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Abstract

Simultaneous localization and mapping (SLAM) is the problem of estimating the
state of a moving agent with sensor(s) on it while simultaneously reconstructing a
map of its surrounding environment, which has been a popular research field due to
its wide applications, such as inspection and reconstruction, autonomous transporta-
tion and delivery, virtual/augmented/mixed reality (VR/AR/MR), search and rescue,
and all kinds of service robotics that involve moving platforms. As many state-of-
the-art SLAM algorithms can already achieve high accuracy in both state estimation
and mapping, improving the robustness of SLAM systems has become a research
focus in both academia and the industry in recent years.

The most common challenge to robustness is insufficient information. When
no information is observed by the adopted sensors, e.g.: the view of a camera is
fully blocked, and the signal of the Global Positioning System (GPS) is denied in
indoor or underwater environments, it is impossible to estimate the state or the map
correctly. As a result, most real world SLAM systems adopt multiple sensors in or-
der to achieve better robustness. However, occasionally the observations from all the
sensors might still be insufficient to determine a unique solution. For example, when
the visual odometry (VO) estimation does not agree with the pose estimation of the
GPS, it can be hard to tell which one is correct, or maybe both of them are wrong. In
the case that more than one interpretation could be plausible for the same observa-
tions, which is known as the ambiguity problem, it is theoretically possible to keep
track of all the highly likely interpretations until more information is observed later
to disambiguate the ambiguities. However, most of the state-of-the-art SLAM sys-
tems only estimate a single solution (and possibly unimodal uncertainties) without
considering the impact from ambiguous measurements in the entire pipeline.

Therefore, in this thesis, a novel multi-hypothesis back-end optimizer called
MH-iSAM2 is introduced to take ambiguities into account and output multi-hypothesis
solutions when the ambiguities are temporarily unsolvable. Our novel optimizer al-
lows nonlinear incremental updates in all hypotheses while avoiding redundant com-
putations across different hypotheses, which results in better efficiency than comput-
ing each hypothesis individually. Then, an ambiguity-aware planar-inertial SLAM
(API-SLAM) system is developed based on MH-iSAM2 to reconstruct dense 3D
models of indoor environments in real-time, which provides an example of applying
MH-iSAM2 in a multi-hypothesis SLAM (MH-SLAM) framework for better robust-
ness. Finally, an ambiguity-aware active SLAM framework is proposed to make use
of the multi-hypothesis state and map estimates from the MH-SLAM system in deci-
sion making and path planning, which demonstrates a complete and interactive usage
of the multi-hypothesis estimations in a real-world robotic system. The experimental
results show that MH-iSAM2 can be applied properly to improve the robustness of
a SLAM or active SLAM system, especially for handling the ambiguity problem in
real-world tasks.
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Chapter 1

Introduction

1.1 What is SLAM?

Simultaneous localization and mapping (SLAM) is a well-known problem in robotics research,
which consists of two fundamental parts: localization and mapping. For any mobile robot that
desires to conduct a task, knowing its location (or pose to be more specific, which consists of
both position and orientation) with respect to a map of the environment is important; how to
estimate the location of the mobile robot with available information (e.g.: sensor measurements,
prior knowledge, control commands, etc) is the localization problem. A common approach to
localize a robot in a known map is to first match the distinctive sensor measurements (also known
as features) with the distinctive structures or textures in the map (also known as landmarks), and
then compute the location of the robot directly. On the other hand, one of the best ways to
describe an environment is to draw a map of it; how to generate a map automatically from sensor
measurements is the mapping problem. Since most sensors have limited ranges, perform better
when they are closer to the target, or can be occluded by obstacles, it is desirable to move the
sensors around to better map a larger environment, assuming that the poses of the sensors are
known throughout the mapping process.

Even though localization and mapping are relatively easy to solve separately, in many real
world scenarios they have to be solved at the same time. For example, an up-to-date map of the
environment for localization might not be available because the robot is exploring a new area,
or the environment has been changed since it was mapped. In these cases, it is desirable for the
robot to also generate the map or update an existing map for better localization results. As for
mapping, the assumption of known sensor poses is hard to satisfy in reality without conducting
any localization process in advance. Therefore, SLAM is defined to describe this chicken-and-
egg problem considering localization and mapping at the same time, which is a much more
challenging problem and is still an ongoing research field in the robotics community even after
more than 30 years of study [8].

A typical framework to solve the SLAM problem is to divide the system into two parts: front-
end and back-end. The front-end usually consists of data preprocessing, feature extraction, and
data association, while the back-end is typically a nonlinear solver that aims at optimizing the
state and map together based on the information passed from the front-end. This common SLAM
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framework can be extended to solve active SLAM problems [128][10][12] by incorporating con-
trol, planning, and decision making modules while conducting localization and mapping, which
is expected to achieve even better accuracy, coverage, robustness, and efficiency compared to the
passive approach.

1.2 Ambiguity Problems in SLAM
As various state-of-the-art SLAM solutions have been proposed to achieve high accuracy in
state estimation, mapping, or both [20][82][14], new research directions in SLAM other than
improving accuracy alone have been of great interest to the SLAM community in recent years
[8]. In this thesis, we focus on handling the ambiguity problems explicitly in order to improve
the robustness of existing SLAM solutions.

Ambiguity is defined as the situation when more than one interpretation is plausible for the
same observations. A basic concept of ambiguity in robot perception is shown in Fig. 1.1, where
the robot cannot tell which of the two possible hypotheses is the correct one. The source of
ambiguity depends a lot on the sensor and the adopted algorithm in the front-end. For example,
when conducting SLAM with visual sensors and using feature-based algorithms, moving objects,
lighting changes, textureless scenes, repeated patterns, and motion blurs that result from aggres-
sive motions can all cause ambiguities in the measurements. However, since most of the existing
front-end algorithms only model the observations with a single mode instead of all the possible
modes, some wrong modes might be taken and result in outliers in the measurements. And since
most of the existing back-end solvers (e.g.: g2o[61], Ceres [2], iSAM [49], and iSAM2 [50])
can only handle single mode measurements and output only one solution for each state (see Fig.
1.2-a), outlier measurements can lead to errors in the estimations or even failures of the entire
SLAM system.

1.3 Multi-hypothesis Solver
To model and solve the ambiguity problems in SLAM, we argue that it would be desirable for
front-end algorithms to detect and model the temporarily unsolvable ambiguities explicitly, and
pass these information to a back-end solver that can explicitly account for the ambiguities and
output all the highly probable solutions (see Fig. 1.2-b). This proposed framework allows the
later modules in the robotic system (e.g.: control or planning) to be aware of the temporarily
unsolvable ambiguities and therefore is expected to greatly enhance the robustness of the entire
robotic system.

To realize the proposed framework, a back-end optimizer that can keep track of the ambi-
guities in the measurements and compute the corresponding solutions to each combination of
the modes of all the ambiguous measurements is crucial. And since SLAM is an online prob-
lem that is desired to be solved in real-time, the capability of incrementally updating the current
solutions based on the previous solutions is highly desired for better efficiency. One popular
solution to enable incremental updates in SLAM is called incremental smoothing and mapping
(iSAM), which was first developed in [49]. Later, a new iSAM algorithm called iSAM2 [50] is
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Figure 1.1: An example of ambiguity problem in SLAM. A robot (image source:
https://en.wikipedia.org/wiki/BB-8) is moving down a long corridor, trying to localize itself
while mapping the environment. Assuming that at time t, the robot observes two identical doors
in front of it (top right). As a result, the robot generates a map that contains the information of
these two doors (gray). Then, the robot moves forward for a certain distance (with a rough pre-
diction of 4.5m), and observes two identical doors again at time t + 1. Based on the prediction,
there are two similarly likely hypotheses that both satisfy the observations. The first hypothesis
(middle right) is that the robot actually only moves forward for 2 meters and sees the same two
doors. In this case, no new information should be added into the map. In the second hypothesis
(bottom right), the robot moves forward for 7 meters and sees a new door and an old one. In
this case, the map should be updated with the new door (light blue). From this example, we can
have a general idea on how ambiguity can result in multiple hypotheses in both localization and
mapping.

developed to work better with rotation and other nonlinear terms that are heavily involved in a
SLAM problem, which is so far the only state-of-the-art SLAM optimizer that allows nonlinear
incremental updates.

In this thesis, we propose a multi-hypothesis back-end optimizer called multi-hypothesis
iSAM using Bayes tree and Hypo-tree (MH-iSAM2) based on the original iSAM2 algorithm [50],
which tracks all highly possible ambiguous hypotheses, updates the multiple possible solutions
of each state incrementally in a nonlinear fashion, and solves the ambiguities by pruning the less
likely hypotheses when sufficient information is received. Through simulations, we evaluate the
robustness, accuracy, and efficiency of the proposed MH-iSAM2 algorithm, and demonstrate its
unique properties as the first multi-hypothesis nonlinear incremental solver for SLAM problems.
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Figure 1.2: Two types of SLAM frameworks: (a) In most modern SLAM systems, the back-end
optimizer assumes that both of its inputs and outputs have only one single possibility. (b) How-
ever, we argue that a back-end optimizer that can handle multiple possibilities should achieve
better robustness for not only SLAM but also the entire robotic system.

1.4 Ambiguity-aware Passive SLAM
Based on MH-iSAM2, a real world multi-hypothesis SLAM (MH-SLAM) algorithm is devel-
oped to show an example of integrating MH-iSAM2 with an existing SLAM solution to im-
prove robustness against ambiguities. Comparing to outdoor environments that are mostly well
mapped due to the necessity for automobile navigation and public accessibility, indoor environ-
ments are where people spend most of their time but are not properly mapped in general due
to their compartmentalized design and to privacy issues. Therefore, we focus on developing an
out-of-the-box ambiguity-aware MH-SLAM solution that can reconstruct 3D models of indoor
environments.

Among various existing 3D SLAM solutions, some reconstruct sparse maps that usually
consist of feature points (e.g.: ORB-SLAM [82]), which are useful for localization or state esti-
mation, but not suitable for inspection, semantic understanding, path planning, visualization, or
other interactive functions. On the contrary, dense map representations such as pointcloud (e.g.:
pointcloud-based object map [107]), surfel (e.g.: ElasticFusion [134]), mesh (e.g.: mesh recon-
struction step [45] in OpenMVS [92]), occupancy grid (e.g.: normal distributions transform oc-
cupancy maps [109]), or signed distance field (SDF) (e.g.: KinectFusion [85]) all preserve much
richer information of the environment and therefore allow much more applications. However,
more computation and memory are usually required to construct these dense maps than sparse
maps, and GPU acceleration is usually required for real-time operation on these methods. As a
result, it is desired to incorporate an efficient mapping algorithm into the proposed ambiguity-
aware passive SLAM system that can reconstruct dense 3D models in real-time on only a CPU,
which will allow wider applications on lightweight platforms and mobile devices.

To achieve the goals, we build the ambiguity-aware MH-SLAM system based on DPI-SLAM
(see Ch. 5), which utilizes an RGB-D camera and an inertial measurement unit (IMU) to esti-
mate the motion states and reconstruct dense 3D models of indoor environments with pointcloud
submaps and planes in real-time on a CPU. Several front-end components of DPI-SLAM are
modified for ambiguity detection, and the original iSAM2 back-end is replaced by a hierarchical
optimization approach consisting of iSAM2 and MH-iSAM2. The experimental results on real
world datasets show the significant improvements on robustness because of handling ambiguities
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explicitly using the proposed multi-hypothesis framework.

1.5 Ambiguity-aware Active SLAM

Most existing SLAM algorithms assume that the motion of the sensors is determined by a sep-
arate source, and the measurements are also received accordingly. As a result, those SLAM
algorithms only passively map the environment using the given data. However, in many real-
world applications, it is allowed or even desired to actively decide the motion of the sensors
online during the SLAM process based on the received information. For example, when a robot
is exploring a new indoor environment and constructing a map at the same time, it can keep
going toward unknown areas based on the most up-to-date information from the growing map,
or decide to go back to a visited place to correct the accumulated drift in the map through loop
closing. As a result, this approach, which is known as active SLAM in the robotics community,
is crucial for a fully-autonomous mobile robotic system.

A more formal definition of active SLAM is as follows: it is the problem of actively explor-
ing an environment with moving sensors while simultaneously estimating the state of the sensors
and reconstructing a map that satisfies certain requirements (e.g. bounded uncertainty). Most
existing active SLAM algorithms [128][10][12] consider unimodal state and map estimations for
decision making and planning as they are built upon state estimation [43][18][125] and map-
ping methods [79][36] that only estimate single solutions (and possibly unimodal uncertainties).
However, when ambiguities occur, the single estimation can be polluted by wrong information
as discussed in Sec. 1.2, which can result in bad decisions or even failures in the active SLAM.
Even though several nonparametric or multi-hypothesis solutions have been proposed to handle
ambiguities explicitly and output multimodal solutions when the ambiguities are temporarily un-
solvable [78][28][80][42][38], to the best of our knowledge, no existing active SLAM algorithm
makes use of both multimodal state and map estimations to achieve better robustness. Therefore,
we introduce the ambiguity-aware active SLAM framework that takes the multi-hypothesis state
and map estimates from a MH-SLAM system (see Sec. 1.4) as inputs and makes single decisions
online based on them, which is expected to improve the overall robustness of the entire robotic
system.

Similar to other active SLAM solutions, ambiguity-aware active SLAM consists of two main
modules: exploration and active loop closing. In addition, a path planning module is imple-
mented to generate the actual motion command for each of them. All these three modules are
designed to take multi-hypothesis state and map estimates into account explicitly, and therefore
are computationally efficient and can run in real-time on a CPU with reasonable constraints. We
evaluate our ambiguity-aware active SLAM approach intensively in simulations and apply it in
an assistive mapping system that can guide a human user to explore and map indoor environ-
ments with hand-held sensors through instructions on the monitor. The experiments show that
the proposed ambiguity-aware active SLAM framework can achieve much better robustness to
ambiguities compared to a similar active SLAM framework that only handles single hypothesis,
and the developed system also shows a good example of applying MH-iSAM2 to solve active
SLAM problems.
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1.6 Contributions
The key contributions of this thesis are summarized as follows:

• Developing MH-iSAM2, a robust back-end optimizer that models the ambiguous input
measurements as multi-hypothesis factors, tracks the hypotheses of each state explicitly,
and prunes the unlikely hypotheses based on all available information.

• Developing an ambiguity-aware front-end based on the fast RGB-D-inertial odometry
(FRIO) algorithm, which detects and models ambiguities by checking the joint estimation
results using the RGB-D and inertial data.

• Developing a keyframe-based MH-SLAM solution that utilizes submaps and planes for
ambiguity-aware robust indoor dense 3D reconstruction, which can operate in real-time on
a CPU.

• Introducing an ambiguity-aware active SLAM framework that makes use of the multi-
hypothesis state and map estimations from a MH-SLAM system for better robustness.

• Applying the proposed ambiguity-aware active SLAM framework in an assistive mapping
system that guides a human user to explore and map an indoor environment online, which
also runs in real-time on a CPU.

1.7 Outline of the Thesis
In Chapter 2 we first review the literature on ambiguity-aware solutions to passive and active
SLAM problems, and then go through other works that are relevant to the approach proposed
in this thesis, including state estimation using visual and inertial sensors, SLAM with high-level
features, and various offline and online dense 3D SLAM approaches.

In Chapter 3 we introduce the theoretical background of MH-iSAM2 and its implementation.
We also test MH-iSAM2 on simulated datasets to show its robustness, accuracy, and efficiency.

In Chapter 4 we introduce the state estimation component used in our ambiguity-aware
passive and active SLAM systems: a fast RGB-D-inertial odometry (FRIO) algorithm. Its per-
formance is shown through real-world experiments.

In Chapter 5, we introduce the mapping component implemented for our ambiguity-aware
passive and active SLAM systems: a dense 3D reconstruction framework that utilizes submaps
and planes for efficient large-scale mapping. Intermediate results from integrating FRIO and
iSAM2 into this mapping framework demonstrate the accuracy and efficiency of our approach.

In Chapter 6, we introduce how to integrate MH-iSAM2 (see Ch. 3), FRIO (see Ch. 4), and
the submap and plane-based mapping components (see Ch. 5) together to realize an ambiguity-
aware MH-SLAM system. Real-world experiments are conducted to support the proposed solu-
tion.

In Chapter 7, we introduce the ambiguity-aware active SLAM framework that is based on a
MH-SLAM system (see Ch. 6), and utilize both simulation and real world experimental results
to evaluate the proposed solution.

In Chapter 8, we conclude this thesis and point out future research directions to keep im-
proving the robustness of SLAM solutions.
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Chapter 2

Related Works

2.1 Ambiguity-aware SLAM
As more SLAM systems being developed, the robustness of SLAM solutions has been one of the
main research focuses in this field [8]. As for SLAM solutions that specifically aim at handling or
even solving ambiguities, some of them focus on solving the ambiguities immediately and pre-
serve unimodal measurements in the front-end, which are usually integrated with a conventional
back-end optimizer to solve the entire SLAM problem. Others take multimodal measurements as
inputs and output either one or multiple possible solutions from the back-end optimizers. We will
compare all these methods against each other as well as our proposed approach in this section.

2.1.1 Front-end Methods
The most commonly used front-end solution to handle ambiguity problems is random sample
consensus (RANSAC) [24], which can estimate the model from a set of data without being influ-
enced by the outliers. However, it requires more iterations to find the solution when the outlier
ratio is larger, so it cannot work efficiently on measurements with multimodal ambiguities. More-
over, since RANSAC is usually applied in finding one solution only, if multiple modes all seem
likely, it might select a wrong mode instead of the correct mode.

More recently, joint compatibility branch and bound (JCBB) [83] and various of its exten-
sions [89][70] have been proposed to deal with the discrete ambiguities in SLAM problems
through measuring the joint compatibility of a subset of association hypotheses and rejecting
spurious matches (see Fig. 2.1). There are other font-end methods that make use of prior infor-
mation to remove outliers for SLAM in dynamic environments [123]. However, none of these
methods can guarantee perfect outlier rejection, especially when the observed information is in-
sufficient. As a result, a possible solution is to also handle the ambiguities in the back-end as
proposed in Sec. 1.3.

2.1.2 Back-end Methods
Considering the fact that not all of the ambiguities can be resolved in the front-ends of SLAM
systems, various back-end approaches have been proposed. As a specific type of ambiguity that is
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Figure 2.1: A figure from [89] describes the framework of JCBB, which uses an interpretation
tree to explore the combinations of data association.

commonly encountered in SLAM, loop closing ambiguity and its solutions have been intensively
discussed [62][4][127][66]. For other types of ambiguity sources or even more general solutions,
there are also various existing methods. FastSLAM [78] can handle unknown data association
though sampling particles over all possibilities, and [80][28] apply nonparametric methods to
deal with ambiguities in data association or loop closing. These approaches in theory model
all possibilities, but can only approximate the best solution(s) instead of solving for the exact
values. On the other hand, [42] tracks multiple possible exact solutions and prunes the unlikely
hypotheses incrementally. However, it requires additional batch steps for relinearization, and
can be improved for SLAM applications, such as tracking the hypothesis of each variable more
efficiently (see Sec. 3.4.1).

There are other back-end solutions that change the topology of the underlying graph [119][120],
vary the distribution parameters [101] through self-tuning, scale the covariance of each measure-
ment based on its chi-squared error [1], or replace the conventional sum-mixture of Gaussians
with max-mixture [90] during optimization with ambiguity. Adding a step before conventional
optimizers to choose the best hypothesis [102] is also another approach to solve the ambiguities.
However, none of them can model more than one mode in the final output. As a result, when
unsolvable ambiguities occur, they cannot track all the possible solutions at once.

In this thesis, the proposed back-end optimizer MH-iSAM2 can output multiple possible
solutions for each variable according to the ambiguous inputs. It is developed based on iSAM2
[51] instead of other open source solvers [61][2][49] because iSAM2 allows online nonlinear
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incremental updates for efficiency. Most of the advantages of iSAM2 are still preserved in MH-
iSAM2, which is further discussed in Ch. 3.

2.2 Ambiguity-aware Active SLAM

Built upon SLAM systems, active SLAM algorithms usually aim at exploring as much space
(within a desired area is there is one) as possible while maintaining low uncertainty of the esti-
mated poses and map. While partially-observable Markov decision process (POMDP) [114][47]
offers a theoretical foundation to solve active SLAM problems considering all possible scenar-
ios with insufficient information including ambiguous observations and more, finding an exact
solution is computationally intractable. As a result, most existing active SLAM solutions do not
handle ambiguity problems at all. Instead, they focus on solving exploration efficiently, such as
frontier-based exploration [135][124] and next best view (NBV) planners [7][94] using rapidly-
exploring random tree (RRT) [63][64], or finding suitable places for revisiting [116][72] that
enable loop closing to correct the accumulated drift in the states and maps.

