 0.026 0.015 0.015 0.034 0.031

V
2 01 easy 0.027 0.033 0.018 0.039 0.062 0.049

02 medium 0.016 0.017 0.006 0.009 0.013 0.010
03 difficult X X X X X X

(a) (b)

Figure 4.11: (a): The execution time of proposed algorithm over keyframe ID. The optimization time is in blue, and
the marginalization time is in red. (Left) MH 02 easy dataset. (Right) V1 02 medium dataset. (b): (Left pair) The
run-time analysis boxplot of the proposed algorithm on MH 02 easy dataset. On the left is the breakdown of total
optimization and marginalization time. On the right is the detail time spent for marginalization only. As shown, the
marginalization time is mostly spent on recovering the measurement covariances. (Right pair) The same run-time
analysis on the V1 02 medium dataset.

the fixed-lag smoother retains a constant size optimization window. The time spent on sparsifica-
tion, however, varies across datasets but remain bounded through the sequence. From Fig. 4.11a, it
is shown that the total marginalization time, including sparsification, per frame is correlated with
the number of features being optimized. In fact, in the MH 02 easy dataset, our method spends
more time in marginalization than in the harder V1 02 medium dataset.

We have also time profiled each step in the sparsification pipeline shown in Fig. 4.11. It is important
to note that the majority of time is spent on recovering the measurement information using (4.13).
However, there is a significant room for improvement in the implementation, as (4.13) is clearly
highly parallelizable, although we do not take advantage of that here. Furthermore, one can also
postpone sparsification step depending on computational resources as shown in [22].
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Chapter 5

Toward Invariant VIO on Matrix Lie Group

IIn this chapter, we examine another challenge of modern state estimation algorithms - Nonlinear-
ity. With the presence of 3D rotations, current VIO optimization no longer lies on the Euclidean
space but on a manifold (eg. SO(3) explained in Chapter 3.4). An iterative solver is required to
solve the nonlinear problem by linearizing the cost function in each iteration. In addition, an EKF
and a fixed-lag smoother marginalize out state variables to reduce the dimensionality of the state
space. The general pipeline is shown in Fig. 3.3

Not only does marginalization decrease system efficiency as shown in Chapter 4, but also create the
well-known consistency issue if not dealt with correctly. An inconsistent state estimator is proven
to present poor accuracy and fail to fuse measurements correctly. This could lead to divergence as
shown in Fig. 5.1.

Groundtruth
Consistent Estimator
Inconsistent Estimator

Figure 5.1: This figure shows an example of a consistent estimator and an inconsistent estimator. In the consistent
case, the covariance estimate captures the error between the estimated path and the groundtruth. In the inconsistent
case, the covariance ellipse is underestimated (overconfident). As a result, the accuracy is deteriorated.

The current state-of-the-art VIO systems require artificial remedies to cope with inconsistency.
Our formulation, OKVIS [48] and VINS-MONO [59] employ the First-Estimate-Jacobian (FEJ)
method. Another option for a better result is the Observability-Constrained (OC) Fixed-lag smoother
[36]. These methods have proven by [62], [37, 38], [49], and [34] to outperform standard EKF
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and fixed-lag smoother. First-Estimate-Jacobian is an easy and quick fix, however, it has major
disadvantages:

1. The linearization points used for Jacobian calculations are suboptimal, which can potentially
create large linearization error.

2. The state variables affected by fixed linearization points are no longer optimizable.

Furthermore, FEJ also affects the previously proposed method using sparsification because the
reinserted nonlinear factors are evaluated at the suboptimal linearization points. In the following
sections, we investigate the recently developed group affine property used in the Invariant EKF
[4], which has shown to solve the consistency issue without additional steps. We also present our
formulation for a novel IMU preintegration model based on the theory. As part of the on-going
future work, we would like to derive a complete fixed-lag VIO based on the group property. To
our knowledge, this is the first work to formulate IMU preintegration and a fixed-lag VIO system
using such property.

5.1 Problem Formulation

After a marginalization step, a fixed-lag VIO factor graph would include both nonlinear factors and
a linearized prior (dense or the sparsified ones) as shown in Fig. 4.5b and Fig. 4.5d. The Jacobian
for the prior factors is created based on the old linearization points while the states are continu-
ously updated. The combination of “old” and “new” Jacobians causes inconsistency because some
unobserved state space is wrongly updated [36]. The observability property of the state estimator
is violated.

5.1.1 Local and Global Measurements

To understand system observability, we first look at two types of measurements in a usual SLAM
system – local and global measurements. A local measurement is with respect to the local robot
frame, such as visual and odometry measurements. This type of measurement does not provide
any global (usually the earth) information. In contrast, GPS and absolute pressure measurements
are considered global because the measurement provides information about the global status. A
typical SLAM system can include both local and global measurements. A VIO system in particular
directly obtains global roll and pitch angles because of IMU and gravity alignment.

5.1.2 Consistency and Observability

Mathematically, [37, 38], [49] have shown there are four unobserved spaces (nullspace) using
Observability Gramian, which provides a system’s observability characteristics. It means that a
transformation in any of the four spaces does not affect the cost function and the state estimates.