To take ambiguous information into account for decision making or path planning in real-
world tasks, robust algorithms based on belief space planning (BSP) [46][3][98][96][97] and
other methods [108] have been developed. However, none of them considers the coexistence
of multi-hypothesis state and map estimations. More recently, a robust exploration algorithm
[129] has been developed based on multiple hypothesis JCBB [83], which handles the multiple
hypotheses of the feature-based map resulting from uncertain data associations and decides the
future path based on the weighted combination of all the hypotheses. Another systematic solution
[100] focused on robust homing considers only two hypotheses: is the up-to-date 2D map consis-
tent or not. However, to the best of our knowledge, there is no existing work that conducts active
SLAM based on multi-hypothesis dense 3D maps. As a result, we develop the ambiguity-aware
active SLAM framework (see Ch. 7) that utilizes the multi-hypothesis state and map estimations
from a MH-SLAM system. This new ambiguity-aware active SLAM framework is expected to
plan reasonable motion even when unsolvable ambiguities occur during the SLAM process, and
is regarded as a new step towards full autonomy especially in improving the robustness of the
entire robotic system.

2.3 Visual Odometry

An algorithm that estimates the motion of a visual sensor based on its own data is called visual
odometry (VO), or tracking in the computer vision literature. Since visual sensors are widely
used in SLAM systems due to their capability of offering rich information of the surrounding
environment, various VO algorithms have been developed to achieve fast, robust, and accurate
odometry estimation for SLAM or other related tasks, which are introduced in this section.
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2.3.1 Indirect Methods

Obtaining accurate pose estimates of each sensor frame is essential to 3D SLAM algorithms.
Feature point based methods in either VO or SLAM field adopt an indirect framework to esti-
mate the poses or states of the camera [115][59][16][82], which consists of three common steps:
feature point extraction, data association, and optimization. In the feature point extraction step,
descriptors such as SIFT [71], SURF [5], FAST [105], BRIEF [9], or ORB [106] are applied
to extract feature points from each input image. Then, points across images are associated with
each other based on the similarity of their descriptors. Finally, all these measurements are used
to optimize the poses of the sensor or even the corresponding landmark points under SLAM
frameworks. In addition to the great success on image data, indirect methods are also applied to
other types of sensor data such as RGB-D sensor [41] or sonar [132] due to its generality. How-
ever, all existing indirect algorithms can fail if insufficient features are extracted (e.g.: a blank
wall without any feature), or wrong data association occurs (e.g.: repeated patterns that results
in similar features).

2.3.2 Direct Methods

On the other hand, direct methods that optimize directly on pixel intensities or point distances
without feature extraction might be able to recover accurate pose estimation when indirect meth-
ods fail. For example, in Fig. 2.2 indirect methods will fail because there is only one feature
point in the scene, which is insufficient for pose estimation. However, direct methods can still
estimate the pose correctly, such as semi-dense VO [21] and dense RGB-D odometry [117, 55]
that minimize the photometric error of the reprojected pixels, or iterative closest point (ICP) [6]
that minimize the geometric error between point pairs from two dense pointclouds.

To achieve high accuracy and better robustness, jointly optimizing the geometric and photo-
metric costs is a well-known approach [133]. However, due to the expensive calculations over
all the points and pixels, parallel computing using GPU is usually required for real-time appli-
cations. As a result, we develop a fast dense RGB-D odometry algorithm in Ch. 4 that jointly
optimizes the geometric and photometric costs but can still run faster than real-time on a CPU.

2.4 Visual-inertial Fusion for State Estimation

Visual-inertial odometry (VIO) algorithms are widely used to estimate the states of mobile
robots, which are usually extensions of existing VO methods that utilize the complementary
nature of visual and inertial sensors for better state estimation. To be more specific, the time-
varying biases from the raw inertial data can be corrected by the visual measurements, and the
high frequency inertial measurements can offer good initialization or improve data association
for VO algorithms. Based on the optimization framework, VIO algorithms can be classified into
two categories as described in Sec. 2.4.1 and Sec. 2.4.2. In addition, we will introduce the IMU
preintegration method [26] in Sec. 2.4.3 in detail since it will be applied in this thesis.

10



(a) Feature point-based (indirect) (b) Semi-dense (direct) (c) ICP (direct)

Figure 2.2: An example situation that direct methods can survive while indirect methods fail. To
fully constrain a 3D pose during odometry estimation: (a) feature point-base methods (indirect)
require three or more feature points, but only one (red cross) is observed; (b) semi-dense methods
(direct) require high gradient pixels not lying on one single straight line, which is satisfied (three
red dotted lines); (c) ICP (direct) requires three or more planes with their normal vectors not
lying on the same plane, which is satisfied (three red planes) as well. It is worth noting that
indirect methods can be extended to use other type of features such as lines or planes (see Sec.
2.5), which could achieve similar performance to the direct semi-dense method in (b) or (c)
respectively in this example. There are also semi-direct methods [27][32]) that conduct direct
operations around extracted features only in order to achieve robustness, accuracy, and efficiency
all at once.

2.4.1 Loosely-coupled Methods

Various studies have focused on fusing inertial measurements with VO methods in recent years.
A simple way to fuse them is called loosely-coupled [60][130][74], which optimizes odometry
using the 6-DoF output from the VO methods instead of the raw visual measurements together
with the inertial measurements. Even though loosely-coupled approaches might sacrifice some
accuracy, they usually allow faster update to the current state and cheaper computation to correct
the biases globally.

2.4.2 Tightly-coupled Methods

In contrast, tightly-coupled methods [52, 69, 81] use raw visual measurements and the inertial
measurements together in each iteration of the nonlinear optimization, which can achieve more
accurate results but is usually too costly for global optimization to correct the biases.

An alternative solution introduced in visual-inertial direct SLAM [13] tightly couples the
inertial measurements and the direct semi-dense VO constraints for each pose estimation only,
and marginalizes the IMU and VO measurements into pose-to-pose constraints in a pose graph.
Even though this method can estimate the relative motion between frames more accurately, it
does not allow the later observations to update the IMU biases for global optimization.
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Figure 2.3: The concept of IMU preintegration. Raw IMU data within a predefined time interval
(usually between two consecutive keyframes) are preintegrated into a factor, which allows linear
updates of the estimated biases in a global optimization framework.

2.4.3 IMU Preintegration
Recently, IMU preintegration [26] has been developed to offer an efficient solution to either
loosely or tightly couple the IMU measurements with visual constraints. Comparing to other
methods, the key advantage of IMU preintegration is that the inertial measurements including
angular velocities and accelerations are locally integrated in a specific form, which allows the
biases to be updated by later observations. The resulting preintegrated IMU factors can be added
into a factor graph (see Fig. 2.3) and jointly optimized with other measurements to solve the
SLAM problems.

IMU preintegration follows the common modeling of robot states with inertial measurements.
Each IMU state xt at time t contains the pose, velocity, and bias terms for both gyroscope and
accelerometer, which can be represented as a 15-vector

xt =
[
ξ>t v>t b

>
ω b>a

]>
, (2.1)

where ξt represents the 6-DoF pose of the IMU, which can also be represented as a rotation
matrix Rt and a translation vector pt, and vt is the 3-DoF velocity. bω and ba are the 3-DoF
bias terms for the gyroscope and accelerometer respectively, which are assumed to be static
over each preintegration interval (and can change between intervals). Assuming that the raw
angular velocityωt and acceleration at arrives every ∆t seconds, we can define the preintegrated
rotation, velocity, and translation of the preintegrated IMU factor between the two consecutive
reference frames at time t and t′ = t+m∆t respectively as

∆Rtt′ =
t′∏
k=t

Exp ((ωk − bω) ∆t) , (2.2)

∆vtt′ =
t′∑
k=t

∆Rtk (ak − ba) ∆t, (2.3)

∆ptt′ =
t′∑
k=t

[
∆vtk∆t+

1

2
∆Rtk (ak − ba) ∆t2

]
, (2.4)
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and the error functions of their corresponding factors in G are

e∆Rt
t′

= Log

{[
∆Rtt′Exp

(
J∆Rt

t′

[
δbω
δba

])]>
R>t Rt′

}
, (2.5)

e∆vt
t′

= R>t (vt′ −vt −gm∆t)−∆vtt′ −J∆vt
t′

[
δbω
δba

]
, (2.6)

e∆pt
t′

= R>t

(
pt′ −pt −vtm∆tm −

1

2
gm2∆t2

)
−∆ptt′ − J∆pt

t′

[
δbω
δba

]
, (2.7)

where J∆Rt
t′

, J∆vt
t′

, and J∆pt
t′

are the Jacobians of ∆Rtt′ , ∆vtt′ , and ∆ptt′ with respect to the bias

vector
[
b>ω b>a

]> respectively, which allows updating the bias terms linearly. The Exp(.) and
Log(.) functions are the exponential and log maps that transform the rotation in 3D between
SO(3) and its minimal representation in R3. g is the constant gravity vector, which should be
defined in advance.

Similar to other applications of IMU preintegration, we combine the preintegrated IMU fac-
tors with other sensor measurements in a SLAM optimization framework, which corrects the
drifting IMU biases and results in consistent state estimations. Moreover, we develop an ambi-
guity detection function for both our passive and active SLAM approaches based on the IMU
preintegration framework. More details of our approach can be found in Sec. 4.7 and Ch. 6. As
for more details about IMU preintegration, please see [26].

2.5 SLAM with High-level Features
Other than point features, SLAM algorithms that use high-level features, such as lines, planes,
or even semantic objects, have been developed for various reasons and applications. In general,
a high-level feature preserves more information than a single point, which can improve the ro-
bustness or accuracy of SLAM. However, more assumptions have to be made when using these
advanced features, so the resulting algorithms are usually less general. For example, SLAM with
lines usually works well in artificial environments but not in nature because the former usually
contains lots of straight lines while the latter does not. As a result, using suitable types of fea-
tures based on the target environments is crucial for SLAM algorithms. In this section, we will
introduce different types of features used in existing SLAM algorithms, discuss their pros and
cons, and explain our choice of feature for indoor dense 3D reconstruction in this thesis.

2.5.1 Geometric Features
SLAM using line features has been studied for more than a decade. Various representations of
lines have been applied, such as two end points [113][104], orthonormal representation [138], or
Plücker coordinates [68]. However, since lines do not model surfaces explicitly, none of these
methods can recover dense models of the environments.
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On the contrary, as another commonly observed feature in general indoor environments, pla-
nar surfaces have been used for mapping tasks in earlier works [95][126][67][111], and are fur-
ther used for state estimation or even SLAM in recent years. Point-plane SLAM [122] com-
bines three point/plane primitives to fully constrain camera poses and generate a plane-based 3D
model. CPA-SLAM [73] requires GPU acceleration for tracking towards both keyframes and
plane models in real-time. Although it applies a soft labeling technique to reduce the effect of
incorrect plane segmentation on the pose estimate, the plane model can still be wrong in the
global optimization.

Comparing to line features, planes preserve much more surface information, which enables
more applications for the output map, such as visualization of the dense models or path planning.
As a result, we adopt plane features in the SLAM system in this work. We extract planes from
smoothed depth maps that are noticeably less noisy than raw data, which results in more accurate
plane segmentation (see Sec. 5.2). Then, we model each plane in a quaternion-based minimal
representation as described in [48], and jointly optimize all the planar measurements with other
measurements in a SLAM framework (see Sec. 5.7), which is expected to greatly enhance the
robustness and accuracy of the SLAM system. Moreover, the implicit free, occupied, and un-
known space information in the modeled planes will be extracted and used in our proposed active
SLAM algorithm (see Ch. 7).

2.5.2 Structural Constraints

Structural constraints, such as orthogonality and parallelism between lines or planes, are ex-
pected to further correct the drift or distortion in the reconstructions of man-made environments.
[88] and [87] demonstrate the advantages of applying these structural constraints on 2D and 3D
mapping respectively. A similar but more limited concept called Manhattan world assumption
is also applied in [137][25][99] to achieve better mapping results through estimating the global
orientation of each frame. In this thesis, we will also exploit the structural constraints of the
planes to further improve reconstruction results (see Sec. 5.6.2), especially when there is no loop
closure constraint to correct the accumulated error in the SLAM system.

2.5.3 Objects And Semantics

As modern machine learning methods greatly enhance the robustness and accuracy of semantic
segmentation and object recognition, more studies on SLAM with objects or semantics have
been done in recent years. SemanticFusion [76] fuses the semantic labels of pixels from different
images into a global 3D pointcloud, which improves the accuracy of the semantic labeling but not
tracking or mapping. To use the information of objects in both tracking and mapping, SLAM++
[110] and Fusion++ [75] both register each input frame to the models of each detected objects in
the previous frames, and optimize the pose estimates of each frame and object in a global factor
graph. Since semantic understanding is not our focus in this thesis, we will only detect floor
planes for the proposed active SLAM algorithm (see Ch. 7).
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2.6 Dense 3D reconstructions

2.6.1 Offline Methods
Dense 3D reconstruction has been a popular research topic for decades. Many offline meth-
ods have been developed [92][57][112], which usually require hours of computation to generate
dense 3D models from numerous images. Existing industrial solutions such as Matterport [44]
and Faro [23] scanners can generate very accurate 3D reconstructions through registration of
static scans. However, these offline methods are not suitable for real-time applications, such as
exploration and AR. As a result, we will focus on real-time solutions that can reconstruct the
most up-to-date models based on the accumulated input data at any given time in this thesis.

2.6.2 Online Methods
Comparing to the offline methods, online methods usually aim at real-time performance and
therefore require cheaper computation. DTAM [84] computes dense depth maps from a single
moving camera in real-time using GPU, and REMODE [103] further estimates the depth in a
probabilistic manner. Many other camera-based solutions [77][30][33] have been proposed in
the last decade, which demonstrate the capability and applications of real-time dense 3D recon-
struction.

Dense 3D models may also be generated using RGB-D sensors by fusing depth or even color
data from multiple frames, a process that must be accelerated by a GPU in order to achieve real-
time performance [85] [53] [133] [134][14] (see Fig. 2.4). In our mapping approach, we aim at
using RGB-D data to reconstruct dense 3D models in real-time using CPU only. As a result, a
computationally cheaper method for dense mapping is developed in Ch. 5.
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(a) Kintinuous [133] (b) ElasticFusion [134]

(c) BundleFusion [14]

Figure 2.4: Example outputs of existing real-time indoor dense 3D reconstruction algorithms.
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Chapter 3

Multi-hypothesis Optimizer for Robust
SLAM

3.1 SLAM Using Factor Graph

From the probabilistic point of view, SLAM can be modeled as a maximum a posteriori (MAP)
estimation problem Θ̂ = arg maxΘ P (Θ|Z) that aims at solving all variabes θp ∈ Θ given the set
of all measurements zk ∈ Z. Based on the Bayes’ rule P (Θ|Z) = P (Z|Θ)P (Θ)

P (Z)
∝ P (Z|Θ)P (Θ)

and adding the assumption of no prior for any variable, the MAP problem becomes a maximum
likelihood estimation (MLE) problem:

Θ̂ = arg max
Θ

P (Z|Θ) = arg max
Θ

∏
k

P (zk|Θk) , (3.1)

where Θk ⊆ Θ is the subset of variables that directly affect zk in the conditional probability
P (zk|Θk). Θ̂ is the set of solutions of all variables that maximize P (Z|Θ). Typical solutions to
this MLE problem can be found in Appendix A.1.

In recent robotics studies, a factor graph [17] (see Fig. 3.1) is commonly used to represent
the MLE problem of SLAM, which is a bipartite graph that consists of two types of nodes: fac-
tors F and variables Θ. Each factor fk ∈ F represents the conditional probability P (zk|Θk)
of an input measurement, and each unknown variable θp can be solved by a nonlinear optimizer
[61][2][49][50] if every measurement zk is sampled from a unimodal distribution (usually Gaus-
sian distribution), which is a common assumption for most of the SLAM problems.

3.2 From Probability to Hypotheses

The assumption of unimodal distribution no longer holds for ambiguous measurements because
one single mode cannot model all the possible cases. A simple extension is to use a Gaussian
mixture model (GMM) to represent the multimodality of an ambiguous measurement zr with
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Figure 3.1: An example of a factor graph, which consists of variable nodes Θ = {x, l} (colored
dots) and factor nodes F = {p, o,m} (black dots).

multiple modes zr(i), which can be written as

PM(zr|Θr)=
mr∑
i=0

wr(i)N
(
µr(i),Σr(i)

)
=

mr∑
i=0

wr(i)P
(
zr(i)|Θr

)
, (3.2)

where mr is the number of modes in zr, and wr(i) is a weighting for each N
(
µr(i),Σr(i)

)
which

satisfies
∑mr

i=0wr(i) =1. The subscript “(i)” indicates each mode i of zr. Assuming that every zr
is independent of all others, we can rewrite the MLE problem in Eq. A.1 as

Θ̂ = arg max
Θ

[∏
s

P (zs|Θs)

][∏
r

PM (zr|Θr)

]
(3.3)

to represent SLAM problems with ambiguity, where each index s corresponds to a single-mode
measurement zs while index r corresponds to a multi-mode measurement zr. Even though we
can still solve this MLE problem and get a single estimation Θ̂ that corresponds to one of the
highest peaks of the resulting GMM, the information of all other peaks that result from other
combinations of modes is lost. To preserve all the combinations of modes, we relax the MLE
problem in Eq. 3.3 to a multi-hypothesis MLE problem (MH-MLE):

Θ̂M =
{

Θ̂[i]|i ∈ Nt
}
, (3.4)

Θ̂[i] =arg max
Θ

[∏
s

P (zs|Θs)

][
t∏

r=1

wr(ir)P
(
zr(ir)|Θr

)]
, (3.5)

where t is the total number of multi-mode measurements zr. Index i is a t dimensional vector
whose r-th element ir indicates the choice of mode of zr, and the entire i vector represents
one overall hypothesis h{t}j (j is a scalar index that 1-to-1 associates with i), which is one of
the combinations of all modes (we use “mode” for inputs and “hypothesis” for outputs in this
thesis). Notice that wr(ir) can be dropped without affecting the solution Θ̂[i] at all, which turns
Eq. 3.5 into a MLE problem again. Therefore, the MH-MLE problem is actually a combination
of multiple MLE problems, each corresponds to one h{t}j and one solution Θ̂[i]. The entire set
Θ̂M covers all the combinations of all modes of all zr.

Comparing to other approaches discussed in Sec. 2.1.2, solving the ambiguity problem
through the proposed MH-MLE approach is better in several aspects. Let us take the same
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(a) Two hypotheses (left) and their corresponding distributions (right)

(b) MH-MLE (ours) (c) Sum-mixture (d) Max-mixture

Figure 3.2: Comparison of different approaches using the same example in Fig. 1.1. As each
hypothesis is represented as a unimodal distribution with only one peak in (a), we can recover
the two peaks (red and blue arrows) separately following our MH-MLE approach in (b). In (c),
we can recover two peaks (black arrows), but both of them are off from their original solutions
(light blue and red arrows), and the correspondences of the peaks and their original input distri-
butions are no longer tracked. In (d), we can solve for only one original peak (black arrow) at
convergence. See Sec. 2.1.2 for more information about sum-mixture and max-mixture methods.

example in Fig. 1.1, where each hypothesis at t + 1 and their corresponding unimodal distribu-
tions are shown in Fig. 3.2-a. Our MH-MLE approach allows us to solve for the exact peaks
of each individual distribution (see Fig. 3.2-b). However, we cannot recover the exact peaks
using those nonparametric methods due to their sum-mixture formulation (see Fig. 3.2-c). The
solutions based on max-mixture of distributions can only recover one exact peak instead of all of
them (see Fig. 3.2-d).

3.3 Multi-hypothesis Factor Graph

3.3.1 Basic Structure

An MH-MLE problem can be represented in a multi-hypothesis factor graph (MHFG), which is
an extension of the original factor graph [17] and can be converted into a multi-hypothesis Bayes
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(a) Multi-measurement (b) Multi-association (c) Boolean

Figure 3.3: The three types of MMFs fM. Red and blue show the two modes (m= 2). Purple
and green nodes are poses and landmarks respectively.

tree (MHBT) and solved efficiently (see Sec. 3.5). An MHFG consists of single-mode factors
(SMF), multi-mode factors (MMF), and multi-hypothesis variables (MHV). An SMF corresponds
to one P (zs|Θs) in Eq. 3.5, which is the same as a factor in the original factor graph. An
MMF models each mode of an ambiguous measurement as a individual Gaussian distribution as
described in Eq. 3.5. Three types of MMFs are defined in Sec. 3.3.2). An MHV θp ∈ Θ̂M can
represent its multiple values from each hypothesis in an efficient way (see Sec. 3.3.3 and 3.4.1).

3.3.2 Multi-mode Factors (MMF)

We define three types of multi-mode factors (MMF) fM, each with m modes (m> 1), to model
most kinds of discrete ambiguities that cannot be solved by front-ends. Type #1 is the multi-
measurement factor, which consists of m different measurements that are all connected among
the same MHVs (see Fig. 3.3-a). For example, two different visual odometry (VO) estimates
can be loosely-coupled in one pose graph for better accuracy. However, when the two estimates
are very different, it is very likely that one of them is an outlier and should not be considered
when computing the optimal result. In this case, we can model them as a type #1 MMF with two
modes.

Type #2 is the multi-association factor, which contains only one measurement but is con-
nected among m MHVs that are the same type and at least one other MHV (see Fig. 3.3-b). For
example, when a newly observed feature point is very similar to more than one landmark both
geometrically and in appearance, the front-end again cannot tell which is the accurate association
without additional information.

Type #3 is the Boolean factor, which represents whether a factor should exist or not (m=2).
One common application is to model each loop closure candidate in a loop closing ambiguity
problem [62][4][127] (see Fig. 3.3-c).