40



(a) x shift (b) y shift (c) z shift (d) yaw shift (e) Local frame

Figure 5.2: There are four unobserved spaces in a 3D VIO as shown in this figure. It means that from local information,
a VIO system cannot determine the global x, y, z and yaw direction. The local frame remains the same as shown in
the right-most figure. However, global roll and pitch can be determined because of IMU and gravity alignment.

These four spaces are global yaw and 3D global translation as shown in Fig. 5.2. In the figure,
a robot (blue dot) is moving along a path (blue line), and at some point observes a landmark
(red). All four transformations are perceived the same in the local frame because the z axis always
aligned with gravity. However, if the roll or pitch changes, the cost increases since the gravity is
not aligned with IMU anymore.

However, when traditional EKF-based methods and fixed-lag smoothers propagate and marginal-
ize variables, the Huang et al.’s notice that the nullspace of Observability Gramian decreases. The
global yaw direction, even if it is unobservable, is somehow updated and its uncertainty is under-
estimated. This leads to an inconsistent state estimator which significantly affects its accuracy.

As an example in Fig. 5.3, suppose we are estimating a nonlinear function (such as a SLAM prob-
lem) with nonlinear nullspaces shown as the yellow dotted line in the left-most graph. Any solution
along the nullspace is an optimal solution since the curve represents the minimum. However, we
look at the case when we solve the function with Jacobians evaluated at two linearization points
(cross and circle). The middle two graphics show during one optimization step, if we linearize
the function at two different points, the cost functions looks different. If we solve the problem
individually, this creates no problem because iteratively we can reach the minimum. However, if
we combine the Jacobians evaluated at two linearization points, the combined cost function looks
something like the right-most graph. Notice the nonlinear surface becomes very different from the
original (left-most). More importantly, the nonlinear nullspace has disappeared and we become
more certain about our solutions being in the middle region.

Fig. 5.3 illustrates one important characteristic about marginalization and a fixed-lag smoother:
after marginalization, a fixed-lag VIO combines factors that evaluated at different linearization
points. This lead to solution space being reduced and affect system outputs. From the perspective
of observability in a nonlinear state estimation problem, combining different linearization points
in the presence of nonlinear nullspace reduces its nullspace dimension. It means that through the
propagation of the linearized equation, we artificially gain information on unobserved space such
as the global yaw direction in the case of traditional EKF and a fixed-lag smoother.
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Figure 5.3: This figure illustrates an example showing when combining two different linearization points (green and
red), the nonlinear nullspace (yellow dotted line) could disappear. This leads to inconsistency for an EKF-based and
fixed-lag smoothing-based state estimator.

5.1.3 Existing Methods for Consistency

Current solutions, proposed by [37, 38, 49], look at the Jacobians (thus information) matrix in a
fixed-lag VIO system shown in Fig. 4.1. Specifically, we split all measurement factors Z into ones
that are adjacent to the marginalized variables ZM and those that do not ZR, such that ZM ∪ZR ∈
Z . At time step k′, we look at the information matrix of a batch MAP estimator and a fixed-lag
smoother which is detailed in [36].

In the batch MAP estimator, we sum up all the factors according to (3.3), the information matrix
denoted by Ab at time k′ is constructed in the similar way as (4.5) and (4.6):

Ab(k
′) =

∑
zij∈ZM

H>ij(k
′)R−1

ij Hij(k
′) +

∑
zij∈ZA

H>ij(k
′)R−1

ij Hij(k
′) +

k′∑
κ=1

Φ>κ (k′)ijQ
′−1
κ Φκ(k

′)

(5.1)
which can be partitioned into blocks

Ab(k
′) =

Amm(k′) Amr(k
′) 0

Arm(k′) Arr(k
′) Arn(k′)

0 Anr(k
′) Ann(k′)

 (5.2)

notice that every Jacobian H’s are evaluated at the latest state estimate k′. In contrast, if we look
at a fixed-lag case, where ZM are evaluated at the state estimates from 0 : k:

Ab(k
′) =

∑
zij∈ZM

H>ij(k)R−1
ij Hij(k) +

∑
zij∈ZA

H>ij(k
′)R−1

ij Hij(k
′)+

m−1∑
κ=1

Φ>κ (k)ijQ
′−1
κ Φκ(k) +

k′∑
κ=m

Φ>κ (k′)ijQ
′−1
κ Φκ(k

′)

(5.3)
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which can be partitioned into blocks

Ab(k
′) =

Amm(k) Amr(k) 0
Arm(k) Arr(k) 0

0 0 0

+

0 0 0
0 Arr(k

′) Arn(k′)
0 Anr(k

′) Ann(k′)


=

Amm(k′) Amr(k
′) 0

Arm(k′) Arr(k) + Arr(k
′) Arn(k′)

0 Anr(k
′) Ann(k′)


(5.4)

The problem is the boxed block, where two different linearization points are used to evaluate the
same nonlinear function (similar to Fig. 5.3.