3.3.3 Multi-hypothesis Variables (MHV)

A multi-hypothesis variable (MHV) θp contains multiple estimates for one variable, each corre-
sponds to one hypothesis of θp. The hypotheses of θp are determined by all the MMFs that affect
it, which is hard to track since it depends on the topological structure of the MHFG. Therefore,
we introduce the Hypo-tree data structure in Sec. 3.4 to simplify the hypothesis tracking process.

Another challenge is that there can be causal relationships among MMFs, e.g.: the previous
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Figure 3.4: An extension of the example in Fig. 1.1 and Fig. 3.2 that shows how the growing of
hypotheses affects both localization and mapping (the color of each of the newly added landmark
door represent the mode that first observes it). At time t + 2, a similar ambiguous observation
with two modes is made, which results in the four overall hypotheses. Each overall hypothesis
can be derived from one of the two local hypotheses at the previous time t + 1 with a choice of
mode in the newly observed ambiguity. As a result, each hypothesis has its own trajectory and
map, which can be very expensive to track as the total number of hypotheses grows exponentially.

choice of closing a loop or not can affect a later data association, so the hypotheses of the affected
θp are even harder to track. However, we can still assume that all of the MMFs are independent
of each other as defined in MH-MLE without losing generality. Even though each θp might
contain redundant hypotheses from impossible combinations of modes, it at least preserves all the
possible hypotheses, and those redundancies can be removed later through hypotheses pruning
(see Sec. 3.6).

3.4 Hypotheses Tracking in Hypo-tree

3.4.1 Overall and Local Hypotheses

Because of the independence assumption (see Sec. 3.2), when multiple MMFs exist in one
MHFG, the number nt of the overall hypotheses h{t}=

{
h
{t}
j |0≤j<nt

}
of the entire system is

nt=
∏t

r=1mr, where mr is the number of modes of each MMF fM
r , and t is the total number of

MMFs. Even though nt grows exponentially with t (see Fig. 3.4) and has to be pruned (see Sec.
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(a)

(b) (c)

Figure 3.5: An example of hypotheses growing. (a) A MHFG that contains two MMFs (each
with 2 modes: blue/red and orange/green) can be regarded as 4 individual factor graphs in (b).
However, some of the MHVs (θ0, θ1, and θ2) share the same values across different factor graphs
(purple shadows), which implies that fewer hypotheses are required to model these MHVs. To
be more specific, θ0 and θ1 are not affected by any MMF, and θ2 is only affected by fM

1 . (c) We
can associate a MHV θp with a Hypo-layer Lr in Hypo–tree to track its hypotheses (written as
{·}).

3.6) to maintain a tractable size, the number of local hypotheses h{r}=
{
h
{r}
j |0≤j<nr

}
of each

MHV θp can be less than nt because a MHV might not be affected by all MMFs (see Fig. 3.5).
As a result, we track h{r} of each θp instead of h{t} to improve efficiency.

However, h{r} of each θp can change as more measurements (SMFs or MMFs) are added into
the system. For example, as shown in Fig. 3.6-a, if a loop closure is added into the MHFG in
Fig. 3.5-a, some of the θp begin to be affected by the MMFs that originally do not affect θp (see
Fig. 3.6-b). Therefore, those θp have to expand their h{r} accordingly.

3.4.2 Construction of Hypo-tree
To handle both the growing of h{t} and the expansion of h{r} efficiently, we propose the Hypo-
tree data structure (see Fig. 3.5-c and 3.6-c). It consists of several Hypo-layers Lr, each results
from one MMF fM

r following the temporal ordering r=0, ..., t and contains several Hypo-nodes
N
{r}
[j] (j=0, ..., nr) that represent local hypotheses h{r}[j] . Starting from L0 that contains only one

Hypo-nodeN{0}[0] , whenever a new MMF fM
t+1 is observed, a new Hypo-layer Lt+1 will be created,

and mt+1 new Hypo-nodes N{t+1}
[j′] will be generated in Lt+1 as the children of each N{t}[j] in Lt.

Therefore, the total number of Hypo-nodes in Lt+1 is nt+1 = nt ·mt+1. Due to this incremental
construction procedure, the structure of previous layers L0, . . . , Lt never change.
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(a)

(b) (c)

Figure 3.6: An example of hypotheses expansion. (a) Factors that link the current variable with
an earlier one can result in hypotheses expansion of MHV, which can be observed by comparing
(b) and Fig. 3.5-b. (c) In this case, we only have to update the association between Hypo-layers
and MHVs without changing the structure of Hypo-tree.

3.4.3 Association and Correspondence

Every new MHV θp is associated with the latest Hypo-layer Lr (denoted as θ{r}p ) once added into
the system. Also, each value of θ{r}p (denoted as θ{r}p[j]) is associated with each Hypo-node N{r}[j]

(or local hypothesis h{r}[j] ) in Lr, for 0 ≤ j < nr. When the local hypotheses of θp have to be

expanded (e.g. the example in Sec. 3.4.1), we only have to update the association of θ{r}p to a
different Hypo-layer Lr′ , which can be denoted as θ{r}p →θ

{r′}
p , and expand the number of values

in θ{r
′}

p accordingly.
Based on the association, searching for the corresponding values of local hypotheses between

variables is simple. The h{r
∗}

[j∗] of a MHV θ
{r∗}
p∗ that is the ancestor of h{r}[j] of another θ{r}p can be

found by traversing from N
{r}
[j] towards the root till reaching Lr∗ (r∗ < r). Or, the set of local

hypotheses
{
h
{r′}
[j′] |0≤j′<nr′

}
of θ{r

′}
p′ that are the descendants of h{r}[j] of θ{r}p can be found

through traversing from N
{r}
[j] towards the leaves till reaching Lr′ (r′ > r). Same method is

applied to search for the hypotheses correspondences among other components in the inference
process (see Sec. 3.5).

Comparing to the levels in a hypothesis tree described in [127], the Hypo-layers in a Hypo-
tree track the hypotheses of each MHVs in addition. Moreover, in our approach the associations
between MHVs and Hypo-layers can be changed when the hypotheses expansion occurs. Finally,
it is worth noting that even though the Hypo-tree data structure is originated from the nature of
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growing of hypotheses as shown in Fig. 3.4, it is not only a representation of the growing
of hypotheses but also serve as an efficient reference for the overall/local hypotheses of the
computational components in the proposed multi-hypothesis optimization algorithm (see Sec.
3.5 and Sec. 3.6).

3.5 Inference in Multi-hypothesis Bayes Tree

3.5.1 Multi-hypothesis Bayes Tree (MHBT)

Multi-hypothesis Bayes tree (MHBT) is an extension of the original Bayes tree [51] (see Ap-
pendix A.2 for more details) that conducts efficient inference for a MHFG. A MHBT stores
multi-hypothesis conditional densities (MHCD) γ{r}q in each of its cliques Cq, and applies a
multi-hypothesis inference process throughout all the cliques (see Fig. 3.7) to solve for all the
MHVs.

A MHBT can be constructed from a MHFG based on an ordering of all MHVs. In each clique
Cq, the relevant SMFs, MMFs, and all of the multi-hypothesis marginal densities (MHMD) ω{r

∗}
q∗

that are passed from Cq’s child cliques Cq∗ (if any) are combined into a multi-hypothesis joint
density (MHJD) φ{r}q . Then, φ{r}q is factorized into a MHCD γ

{r}
q and a MHMD ω

{r}
q . Finally,

ω
{r}
q are passed to Cq’s parent clique Cq′ . Repeating this process from leaves to root completes

one iteration of inference, and several iterations are needed before convergence for a nonlinear
SLAM problem. Notice that each φ{r}q , γ{r}q , and ω{r}q is associated with a Hypo-layer Lr for the
search of hypotheses correspondences among them (see Sec. 3.4.3).

3.5.2 Variable Ordering

All MHVs are ordered based on the same CCOLAMD algorithm [15] applied in [51] to construct
a MHBT from a MHFG. Since all hypotheses have to share the same ordering, all the edges that
represent a mode in each multi-association factor are regarded as connected, and all Boolean
factors are regarded as true (connected) in the ordering process.

3.5.3 Linearization

Each nonlinear factor fs (a SMF) or fM
r (a MMF) is linearized with respect to a linearization

point of all the relevant MHVs Θs or Θr (see Sec. 3.2) if required (fluid relinearization [51]
is applied). Consequently, each local hypothesis h{r

′}
[j] of a multi-hypothesis linearized factor

(MHLF) l{r
′}

s (from fs) or lM{r
′}

r (from fM
r ) is calculated by finding the correspondences among

the local hypotheses of Θs or Θr, and also the corresponding modes of fM
r for lM{r

′}
r only (see Fig.

3.7-b). Notice the associated Hypo-layer Lr′ of lM{r
′}

r might not be the same as Lr that results
from fM

r since some of its relevant MHVs θp might be affected by later MMFs (thus r′ ≥ r).
Based on the Gaussian assumption in Eq. 3.5, each MHLF is a set of Jacobian matrices A{r

′}={
A
{r′}
[j] |0≤j<nr′

}
, and each A{r

′}
[j] contains the right-hand-side (RHS) vector as an additional
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(a) A MHFG with 20 odometry factors (14 SMFs and 6 type #1 MMFs) and 5 loop closures

(b) The associations between the MHBT (left) and the Hypo-tree (right), and examples of finding the correspon-
dences of local hypotheses

Figure 3.7: An example of inference process in a MHBT with the help of Hypo-tree. (a) A
SLAM problem with ambiguity is represented as a MHFG. (b) The corresponding MHBT and
Hypo-tree are constructed from the MHFG and associated with each other (the MHCD γ

{r}
q in

each clique Cq is associated with the Hypo-layer Lr that is colored the same as the shadow of
Cq). Hypo-tree is used to not only find the correspondences among the modes of MMFs fM

r and
the hypotheses of MHVs θ{r}p , MHJDs φ{r}q , MHCDs γ{r}q , and MHMDs ω{r}q , but also determine
the output hypotheses of θ{r}p , φ{r}q , and γ{r}q . For example: i) Linearization of the SMF between
θ4 and θ5. ii) Linearization of the MMF fM

1 . iii) Forming the MHJDs φ{r}13 of clique C13. iv)
Retraction (denoted as ⊕) of θ17 in C4, assuming the loop closing factor between θ10 and θ20

is newly added in this iteration (expanding the hypotheses of θ17). v) Retraction of θ4 in C13

(merging the hypotheses of δ4).
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column in practice. Then, their Hessian matrices Λ
{r′}
[j] =

(
A
{r′}
[j]

)>(
A
{r′}
[j]

)
that represents the

local densities are generated for the next step.

3.5.4 Clique-based Elimination

Based on the ordering of MHVs in Sec. 3.5.2 and the clique formation algorithm in [51], each
MHLF is grouped into one of the cliques. Then, the MHJD φ

{r′}
q of each clique Cq can be gener-

ated as a set of Hessian matrices Φ
{r′}
q =

{
Φ
{r′}
q[j] |0≤j<nr′

}
by summing up the corresponding

Λ
{r}
[j] and input MHMDs ω{r

∗}
q∗ from its children Cq∗ , which is also a set of Hessian matrices .

Because of the incremental update strategy (see Sec. 3.5.6), the number of hypotheses nr′ of
φ
{r′}
q in clique Cq is no less than nr∗ of any of its input MHMDs ω{r

∗}
q∗ (r′≥r∗⇒nr′>nr∗). As a

result, one matrix of an input ω{r
∗}

q∗ can be reused by more than one Φ
{r′}
q[j] of φ{r

′}
q , which is more

efficient than conducting the same process in individual Bayes trees for each h{t}[j] .

Finally, we apply partial Cholesky factorization on each Φ
{r′}
q[j] of Φ

{r′}
q based on the frontals

ΘF
q and separators ΘS

q in Cq (as defined in [51]) and eliminate the frontals ΘF
q from the rest of

the inference process:

Φ
{r′}
q[j] = Q>q[j]

((
Γ
{r′}
q[j]

)>(
Γ
{r′}
q[j]

)
+

[
0 0

0 Ω
{r′}
q[j]

])
Qq[j], (3.6)

where Qq[j] is an orthonormal matrix that makes Γ
{r′}
q[j] upper-triangular. The set of factorized

matrices Γ
{r′}
q =

{
Γ
{r′}
q[j] |0≤j<nr′

}
that represents the MHCD γ

{r′}
q is stored in Cq, while Ω

{r′}
q ={

Ω
{r′}
q[j] |0≤j<nr′

}
is the set of Hessian matrices of the MHMD ω

{r′}
q that is passed to the parent

clique of Cq. In practice, we cache ω{r
′}

q as in [51] to save computations in incremental updates
(see Sec. 3.5.6).

3.5.5 Backsubstitution and Retraction

Following the backsubstitution algorithm in [51], we can solve the multi-hypothesis linear up-
dates (MHLU) δp =

{
δp[j]|0≤j<nr′′

}
of each frontal θF

p ∈ ΘF
0 from the root to all the leaves.

However, since δp is calculated from γ
{r}
q and each δp′ of its corresponding separator θp′ ∈ΘS

q ,
the number nr′′ of hypotheses of δp is determined by the largest number of hypotheses among
γ
{r}
q and all δp′ , which might be greater than nr of θ{r}p and even contain redundant duplicated

values. Thus, we first try to merge numerically similar values in δp based on their hypotheses
correspondences. Then, if the number nr′′′ of hypotheses of δp is still larger than that of θ{r}p after
merging, we expand the hypotheses of θ{r}p to match with it (θ{r}p → θ

{r′′′}
p , see Fig. 3.7-b) for

retraction.

26



(a) Before pruning in L4 (b) After pruning in L4

Figure 3.8: An example of hypotheses pruning and DoF recording (small boxes) in Hypo-tree,
where fM

1 and fM
3 (associated to L1 and L3) are type #3 MMFs. (a) Before pruning in L4. (b)

After pruning in L4 (dark gray nodes) with backward pruning (dark red nodes). The part of DoF
that results from type #3 MMFs (which can be different for each h{t}[j] ) is stored in each h{t}[j] while

the rest part of DoF that results from all other factors is shared by all h{t}[j] . For example, the DoF

of h{4}[1] (see the Hypo-node at the top-right corner) is 18+6=24.

3.5.6 Incremental Update
Because of the causality property of the growth of hypotheses, constructing MHBT incrementally
can achieve better efficiency. As new factors being added into the corresponding MHFG, the top
part of the MHBT is rebuilt without changing the subtrees that are not directly linked with the
new factors. As a result, the hypotheses of the MHVs in those subtrees are not changed except
for the hypotheses expansion of MHVs during backsubstitution.

3.6 Hypotheses Pruning

3.6.1 Pruning Criteria
The unwanted and unlikely hypotheses (see Sec. 3.3.3 and 3.4.1) are pruned to maintain the
efficiency right after the elimination step (see Sec. 3.5.4). First, every overall hypothesis h{t}[j] in
the the last Hypo-layer Lt with its corresponding squared system error e2

[j] larger than its 95%

chi-square threshold χ2
[j] is pruned. If the number nR1 of remaining hypotheses is greater than

a threshold ndesire, we further prune those h{t}[j] with the fewest degrees of freedom (DoF) d{t}[j]

(the same DoF of the chi-square function). Then, if the number nR2 of remaining hypotheses is
greater than another threshold nlimit (e.g. all the d{t}[j] are the same), we prune those with lower
chi-square probabilities one-by-one until their final remaining number nR3 is smaller than nlimit

(nlimit≥ndesire is a relaxed bound that allows tracking more hypotheses when too many of them
all seem likely).

In practice we use the error e′[j] of the linearized system in each iteration to approximate the
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actual system error e[j], which is calculated directly in the elimination step (see Sec. 3.5.4) as the
bottom right element of the matrix Γ

{t}
0[j] of the MHCD γ

{t}
0 of the root clique C0. Each DoF d{t}[j]

is recorded in two parts as shown in Fig. 3.8.

3.6.2 Pruning in Both Trees

Once an overall hypothesis h{t}[j] is pruned, we flag the corresponding Hypo-node N{t}[j] as pruned,

and no children will be created from N
{t}
[j] (see Fig. 3.8-a). Also, after finishing flagging in the

last Hypo-layer Lt, we check every unflagged Hypo-node N{r}[j] from Lt−1 to L1 and flag it if all

its children are flagged (see Fig. 3.8-b). Then, the associated values of those flagged N{r}[j] in

each MHV θ
{r}
p and MHCD γ

{r}
q of the MHBT are removed immediately. Notice that we only

remove the associated Ω
{r}
q[j] of a cached MHMD ω

{r}
q when it is used in the incremental update

step.

3.7 Simulations

3.7.1 Settings

At this stage, we evaluate the accuracy and efficiency of MH-iSAM2 through simulations. All
computation is executed on a desktop computer with an Intel Core i7-4790 processor. Whenever
a new observation is added into the system, we run one iteration of update in the MHBT and
calculate the most up-to-date estimates of all MHVs.

3.7.2 Results

The three different types of ambiguities (see Sec. 3.3.2) are simulated based on the city10000 or
Victoria Park dataset, and some example outputs are shown in Fig. 3.9. From the timing analysis
in Fig. 3.10, we can tell that the speed of MH-iSAM2 is constant to the overall complexity
of ambiguity in general. Moreover, MH-iSAM2 is efficient enough to track up to nlimit = 30
hypotheses within less than 30× of time of original iSAM2 in all of the simulations. However,
in each iteration the speed can vary due to the extra computation for hypothesis handling. Also,
since the number of modes m of each type #2 or type #3 MMF affects the topology and density
of the MHFG, it can affect the efficiency as well.

As for the accuracy analysis of the hypothesis with the smallest root-mean-square error
(RMSE) in Fig. 3.10, we can tell that MH-iSAM2 can keep track of the “correct hypothesis”
with reasonable cost of time. Although some wrong loop closures might be added into all re-
maining hypotheses (see Fig. 3.9-c and 3.10-c), their pollution of the outputs are hardly visible
since they all pass the chi-square threshold.

Even though each test case in the analysis above only contains one type of MMF, and each
tested MMF only contains 2 modes, there is no constraint on the number of modes of each MMF
or combinations of their types in the current MH-iSAM2 framework (see Fig. 3.11). In real
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(a) Type #1: ambiguity in odometry with total 2173 complexity

(b) Type #2: ambiguity in data association with total 2412 complexity

(c) Type #3: ambiguity in loop closing with total 28000 complexity

Figure 3.9: Examples of MH-iSAM2 tracking and solving various types of ambiguities (see
Sec. 3.3.2) in SLAM problems online incrementally as more observations are added into the
system (left to right). Multiple most possible solutions can be solved from (a) a pose graph with
ambiguous odometry measurements, (b) a SLAM problem with ambiguous data association of
2D feature points, and (c) a pose graph with ambiguous loop closures.
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(a) Type #1: Multi-measurement factor (based on city10000 dataset)

(b) Type #2: Multi-association factor (based on Victoria Park dataset)

(c) Type #3: Boolean factor (based on city10000 dataset)

Figure 3.10: Speed (left column) and accuracy (right column) analysis of each type of MMF.
Notice that in (b) we take the complete iSAM2 result as groundtruth since the real groundtruth
is unavailable.

world applications, various types of ambiguities can occur at the same time. We will show how
MH-iSAM2 handles them properly in Ch. 6.

Finally, the detailed percentage of time spent in each component in MH-iSAM2 is shown in
Fig. 3.12. The percentage varies from case to case due to the different types of factors (both
SMFs and MMFs), different number of hypotheses tracked throughout the process, and different
sizes of MHFG.

3.7.3 Discussion

So far, only the basics of MH-iSAM2 is developed and evaluated. There are several improve-
ments and extensions that can be done in the near future. First, the type #3 MMF can be com-
bined with type #1 or type #2 MMF to represent an additional possibility that all the existing
modes are invalid. Second, since the merging of δp only consider the numerical changes in each
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(a) Type #1 and type #2

(b) Type #1 and type #3

Figure 3.11: The example results of MH-iSAM2 with two types of ambiguities.

iteration instead of the entire process until convergence, some of the θp might be expanded ac-
cidentally and end up containing more hypotheses than needed (e.g.: θ1 in Fig. 3.7). Third,
nmax and nlimit should be adjusted online based on the current complexity of ambiguity to avoid
losing track of the correct hypotheses. Lastly, even though current MH-iSAM2 framework deals
with discrete ambiguity only, modeling the degeneracy and continuous ambiguity in the same
framework seems possible yet requires more studies.

Designed as an online incremental SLAM solver, both Hypo-tree and MHBT in MH-iSAM2
are constructed based on temporal ordering intuitively. However, if we would like to solve the
same SLAM problem with ambiguities offline in batch, a different ordering of Hypo-layers and
MHVs might give us better efficiency. For example, if some MMFs are easier to be disam-
biguated than others, we might be able to choose an ordering to solve them first so that the grow-
ing number of hypotheses can be reduced early. Again, this could be a new research direction
that requires more studies.