The current literature suggests two methods to tackle the problem:

1. The First-Estimate-Jacobian requires the boxed term Arr(k
′) to Arr(k), which forces factors

connected to variables adjacent to the marginalized variables to use the “old” state estimate.

2. As opposed to using the oldest linearization points, the Observability-Constrainted method
performs an extra optimization, which selects the best linearization points that simultane-
ously satisfy the observability constraints:

arg min
χ?
R,χ

?
N

‖χ?R − χ̂R(k′)‖2 + ‖χ?N − χ̂N(k′)‖2

subject to A(k′)N(k′) = 0
(5.5)

where N is a designed choise that defines the desired nullspace with correct dimension.

5.2 Group Affine Property and Invariant Smoothing

As shown in Section 5.1.2, combining Jacobians with different linearization points causes incon-
sistency and as a consequence, a nullspace disappears. Recently, however, [4] has suggested that
while Jacobians are the problems of inconsistency, state space representations and error function
definitions have similar effects. Bonnabel et al. propose an Invariant EKF framework that fixes
inconsistency by defining state estimation on a different state space.

For conventional EKF and fixed-lag methods, the optimization state space is often in the Euclidean
space with rotation being in the SO(3) manifold. The nonlinear factors and their error functions,
therefore, are defined on the Euclidean space and are dependent on the linearization points. Re-
cently, [3] have shown that 1) if the state space and its uncertainty are represented on a general
manifold (eg. matrix Lie group), and 2) the system satisfies the group affine property, then the
consistency problem can be fixed. As a key result from [4], they have shown that the error prop-
agation is exact linear to the first-order by utilizing the Lie group-Lie algebra correspondence
(Section 3.4.2). The invariant framework presents the following benefits:
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1. The Jacobians no longer depend on the state estimates (linearization points), but rather,
some linear function of the measurements themselves. In others words, after marginalization
steps, the Jacobians automatically account for the nonlinear space change, and the original
nullspaces are preserved.

2. Error propagation is linear, and thus linearization points do not affect the cost function such
as in the case of Fig. 5.3.

While the group affine property is shown in both continuous and discrete systems, in this thesis
we focus on the discrete system only. The property for continuous systems is detailed in [4]. For
the following sub-sections we start by introducing general dynamic systems using abstract groups,
and specifically in the case of matrix Lie group and the group affined property itself.

5.2.1 Linear Systems on Groups

In general, a diecrete linear systems on Rn is defined as

xn+1 = Fnxn + an

yn = Hnxn
(5.6)

The estimation error between measured state x and estimated x̂ is

en+1|n = xn+1 − x̂n+1|n = Fnxn − Fnx̂n|n = Fnen (5.7)

and because the linear matrix Fn, the error propagation is autonomous, meaning that it does not
depend on state estimate but only the past errors. We would like to utilize matrix Lie group-Lie
algebra to achieve similar property in a nonlinear system. First, following [5], we define a general
system dynamics by substiting Euclidean operations with group operations:

xn+1 = Aut(xn) · an
yn = xn ? bn

(5.8)

where

1. ”·” is a group law satisfies Associativity, Identity and Inversion.

2. Aut(xn) is a group automorphism such that Aut(a · b) = Aut(a) · Aut(b), and Aut(a−1) =
Aut(a)−1

3. ”?” represents group action such that ∀a, b,∈ G,∀y ∈ Y , a ? (b ? y) = (a · b) ? y.

In our case when we use matrix Lie group, the group law is matrix multiplication, and group action
is matrix-vector product.

Now with group operations, we define the error function in group using left-invariant error x̂−1x
as opposed to the right- invariant error xx̂−1. Both are shown to be equivalent but math derivations
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will be different. With left invariant error definition, we can achieve an autonomous error function
following:

en+1 = x̂−1
n+1 · xn+1

= [Autn(x̂n) · an]−1 · [Autn(xn) · an]

= a−1
n · Autn(x̂n)−1 · Autn(xn) · an

= a−1
n · Autn(x̂n

−1xn) · an
= a−1

n · Autn(en) · an
= In−1

an (φn(en))

(5.9)

where In : x 7→ g · x · g−1 is a group inner automorphism.

5.2.2 Group Affine Dynamics and Properties

The key to exhibit autonomous error propagation is the factorization of the linear map, such as Fn
in (5.6) and Aut(xn) in (5.8). To summarize the group dynamics, we can treat the propagation of
state as some combined automorphism ψ:

xn+1 = ψn(xn) (5.10)

For an autonomous error propagation, it is required that

x̂−1
n+1 · xn+1 = ψ(x̂n)−1 · ψ(xn) = µ(x̂−1

n · xn) (5.11)

where µ is also an automorphism of a group.