3.8 Conclusion

In this chapter, we present the novel online incremental nonlinear optimizer MH-iSAM2 to han-
dle the ambiguities in SLAM. Based on the Hypo-tree, MHBT, and the hypothesis pruning al-

31



(a) From dataset in Fig. 3.9-a (b) From dataset in Fig. 3.9-b

(c) From dataset in Fig. 3.9-c (d) From dataset in Fig. 3.11-a

(e) From dataset in Fig. 3.11-b

Figure 3.12: Percentage of time spent in each component of MH-iSAM2 for the 5 different
datasets in Fig. 3.9 and 3.11. Notice that in (b) and (d), elimination dominates the time cost
more because of using type #2 MMFs that potentially make the MHFG denser. On the other hand,
backsubstitution dominates the time cost in (a), (c), and (e) since their numbers of hypotheses
and sizes of MHGFs are larger.
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gorithm, MH-iSAM2 can take multi-mode measurements as inputs and output multi–hypothesis
results efficiently, therefore greatly enhance the robustness of SLAM systems.

Based on MH-iSAM2, we will focus on solving real-world ambiguity problems in SLAM in
Ch. 6, and further extend the developed system to improve the robustness of active SLAM in Ch.
7.
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Chapter 4

Fast RGB-D-inertial Odometry for Robust
State Estimation

4.1 Choice of Sensors

In modern SLAM systems, various types of on-board sensors and their combinations have been
adopted, such as cameras, LiDARs, sonars, inertial sensors, and wheel odometers (if the system
includes a mobile platform). More recently, RGB-D sensors and event cameras have also been
studied for state estimation and 3D mapping. Each of these sensors has its own advantages and
disadvantages, and one might even be complementary to the other. For example, cameras are
popular and low-cost, but cannot measure depth directly and therefore require more computation
to reconstruct high quality dense maps from multiple images (e.g.: searching for match point
along each epipolar line [103]). On the other hand, LiDAR measures depth directly, but its
spatial resolution is usually low, and it is also more expensive than other sensors.

To achieve good balance among cost, complexity, and information diversity, we combine two
different types of sensors in our proposed ambiguity-aware passive and active SLAM system.
The first one is an RGB-D sensor, which consists of an RGB camera and an infrared camera with
an infrared pattern projector to actively measure the depth of the scene (e.g.: Microsoft Kinect
[136]). Even though the maximum range of depth measurement is short (around 8 meters),
and the infrared projector and camera do not work well in sun light, an RGB-D sensor still
preserves the advantages of both camera and LiDAR, and is suitable for indoor 3D SLAM.
The second sensor is an inertial measurement unit (IMU), which utilize microelectromechanical
systems (MEMS) or optics to measure angular velocity and acceleration at a high frequency (up
to 500~1000 Hz). The complementary nature of these two sensors is obvious: while an RGB-D
sensor can acquire the structure and texture information of the environment for mapping, it also
relies on them for state estimation. On the other hand, IMU cannot contribute any information to
the map directly, but it greatly helps state estimation especially in textureless environments due
to directly measuring its own motion. As a result, the proposed sensor combination is expected
to achieve high accuracy and robustness. However, since ambiguity problems can still occur
in some critical situations, the robust back-end (see Sec. 1.3) is still desired, and an approach
to detect and model ambiguities will be discussed in Ch. 6. In this section, we will focus on
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developing an efficient RGB-D-inertial odometry algorithm that can operate in real-time on a
single CPU.

4.2 Direct RGB-D Odometry Framework
We combine geometric and photometric methods as described in [133][134] to realize a fast
RGB-D odometry (FRO) algorithm. Geometric and photometric methods are known to be com-
plementary to each other and can achieve better accuracy and robustness together if they are
jointly optimized:

Etotal = Egeo + λEpho, (4.1)

whereEgeo andEpho are the error terms from the geometric and photometric method respectively,
andEtotal is the overall energy term that should be minimized in the optimization. The weighting
λ is used to adjust the relative importance of the two error terms.

A two-stage framework is also applied in FRO to improve the robustness of pose estimation.
In the first step, a novel iterative projected plane (IPP) method (as the geometric component) and
a pyramid dense RGB-D odometry method [117, 55] using Laplacian images (as the photometric
component) are jointly optimized to estimate a rough odometry. Then, in the second step, the
same IPP will be combined with a semi-dense RGB-D odometry (SRO) method, as the geometric
and photometric components, respectively, to estimate a precise odometry. These three methods
are described in detail in Sec. 4.3, Sec. 4.4, and Sec. 4.5 respectively.

4.3 Iterative Projected Plane
The basic idea of IPP algorithm is to only use the planar regions for 3D registration, which allows
a much faster pose estimation if sufficient planar regions are observed in both the new frame Fn

and the reference frame Rr, which is usually true in general indoor environments. First, planes
are fitted to small regions from all over the depth image of each frame. Then, camera projection
is applied to find associations between the planes in the two frames. By minimizing the distances
between the associated plane pairs, the relative transformation between the two frames can be
updated iteratively until convergence. However, it is hard to extract accurate and robust small
planar regions efficiently from the noisy raw depth data. Therefore we preprocess the depth
image to reduce noise in the potentially planar regions before extracting the planes.

In general indoor scenes, if a region is smooth in intensity (color) it is likely to be smooth
in depth as well. As a result, we iteratively smooth the depth image in areas with low intensity
gradient with a three-pixel kernel. Note that we do not smooth the entire depth image so that the
non-planar regions with strong geometric features (e.g. edges and corners) will not be averaged
out and mistaken as planar regions.

After the depth smoothing, we extract planes from small regions in the partially-smoothed
depth image. First, we uniformly divide the depth image into small grid cells. In each grid cell,
we uniformly sample several points and calculate the local normal directions of those points. If
more than a threshold of normal vectors are close to parallel, we use these points and normal
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vectors to generate a plane model, find inlier points in the same grid cell, and refine the plane
model using all the inliers (see Fig. 4.1-a). A plane π[i]

n in Fn is corresponded to a plane π[i]
r in

Rr if the projection of the center point c
[i]
n =

[
x

[i]
n y

[i]
n z

[i]
n

]>
of π[i]

n onto Rr is within the grid

cell that contains π[i]
r given the current estimation of the relative transformation between these

two frames. With m plane correspondences found in any iteration, the relative transformation
between the two frames can be found by minimizing the geometric error:

Egeo =
m∑
i=1

∥∥(R(ξ)c[i]
n + t(ξ)

)>n[i]
r + d[i]

r

∥∥2
(4.2)
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α) and three translations (tx, ty, tz). R(ξ) and t(ξ) are the corresponding rotation matrix and
translation vector of ξ. c
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r ,
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r x+ b[i]

r y + c[i]
r z + d[i]

r = 0, (4.4)

that corresponds with π[i]
n . Note that Eq. 4.3 is an approximation of Eq. 4.2 when the transforma-

tion is small, which is a valid assumption for most 30 fps hand-held SLAM problems. IPP can
run at about 100 fps on a single thread of a CPU due to the projective plane association and the
relatively small number of planes compared to the number of points in the raw image.

Since IPP relies on planar surfaces only, it cannot find accurate pose estimations alone if
sufficient planes are not observed and matched in the scene (e.g. cluttered scene without enough
planar surfaces). As a result, we integrate other photometric methods with IPP to solve this
problem.

4.4 Pyramid Dense RGB-D Odometry
Our pyramid dense RGB-D odometry method mostly follows [117, 55] except that we utilize the
Laplacian of the downsampled images. We use Laplacian (see Fig. 4.1-b) instead of grayscale
images to alleviate the effect of illumination variation. In each iteration of optimization, our
pyramid RGB-D odometry method minimizes the photometric error:

Epho =
n∑
i=1

∥∥J [i]
r ξ − r[i]

∥∥2
, (4.5)

where J [i]
r is the Jacobian of the i-th valid pixel in the downsampled Laplacian image of Rr with

respect to a 6 DoF perturbation (3 rotations and 3 translations), ξ is again the desired 6 DoF
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(a) Small planar regions in IPP (b) Downsampled Laplacian image

(c) Selected pixels in SRO (d) Final alignment

Figure 4.1: A rough odometry transformation is estimated by combining IPP (a) and pyramid
odometry with Laplace images (b). Using this pose as an initialization point, we can combine
IPP (a) and SRO (c) to estimate a more precise transformation (d).

relative transformation that is gradually refined in each iteration, and r[i] is the residual between
each valid pixel pair in the downsampled Laplacian image of Rr and the reprojection (based on
ξ) of the downsampled Laplacian image of Fn. n is the number of valid pixel pairs that are used
in each iteration. Note that we start at the 5th pyramid level (coarsest) and stop at the 3rd for
computational efficiency, only estimating rotation at the 5th level. In addition to efficiency, this
coarse-to-fine scheme helps handle larger motion and avoids the optimization getting stuck in
wrong local minimum.

4.5 Semi-dense RGB-D Odometry
Inspired by [21], our SRO algorithm only uses few pixels with high intensity gradients in the
residual minimization process instead of the entire image [117, 55] for better efficiency. This
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simplification is based on the fact that many of the calculations on the regions with low intensity
gradients do not contribute much to optimizing odometry and therefore can be discarded without
losing much robustness.

Ideally we can directly select those pixels with large intensity gradients only and ignore
all others. However, if a region with large intensity gradient corresponds to a discontinuous
structure in the real world, the depth measurements of these pixels are often missing, and their
reprojection cannot be calculated. As a result, we first choose some interest pixels with large
intensity gradients, and then select all the pixels with valid depth data within a small patch
around each interest pixel (see Fig. 4.1-c) for calculation. Again, with the semi-dense pixels
selected from the patches in both Rr and Fn, the relative transformation between the two frames
can be found by minimizing the photometric error in Eq. 4.5. J [i]

r is now the Jacobian of the
i-th selected pixel in the grayscale image of Rr with respect to the same 6 DoF perturbation, and
r[i] = p

[i]
r − p[i′]

n is the residual between each selected pixel p[i]
r in Rr and corresponding selected

pixel p[i′]
n in Fn, with correspondences found projectively. n is again the number of valid pixel

pairs that are used in each iteration.

4.6 Reference Frame Sharing

In the actual implementation of the algorithm, a group of neighboring frames share the same
reference frame for better efficiency. The shared reference frames are selected based on the mo-
tion of the sensor, where every two consecutive reference frames satisfy a threshold on relative
transformation. Moreover, because we warp input pixels toward the reference frame in each iter-
ation of the optimization, the Jacobians of the image pyramid and the semi-dense patches in SRO
are calculated only when a new reference frame is defined, which saves significant computation
time compared to calculating the Jacobians in each frame. Another advantage of reference frame
sharing is that there might be less drift accumulation compared to a frame-to-frame formulation.
The overall dense RGB-D odometry method can operate faster than real-time (more than 50 fps)
on a single CPU, which leaves plenty of time for other components in the proposed integrated
SLAM system, such as fusion and dense mapping (see Ch. 5), multi-hypothesis state estimation
(see Ch. 6), or even active SLAM (see Ch. 7).

4.7 RGB-D-Inertial Fusion Based on IMU Preintegration

To combine inertial measurements with the FRO for better state estimation, we can predict the
relative pose of each frame to the most recent reference frame using the preintegrated rotation
∆Rtt+n∆t and translation ∆ptt+n∆t over the n number of IMU measurements between the two
frames as

R̃t+n∆t = Rt∆Rtt+n∆t, (4.6)

p̃t+n∆t = pt + Rt∆ptt+n∆t + vtn∆t− 1

2
gn∆t2, (4.7)
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which can be computed easily from the preintegrated IMU factor (see Sec. 2.4.3). Using the
preintegrated IMU measurements to predict the initial pose of each frame results in better odom-
etry estimation, especially in the cases of fast rotation and lack of texture.

Jointly optimizing RGB-D odometry with IMU measurements at every reference frame in
a loosely-coupled manner (see Sec. 2.4.1) further results in more accurate estimation of IMU
states in the global optimization, which also allows the correction of the biases of the IMU mea-
surements efficiently. The inertial constraints between each two consecutive reference frames is
defined as in Eq. 2.5-2.7, and the RGB-D odometry constraint is defined as a 6-DoF pose-to-pose
factor. Notice that since the poses of the IMU states represent the poses of the IMU instead of
RGB-D camera, each original RGB-D odometry estimation cTrgbd has to be transformed into the
IMU coordinates before taken as a odometry factor between IMU states. The transformation

Trgbd = Tc · cTrgbd · T−1
c (4.8)

is based on the relative camera pose Tc in the IMU coordinates, which can be calibrated offline
in advance. This loosely-coupled fast RGB-D-inertial odometry (FRIO) algorithm is designed to
be integrated with a SLAM and dense mapping system (see Ch. 5), and is expected to achieve
reliable pose estimation most of the time. As for its failure cases, we propose to apply MH-
iSAM2 (see Ch. 3) to handle it in the back-end (see Ch. 6).

4.8 Preliminary Experiment
To test our FRIO algorithm, we generate simple dense 3D maps of indoor environment based
on it. The adopted sensors are an ASUS Xtion Pro Live with 30 fps and 640 × 480 resolution
in both color and depth images, and a Microstrain 3DM-GX4-25 with 1000 Hz raw rotational
velocity and acceleration measurements (see Fig. 4.2). Other than some drift in rotation, FRIO
can estimate the poses correctly in general (see Fig. 4.3). Since there is no public RGB-D-
inertial dataset with groundtruth, and the purpose of the FRIO algorithm is for dense 3D SLAM,
the detailed experiments of FRO and FRIO are conducted by integrating them into a dense planar
SLAM system (see Ch. 5) with their results shown in Sec. 5.7.

4.9 Conclusion
In this chapter, we introduce the fast RGB-D-inertial odometry (FRIO) algorithm that can es-
timate the states of the sensors from a sequence of RGB-D and inertial data. Utilizing the
state-of-the-art techniques for direct odometry estimation and visual-inertial fusion as well as
our improvement in efficiency, FRIO can run faster than real-time on a CPU while maintaining
good robustness and accuracy in general static indoor environments. As for challenging cases
that can fail FRIO, such as aggressive motions, textureless scenes, or dynamic objects, we will
apply the robust back-end optimizer (see Ch. 3) with ambiguity detection and modeling meth-
ods in the front-end of the SLAM system (see Ch. 6) to handle them in order to achieve better
robustness.
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Figure 4.2: The IMU (Microstrain 3DM-GX4-25) is rigidly attached on the top of the RGB-D
sensor (ASUS Xtion Pro Live).

(a) Top view

(b) Side view

Figure 4.3: An example result of dense 3D mapping based on the proposed FRIO algorithm.
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Chapter 5

Dense 3D Mapping Using Submaps and
Planes

5.1 Introduction
In order to reconstruct dense 3D maps online efficiently even under ambiguities, we study several
possible mapping approaches adopted in existing SLAM systems that are also suitable for the
proposed ambiguity-aware multi-hypothesis SLAM framework. The first idea is hierarchical
mapping, where one simple example is to generate local submaps first, and use these submaps
to represent a complete global map by placing them at the correct locations. We will discuss
how to make this process as efficient as possible in order to run in real-time on a CPU with all
other components in a SLAM system. Another idea is to use planes as landmarks in a SLAM
system so that the general geometric structure of indoor environments can be preserved in a much
cheaper yet still dense representation, while the global structure of the reconstructed maps can
be more accurate due to the additional constraints offered by the planar measurements. We will
discuss these ideas in this chapter with other relevant materials such as structural constraints and
loop closings, and will show their advantages by integrating them in real world SLAM systems,
including the conventional single-hypothesis solutions (see Sec. 5.7) and the proposed multi-
hypothesis approach (see Sec. 6.5).

5.2 Local Fusion for Submap Reconstruction
Fusing multiple overlapping depth images with known poses into a dense map is a straightfor-
ward way for 3D mapping, which also greatly reduces the noise in the output map. In this work,
we fuse neighboring frames locally into the latest keyframe to generate a dense submap. Placing
all dense submaps in the global coordinates with their corresponding keyframe poses can repre-
sent the entire model, which can be updated globally by updating the keyframe poses. Notice that
keyframes are selected based on the same sensor-motion criteria used to select reference frames
(see Sec. 4.6) but with larger thresholds.

The depth submap Mi of a keyframe Ki is initialized simply with the depth image of Ki.
Again by utilizing the same sensor-motion criteria used to select reference frames (see Sec. 4.6),
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(a) (b) (c)

Figure 5.1: (a) Color image from a keyframe shows a whiteboard offset from a wall by ap-
proximately 1cm. (b) The segmentation algorithm cannot discriminate between the wall and the
whiteboard when performed on the raw depth map. (c) The fused depth map allows the algorithm
to correctly segment the wall and whiteboard as separate planes.

but this time with smaller thresholds, fusion frames are regularly selected to fuse depth data into
the current local map Mi. The depth measurements from these fusion frames are projected into
the depth image of Ki based on the odometry estimation and then fused into Mi using a running
average method for each pixel. To avoid fusing incorrectly associated depth measurements, only
measurements that are within a small threshold of the keyframe’s corresponding depth measure-
ment are fused.

With reasonably accurate pose estimates, the local fusion process produces a significantly
smoothed model after fusing as few as 3-4 frames. The frequency of fusion frame selection may
be adjusted to allow for real-time performance of the overall system. Fusion frames will continue
to be selected and fused with Mi until a new keyframe Ki+1 is selected, at which point planes
will be segmented from Mi and a new submap Mi+1 will be initialized.

Combining the submaps with their known poses allows fast global reconstruction of large-
scale environments, and any new information can update the global map easily by moving the
submaps locally. Moreover, the fused local maps enable more precise plane segmentations than
are possible using just a single frame (see Fig. 5.1), as we use the clustering algorithm described
in [35] for plane segmentation.

5.3 Plane Fitting and Uncertainty Estimation

Following segmentation, a plane model is fitted to each point cluster using the linear model
described in [22]: δ[i] = au[i] + bv[i] + c, where δ[i] is the disparity (proportional to inverse
of depth measurement), u[i] and v[i] are the pixel coordinates, and a, b, and c are the unknown
parameters that depend on both the (known) camera intrinsics as well as the parameters of the
underlying plane π. Our noise model assumes additive Gaussian noise on disparity, which leads
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to the standard least squares model∥∥∥∥∥∥∥∥∥
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u[1] v[1] 1
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u[n] v[n] 1
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∥∥∥∥∥∥∥∥∥

2

= ‖y −Xβ‖2 . (5.1)

The optimal parameters are solved for as β∗ =
(
X>X

)−1
X>y which may be used to com-

pute the optimal plane parameters π∗ = T (β∗). The explicit form of T is omitted for brevity.
The covariance of the parameters β∗ is Σβ =

(
X>X

)−1. Σβ is transformed to the space of the
plane parameters π using the Jacobian of T computed numerically: Σπ = JTΣβJ

>
T . However,

since global optimization utilizes the minimal parametrization to update planes, the covariance
matrix must match the dimensionality of the minimal parametrization (three). Therefore, we
compute the 3× 3 covariance matrix Σ′π = JlΣπJ

>
l using the Jacobian of the log map, which is

described in [48]. This is the final covariance matrix that is used in the global optimization.

5.4 Data Association
We implement a novel projective data association algorithm for matching planes between keyframes.
Once planes are extracted from keyframe Ki−1, all of the landmarks seen in the previous 10
keyframes are considered candidates for data association and are projected into the frame of
Ki−1 using the globally optimized pose estimates. An exhaustive search across measurement-
landmark pairs is used to find the best correspondences. Three criteria must be met in order to
match a new plane measurement with a previously existing landmark. The first two criteria are
common in the literature: the normals must be within a small threshold of each other as well as
the distances of the planes from the origin (we use 10◦ and 0.2m). The last criterion computes the
residual of the landmark’s plane model using the points from the plane measurement, normalized
for the number of points. That is, for landmark Πp and measurement cq, we compute the cost

Cpq =

∥∥yq −Xqβp
∥∥2

n
(5.2)

where yq and Xq are the corresponding data from measurement cq as defined in Eq. 5.1, n is the
number of points observed in measurement cq, and βp is the vector of regression parameters cor-
responding to landmark Πp. We use a threshold of 10 for Cpq, which was empirically determined
to minimize the number of false positive correspondences while allowing for some uncertainty
in the odometry motion estimate. Plane measurements from Ki−1 that are not matched with
previously observed landmarks are added to the graph as new landmarks.

5.5 Optimization of 3D Planes

An infinite plane landmark is represented as a unit length homogeneous vector π =
[
n> d

]> ∈
P3 in projective space in our global optimization, where n is the normal vector of the plane and
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(a) Bases of planar constraints

(b) Bases of structural constraints

Figure 5.2: Both planar and structural constraints have links (blue lines) to their bases. (a) All
the planar factors that link to the same landmark plane are also linked to the same base, which
is the IMU state of the keyframe that first observes that landmark plane. (b) Each structural
constraint is linked to two bases, which are the IMU states of the keyframes that first observe the
two landmark planes that the structural constraint is linking to.

d is its distance from the origin. By enforcing ‖π‖ = 1 we parametrize planes on S3. We deal
with over-parametrization by using the same minimal representation ω ∈ R3 as for quaternions,
exploiting the exponential map

exp (ω) =

(
1
2
sinc

(
1
2
‖ω‖

)
ω

cos
(

1
2
‖ω‖

) )
∈ S3. (5.3)

for updating the plane during optimization, as discussed in [48].