[4] have shown that having autonomous error properties ensure the specific dynamics system called
the group affine dynamics, which follow below definitions.
Definition 1:

∀x1, x2 ∈ G : ψ(x1 · x2) = ψ(x1)ψ(Id)−1ψ(x2) (5.12)

Definition 2:

∀x1, x2 ∈ G : µ(x−1
1 x2) = ψ(x1)−1 · ψ(x2) (5.13)

5.2.3 Application to Matrix Lie Group

So far, the derivation of the general linear system has been using an arbitrary abstract group. In our
application, we focus on the matrix Lie group and utilize the Lie group - Lie algebra correspon-
dence. First, we can represent error en using a linear error ξn on the tangent space:

en = exp (ξn)) (5.14)
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Substituting en with exp (ξn)) and applying to (5.14) and (5.9), the Lie group-Algebra correspon-
dence allows us to represent µ with an Adjoint map of Lie group:

µ(exp (ξ)) = exp (Aξ) (5.15)

This property ensures that by formulating the state space using matrix Lie group with group affine
dynamics, the new error becomes a linear function of the previous error.

5.2.4 Invariant Smoothing

When performing nonlinear optimization on factor graph, we could utilize the group affine dynam-
ics to achieve autonomous error propagation. Because of the Lie group - Lie algebra correspon-
dences, we can find a mapping between the nonlinear and linear space by utilizing exponential
and log map, as opposed to Fig. 3.3. This enables the optimizer to perform linear updates in a
nonlinear space, but the Jacobian will be independent of the state estimates and thus eliminate the
consistency issue. The new pipeline for invariant smoothing can be shown in Fig. 5.4:

System Model:

Linearize around the 
current state estimates

Optimization Solver:

Solve for update
(Taking a linear step)

Update state estimates

Nonlinear  Space Linear  Space

Group Affine System:

Log map

Optimization Solver:

Solve for update
(Taking a linear step)

Retraction

Lie Group Lie Algebra

Figure 5.4: The Lie group - Lie algebra correspondence enables the conversion between linear and nonlinear space
exactly. Therefore, the Jacobian automatically takes into account the geometry of the nonlinear space, and thus solve
the consistency issue.

5.3 IMU Preintegration using Group Affine Property

A VIO system also follows group affine dynamics as shown in [5]. Instead of employing First-
Estimate Jacobian to solve the consistency issue, we would like to formulate the VIO system using
the group affine property. In this thesis, we propose a novel IMU preintegration method following
[29] but formulate the error function using such property. We then compare our formulation against
[29] to show that our formulation exhibit faster convergence.
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5.3.1 IMU Preintegration Dynamics

Following the IMU propagation model from [29], our proposed method utilizes discrete integration
as opposed to the continous one by [23]. We assume that between time t and t+∆t, the acceleration
aW and rotation rate ωW measurements remain constant. This is called the zero-order hold for
discrete-time approximation:

R(t+ ∆t) = R(t) exp(ωW∆t)

v(t+ ∆t) = v(t) + aW (t)∆t

p(t+ ∆t) = p(t) + v(t)∆t+
1

2
aW (t)∆t2

(5.16)

Now substitute the raw IMU measurements, ãB(t) and ω̃B, for ωW (t) and aW (t) from (3.5), we
obtain:

R(t+ ∆t) = R(t) exp((ω̃(t)− bg(t)− ηg(t))∆t)
v(t+ ∆t) = v(t) + g∆t+ R(t)(ã(t)− ba(t)− ηa(t))∆t

p(t+ ∆t) = p(t) + v(t)∆t+
1

2
g∆t2 +

1

2
R(t)((ã(t)− ba(t)− ηa(t))∆t2

ba(t+ ∆t) = ba(t) + ηba

bg(t+ ∆t) = bg(t) + ηbg

(5.17)

However, as shown in Section 3.2.1, conventional IMU integration used in factor graphs are slow
and inefficient. Instead, using IMU preintegration, we accumulate all IMU measurements between
two visual measurements of time k = i and k = j. We also assume the IMU is synchronized with
the camera and every two IMU measurement are ∆t apart. The preintegration scheme is modeled
as

Rj = Ri

j−1∏
k=i

exp((w̃ − bgk − η
gd
k )∆t)

vj = vi + g∆tij +

j−1∑
k=i

Rk(ãk − bak − ηadk )∆t

pj = pi +

j−1∑
k=i

vk∆t+
1

2
g∆t∆tij +

1

2

j−1∑
k=i

Rk(ãk − bak − ηadk )∆t2

baj = bai + ∆tηba

bgj = bgi + ∆tηbg

(5.18)

To avoid recomputing the preintegrated measurement when state estimates change, we also adopt
the local preintegration method by eliminating gravity and constant velocity effect. This is to keep
a relative IMU measurement ∆Xij constant in the presense of optimization. However, with the
presense of time-varying bias, IMU measurements also vary. To account for bias, [29] suggested
the use of first-order-approximation for measurement bias correction. Instead of recomputing the
integral, we have ∆Xij ⊕ ∂∆Xij

∂b
when the bias is updated.
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5.3.2 State Representation

Using the IMU preintegration dynamics introduced in Section 5.3.1, we will now formulate the
model using group affine property as shown in (5.10). We first represent each IMU state Xi from
(3.7) into an element of matrix Lie group G in the form of