By optimizing the submap poses together with the landmark planes, both of them can be
further refined, and the corresponding dense 3D model can be updated accordingly. Based on
this parameterization of 3D planes, a relative formulation is further applied for each landmark
plane πp by setting its base as the pose xi that corresponds to the keyframe Ki that first observes
πp. Every plane observation factor cq that links a pose node to πp will be additionally linked to
xi (the corresponding pose of Ki) through a ternary factor (see Fig. 5.2-a). This allows faster
convergence especially in loop closures since the planes anchored to a pose will be automatically
moved along with the pose when there is a global update.
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(a) Before merging two landmark planes

(b) After two landmark planes are merged

Figure 5.3: Loop closing with landmark planes merging in the global factor graph G. (a) A pose-
to-pose loop closing constraint is added, and two landmark planes πa and πb are detected to be
representing the same plane. (b) The two landmark planes are merged, and the new factors c′r
and c′r+1 are added into G to replace cr and cr+1. When all of the factors of the landmark plane πb
are removed, πb will be automatically removed from G in the applied GTSAM implementation
of iSAM2.

5.6 Global Drift Correction

5.6.1 Loop Closure

No matter how accurate the pose estimation from the VIO algorithm is, it can still drift over time.
Loop closure is the common solution to correct the global drift of a SLAM system, which usually
includes place recognition and relative pose estimation in the pipeline. In this thesis, we apply a
bag-of-words approach [29] to detect loops and the following algorithm to close the loops.

For every keyframeKj that is detected to be a loop closure candidate with a previous keyframe
Ki, we apply the RANSAC-based perspective-n-point (PnP) algorithm in OpenCV [91] on the
SURF [5] feature points extracted from Ki and Kj to estimate the relative transformation first,
then apply our fast dense RGB-D odometry method to refine it. The refined output is added into
the global factor graph G as a constraint between the poses of Ki and Kj . Optimizing G with
the keyframe-to-keyframe loop closing constraint usually requires updating a larger part of the
underlying Bayes tree in iSAM2, which takes several iterations to converge.

Finally, we can check the similarity of landmark planes that are observed in these two
keyframes using the same association method, and merge those that are actually representing
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the same plane to further constrain the solution and avoid the duplication of landmarks. The
merging is implemented in iSAM2 [51] by relinking the factors of each new landmark plane to
the corresponding old one while also updating their base poses (see Fig. 5.3).

5.6.2 Structural Constraint
Other than loop closures, structural constraints between planes can also help correct global rota-
tional drift. Orthogonality and parallelism are the two most common structural constraints found
between two planar surfaces in indoor environments, which can be added into our planar-inertial
SLAM system to further correct the drift in rotation.

In our system, two landmark planes πa and πb that are observed within a short interval are
the candidate pairs for structural constraints. For each pair πa and πb, we first compute hab =∣∣∣(Rana)> Rbnb∣∣∣, which is the absolute value of the dot product of their normal vectors in the
global coordinates, where Ra, Rb are the rotation matrices of their base poses respectively. Then,
the two planes are regarded as parallel if hab is greater than a parallel threshold h‖, orthogonal if
hab is less than an orthogonal threshold h⊥, or no specific relationship if none of the above.

Each structural constraint factor is linked to not only the two corresponding landmark planes
but also their bases as a quaternary factor (see Fig. 5.2-b) because the relative formulation (see
Sec. 5.5) results in faster convergence in the optimization. For any pair of πa and πb, the error
function of their orthogonal constraint factor is

e⊥ =
1

σ2
⊥

[
(Rana)

>
Rbnb

]2

, (5.4)

and the error function of the parallel constraint factor is

e‖ =
1

σ2
‖

∥∥[Rana]× Rbnb
∥∥2
. (5.5)

The variances σ⊥ and σ‖ for the orthogonal and parallel factors are set to be small (3× 10−5) for
strong constraints.

5.7 Experiments

5.7.1 Implementations and Settings
We develop two SLAM systems to evaluate the performance of FRO (see Sec. 4.2), FRIO (see
Sec. 4.7), and the map representation of submaps and planes all together. The first system
is called keyframe-based dense planar SLAM (KDP-SLAM), which uses FRO without an IMU
sensor for state estimation (see Fig. 5.4). The second one is called dense planar-inertial SLAM
(DPI-SLAM), which uses FRIO that fuses the data from an RGB-D sensor and an IMU for
better state estimation (see Fig. 5.5). We implement both SLAM systems in a multi-thread
fashion on a desktop computer with an Intel Core i7-4790 processor, and GPU being used only
for visualization, not computation. Our own datasets are collected using the same sensor setup
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Figure 5.4: The KDP-SLAM system consists of three concurrent threads: (a) FRO and frame
labeling process, (b) selective local depth fusion algorithm, and (c) global planar mapping with
loop closing. Note that for the set of all keyframes K, all reference frames R, and all fusion
frames U , K ⊂ R ⊂ U holds. Also, the possible loop closing constraints are not shown here but
in Fig. 5.3 for readability.

described in Sec. 4.8. Lightweight communications and marshalling (LCM) [40] is adopted to
transmit the RGB-D and inertial data to our system online, or log and replay them to simulate
the real-time process.

5.7.2 KDP-SLAM Results
We compare our KDP-SLAM with other dense RGB-D SLAM and planar SLAM methods on the
synthetic ICL-NUIM datasets [34] and the real-world TUM RGB-D datasets [118] quantitatively.
In addition, we provide the 3D reconstructions generated by KDP-SLAM and Kintinuous [133]
(one of the state-of-the-art large-scale dense SLAM algorithms) for qualitative evaluation since
ground truth trajectories and maps are not available for our own sequences. Another state-of-the-
art dense SLAM system ElasticFusion fails catastrophically on our large-scale datasets since it
is not designed for such environments.

Table 5.1 shows the absolute trajectory (ATE) [118] root-mean-square error (RMSE) of the
resulting trajectories of the living room sequences with noise in the ICL-NUIM synthetic dataset.
See Fig. 5.6-a for sample 3D reconstruction using KDP-SLAM. The trajectory error of our
method is comparable to the state-of-the-art, with KDP-SLAM outperforming each of the al-
ternative methods on at least one of the sequences. Note that KDP-SLAM outperforms the only
other CPU-only algorithm in most datasets, and occasionally outperforms the GPU-accelerated
systems.

Although KDP-SLAM can reconstruct the general structure from the TUM datasets (see
Fig. 5.6-b), its quantitative results (ATE RMSE) are about 5 times worse than the results of
other state-of-the-art methods. This is entirely expected, as KDP-SLAM utilizes a much cheaper
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Figure 5.5: The system structure of DPI-SLAM, which is similar to KDP-SLAM but modified to
allow fusing IMU measurements: (a) FRIO and frame labeling process. (b) Selective local depth
fusion algorithm. (c) Optimization of IMU states and planar landmarks in the global factor graph
G with structural constraints and loop closing (see Fig. 5.3).

Table 5.1: Comparison of ATE RMSE (unit: m) on the synthetic ICL-NUIM datasets. The itali-
cized methods require GPU for computation. The errors that are smaller than ours are underlined.

System lr kt0n lr kt1n lr kt2n lr kt3n
DVO SLAM [54] 0.104 0.029 0.191 0.152

RGB-D SLAM [19] 0.026 0.008 0.018 0.433
Kintinuous [133] 0.072 0.005 0.010 0.355

ElasticFusion [134] 0.009 0.009 0.014 0.106
Dense planar SLAM [111] 0.246 0.016 - -

CPA-SLAM [73] 0.007 0.006 0.089 0.009
KDP-SLAM (Ours) 0.009 0.019 0.029 0.153
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(a) (b)

Figure 5.6: KDP-SLAM reconstruction of (a) ICL-NUIM “lr kt2n” sequence and (b) TUM
“freiburg3_long_office_household” sequence (10x downsampled pointcloud).

and less accurate odometry method than those algorithms, which makes tracking difficult in the
presence of strong rotation, image blur, rolling shutter effects, lighting changes or misalignment
between color and depth images (all of which are present in the TUM sequences). Furthermore,
many of the sequences from the TUM dataset capture highly cluttered environments with few
distinguishable planes, whereas KDP-SLAM is specifically designed for highly-planar environ-
ments.

Fig. 5.7 shows a sample dataset gathered using the hand-held RGB-D sensor. The sequence
traverses two corridors on different floors and the connecting staircases before finishing with a
large loop closure. As we can observe from the results, Kintinuous distorts the planes even with
loop closing, while KDP-SLAM maintains the planar structure and significantly reduces the drift
in the map. More results with highlighted planar structures are shown in Fig. 5.8 and 5.9 (10x
downsampled pointcloud).

5.7.3 DPI-SLAM Results
Since no public RGB-D-inertial SLAM dataset with ground truth was available at the time of
this work, we compare the 3D reconstructions generated by different settings of DPI-SLAM with
KDP-SLAM for qualitative evaluation. We also provide a quantitative evaluation by comparing
the output model from DPI-SLAM with a ground truth model. The dense 3D ground truth model
is obtained with a FARO Focus3D survey LiDAR scanner [23] from a sequence of stationary 360
degree scans.

The reconstruction results from the various settings of the system are shown in Figs. 5.10 and
5.11. Notice that even though this dataset is collected at the same place as the dataset in Fig. 5.8
is, we move about 3 times faster during the data collection process in order to demonstrate the
improved robustness and accuracy of FRIO in DPI-SLAM comparing to FRO in KDP-SLAM.
As a result, even though KDP-SLAM can reduce drift along each corridor, the drift at each
corner and along the long corridor are still visible in the output map (see Fig. 5.10-a). Naively
adding preintegrated IMU factors between keyframes does affect the result in some way (see
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Figure 5.7: Two floor dataset reconstructions by KDP-SLAM (top) and Kintinuous (bottom).
Note that KDP-SLAM has reduced drift and maintained the planar structure after loop closure
compared to Kintinuous.

Figure 5.8: Our KDP-SLAM system can reconstruct large indoor environments with loops. Top:
An example of dense pointcloud map. Bottom: Dense map with false-colored planes.
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Figure 5.9: Reconstruction of two rooms using our KDP-SLAM system (top) and its correspond-
ing false-colored planar map (bottom).
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(a) (b)

(c) (d)

Figure 5.10: The real-time dense 3D reconstructions (from top view) without loop closure in
four different settings: (a) KDP-SLAM without using IMU data, (b) planar-inertial SLAM with
IMU preintegrated over each two keyframes, (c) DPI-SLAM: planar-inertial SLAM with IMU
preintegrated over each two reference frames, and (d) DPI-SLAM with structural constraints.

Fig. 5.10-b), but its drift is still quite large in both rotation (e.g. the upper-right corner) and
translation (e.g. the upper long corridor) because the IMU biases are not corrected frequently
enough, and also the assumption of constant bias for IMU preintegration might not hold within
longer preintegration intervals. The proposed method of preintgerating IMU measurements over
each two consecutive reference frames results in a much better reconstruction (see Fig. 5.10-
c), where the drift in rotation at the corners and translation along the corridor are both reduced
significantly. Adding structural constraints between landmark planes further corrects the drift
(see Fig. 5.10-d) and allows better loop closing results, which is also true when the loop is
detected and closed (see Fig. 5.11). Finally, we can use DPI-SLAM with structural constraints
to reconstruct the 3D dense model of the entire floor from the full dataset (see Fig. 5.13). More
reconstruction results of different indoor environments are shown in Figs. 5.14 and 5.15.

After registering our output model in Fig. 5.11-b with the survey LiDAR model using ICP,
we calculate the point-to-plane root-mean-square error (RMSE) and mean absolute error (MAE)
between the two models, which are 0.069m and 0.049m respectively. Given that the entire model
is about 30m× 13m× 3m, the average error ratio is less than 0.7%. Since we cannot record the
RGB-D and IMU data sequence at the same time when the LiDAR scans are collected, there can
be uncontrollable changes in the public environment (see Fig. 5.12). Therefore, the actual errors
between the two methods should be even smaller.
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(a) (b)

Figure 5.11: The dense 3D reconstructions with loop closure (circled in red) in two different
system settings. (a) DPI-SLAM without structural constrains (corresponds to Fig. 5.10-c), which
takes about 30 iterations to close the loop. (b) DPI-SLAM with structural constrains (corresponds
to Fig. 5.10-d), which takes only 10 iterations to close the loop.

Figure 5.12: The registration of our output model (colored) onto the survey LiDAR ground truth
model (black), both downsampled approximately 100 times to save calculation. The points with
small deviation from ground truth are shown in blue, while larger RMSE is indicated by yellow.
Notice that between recording these two datasets, some doors (green circles) and chairs (red
circles) had been moved.
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(a)

(b)

(c)

Figure 5.13: The reconstruction of a large indoor environment using DPI-SLAM system with
structural constraints. The drift in the output 3D dense model (a) is significantly reduced, which
can also be observed from the top (b) and side (c) views.
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(a) (b)

Figure 5.14: Dense 3D reconstruction of various indoor environments using our DPI-SLAM
system. (a) An open space with three round tables. (b) Corridors in a loop with lighting changes.

(a) (b)

Figure 5.15: The reconstruction result of a large two-floor dataset with a loop using DPI-SLAM,
where the dense model of the corridors and the stairs are clearly shown in (a). The top view (b)
shows that the two long corridors on the different floors are well aligned with each other.
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5.7.4 Discussion
From the experiments, we can conclude that adding inertial measurements improves planar
SLAM, and further combining structural constraints can achieve the best reconstruction results.
The efficiency of the dense map representation using submaps and planes is also demonstrated
in these two real-time SLAM systems.

As for closing a loop until convergence, DPI-SLAM sometimes cannot run in real-time be-
cause having more IMU states in the global factor graph requires more iterations to converge
(e.g. the loop closure process in Fig. 5.15). Fortunately, with structural constraints, the drift in
the trajectory can be much smaller, and therefore the loop closure process can be faster (see
Fig. 5.11). Also, if a converged result is not required immediately, DPI-SLAM can distribute
the iteration steps to the later update steps of the global factor graph at each reference frame so
that the system will not slow down during loop closing (e.g. the right loop in Fig. 5.13 grad-
ually converges as the mapping process of the left part continues). Lastly, adding structural
constraints into the pure planar SLAM system might also improve its results. However, without
IMU measurements, the drift in rotation can be too large for the system to decide if there should
be structural constraints or not. In this case, if a relaxed threshold is chosen, wrong structural
constraints might be added into the system and cause more errors.

5.8 Conclusion
In this chapter, we discuss the approaches that are efficient for online dense 3D mapping, includ-
ing submap formulation, SLAM with planes, and other related methods. We also integrate these
mapping techniques with the FRO and FRIO algorithms proposed in Ch. 4 to build two SLAM
systems, KDP-SLAM and DPI-SLAM, and evaluate their performances with real world datasets.
Since the results are promising, we will develop novel ambiguity-aware SLAM systems based
on DPI-SLAM, which will incorporate MH-iSAM2 (see Ch. 3) as the back-end optimizer to
conduct multi-hypothesis state and map estimations under ambiguities.
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Chapter 6

Ambiguity-aware Passive SLAM for
Robust Dense 3D Reconstruction

6.1 Introduction

In this chapter, we demonstrate how to apply MH-iSAM2 (see Ch. 3) to solve a real-world
passive SLAM problem in a multi-hypothesis fashion to achieve better robustness to ambigui-
ties (defined in Sec. 1.2). To be more specific, we aim at modifying the existing DPI-SLAM
system (see Ch. 5) into an ambiguity-aware planar-inertial SLAM (API-SLAM) system. The
developed API-SLAM system is expected to be able to detect and model ambiguities in the input
measurements from the RGB-D and inertial sensors (see Sec. 4.1), and output multi-hypothesis
pose estimates as well as multi-hypothesis dense 3D maps online in real-time. We evaluate the
robustness of the proposed API-SLAM system through real world experiments, and show how
robustness can be improved comparing to the original DPI-SLAM system.

6.2 System Structure

The system structure of the proposed API-SLAM is as shown in Fig. 6.1. Similar to the system
structure of DPI-SLAM, there are three main blocks: odometry estimation, local depth fusion,
and global optimization with keyframe poses and planes. However, functions that detect and
model ambiguities are incorporated into the odometry estimation, which adopts a fixed window
factor graph optimization to estimate keyframe-to-keyframe odometry as well as generating the
corresponding SMFs or MMFs (see Sec. 3.3) to model the estimated odometry (see Fig. 6.1-a).
Notice that the prior of the first IMU state in each local interval is set to either the estimate from
the last interval, or a default value if ambiguities are detected in the previous interval (so that the
estimates might not be correct anymore).

Local depth fusion is almost the same as the original algorithm developed in Sec. 5.2 except
that it will be terminated whenever an ambiguity is detected (see Fig. 6.1-b).

The global optimization is conducted using MH-iSAM2 (see Ch. 3), where all odometry fac-
tors between keyframes, all valid planar constraints, and all loop closure candidates are jointly
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Figure 6.1: Modified from DPI-SLAM (see Fig. 5.5), the proposed API-SLAM system consists
of the same three main modules: (a) RGB-D inertial odometry estimation, (b) local depth fusion,
and (c) global optimization. However, additional functions based on local fixed window opti-
mization are added into the odometry estimation pipeline to detect and model ambiguities, and
the global optimization is conducted using MH-iSAM2 that can take different types of MMFs as
input and solve for multi-hypothesis solutions if the ambiguities are temporarily unsolvable.

optimized to estimate the final states of the keyframe poses and planes, which may contain mul-
tiple hypotheses if the ambiguities are temporarily unsolvable (see Fig. 6.1-c).

6.3 Detecting and Modeling Ambiguities

In our approach, two types of ambiguities are handled explicitly: ambiguous odometry and am-
biguous loop closures. For ambiguous odometry, any joint odometry estimation of the fast dense
RGB-D odometry (see Sec. 4.2) and IMU preintegration [26] is regarded as ambiguous if any of
the estimated IMU biases is larger than a threshold. In this case, we assume that either of them
(RGB-D or IMU only) can still estimate the states correctly, and model their individual estimates
as two individual modes in a type #1 MMF (see Sec. 3.3). The corresponding real world scenario
can be considered as follows: either the RGB-D fail to track the motion due to the lack of texture,
aggressive motion, or dynamic scenes (see Fig. 6.2), or the IMU preintegration is wrong due to
bad prior of velocity or biases that are propagated from the previous local interval (see Sec. 6.2).

As for generating the individual modes for the type #1 MMF, the odometry estimate based on
RGB-D data only is already computed, and the IMU-only odometry prediction can be computed
by integrating all the preintegrated rotations (see Eq. 4.6) and translations (see Eq. 4.7) within
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(a) Lack of texture (too dark) (b) Dynamic scene (opening a door)

Figure 6.2: Examples of ambiguities for fast dense RGB-D odometry (see Ch. 4).

the interval.
In the API-SLAM system, loop closures are detected and registered as described in Sec. 5.6.

However, since we cannot be perfectly sure that any loop closure is not a false positive, we model
every loop closure as a type #3 MMF (see Sec. 3.3) for generality. The MH-iSAM2 back-end
solver will decide which of them to take into account based on the pruning strategy (see Sec.
3.6).

6.4 Multi-hypothesis Dense 3D Mapping

Following the same idea in Sec. 5.2, RGB-D frames within a local interval between two consec-
utive keyframes are merged into a local submap that is anchored to the corresponding keyframe
pose. And since now every keyframe pose can contain multiple hypotheses, we can generate a
multi-hypothesis dense 3D map by simply placing all the submaps according to each hypothesis
of their keyframe poses in a global frame. In practice, the same submap only has to be processed
once and stored as a single copy. As these procedures do not scale with the number of hypothe-
ses, they are more efficient than processing and storing multiple maps for individual hypothesis
(as described in the previous example in Fig. 3.4).

Besides submaps, we also use planes as landmarks (see Sec. 5.3, 5.4, and 5.5) in the global
MH-iSAM2 optimization. Notice that for simplicity, only the planar measurements that agree
in all existing hypotheses will be added into the MHFG as SMFs. The additional information
provided by the planar SMFs can potentially help the pruning algorithm (see Sec. 3.6) to tell the
unlikely hypotheses apart from the likely ones.

6.5 Experimental Results

6.5.1 Settings

The API-SLAM system is implemented in C++ and executed on a laptop with an Intel Core i7-
8850H processor. Our implementation, which has not been optimized, runs roughly at 30 fps.
However, if occasionally one frame takes too long to process, the very next frame will be skipped
to maintain the overall real-time operation.
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Since there was no suitable public RGB-D-inertial SLAM dataset for the evaluation of ambiguity-
awareness and robustness, we collected our own dataset with real-world challenges that can result
in ambiguities. Then, we compare the performances of API-SLAM against the baseline single-
hypothesis DPI-SLAM system (see Sec. 5.7.3). Notice that throughout this experiment, we use
the same sets of thresholds in the adopted appearance-based loop closure detection algorithm
[29] in both API-SLAM and DPI-SLAM, which is different from the results of KDP-SLAM and
DPI-SLAM shown in Ch. 5 that are based on fine-tuned thresholds. This setup allows a fair
comparison of robustness between the two systems.

6.5.2 Real World Datasets
A qualitative evaluation on robustness of the proposed API-SLAM system can be done by visu-
ally comparing its output 3D models with the 3D models reconstructed by DPI-SLAM. However,
it is still desired to have a properly designed quantitative evaluation to verify the improvement of
API-SLAM over DPI-SLAM on ambiguity-awareness and robustness.