Xi =


Ri vi pi 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 I3×3 bai bgi
0 0 0 0 1 0
0 0 0 0 0 1

 =


Ri

vi
pi
bai
bgi


G

(5.19)

With group affine property, the idea is to compute the propagated IMU state Xj by some automor-
phism of Xi and an IMU delta measurement ∆X ′ij . This is to follow the equation form in (5.8).
However, to eliminate the effect of gravity and constant velocity, we also introduce an group ele-
ment gi and an automorephism φ′i. Using the definition of inner automorphism, we finally get the
IMU state propagation with:

Xj = ψi(Xi)
= φi(Xi) ·∆Xij
= [gi · φ′i(Xi) · g−1

i ] · [gi ·∆X ′ij]
(5.20)

where gi and φ′i are:

gi =


I

g∆tij
1
2
g∆t2ij

0
0


G

, φ′i(Xi) =


Ri

vi
pi + vi∆tij

bai
bgi


G

(5.21)

With (5.20) and (5.21), it is easily proven that the IMU dynamics on matrix Lie group agrees with
(5.18):

Xj = φi(Xi) ·∆Xij

=


Ri

vi + ∆tij(I −Ri)g
pi + vi∆tij + 1

2
∆t2ij(I −Ri)g

bai
bgi


G

·



j−1∏
k=i

exp((w̃ − bgk − η
gd
k )∆t)

j−1∑
k=i

∆Rik(ãk − bak − ηadk )∆t+ g∆tij

j−1∑
k=i

[
∆vik∆t+

1

2
∆Rik(ãk − bak − ηadk )∆t2

]
+

1

2
g∆t2ij

0 + ηbad

0 + ηbgd


G

(5.22)
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5.3.3 IMU Preintegration Measurement Model

Before defining an IMU preintegration factor used in a factor graph, it is necessary to extract the
accurate statistics of zero-mean Gaussian noise parameters from (5.22). The noise model is impor-
tant for factor graph optimization because the uncertainty decides the weights of a measurement. In
our proposed work, we use the left-invariant error model and represent the noise parameters on the
chart (and therefore, Lie algebra). We also use the approximation for the exponential map as [29]
instead of the definition for efficiency. This enables us to use the representation with Concentrated
Gaussian distribution introduced in Section 3.4.4.

To extract the noise δXij for a preintegrated measurement ˜∆Xij , we define the left invariant error
as:

exp(δXij) = ∆X ′−1
ij

˜∆X ′ij =


∆R′ij exp(δφij)

∆v′ij + ∆R′ijδvij
∆p′ij + ∆R′ijδpij

ηbad

ηbgd


G

, δXij =


δφij
δvij
δpij
ηbad

ηbgd


G

≈ N (0,Σij)

(5.23)
The detail derivations of δφij, δvij, δpij is given in Appendix A.1.

5.3.4 IMU Preintegration Factor

Combine the group affine system in (5.20) and the noise model in (5.23), we can now define IMU
preintegration factor using group affine property and matrix Lie group:

Xj = ψi(Xi)
= φi(Xi) ·∆Xij
=
[
φi(Xi) · ˜∆Xij

]
exp(δXij)−1

= ψ̃i(Xi) exp(δXij)−1

(5.24)

Notice that in our formulation, the measurement is ψ̃i(Xi) and the prediction is simply Xj as
opposed to the pure relative IMU measurement from [29]. The factor residual rI is therefore

rI = ψ̃i(Xi)−1Xj

=


(Ri

˜∆Rij)
>Rj

(Ri
˜∆Rij)

>(vi − vi)

(Ri
˜∆Rij)

>(pj − 1
2
vi∆t)δpij

0
0


G

(5.25)
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In order to solve for the state update ξi and ξj , we linearize the residual at each iteration by exploit-
ing the Lie group - Lie algebra correspondence. Moreover, we use the group affine property (5.12)
and (5.15) to obtain an autonomous Jacobian:

Xj = ψ̃i(Xi) exp(δXij)−1

exp(−δXij) = ψ̃i(Xi)−1Xj
= ψ̃i(X̂i exp(ξi))

−1(X̂j exp(ξj))

(5.12)
=
[
ψ̃i(X̂i)ψ̃i(I)−1ψ̃i(exp(ξi))

]−1

(X̂j exp(ξj))

(5.13)
= µl(exp(ξi))

−1
[
ψ̃i(X̂i)−1X̂j

]
exp(ξj)

(5.26)

Using (5.11) and (5.9), we define the automorphism µ for IMU preintegration as:

µl(X−1
i · Xj) = ψi(Xi)−1 · ψi(Xj)
µl(Xi) = ψi(I)−1 · ψi(Xi)

= (φi(I) · ˜∆Xij))−1 · φi(Xi) · ˜∆Xij)

= ˜∆Xij
−1 · φi(Xi) · ˜∆Xij

= (gi · ˜∆Xij
′
)−1 · φi(Xi) · (gi · ˜∆Xij

′
)

(5.27)