However, one big challenge is that the survey LiDAR scans or something similar that can
serve as ground truth 3D models of various indoor environments are hard to obtain. Therefore,
we come up with a new evaluation framework that uses the 2D floor plans of the buildings as
reference. We first label a floor plan with free space, unseen space, and uncertain space (see
Fig. 6.3), and project the output 3D model onto the 2D ground plane using the known gravity
direction. Then, we uniformly sample 2D points from the covered area of the projected model
and the free and uncertain space in the grid map respectively. Finally, we conduct a two-way
registration and evaluation process (see Fig. 6.4 and Fig. 6.5) to generate an overall error that
can represent the robustness of the tested methods.

The two-way registration and evaluation process is described as below: First, we use 2D
point-to-point ICP to find a 3 DoF rigid body transformation that registers the resampled 2D
model to the union of free and uncertain space (green and gray area) of the corresponding labeled
floor plan, and compute a forward registration error between each closest point pairs. Then,
we register only the free space (green area) in the floor plan to the model using the same ICP
algorithm, and compute a backward registration error similarly. As each of the forward or
backward error only describe how similar the model and the floor plan are in one direction,
averaging the two of them into an overall registration error can better describe the similarity
between the two.

Since the error reflects how bad the output model distorts due to bad measurements and
drifts, it can be a good representation of the robustness of the method in general. We can also
think of this evaluation method as using a number to summarize the visual similarity between
the reconstructed model and the ground truth floor plan regarding the overall geometric structure.
Moreover, as long as the assumption of known gravity direction stands, the evaluation on the pro-
jected 2D plane can represent the robustness of the the output 3D models properly and efficiently.
In our experiments, both mean absolute error (MAE) and root mean square error (RMSE) are
computed for a better sense of how the errors between each pair of points are distributed. We
also show the histograms of each of these two types of errors in Fig. 6.4 and Fig. 6.5 along
with the false-colored registration results. Some of the examples of the online reconstructed 3D
models of API-SLAM are visualized in Appendix B.1.
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(a) From NSH 2F (b) From GHC 4F

(c) From NSH 4F
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(d) From GHC 6F (south)

(e) From GHC 6F (north)

Figure 6.3: The labeled floor plans of the campus buildings (NSH/GHC) of Carnegie Mellon
University (CMU) are taken as ground truth in our quantitative evaluation for robustness. Each
sampled point in the floor plan is labeled as free (green), unseen (red), or uncertain (gray).
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(a) From NSH 2F

(b) From GHC 4F (south)

(c) From NSH 4F

(d) From GHC 6F (south)

(e) From GHC 6F (north)

Figure 6.4: Examples of the two-way ICP registration for robustness evaluation of the proposed
API-SLAM system. The left two columns show the results of forward registration: models
(colored) to the target floor plan areas (gray), and their corresponding histograms of absolute
distance errors (unit: m). The right two columns show the results of backward registration: free
space in the floor plans (colored) to the models (gray), and their corresponding histograms of
absolute distance errors as well. Some of the online reconstructed 3D models of these datasets
can be found in Appendix B.1.
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(a) From NSH 2F

(b) From GHC 4F (south)

(c) From NSH 4F

(d) From GHC 6F (south)

(e) From GHC 6F (north)

Figure 6.5: Examples of the two-way ICP registration for robustness evaluation of the baseline
DPI-SLAM system. The registration results and their histograms are shown in the same format
as in Fig. 6.4.
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To achieve a thorough evaluation, we select 5 different environments with various sizes and
topologies (see Fig. 6.3 again) and collect 3 sequences of RGB-D and inertial data in each of
them. Notice that in Fig. 6.3-b and Fig. 6.3-c, the trajectories go through 2 and 5 originally closed
doors respectively, and the human user opens each of these doors while pointing the RGB-D
sensor at it, which is an intentionally created source of ambiguity in odometry estimation. Other
ambiguity sources (e.g.: walking passersby in the scene, lack of features, strong rotation, false
positive loop closures, etc) occur more randomly during the data collection. The results in Fig.
6.6 show that API-SLAM can still reconstruct reasonable structures of the target environments
even with all these ambiguities. On the other hand, DPI-SLAM fails to deal with the ambiguities
and therefore cannot generate any meaningful result. Therefore, we can conclude that API-
SLAM outperforms DPI-SLAM significantly in robustness when multiple ambiguities occur.

6.5.3 Discussion

We find that in most cases, the online reconstruction results of DPI-SLAM start to distort when
one wrong odometry estimation takes place, and soon become severely distorted due to wrong
loop closure registrations. Even though it is possible to filter out some of the wrong loop closure
candidates if adding a more strict geometric consistency check, it still cannot guarantee perfect
outlier rejection in practice. As a result, we keep the DPI-SLAM algorithm unchanged as in Ch.
5, and focus our experiment more on comparing the overall robustness of the two systems.

Even though the proposed API-SLAM achieves much better robustness than the baseline
DPI-SLAM under ambiguities, it can still be improved and extended in several ways. First of all,
adding more sensors under the same ambiguity-aware framework using MH-iSAM2 but with dif-
ferent ambiguity detection and modeling approaches might further improve the robustness of the
system. Adding prior knowledge such as a motion model or structural constraints as ambiguous
input and let the MH-iSAM2 back-end decide whether they are valid is also an interesting idea
that is worth trying. Moreover, if a bad trajectory is taken, it could be possible that no sufficient
loops are closed to disambiguate the ambiguities, especially the ambiguous odometry. In the
current system setup, the hypotheses with the MMF modes resulting from pure IMU propagation
are more likely to be preserved after pruning because their larger uncertainties would result in
smaller system errors in general (after jointly optimizing with planar constraints). It is debatable
whether a better approach to deal with this situation exists, yet it is clear that being able to add
loop closures into the system whenever needed is desirable. Therefore, how to actively revisit the
mapped area and close loops under the multi-hypothesis framework will be one focus of study in
Ch. 7.

Finally, projecting models into 2D inevitably loses most of the details within and only pre-
serves the high-level topology and geometry. Therefore, the evaluation method based on it is
only good to evaluate robustness, not accuracy. However, this evaluation method is efficient and
easy to extend. For example, simply modifying Fig. 6.3-c to Fig. 6.7 will allow us to test a
different dataset (see Fig. 6.8).
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(a) MAE

(b) RMSE

Figure 6.6: Bar charts of the overall registration error for robustness evaluation. Smaller errors
within the same batch represent better robustness. However, because some of the results from
DPI-SLAM are severely distorted, the absolute values of the errors do not have much actual
meanings in those cases. In addition, some of the bars are missing due to the numerical problem
in optimization, which usually implies large distortion in the output model resulting from outliers
in the optimization.

66



Figure 6.7: The labeled floor plans modified from the one in Fig. 6.3-c. Notice that because of
the change in the trajectory of the dataset, some free and uncertain areas are labeled differently
on the upper-right part of the floor plan.

(a) Result of one hypothesis from API-SLAM

(b) Result from DPI-SLAM

Figure 6.8: Example of evaluating a new dataset with a little modification on the originally
labeled floor plan. The registration results and their histograms are shown in the same format as
in Fig. 6.4.
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6.6 Conclusion
In this chapter, we developed the ambiguity-aware planar inertial SLAM (API-SLAM) system
based on the previously developed DPI-SLAM in Ch. 5, which demonstrates a real world SLAM
application of the proposed MH-iSAM2 back-end solver. The ambiguity in odometry estimation
is detected when the measurements from the two input sensors (RGB-D camera and IMU) do
not agree, and the ambiguity in loop closure is regarded as part of its nature that always exists.
Both types of ambiguities are modeled explicitly using the two types of MMFs in MH-iSAM2
respectively, and planar constraints are added to potentially help disambiguate the ambiguities in
addition to correcting the drift. The experimental results show that API-SLAM is able to recon-
struct reasonable 3D models in multiple hypotheses even under ambiguities, which significantly
outperforms the baseline DPI-SLAM algorithm that can only handle a single hypothesis. To fur-
ther study how to make use of the multi-hypothesis state and map estimates results in a robotic
task, we will work on extending API-SLAM into an active SLAM system in Ch. 7.
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Chapter 7

Ambiguity-aware Active SLAM Based on
Multi-hypothesis State and Map
Estimations

7.1 Introduction

In this chapter, we study how multi-hypothesis state and map estimates can be used in active
SLAM to improve robustness to ambiguities (defined in Sec. 1.2). The fundamental goal of the
proposed ambiguity-aware active SLAM framework is similar to existing active SLAM solutions:
exploring the unknown area of the surrounding environment while reducing the error of the
reconstructed map. Therefore, the ambiguity-aware active SLAM system consists of the same
two main modules as other active SLAM systems: exploration and active loop closing. However,
the needs of considering multiple probable solutions at the same time and actively reducing the
ambiguity among these solutions would be the main challenges of developing the two modules.

The goal of exploration is to move the robot in certain ways so that new information of
the environment can be observed to update the states and the map. Even though optimizing
the information gain and motion cost based on a global map theoretically optimizes exploration
efficiency [7][94], it might not be the best choice for our multi-hypothesis framework since
maintaining all the global maps for each hypothesis can be very inefficient in both memory
and computation. As a result, we develop a multi-hypothesis exploration algorithm based on
ambiguity-free submaps (an example of submap can be found in Sec. 5.2) to achieve better
efficiency.

On the other hand, active loop closing is typically responsible for finding mapped places to
revisit for loop closures that correct the accumulated drift and uncertainty [116][72][11][131].
However, because the exponential growth of the number of hypotheses can slow down the entire
system drastically, we aim at bounding the number of hypotheses based on the constraints of the
system while keeping track of the correct hypothesis (assuming only one is correct) under our
multi-hypothesis framework. Therefore, the goal of our active loop closing algorithm is to find
certain places to revisit so that the detected loop closures can provide sufficient information to
distinguish and prune enough wrong hypotheses to reduce computational cost, or even preserve
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Figure 7.1: The system structure of a desired MH-SLAM algorithm.

the correct hypothesis only.
In addition to the two main modules, a simple path planning algorithm is implemented for

exploration and active loop closing in each hypothesis, which can be replaced by a state-of-
the-art planner as needed. We will introduce how a predefined passive multi-hypothesis SLAM
(MH-SLAM) system (see Sec. 7.2) and these three active SLAM modules interact with each other
in Sec. 7.3, and discuss the details of each of them in Sec. 7.4, 7.5, and 7.6 respectively.

7.2 Multi-hypothesis SLAM Preliminaries
The proposed ambiguity-aware active SLAM framework is designed based on a passive multi-
hypothesis SLAM (MH-SLAM) system (see Fig. 7.1) that satisfies several properties. While the
API-SLAM system introduced in Ch. 6 is already a good example of MH-SLAM, we would still
like to list the two main properties as follows for generalization.

7.2.1 Using MH-iSAM2
The MH-SLAM in the ambiguity-aware active SLAM framework should adopt MH-iSAM2 (see
Ch. 3) as its back-end solver. Ambiguous measurements are modeled as MMFs fM

r with cor-
responding types and arbitrary number of modes (see Sec. 3.3.2), and the overall and local
hypotheses (h and h{r}, see Sec. 3.4) of all MHVs can be optimized accordingly and associated
with each other through the Hypo-tree. In addition, the unlikely hypotheses are pruned during
each update so that all the remaining hypotheses are regarded as highly probable.

7.2.2 Ambiguity-free Submaps
We adopt a keyframe-based framework similar to KDP-SLAM (see Sec. 5.7) in our MH-SLAM,
which selects a new keyframe Ki whenever the overlapping scene between the current frame
and the previous keyframe is less than a threshold in any hypothesis. We further assume that
all ambiguities between any two keyframes can be summarized into a type #1 MMF (different
measurements among the same set of variables, which is for ambiguous odometry estimation

70



Figure 7.2: Block diagram of the ambiguity-aware active SLAM framework. Note that the poses
Ti (blue arrows) are the only multi-hypothesis information passed between modules.

here) or type #3 MMF (whether the measurement is valid or not, which is for ambiguous loop
closure here). As a result, only the multi-hypothesis poses Ti of all Ki are optimized globally
in MH-iSAM2 for simplicity and efficiency. Moreover, we can generate an ambiguity-free local
dense submap Mi at each Ki, by fusing the raw range or depth information from the adopted
sensor(s) between consecutive keyframes into a less noisy, outlier-free 3D map representation
(e.g.: local depth fusion in [39]). As each Ki is anchored to Ti, the occupancy information at any
global location in any h can be preserved efficiently in all nearby Ti,[h] and their Mi without the
need of generating individual global maps for each h.

Finally, we assume that the environment we want to map lies roughly on a horizontal plane
(e.g.: one floor of a building), and the sensors also move roughly on a horizontal plane (e.g.:
mounted on a drone or hand-held). These assumptions simplify the active SLAM problem into
2D (although the states and maps can still be 3D), which help us to focus on making use of the
multi-hypothesis estimates in the ambiguity-aware active SLAM efficiently.

7.3 Ambiguity-aware Active SLAM Framework

Based on the MH-SLAM discussed in Sec. 7.2, our ambiguity-aware active SLAM framework
is developed with three other main modules: exploration, active loop closing, and path planning
(see Fig. 7.2). In every iteration, the exploration module takes the submaps Mi and multi-
hypothesis poses Ti as inputs from the MH-SLAM module, and generates a target view point P ∗

that aims at exploring unknown area (see Sec. 7.4). Meanwhile, the active loop closing module
will find a target submap M∗ to revisit based on the hypotheses branching and modes in each
MMF (see Sec. 7.5). Either P ∗ or M∗ will be passed to the path planning module as a target
pose depending on whether the active loop closing is triggered or not, and a motion command
will be generated accordingly (see Sec. 7.6). The motion command has to be verified as valid
(no conflict with the current measurements) by an online obstacle detection module before being
conducted.

This framework is efficient since both P ∗ and M∗ are single outputs anchored to the multi-
hypothesis poses of their corresponding keyframes, and their global poses can be updated in-
herently when the keyframe poses are updated in each hypothesis (see Sec. 7.2). Moreover,
as exploration and path planning are the only two modules that deal with the multi-hypothesis
poses Ti directly, they are both designed to operate on Mi so that expensive computations such
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(a) (b) (c)

Figure 7.3: The extraction and multi-hypothesis update of a local contour Ci. (a) Boundary
vertices vB

{i},p are extracted from the submap Mi, and two frontier vertices vF
{i},p are added at the

sensor origin and the maximum range on the right edge. (b) More vF
{i},p are interpolated with

equal spacing, and some vB
{i},p are removed to smooth the edge. (c) The frontier vertices can be

updated as covered (vF
{i},p→ vF,c

{i},p) based on the neighboring submaps and their relative pose
estimates in all hypotheses.

as maintaining multi-hypothesis global maps can be avoided.

7.4 Multi-hypothesis Exploration

Based on the assumptions in Sec. 7.2, there is only one single hypothesis within each ambiguity-
free submap, yet the pose of the submap might contain multiple hypotheses. We take advantage
of this assumption to develop the multi-hypothesis exploration algorithm by conducting as many
computations as possible within each submap, and only deal with the complex multi-hypothesis
estimates when needed.

7.4.1 Local Contours Extraction from Submaps

From each submapMi, we extract a local contour Ci to represent the local free space and encode
the frontier [135] and obstacle boundary information. To compute Ci, we first extract boundary
vertices vB

{i},p directly from the fused depth/range measurements in Mi on a given height assum-
ing that the gravity direction gi in the local coordinates of Mi is known (see Fig. 7.3-a). Then, a
frontier vertex vF

{i},p is added at the sensor origin, while one or two other vF
{i},p might be added

at the maximum sensor range along the edges of the sensor’s field of view (FoV) if no vB
{i},p is
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(a) (b) (c)

Figure 7.4: The extraction and update of view points P{i},k. (a) Frontier segments F{i},k are
defined based on each sequence of uncovered frontier vertices F{i},k. (b) To cover each F{i},k,
candidate view points can be sampled on the virtual circle (only on one side) since all the in-
scribed angles that subtend the same arc have the same angle, which can be regarded as the FoV
of the sensor. (c) Each selected best view point P{i},k can be updated or removed based on the
updates of F{i},k.

extracted near them. After sorting all these vertices in the clockwise angular ordering, we in-
terpolate more frontier vertices vF

{i},p between each pair of consecutive vertices that are farther
apart than a threshold (see Fig. 7.3-b). Finally, Ci is refined by removing some vB

{i},p to smooth
its edges.

Every Ci has a pseudo timestamp ti, which is initialized as the timestamp of its correspond-
ing Ki. Any two contours Ci and Cj can be added as neighbors of each other if ti and tj are
close enough, and at least the distance dij,[h] between their poses (Ti,[h] and Tj,[h]) in one of the
hypotheses h is within a threshold. Whenever a loop between Kj and Ki (with j > i) is closed
in all hypotheses, ti will be updated as tj so that every newly created nearby contour and Ci can
become neighbors of each other. The same update is also applied to all the neighbors of Ci for
the same reason.

Whenever the number of neighbors of any Ci increases, we check though each vF
{i},p if it is

inside at least one other neighboring contour in each hypothesis. If so, that vF
{i},p will be updated

as covered, which is denoted as vF
{i},p→vF,c

{i},p (see Fig. 7.3-c). Since the covered frontier vertices
vF,c
{i},p no longer represent the horizon of the explored region in any hypothesis, we will only use

the uncovered vF
{i},p to decide future view points for exploration (see Sec. 7.4.2).
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7.4.2 View Points Selection

In each Ci, a set of valid view points Pi = {P{i},k, k ∈ N} is found that can observe all the
uncovered vF

{i}p and the unknown space beyond them. Since Ci summarizes the local effects
from all hypotheses (see Sec. 7.4.1), each view point P{i},k can be computed only once as a pose
T{i}k in the local coordinates of Mi, and transformed to different global or relative poses in each
hypothesis using Ti,[h] (see Sec. 7.2).

Starting from the vF
{i},0 at the sensor origin and following the clockwise order, we define

one frontier segment F{i},k for each sequence of consecutive uncovered frontier vertices F{i},k,
which is a line segment connecting the two frontier vertices at the two ends of F{i},k with certain
margin extended on both sides (see Fig. 7.4-a). Any frontier segment F{i},k with its length l{i},k
exceeding a threshold is divided into several shorter ones until all of the F{i},k satisfy the length
threshold. Then, we adopt the inscribed angle theorem to sample view point candidates on the
virtual circle defined by the frontier segment F{i},k (see Fig. 7.4-b). A view point candidate
is valid only if it is inside Ci and its view is not blocked by any edge of Ci. Finally, the best
view point P{i},k for F{i},k is naively selected as the valid candidate with its viewing angle most
perpendicular to F{i},k. If all candidates are invalid, F{i},k will be divided into two shorter frontier
segments, and the same algorithm will be repeated onto each of them until every F{i},k finds a
P{i},k.

When any vF
{i}p is updated to vF,c

{i},p (see Sec. 7.4.1), it will be removed from F{i},k, and F{i},k
will also be updated if at least one of the two ends of F{i},k is affected. Then, a new view point
P ′{i},k will be computed according to the new F ′{i},k and substituted for P{i},k (see Fig. 7.4-c). If
all vF

{i}p in F{i},k are removed, P{i},k will also be removed from Pi.
Very occasionally in the view point finding or updating steps, if no single valid view point can

be found for a frontier segment that can no longer be divided (only contains one frontier vertex),
we simply label this frontier vertex as covered and ignore it in all future computations or updates
on this view points. Experiments show that skipping one frontier vertex in this corner case does
not affect the coverage or performance of the overall algorithm much since neighboring contours
are very likely to cover the same frontier with valid view points.

7.4.3 Exploration Tree

To choose a target view point P ∗{i} from all Pi in all Ci to visit, we use an exploration tree data
structure to sort Pi implicitly, and choose P ∗{i} from the selected Pi. Every node Ni in the tree
represents one Pi except for the root node NR, and every new node will be added as the first
child of the latest node that has its contour updated (see Sec. 7.4.1) in the same iteration (see Fig.
7.5-a). If any Pj ={Ø} due to the view point removal process (see Sec. 7.4.2), its corresponding
node Nj will be removed from the tree (see Fig. 7.5-b).

After updating the tree, the first view point P{i},1 in Pi of the first child Ni of NR is naively
selected as the target view point P ∗{i} (see Fig. 7.5), and its pose T∗{i} in the local coordinates of
the submap Mi is defined as the local target pose and passed to the path planning module (see
Sec. 7.6). If NR is the only remaining node in the tree, which means that no view point has to be
visited, we can conclude the exploration and terminate the entire active SLAM algorithm.
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(a) (b)

Figure 7.5: The construction and update of the exploration tree. (a) A new node N3 that repre-
sents the new set of view points P3 is added. (b) If C3 covers all the remaining vF

{0}p in C0, P0

will be empty and N0 will be removed.

7.5 Active Loop Closing for Correct Pruning

7.5.1 Triggering

Assume that nlimit is the upper bound of the number of hypotheses our entire system can handle
(see Sec. 6.1) and n is the number of equally likely hypotheses (see Sec. 7.2) in each iteration.
Whenever n > nlimit, the correct hypothesis might be pruned accidentally due to the lack of
information. So, the active loop closing must be triggered at right time so that loop closures can
be detected and registered to provide sufficient information for correct pruning (keep tracking
the correct hypothesis) while satisfying n≤nlimit at any time.

Since new ambiguities might occur on the way to revisit M∗ and further increases n before
any true positive loop is detected, the ideal approach is to predict future ambiguities and loop
closures, and trigger active loop closing accordingly beforehand. Even though there are existing
algorithms that help predicting future loop closures [56], it is still an open question on how to
predict future ambiguities. As a result, we simply choose a threshold ntrigger<nlimit and trigger
active loop closing when n > ntrigger as a baseline approach. And occasionally when n goes
beyond nlimit, we choose to prune some of the hypotheses before obtaining sufficient information
in this work. In the simulation in Sec. 7.7.2, we test various combinations of ntrigger and nlimit

to offer a good reference for choosing ntrigger based on nlimit for real-world applications. More
discussions on this issue can be found in Sec. 7.7.4.

7.5.2 Target Submap Selection

When the active loop closing is triggered, a target submap M∗ will be selected from the existing
submaps for revisiting. Then, at least one loop that can result in correct pruning is expected to
be detected and closed when the pose of M∗ is successfully revisited, or even earlier on the way
to M∗.

To select a proper M∗, we first check for each type #1 MMF fM
r that models one ambiguous
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(a) (b)

Figure 7.6: Two examples of how a loop closure disambiguates the ambiguities modeled in the
MMFs. (a) Usually, multiple undisambiguated MMFs fM,u

r can be disambiguated by a single
loop closure. (b) In special cases, some combinations of the modes of different fM,u

r in different
hypotheses can all seem to be correct even after the loop is closed.

odometry estimate (see Sec. 7.2) if more than one of its modes are selected in all existing
hypotheses. If so, we can tell that the ambiguity modeled in fM

r is not disambiguated yet, and
flag fM

r as undisambiguated (denoted as fM,u
r ). The loop closure measurement from the current

submap Mi to any submap Mj prior to an undisambiguated type #1 MMF fM,u
r is very likely

to provide the information that distinguishes the correct mode from the wrong ones in fM,u
r .

Then, correct pruning can be conducted accordingly, which will preserve only the correct mode
in all remaining hypotheses. If there are multiple fM,u

r between Mi and Mj , it is possible to
disambiguate all of them together with one single loop closure connecting Mi and Mj (see Fig.
7.6-a). However, this can fail in some special cases (see Fig. 7.6-b).

Based on the above discussions, we randomly select one target submap M∗
j from all the

submaps prior to the earliest fM,u
r . And if no loop is detected beforeM∗

j is reached, we will select
another M∗

j′within the same interval, and repeat this process until n ≤ ntrigger. This approach
avoids the need of accessing or comparing the multi-hypothesis Tj of all possibleMj , which saves
a lot of time especially when n or the map is large. Please see Sec. 7.7.2 for more discussions.

7.6 Path Planning with Multi-hypothesis Poses

In each hypothesis h, we first compute the global target pose T∗[h] = Ti,[h]T
∗
{i} in the case of

exploration towards P ∗{i} (see Sec. 7.4.3) or T∗[h] =Tj,[h] in the case of active loop closing towards
M∗

j (see Sec. 7.5.2). Then, we check if there is a valid straight path (collision-free against
any mapped obstacles) from the current pose TN,[h] to the target pose T∗[h] given all the existing
submaps arranged based on their estimated poses in this hypothesis. If such direct path exists, the
output motion command will be moving directly along this straight line with a certain distance.
If not, we further check if there is a valid straight path from TN,[h] to any of the previous poses
between TN,[h] and Ti,[h]. If such indirect path exist, the output motion command will be again
moving directly along this straight line with a certain distance, and a direct path is expected to
be found after traveling through one or several indirect paths if h is the correct hypothesis.

If no paths are found or T∗[h] is reached in h, we switch to the next hypothesis h+1 and repeat
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the same process until a new P ∗ or M∗ is passed into the path planning module, which happens
when the current P ∗{i} is covered and removed, or the switch between exploration and active loop
closing occurs. When the growing or pruning of hypotheses happens on the way to the same
target, the new hypothesis h′ will be selected as the first child of h (if it exists), or the first child
of the next valid sibling of h (if h is pruned by the backward pruning. See Sec. 3.6). Finally,
if no motion command can be found in any hypothesis, or all the commands are rejected by the
obstacle detection module (see Sec. 7.3), random small motions will be conducted repeatedly
until a valid path is found again to avoid the robot being stuck in corner cases. If more than a
certain number of these random small motions is conducted in a row, it would be regarded as a
failure case that cannot complete the active SLAM process.

It is worth noting that we can conduct planning in each hypothesis because we track the
combination of modes from all MMFs in the Hypo-tree in MH-iSAM2 (see Sec. 3.4). The same
algorithm does not work with nonparametric back-end solvers because they cannot recover the
correspondences across hypotheses/peaks in different states (see Fig. 3.2).

7.7 Experimental Results

7.7.1 Implementations and Settings
Both the simulation and the system for real-world application are implemented in C++ and ex-
ecuted on a laptop with an Intel Core i7-8850H processor. Exploration and active loop closing
are computed in two parallel threads, and both of them are one keyframe behind the MH-SLAM
process to wait for the latest submap being generated.

7.7.2 Simulation
In the simulation, Gaussian noise is added to all depth measurements, odometry, loop closures,
and robot motions. We adopt two different ways to generate ambiguous odometry measurements.
In most of our experiments, they are set to occur randomly with probabilities pa, which simulates
the types of ambiguities resulting from aggressive motion or dynamic scenes. And close to the
end of this section, they are set to occur whenever the robot is close to one of the several randomly
selected places, which simulates the other types of ambiguities resulting from lack of texture or
repeated patterns in the environment. False positive loop closures are set to occur randomly
with probabilities pf in all of the simulation cases. The values of all the wrong modes in these
simulated ambiguities are randomly generated within reasonable ranges.

We first show that ambiguity-aware active SLAM can achieve full coverage in various sim-
ulated indoor environments in Fig. 7.7. Then, we evaluate ambiguity-aware active SLAM with
various test cases in the same multi-loop environment (see Fig. 7.7-b) and generate statistical
results from 30 runs of each case. The results are shown in Fig. 7.8, 7.9, 7.10, and 7.12, and in
each case we run the algorithm 30 times. Examples of the process of simulation are visualized
in Appendix B.2.

Fig. 7.8 shows the fundamental properties of our ambiguity-aware active SLAM system with
nlimit = ∞ (no upper bound of the number of hypotheses) and various ntrigger. Even though
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(a) Tree/star-shaped (b) Multi-loops (c) Scattered

(d) Apartment (e) Office (f) Restaurant (g) School

Figure 7.7: Plotting all Ci in the global coordinates shows that our algorithm can achieve full
coverage in various indoor environments in simulation with default settings: ntrigger =16, nlimit =

∞, pa = 1% and pf = 2%. The edges formed by vB
{i},p and vF,c

{i},p are shown in blue and cyan
respectively.

nlimit =∞, the maximum number of hypothesis ever tracked (denoted as nmax) does not grow
unbounded (see Fig. 7.8-a) since true positive loop closures are very likely to be detected shortly
after the active loop closing is triggered. The correct hypothesis can still be pruned occasionally
(see Fig. 7.8-b) since some wrong hypotheses that take wrong modes (especially in the type
#1 MMFs of ambiguous odometry) might seem more likely than the correct one temporarily
due to the accumulated drift. Therefore, some reconstructed maps are polluted (see Fig. 7.8-
c). However, our ambiguity-aware active SLAM system can still explore the entire environment
with these slightly distorted maps. Finally, Fig. 7.8-d shows that larger pa results in longer path
length, but neither ntrigger nor pf have a strong effect on it.

Fig. 7.9 shows the first advanced evaluation on robustness based on various combinations of
ntrigger and nlimit. Comparing to the results in Fig. 7.8-b and Fig. 7.8-c, bounding nlimit does
increase the number of wrong modes taken and the failure rate as expected. In some cases when
the map is extremely distorted, the ambiguity-aware active SLAM can even fail to complete the
task (shown in orange in Fig. 7.9-b). And since larger nlimit and smaller ntrigger results in less
failure, setting a smaller ntrigger for the system that has a specific nlimit is better for the overall
robustness in general.

Fig. 7.10 further evaluates how the magnitude differences between each pair of correct mode
and wrong mode can affect the performance of the proposed algorithm. We can see that even
though MMFs with larger magnitude differences between modes are easier to be disambiguated
(less wrong modes are taken in case “LL” than other cases in Fig. 7.10-a), they can result in
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(a) Box plot and means (dotted curves) of nmax

(b) Bar graph of the average number of wrong modes taken
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(d) Box plot and means (dotted curves) of the total path lengths

Figure 7.8: Simulation results with nlimit = ∞ and various ntrigger. Three different pa (0%,
0.5% and 1%) are tested with pf =0% (left column) and pf =2% (right column). In (c), different
levels of distortions are categorized based on thresholds on the absolute trajectory error (ATE)
[118], and we can conclude that the active SLAM process can be completed successfully with
occasional small distortions in the output maps as long as nlimit =∞.
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(a) Bar graph of the average number of wrong modes taken

(b) Bar graph of failure rate

Figure 7.9: Simulation results with various ntrigger and nlimit given pa = 1%. The legends are
the same as in Fig. 7.8. pf = 0% and pf = 2% are again shown in the left and right columns
respectively. The leftmost bars in each graph represent the results of active SLAM with single-
hypothesis estimation, where many wrong modes are taken and all the runs fail drastically.
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(a) Bar graph of the average number of wrong modes taken

(b) Bar graph of failure rate

Rotation Translation
S L S L

5° ∼ 20° 20° ∼ 40° 0.1m ∼ 0.6m 0.6m ∼ 1.2m

(c) Range of “S” and “L” in rotation and translation

Figure 7.10: Simulation results with different rotation and translation magnitudes of the wrong
modes in ambiguous odometry, where “S” and “L” represent small or large magnitudes respec-
tively (e.g.: “SL” means small magnitude in rotation and large magnitude in translation). Again,
pa = 1% is adopted in this experiment, and the left and right columns show the results with
pf = 0% and pf = 2% respectively. The bars are colored in the same way as defined in Fig. 7.8.
We can tell from these figures that smaller magnitudes in the wrong modes make them harder to
be distinguished from the correct ones. However, they also result in less distortions in the output
map.

larger errors in the final map instead if the wrong modes are taken, especially in the case of large
magnitude differences in translation (see case “SL” and “LL” in Fig. 7.10-b)

As for the selection of target submaps M∗ for revisiting, even though there is no proof that
our current approach (see Sec. 7.5.2) is optimal, some preliminary experimental results in Fig.
7.11 support our assumption: earlier target submaps for revisiting result in better robustness than
later ones when the upper bound nlimit exists.

Finally, in Fig. 7.12 we change the way of generating ambiguities in odometry estimation to
simulate ambiguities that result from the environments instead. In this simulation, whenever an
ambiguity occurs, the robot is very likely to observe similar types of ambiguities when it is still
moving around the same area, and has to travel a longer distance (leave the area where the am-
biguity occurs) before being able to detect a valid loop closure to disambiguate the ambiguities.
As a result, more wrong modes are taken as shown in Fig. 7.12-a, which results in higher failure
rates in general as shown in Fig. 7.12-b. Moreover, we can see that for the cases with ntrigger

81



(a) Bar graph of the average number of wrong modes taken (no upper bound nlimit)

(b) Bar graph of failure rate (no upper bound nlimit)

(c) Bar graph of the average number of wrong modes taken (nlimit=128)

(d) Bar graph of failure rate (nlimit=128)

Figure 7.11: Simulation results comparing two different target submap selection strategies under
two settings: nlimit =∞ in (a) and (b), and nlimit = 128 in (c) and (d). “L” and “E” represent
choosing the target submap right before the latest and earliest undisambiguated MMF of ambigu-
ous odometry estimate respectively. And again, pa = 1% is adopted in both settings experiment,
and the left and right columns show the results with pf = 0% and pf = 2% respectively. The bars
are colored in the same way as defined in Fig. 7.8. We can tell from (a) and (b) that the choices
of target submap for revisiting does not affect robustness much when there is no upper bound
nlimit. However, an earlier submap can result in better robustness than a later one for revisiting
when nlimit exists.
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(a) Bar graph of the average number of wrong modes taken

(b) Bar graph of failure rate

Figure 7.12: Simulation results with ambiguous odometry measurements generated based on
locations in the simulated environment. The bars are colored in the same way as defined in Fig.
7.8. We can find that the active SLAM process fails more than the results in Fig. 7.9.

and nlimit close to each other, their failure rates increase more than other cases comparing to the
results in Fig. 7.9-b, which implies that to deal with environment-oriented ambiguities, a larger
buffer for the number of growing hypotheses from ntrigger to nlimit is desired to maintain correct
pruning.

7.7.3 Real-world Experiment

We apply the ambiguity-aware active SLAM framework in an assistive mapping system that
guides a human user to explore and map an indoor environment with hand-held sensors though
instructions (locations of P ∗ and M∗) on an augmented reality (AR) viewer and a top-down
viewer (see Fig. 7.16-a). The passive ambiguity-aware planar-inertial SLAM (API-SLAM) sys-
tem discussed in Ch. 6 is adopted here, which is slightly different from the simulation because
additional planar constraints (see Sec. 5.3, 5.4, and 5.5) that satisfy all hypotheses are jointly
optimized with the keyframe poses globally, which reduces rotational drift and potentially helps
correct pruning. Moreover, since a human user can take care of path planning and online obstacle
detection intuitively, these two functions are disabled for this application. Finally, since we can-
not or might not want to map certain areas beyond the frontiers, e.g.: area behind a glass window,
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private spaces (offices or labs), or the bridge to another building, we add a function that allows
the user to manually delete the current P ∗, which will update the exploration tree accordingly
and select a new P ∗.

Since we do not have the ground truth of correct hypothesis in the real-world task, we cannot
evaluate the robustness of the assistive mapping system as in Fig. 7.8-a or Fig. 7.12-a. Instead,
we can use the same evaluation method in Sec. 6.5.2 here as long as the floor plans are available.
The reconstructed multi-hypothesis 3D models, corresponding labeled floor plans, and the two-
way registration results are shown in Fig. 7.13, Fig. 7.14, and Fig. 7.15 respectively.

The results in Fig. 7.15 show that our assistive mapping system successfully helps the user
to explore a large indoor environment and reconstruct its dense 3D model even with multiple
ambiguous odometry estimates and false positive loop closures. Comparing the results with that
from the passive SLAM evaluation in Fig. 7.15-c and Fig. 7.15-d, we can tell that the magnitudes
of errors of the assistive mapping system is close to that of the successful cases of API-SLAM,
which implies that the active reconstruction results of the assistive mapping system are robust.

In addition to the robustness evaluation above, we can apply the same method in Fig. 5.12
to evaluate the accuracy of the output dense 3D models if the corresponding ground truth survey
LiDAR models exist. Since we have the survey LiDAR model for the result in 7.13-a, we can
calculate its point-to-plane mean absolute error (MAE) and root-mean-square error (RMSE) with
respect to the ground truth survey LiDAR model as shown in Fig. 7.16.

Finally, note that the active SLAM process is conducted in real-time with the human user
walking and rotating in normal pace and speed, and the ambiguities in the experiments are re-
sulting from fast motion and the appearance-based loop closure detector (similar scenes at dif-
ferent locations). We also modify the assistive mapping system to work with only one single
hypothesis, and apparently it fails easily due to taking outlier measurements into the optimiza-
tion. The online active SLAM process of both single and multi-hypothesis approaches are shown
in Appendix B.3.

7.7.4 Discussion
Based on the simulation results, we can tell that when the number of ambiguities is large but
the computation is limited, we have to sacrifice speed for robustness. Else, the ambiguity-aware
active SLAM would still fail to complete the active SLAM task. As a result, when designing
a real world robotic system, we should try to solve the ambiguity problems during the state
and map estimation process or even earlier, e.g. adopting proper sensor combination based on
the motions, environments, and tasks to reduce ambiguous measurements, and only pass the
unsolvable ambiguities to the exploration and active loop closing modules.

In the real-world application, we find that active loop closing is triggered more often with
a small ntrigger, and following the revisiting instructions to walk back and forth frequently can
result in bad user experience. So, we set ntrigger =2 instead of 1 in this task to make the process
slightly more comfortable. However, more studies on how to trigger active loop closing based
on both n and the uncertainty of the current state estimates (a conventional approach) is still of
interest. Besides, we also want to try if considering visual or structural saliency [86] in target
submap selection helps detect more true positive loop closures. Finally, ambiguity-aware active
SLAM is only robust to ambiguities but not to many other problems. Therefore, integrating more
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(a) From NSH 4F

(b) From NSH floor A (basement)

Figure 7.13: The multi-hypothesis 3D models reconstructed by the assistive mapping system.
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(a) From NSH 4F

(b) From NSH floor A (basement)

Figure 7.14: The labeled floor plans of the campus buildings that corresponds to the output 3D
models in Fig. 7.13.
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(a) From NSH 4F

(b) From NSH floor A (basement)

(c) MAE

(d) RMSE

Figure 7.15: The robustness evaluation of the assistive mapping system. In (a) and (b), the
registration results are shown in the same format as in Fig. 6.4. In (c) and (d), the MAE and
RMSE of the overall registration error are shown in two bar charts respectively. The evaluation
of passive API-SLAM in Fig. 6.6 are shown alongside (shadowed areas) for comparison.
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Figure 7.16: The accuracy evaluation of the most likely 3D model from the results shown in Fig.
7.13-a (with largest chi-square confidence among all remaining hypotheses) with respect to a
ground truth survey LiDAR model. The MAE and RMSE are 0.187m and 0.269m respectively.
Given that the entire model is about 58m×15m×3m, the average error ratio is less than 2%.

functions to handle various real world challenges (e.g.: relocalization [58] for tracking failures
in all sensors) is still desired for better robustness of the entire system.

Lastly, extending current implementation to conduct active SLAM in full 3D is possible.
However, it might require the usage of polyhedrons, which might not be as efficient as the current
contour-based approach in 2D. We are looking forward to studying more on this direction for
other applications such as underwater exploration [93][121].

7.8 Conclusion
In this chapter, we proposed the first ambiguity-aware active SLAM framework that makes use of
multi-hypothesis state and map estimates from a MH-SLAM system to handle ambiguities and
improve robustness. Its exploration module selects possible view points based on local submaps,
which avoids the complexity of computing the view points in each of the hypotheses explic-
itly. And under certain reasonable conditions, the active loop closing algorithm can bound the
growing number of hypotheses by potentially providing loop closure information in time, which
allows multi-hypothesis solutions to remain tractable. In addition, a simple path planning method
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is adopted to compute motion commands that move towards the target locations. The experimen-
tal results show that explicitly considering multiple highly possible hypotheses greatly improves
the robustness of active SLAM, and it is possible to achieve robustness and efficiency at the same
time with a carefully designed system and fine-tuned parameters under certain scenarios.

In the future, we will work on the directions discussed in Sec. 7.7.4, and try different combi-
nations of sensors and algorithms under the ambiguity-aware active SLAM framework. The ul-
timate goal is to integrate the ambiguity-aware active SLAM framework into a fully autonomous
robotic platform that conducts daily tasks robustly.
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Chapter 8

Conclusion

8.1 Summary

In this dissertation, the ambiguity problems in SLAM have been studied, and a series of solutions
have been developed and tested with simulations or real world experiments.

The core idea of dealing with ambiguity problems is that the temporarily unsolvable am-
biguities should be handled explicitly, and the SLAM results can contain multiple hypotheses
accordingly whenever necessary. First of all, The MH-iSAM2 algorithm (see Ch. 3) is intro-
duced to conduct nonlinear incremental optimization with multiple hypotheses efficiently, which
serves as a back-end solver that allows handling and solving ambiguities explicitly. Then, several
efficient SLAM components, including RGB-D-inertial odometry estimation (see Ch. 4), local
depth fusion (see Ch. 5), and SLAM with 3D planes (see Ch. 5), are developed and tested under a
conventional single-hypothesis SLAM framework before being adopted in the real world multi-
hypothesis API-SLAM system (see Ch. 6) that conducts real-time multi-hypothesis dense 3D
reconstruction on a CPU only. Finally, an ambiguity-aware active SLAM framework (see Ch. 7)
is developed to make use of the multi-hypothesis state and map estimations from the API-SLAM
system for exploration and active loop closing, which also helps reducing the growing number of
hypotheses actively. All the works together demonstrates an integrated solution to the ambiguity
problems of SLAM from all three aspects: front-end, back-end, and active perception.

8.2 Significance and Future Work

To the best of our knowledge, this is the first study that considers multi-hypothesis solutions
explicitly throughout the entire SLAM system including tracking, optimization, mapping, explo-
ration, active loop closing, and path planning. Even though the implemented system currently
only works with the sensor combination of RGB-D camera and IMU, and the exploration and
path planning is limited in 2D, the great potential of this research direction towards robust full
autonomy is clear.