Finally, with (5.27), we could obtain the linearized error expressed as:

log(exp(−δXij)) = log(µl(exp(ξi))
−1
[
ψ̃i(X̂i)−1X̂j

]
exp(ξj))

(BCH)
' ε+ ξj − Adj ˜∆Xij

−1(Aξi)
(5.28)

where ε = X̂j
−1
ψ̃i(X̂i) is the current estimation error, the adjoint map Adj derived from the

automorphism from (5.27), and A from the log map of φi(Xi) from the property (5.15). The
closed form A and AdjXi

is given by

A =


I 0 0 0 0

[g]×∆tij I 0 0 0
1
2
[g]×∆t2ij I∆tij I 0 0

0 0 0 I 0
0 0 0 0 I

 , AdjXi
=


Ri 0 0 0 0

[vi]×Ri Ri 0 0 0
[pi]×Ri 0 Ri 0 0

0 0 0 I 0
0 0 0 0 I

 (5.29)

We can easily rearrange (5.28) into Ax − b form for nonlinear optimization. However, as op-
posed to [29], the Jacobians are now autonomous from the state estimates but only depends on the
measurements.

J(ξi) =


∆R>ij 0 0 0 0

∆R>ij[∆vij]× + ∆R>ij[g]×∆tij ∆R>ij 0 0 0
∆R>ij[∆pij]× + 1

2
∆R>ij[g]×∆t2ij ∆tij∆R

>
ij ∆R>ij 0 0

0 0 0 I 0
0 0 0 0 I


G

, J(ξj) =


I 0 0 0 0
0 I 0 0 0
0 0 I 0 0
0 0 0 I 0
0 0 0 0 I


G

(5.30)
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5.3.5 Incorporating Bias Update

From the IMU dynamics (3.5), we could see the bias terms directly affects the measurements.
When the bias updates, we would need to re-evaluate the preintegrated measurements ˜∆Xij . In-
stead of reintegrating the preintegrated IMU measurements, we adopt the first-order update by
[29]. That is, we incrementally update the measurement by incorporate a small update to the bias
correction: ψ̃i(Xi) ⊕ (∂ψ̃i(Xi)

∂b
)b. Since both preintegrated measurement ψ̃i and the partial deriva-

tives (∂ψ̃i(Xi)
∂b

) remains constant, the measurement update to (5.24) is simply adding the extra bias
updates:

Xj =
(

˜ψi(Xi)(b̄ai , b̄
g
i )⊕ (

∂ψi(Xi)
∂b

)δb
)

exp(δXij)−1

=
(
φi(Xi) · ˜∆Xij(b̄ai , b̄

g
i ) · exp((

∂ψi(Xi)
∂b

)δb
)

exp(δXij)−1

(5.31)

where the updated measurement in the box from (5.31) looks like:

ψ̃i(Xi) =


Ri

vi + ∆tij(I −Ri)g
pi + vi∆tij + 1

2
∆t2ij(I −Ri)g

bai
bgi


G

·



[ j−1∏
k=i

exp((w̃ − b̄gk)∆t)
]

exp(
∂ ¯∆Rij

∂bg
δbgi )

[ j−1∑
k=i

¯∆Rik(ãk − b̄ak)∆t
]

+ g∆tij +
∂ ¯∆vij
∂bg

δbgi +
∂ ¯∆vij
∂ba

δbai

j−1∑
k=i

[
¯∆vik∆t+

1

2
¯∆Rik(ãk − b̄ak)∆t

2
]

+
1

2
g∆t2ij +

∂ ¯∆pij
∂bg

δbgi +
∂ ¯∆pij
∂ba

δbai

0
0


G

(5.32)
The detailed derivation of each partial derivative term is in Appendix A.1.

With bias updates, we would need to account the bias effects to the Jacobian of ξi in (5.30). The
updated Jacobians for ξi, J(ξi), and the Jacobian for ξj are:

J(ξi) =


∆R>ij 0 0 0

∂ ¯∆vij
∂bg

∆R>ij[∆vij]× + ∆R>ij[g]×∆tij ∆R>ij 0
∂ ¯∆vij
∂ba

∂ ¯∆vij
∂bg

∆R>ij[∆pij]× + 1
2
∆R>ij[g]×∆t2ij ∆tij∆R

>
ij ∆R>ij

∂ ¯∆pij
∂ba

∂ ¯∆pij
∂bg

0 0 0 I 0
0 0 0 0 I


G

, J(ξj) =


I 0 0 0 0
0 I 0 0 0
0 0 I 0 0
0 0 0 I 0
0 0 0 0 I


G

(5.33)

5.3.6 Incremental Update for IMU Preintegration Measurement

During the preintegration process, we could incrementally update the preintegrated measurement
mean and covariance. This is beneficial because it allows efficient implementation for real-time
applications. Using tools from matrix Lie group, incremental update is shown below. Suppose
we are adding an IMU measurement exp(ξjj+1) to the preintegrated measurement ∆Xij such that
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∆Xij+1 = ∆Xij⊕ ξjj+1. We can separate the new IMU noise δξjj+1 and preintegrated noise δXij .
By rearranging the terms, we obtain the updated IMU preintegration measurement:

˜∆Xij+1 exp(δXij+1) = ˜∆Xij exp(δXij) exp( ˜ξjj+1 + δξjj+1)
(3.22)
' ˜∆Xij exp(δXij) exp( ˜ξjj+1) exp(Jr(ξjj+1)δξjj+1)

(Def. Adj)
=

[
˜∆Xij exp( ˜ξjj+1)

][
exp([Adj−1

˜ξjj+1
]δXij) exp(Jr(ξjj+1)δξjj+1)

]
(5.34)

Where the new mean and covariance on the chart can be extract using the Baker-Campbell-Hausdorff
(BCH) formula:

˜∆Xij+1 = ˜∆Xij exp( ˜ξjj+1)

δXij+1

(BCH)
' [Adj−1

˜ξjj+1
]δXij + [Jr(ξjj+1)]δξjj+1

= [Adj−1
˜ξjj+1

]δXij +
∂ exp(ξjj+1)

∂ξ

∂ξ

∂u


ηaj+1

ηwj+1

ηbaj+1

ηbwj+1


= AδXij +BΣIMU

(5.35)

The closed-form for Adj−1
˜ξjj+1

and ∂ exp(ξjj+1)

∂ξ
∂ξ
∂u

is given in Appendix B.2. With the ability to in-
crementally update, we could incrementally update the preintegration noise in (5.23) by similar
first-order update in EKF:

Σij+1 = AΣijA
> +BΣIMUB

> (5.36)

5.4 Experimental Results

5.4.1 Implementation

We implemented the proposed algorithm using MATLAB. Simulated trajectoriess are generated
based on the IMU models shown in (3.5) with various noise levels and bias noise parameters. To
test the IMU preintegration models, we simulate IMU measurements and noisy position priors into
a pose graph shown in Fig. 5.5.

χ1 χ2 χ3 χ4

Prior Position Prior Imu preintegration

χ5

Figure 5.5: To test IMU preintegration formulation, we create a simple pose graph that only includes position priors
and new IMU factors. Each group element Xi = [Ri,vi,pi,b

a
i ,b

g
i ]G as shown in (5.19).
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We compare our formulation against the GTSAM implementation by [29] (denote GTSAM-PREINT).
To ensure fair comparisons, both our implementation in Matlab and GTSAM-PREINT receives the
same trajectories file and use Levenberg-Marquart (LM) optimizer with the same stopping criterion
for the factor graph. Here we perform multiple Monti-Carlo simulations by varying acceleration
and rotation noise. For all experiments shown, we construct the full factor graph with randomly
initialized poses (Fig. 5.6) and solve the entire graph with batch optimization. We have also
tested incremental update and the results are almost identical. Fig. 5.6 shows a sample trajectory
generated by our simulator.
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(a) Simulated groundtruth trajectory based on (3.5).
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(b) Randomly initialized poses.

Figure 5.6: This figure shows the groundtruth simulated trajectory (a) and the randomly initialized poses (b). We
input the exact same data into both our algorithm and GTSAM-PREINT by [29] to directly compare the accuracy and
convergence.

5.4.2 Simulation

For our simulation experiments, we have fixed the parameters for bias accelerometer noise ηbg and
bias gyro noise ηba. With total 50 different noise values, we run 20 different initializations for each
value in order to compute the mean and variance for the statistics. The summary of our parameter
setting is shown in Table 5.1.

Table 5.1: Parameters for simulation experiments

LM Solver Parameters Noise Parameters
Rel. Err. Abs. Err. Max Iteration ηa (m/s2) ηg (rad/s) ηba (m/s3) ηbg (rad/s2)

Accel Noise Test 1e−5 1e−5 20 0.05 to 1 0.01 N (1e−3, 1e−4) N (1e−3, 1e−4)
Gyro Noise Test 1e−5 1e−5 20 0.01 0.05 to 1 N (1e−3, 1e−4) N (1e−3, 1e−4)
Accel Bias Test 1e−5 1e−5 20 0.01 0.01 0.05 to 1 N (1e−3, 1e−4)
Gyro Bias Test 1e−5 1e−5 20 0.01 0.01 N (1e−3, 1e−4) 0.05 to 1

In the first test we compare the accuracy and numer of iterations until convergence with respect to
the accelerometer noise ηa from 0.05 to 1 m/s2. The results are shown in Fig. 5.7. Similarly, we
performed Monti-Carlo runs with varying gyroscope noise ηg, accelerometer bias noise ηba and
gyroscope bias noise ηbg shown in Fig. 5.8, Fig. 5.9, and Fig. 5.10.
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Figure 5.7: Accelerometer noise test.
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Figure 5.8: Gyroscope noise test.
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Figure 5.9: Accelerometer bias noise test.

In all four experiments, our formulation and GTSAM-PREINT achieves almost identical accuracy
with very slight variations because both our methods perform similar first-order approximations.
However, due to numerical or the differences between MATLAB and C++, the converged values
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Figure 5.10: Gyroscope bias noise test.

do not perfectly match. However, from both experiments, our formulation requires much fewer
iterations to converge. We think this is because the matrix Lie group formulation takes into account
the nonlinear space of the problem, and therefore the Jacobians reflect better descent directions.
Though remains as future works, we would like to investigate the idea of natural gradient descent
in connection to our IMU preintegration formulation.

55



56



Chapter 6

Conclusions

6.1 Contributions

In this thesis, we have introduced two current challenges for existing fixed-lag visual-inertial
odometry algorithms. With these two challenges in mind, we design and implement a VIO system
and present an on-going work to address the effects of these challenges upon the accuracy and
efficiency of a real-time VIO system.

First, we investigate the densification of information matrix due to marginalization steps in a fixed-
lag smoothing framework. Marginalization creates “fill-in” and significantly reduces the efficiency
of a fixed-lag system. As opposed to the existing methods, we propose a novel fixed-lag smooth-
ing VIO framework with online information sparsification. Comparing to the existing methods,
the proposed algorithm not only retains the sparsity and nonlinearity of the original optimization
but also minimizes information loss in the presence of marginalization. Furthermore, we propose
a factor graph topology that retains the structural similarity of the original fixed-lag window. This
allows continuous operation of our algorithm, which is essential for navigating in exploration ap-
plications. The proposed method is compared to the existing fixed-lag VIO systems and achieves
competitive results. From the time analysis has shown the potential of real-time implementation.

In the second part of the thesis, we address the issue of the well-known consistency problem in
traditional linearized nonlinear systems such as an EKF-based method and a fixed-lag smoother.
While the current solutions such as First-Estimate-Jacobian provides simple fixes, it disables the
abilities to re-estimate specific state variables. Instead, we apply the recently developed group
affine dynamics using Matrix Lie Group, and utilize tools from Lie Group - Lie Algebra corre-
spondence to improve the state-of-the-art VIO formulation. Toward invariant VIO, in this thesis,
we present our preliminary works on a novel IMU preintegration scheme using group affine dy-
namics. Our method is different from the IMU preintegration method presented by [29], which
takes into account the manifold structure but does not solve the consistency problem. To validate
our approach, we perform extensive simulations and directly compared to the original implementa-

57



tion. We have shown that our method achieves similar accuracy while converges with much fewer
iterations.

The proposed algorithms aim to improve the existing VIO systems by providing alternative formu-
lation to the current VIO methods. Toward a more robust, accurate and efficient state estimator,
this thesis also seeks to provide insights and understandings of the underlying “structure” of the
factor graph optimization framework.

6.2 Discussion and Future Work

The proposed IMU preintegration using group affine property is part of the on-going work toward a
full invariant VIO system. The next steps involve deriving visual measurements and incorporating
information sparsification using the property on Matrix Lie Group. We believe that the Lie Group
formulation of VIO system will not only eliminate consistency problem but also further enhance
information sparsification presented in the first part of the thesis. By utilizing the duality between
Lie Group and Lie Algebra, the reinserted nonlinear factors can be further optimized under the
invariant framework.

In regarding the proposed sparsification framework, there are many possibilities for further in-
vestigation and potentially better solutions. First, we would like to explore other factor graph
topologies. For example, a possible direction is utilizing Chow-Liu Tree by the measure of mutual
information between variable nodes in the factor graph. [51] also proposes other possible topolo-
gies such as a cliquey-graph to be investigated. More quantitative comparisons between topologies
could be an interesting direction to pursue.

Another possibility is to investigate different cost function for the sparsification in the equation
(4.7). Since Kullback-Leibler Divergence is not a symmetric measure, other divergence metrics
such as Cauchy-Schwarz divergence will be possible substitutions for the cost function.

Finally, there is existing literature performing a different form of sparsification on a VIO system.
For instance, instead of sparsifying the backend factor graph, [11] sparsifies the frontend features
by formulating a submodular optimization for selecting a better subset of features based on some
information matrics. It will be interesting to investigate other sparsification methods in terms of
the trade-off between accuracy and efficiency in comparing to the VIO systems proposed in this
thesis.

The idea of using Matrix Lie Group and representing covariances on the chart of a Lie Group
has been investigated in this thesis but also existing robotics literature such as [2]. However, to
the best of our knowledge, there is no work connecting the topics of natural gradient descent
and information geometry for probabilistic inference in a factor graph. The mathematical ideas
of probability, information and geometry could provide a further understanding of representing
uncertainty and state estimation in nonlinear or alternative spaces, which could lead to derivations
of more accurate and efficient solvers.
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A.1 Derivation of IMU Noise Model

This section explains how we could extract the noise corresponding to the noise model shown in
(5.23). We utilize the first order approximation of SO(3) explained in Section 3.4.3.
Rotation ∆R′ij:

∆R′ij =
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gd
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Velocity ∆v′ij:
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Position ∆p′ij:
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B.2 Derivation of IMU Bias Partial Derivatives

This section details the derivation of partial derivatives for the first-order bias model.
Rotation:
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Velocity:
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