90



8.2.1 Multi-hypothesis Back-end Solver
The MH-iSAM2 algorithm proposed in Ch. 3 is a novel nonlinear incremental optimization
solver for SLAM problems that takes multi-mode measurements that represent ambiguities as
inputs, and outputs multi-hypothesis solutions accordingly. The Hypo-tree and the Bayes tree are
integrated to avoid duplicated computations, which allows efficient updates of the most recent
multi-hypothesis variables. While a pruning algorithm is developed to reduce the number of
hypotheses when needed, future research on the selection of hypotheses given prior knowledge
or active feedback is of great interest. How to make use of this back-end solver properly for
various real world applications would also require a wide range of study and testing in the future.

8.2.2 Ambiguity-aware Passive SLAM
The API-SLAM proposed in Ch. 6 is the first multi-hypothesis dense 3D SLAM system that can
handle ambiguities explicitly to the best of our knowledge. Detecting and modeling ambiguities
from sensor measurements properly greatly improves the robustness of the SLAM system, and
adopting submaps and planar constraints are the keys to an efficient dense 3D mapping process
that allows the API-SLAM system to operate in real-time on a CPU only. In the near future,
adding more sensors to further improve the system robustness under the multi-hypothesis frame-
work would be a good extension. Analyzing, detecting, and modeling more types of ambiguities
is also an interesting research direction.

8.2.3 Ambiguity-aware Active SLAM
A novel ambiguity-aware active SLAM framework is introduced in Ch. 7, which considers all
the multiple state and map estimations from a MH-SLAM system in exploration, active loop
closing, and path planning. The multi-hypothesis exploration algorithm based on ambiguity-free
submaps is efficient enough to allow the entire system operating in real-time, and the active loop
closing algorithm helps pruning the unlikely hypotheses and maintains tractable computation.
Integrating the ambiguity-aware active SLAM framework into an actual robotic system for real
world applications is the ultimate goal, and future studies on ambiguity-aware interactive SLAM
(the robot can move the objects in the environment actively) or even in an multi-agent system
(MAS) are possible extensions of this thesis research.

The final takeaway: This dissertation tackles the ambiguity problem both theoretically and
systematically, and takes an important step towards “the best possible robustness”. However,
robustness is still a crucial problem and not fully solved by the SLAM community. In the near
future, we are looking forward to seeing more research on solving various types of robustness
issues in SLAM.
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Appendix A

Mathematical Foundations in SLAM

A.1 From MLE to Least Squares
As described in Sec. 3.1, a SLAM problem can be regarded as a maximum likelihood estimation
(MLE) problem:

Θ̂ = arg max
Θ

P (Z|Θ) = arg max
Θ

∏
k

P (zk|Θk) (A.1)

Assuming Gaussian noise for all measurements P (zk|Θk), Eq. A.1 can be written as:

arg max
Θ

∏
k

N (µk,Σk) = arg max
Θ

∏
k

1√
(2π)p |Σk|

exp

(
−1

2
‖hk(Θk)−zk‖2

Σk

)
, (A.2)

where µk and Σk are the one or multi-dimensional mean and covariance of the Gaussian noise of
the measurement zk, and hk(·) is the prediction function that generates predicted measurement
value z̃k from the set of relevant variables Θk. As we can see, the peak of each Gaussian is at
z̃k = zk, which means that the prediction hk (Θk) = z̃k agrees with the actual measurement value
zk. Since our goal is to solve for the set of all variables Θ̂ that maximize the multiplication of the
Gaussians, ignoring the constant scale terms and applying a log operator (which is monotonic)
do not affect the solution:

arg max
Θ

∏
k

exp

(
−1

2
‖hk(Θk)−zk‖2

Σk

)
= arg max

Θ
log

(∏
k

exp

(
−1

2
‖hk(Θk)−zk‖2

Σk

))

= arg max
Θ

∑
k

(
−1

2
‖hk(Θk)−zk‖2

Σk

)
= arg min

Θ

∑
k

‖hk(Θk)−zk‖2
Σk

(A.3)

In Eq. A.3, we can notice that the multiplication becomes summation after applying the
log operation, and the arg max becomes arg min because of removing the negative sign in front
of each Mahalanobis distance term ‖hk(Θk)−zk‖2

Σk
= (hk(Θk)−zk)

>Σ−1
k (hk(Θk)−zk). The

resulting form is a nonlinear least squares problem since the prediction functions hk(·) are mostly
nonlinear in SLAM problems, which can be solved using the iterative nonlinear optimization
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technique by solving the linearized function at each iteration to update the estimations until
convergence. The linearized function can be written as:

arg min
Θ

∑
k

‖(Akθk−bk)− zk‖2
Σk

= arg min
Θ

∑
k

∥∥∥Σ
− 1

2
k Akθk − Σ

− 1
2

k (bk−zk)
∥∥∥2

= arg min
Θ

∑
k

‖A′kθk − b′k‖
2
, (A.4)

where the covariance can be combined with the Jacobian matrixA and the constant term bk−zk,
which can result in a standard form of linear least squares arg minΘ ‖Aθ − b‖2 if we concate-
nate all the terms into one linear equation based on a given variable ordering.

A straightforward way to solve this least squares problem is based on the fact that the first
derivative of the function at its optimal must equal to zero:

arg min
Θ

‖Aθ − b‖2 ⇒ A>Aθ − A>b = 0⇒ θ =
(
A>A

)−1
A>b, (A.5)

where
(
A>A

)−1
A> is known as the pseudoinverse of A. Even though this method is theoreti-

cally correct, it can cause several problems in practice. First of all, the dimensions of A depend
on the number of measurement factors and variables, which can be very large as the SLAM prob-
lem grows over time. In this case, the required inverse calculation

(
A>A

)−1 can be very time
consuming since even the computational complexity of the most efficient matrix inversion al-
gorithm is worse than quadratic (O(n2.373) for optimal Coppersmith–Winograd algorithm [65]).
Also, computing the inverse of a matrix on a computer can run into numerical problems if insuf-
ficient digits are applied (e.g. type double works better than type float in C/C++ programs). As a
result, a more elegant way to solve this least squares problem is to apply matrix factorization or
decomposition:

arg min
Θ

‖Aθ − b‖2 = arg min
Θ

‖QAθ −Qb‖2 = arg min
Θ

∥∥∥∥[ R0
]
θ −

[
d
e

]∥∥∥∥2

= arg min
Θ

‖Rθ − d‖2 + ‖e‖2 , (A.6)

where Q is a orthonormal matrix (Q>Q = I) that transforms A into a upper triangular matrix R
and zero rows in the bottom. Notice that multiplying Q to A and b does not affect the solution
since ‖QAθ−Qb‖2 = (QAθ−Qb)>(QAθ−Qb) = (Aθ−b)>Q>Q (Aθ−b) = ‖Aθ−b‖2. We
can further separate the resulting linear system into two parts as shown in Eq. A.6, where an
exact solution to θ can be found from ‖Rθ − d‖2 = 0⇒ Rθ = d through backsubstitution, and
‖e‖2 is the corresponding error of this solution.

In practice, Q does not have to be constructed specifically. Instead, efficient methods such
as Givens rotation [31] or Householder reflection [37] both modify on the A and b directly to
generate R, d, and e. Advanced algorithms such as iSAM [49] or iSAM2 [50] even enable
incremental updates of the R, d, and e for real-time SLAM tasks.
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A.2 From Factor Graph to Bayes Tree
A factor graph (see Sec. 3.1) describes a SLAM problem from the probabilistic point of view:
solving posterior P (Θ|Z) is equivalent to solving the likelihood P (Z|Θ) assuming no prior
p (Θ). The likelihood P (Z|Θ) =

∏
k

P (zk|Θk) is the joint probability of all measurement factors

P (zk|Θk), which is high-dimensional and hard to compute directly. To explore the sparsity of
SLAM problems and better understand its inference process, the Bayes tree is developed in [50]
to convert the joint probability of the entire factor graph into conditional densities and store them
in individual cliques in a tree structure.

The construction process of a Bayes tree consists of two major steps. In the first step, a factor
graph (see Fig. A.1-a) can be converted into a Bayes net (see Fig. A.1-b) through linearization
and variable elimination, which is equivalent to applying matrix factorization onto the linearized
jacobian matrix A in each iteration of solving the MLE problem (see Eq. A.4 and Eq. A.6). In
the example in Fig. A.1, the elimination ordering is given as l1, l2, x1, x2, x3. As a result, each
variable only depends on the variables that are eliminated later, which is represented using the
arrows in the Bayes net in Fig. A.1-b (e.g.: l1 depends on x1 and x2, so there are two arrows
pointing from x1 and x2 to l1 respectively). Same dependency structure can be observed in the
factorized upper-triangular matrix in Fig. A.1-b, where the corresponding row of one variable
only contains non-zero elements on the corresponding columns of (1) the variables that it depends
on and (2) itself (e.g.: again l1 depends on x1 and x2, so there are three non-zero elements in the
first row: on the column of x1, x2, and l1 itself).

From the probabilistic point of view, the same variable elimination process in Fig. A.1 can
be explained as below. The desired posterior (see Sec. 3.1) can be written as:

P (Θ|Z) ∝ P (Z|Θ) =
∏
k

P (zk|Θk) , (A.7)

where∏
k

P (zk|Θk)=P (z1|x1)P (z2|x1, l1)P (z3|x1, x2)P (z4|x2, l1)P (z5|x2, x3)P (z6|x3, l2) (A.8)

is the multiplication of the probability of all measurement factors. Following the same variable
ordering l1, l2, x1, x2, x3 in Fig. A.1 to group the factors, we can rewrite Eq. A.8 as:∏

k

P (zk|Θk) = [P (z2|x1, l1)P (z4|x2, l1)]{l1} [P (z6|x3, l2)]{l2}

[P (z1|x1)P (z3|x1, x2)]{x1} [P (z5|x2, x3)]{x2} [·]{x3} , (A.9)

where{·} denotes first variable that affects the group of factors in [·] based on the variable order-
ing. Notice that there is no factor in that last group of variable x3.

Now, we can eliminate each variable following the given ordering. Based on the fact that
each measurement only depends on the variables that directly connect to it in the factor graph,
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Figure A.1: An example of constructing a Bayes tree from a factor graph (figure from [50]). (a)
A factor graph that consists of nonlinear factors can be linearized and represented as a Jacobian
matrix in each iteration of nonlinear optimization. Notice that the same sparse structure can be
observed in both the graph and the matrix. (b) Applying variable elimination on a factor graph
with a given variable ordering (l1, l2, x1, x2, x3) results in a Bayes net that preserves sparsity.
The equivalent computation on the Jacobian matrix is matrix factorization/decomposition, which
generates a upper triangular matrix that also preserves sparsity. (c) A Bayes tree can be con-
structed with the cliques found in the Bayes net, where each clique corresponds to a dense block
in the factorized matrix.
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we can combine all the probabilities in the first group and apply Bayes’ rule to create a local
joint density:

[P (z2|x1, l1)P (z4|x2, l1)]{l1} = [P (z2, z4|x1, x2, l1)]{l1} ∝ [P (x1, x2, l1, z2, z4)]{l1} (A.10)

Then, we define frontals as the variable labels in {·} and separators as the rest of the variables
in the joint density, which allows us to create a conditional density and a marginal density using
the chain rule:

[P (x1, x2, l1, z2, z4)]{l1} =
[
P
(
lF1 , x

S
1 , x

S
2 , z2, z4

)]
{l1}

=
[
P
(
lF1 |xS1 , xS2 , z2, z4

)
P
(
xS1 , x

S
2 , z2, z4

)]
{l1}

, (A.11)

where ·F and ·S denote the frontals and separators respectively. Notice that since l1 is entirely
eliminated from the marginal density P

(
xS1 , x

S
2 , z2, z4

)
, we can pass this marginal density to the

next group that is labeled one of the separators (it is x1 under this variable ordering). Follow-
ing the same logic, we can apply this process to each group following the variable ordering to
complete variable elimination:

P (Θ|Z) ∝ P (Z|Θ) = [P (z2|x1, l1)P (z4|x2, l1)]{l1} [P (z6|x3, l2)]{l2}

[P (z1|x1)P (z3|x1, x2)]{x1} [P (z5|x2, x3)]{x2} [·]{x3} (A.12)

∝
[
P
(
lF1 |xS1 , xS2 , z2, z4

)
P
(
xS1 , x

S
2 , z2, z4

)]
{l1}
· · · [P (z1|x1)P (z3|x1, x2)]{x1} · · · (A.13)

=
[
P
(
lF1 |xS1 , xS2 , z2, z4

)]
{l1}
· · ·
[
P
(
xS1 , x

S
2 , z2, z4

)
P (z1|x1)P (z3|x1, x2)

]
{x1}
· · · (A.14)

∝ · · ·
[
P
(
lF2 |xS3 , z6

)
P
(
xS3 , z6

)]
{l2}
· · · [P (z5|x2, x3)]{x2} [·]{x3} (A.15)

= · · ·
[
P
(
lF2 |xS3 , z6

)]
{l2}
· · · [P (z5|x2, x3)]{x2}

[
P
(
xS3 , z6

)]
{x3}

(A.16)

∝ · · ·
[
P
(
xF1 |xS2 , z1, z2, z3, z4

)
P
(
xS2 , z1, z2, z3, z4

)]
{x1}

[P (z5|x2, x3)]{x2} · · · (A.17)

= · · ·
[
P
(
xF1 |xS2 , z1, z2, z3, z4

)]
{x1}

[
P
(
xS2 , z1, z2, z3, z4

)
P (z5|x2, x3)

]
{x2}
· · · (A.18)

∝ · · ·
[
P
(
xF2 |xS3 , z1, z2, z3, z4, z5

)
P
(
xS3 , z1, z2, z3, z4, z5

)]
{x2}

[
P
(
xS3 , z6

)]
{x3}

(A.19)
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= · · ·
[
P
(
xF2 |xS3 , z1, z2, z3, z4, z5

)]
{x2}

[
P
(
xS3 , z1, z2, z3, z4, z5

)
P
(
xS3 , z6

)]
{x3}

(A.20)

∝
[
P
(
lF1 |xS1 , xS2 , z2, z4

)]
{l1}

[
P
(
lF2 |xS3 , z6

)]
{l2}

[
P
(
xF1 |xS2 , z1, z2, z3, z4

)]
{x1}[

P
(
xF2 |xS3 , z1, z2, z3, z4, z5

)]
{x2}

[
P
(
xF3 , z1, z2, z3, z4, z5, z6

)]
{x3}

(A.21)

From the equations above, we can learn that constructing the local joint density of a group
requires merging the marginal information passed from previous groups. As a result, the condi-
tional density in each group must depend on the densities in latter groups, which is identical to
the structure of the Bayes net in Fig. A.1-b.

The second step of constructing a Bayes tree is to find cliques in the Bayes net and explore
the tree structure among them. A clique is defined as a largest densely connected group of
variables as shown in Fig. A.1-c. After finding all the cliques in the Bayes net, we can directly
find the conditional relationships among them based on the arrows that cross different cliques,
and construct a Bayes tree based on these conditions. In the corresponding factorized matrix,
each clique also represents a dense block of elements, and the sparse structure of the matrix is
identical to the Bayes net that can be represented as a tree.

From the probabilistic point of view, constructing the cliques and the Bayes tree can be writ-
ten as grouping and combining the probabilities in Eq. A.21 following the backward ordering:

P (Θ|Z) ∝ P
(
lF1 |xS1 , xS2 , · · ·

)
P
(
lF2 |xS3 , · · ·

)
P
(
xF1 |xS2 , · · ·

)
P
(
xF2 |xS3 , · · ·

)
P
(
xF3 , · · ·

)

=
[
P
(
lF2 |xS3 , · · ·

)]
C2

[
P
(
lF1 |xS1 , xS2 , · · ·

)
P
(
xF1 |xS2 , · · ·

)]
C1

[
P
(
xF2 |xS3 , · · ·

)
P
(
xF3 , · · ·

)]
C0

=
[
P
(
lF2 |xS3 , · · ·

)]
C2

[
P
(
lF1 , x

F
1 |xS2 , · · ·

)]
C1

[
P
(
xF2 , x

F
3 , · · ·

)]
C0

(A.22)

Notice that in practice we can first work on the structure of the factor graph to generate the
structure of Bayes net and the cliques without calculating the actual probabilities, then directly
compute the conditional and marginal densities of each clique following the process from Eq. A.8
to Eq. A.22. In iSAM2 [50], since Gaussian noise assumption is applied to all measurements, the
actual computation of the densities is implemented as matrix factorization on the local Jacobian
of all the relevant factors in each clique (see Appendix A.1). However, since constructing a Bayes
tree from a factor graph does not assume any distribution for any of the probabilities in the above
derivations, this algorithm can be generalized to the construction of a multi-hypothesis Bayes
tree (MHBT) from a multi-hypothesis factor graph (MHFG) in the proposed robust back-end
optimizer MH-iSAM2 (see Sec. 3.5).

97



Appendix B

Supplemental Results

B.1 3D Reconstructions of API-SLAM
Fig. B.1, Fig. B.3, Fig. B.2, and Fig. B.4 show three examples of the mapping process of
API-SLAM, where all the remaining hypotheses of the map are shown together in each figure.
We can observe that when ambiguities of odometry estimation occur in Fig. B.1-b, Fig. B.2-
d, Fig. B.3-d (corresponding color and depth inputs are shown in Fig. 6.2-a) and Fig. B.4-e
(corresponding color and depth inputs are shown in Fig. 6.2-b), multiple hypotheses of the map
with obviously different geometry are kept tracked by API-SLAM at the same time. Then, some
of these hypotheses are pruned either due to the limitation of maximum number of hypotheses
(Fig. B.1-c and Fig. B.2-f) or additional information provided such as loop closures (Fig. B.3-g,
Fig. B.2-h and Fig. B.4-h). We can visually observe that at least one of the remaining hypotheses
in each of these examples preserves the correct topology/geometry of the environment in the
reconstructed 3D map.
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(a) Number of submaps: 40 (b) Number of submaps: 80

(c) Number of submaps: 120 (d) Number of submaps: 160

(e) Number of submaps: 200 (f) Number of submaps: 218 (final result)

Figure B.1: An example of the mapping process of the API-SLAM system (corresponds to the
dataset and result in Fig. 6.4-b). Some submaps are colored in red to show the locations where
ambiguous odometry estimates occur.
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(a) Number of submaps: 40 (b) Number of submaps: 80

(c) Number of submaps: 120 (d) Number of submaps: 160

(e) Number of submaps: 200 (f) Number of submaps: 240

(g) Number of submaps: 280 (h) Number of submaps: 332 (final result)

Figure B.2: An example of the mapping process of the API-SLAM system (corresponds to the
dataset and result in Fig. 6.4-c). Some submaps are colored in red to show the locations where
ambiguous odometry estimates occur.
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(a) Number of submaps: 30 (b) Number of submaps: 60

(c) Number of submaps: 90 (d) Number of submaps: 120

(e) Number of submaps: 150 (f) Number of submaps: 180

(g) Number of submaps: 210 (h) Number of submaps: 258 (final result)

Figure B.3: An example of the mapping process of the API-SLAM system (corresponds to the
dataset and result in Fig. 6.4-e).
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(a) Number of submaps: 30 (b) Number of submaps: 60

(c) Number of submaps: 90 (d) Number of submaps: 120

(e) Number of submaps: 150 (f) Number of submaps: 180

(g) Number of submaps: 210 (h) Number of submaps: 244 (final result)

Figure B.4: An example of the mapping process of the API-SLAM system (corresponds to the
dataset and result in Fig. 6.8-a).
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B.2 Simulation of Ambiguity-aware Active SLAM
Fig. B.5 and Fig. B.6 show two examples of the simulation steps during the evaluation of the
ambiguity-aware active SLAM approach (see Sec. 7.7). We take the snapshots of both the online
reconstructed maps and the ground truth information each time when the number of submaps
grows, and shows the uniformly downsampled set of images here. In both examples, we set
ntrigger =4 and nlimit =∞.
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(a) Number of submaps: 1

(b) Number of submaps: 201

(c) Number of submaps: 401
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(d) Number of submaps: 601

(e) Number of submaps: 801

(f) Number of submaps: 1001
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(g) Number of submaps: 1201

(h) Number of submaps: 1401

(i) Number of submaps: 1601
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(j) Number of submaps: 1801

(k) Number of submaps: 2001

(l) Number of submaps: 2201
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(m) Number of submaps: 2401

(n) Number of submaps: 2598 (final result)

Figure B.5: An example of the simulation process of the ambiguity-aware active SLAM frame-
work in the simulated environment shown in Fig. 7.7-b. The left column shows the reconstructed
maps in all hypotheses, while the right column shows the ground truth map and trajectory.
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(a) Number of submaps: 1

(b) Number of submaps: 101

(c) Number of submaps: 201
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(d) Number of submaps: 301

(e) Number of submaps: 401

(f) Number of submaps: 501
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(g) Number of submaps: 601

(h) Number of submaps: 701

(i) Number of submaps: 801
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(j) Number of submaps: 901

(k) Number of submaps: 1001

(l) Number of submaps: 1101
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(m) Number of submaps: 1133 (final result)

Figure B.6: An example of the simulation process of the ambiguity-aware active SLAM frame-
work in another simulated environment shown in Fig. 7.7-f. Again, the left column shows the
reconstructed maps in all hypotheses, while the right column shows the ground truth map and
trajectory. Notice that different from the example result in Fig. B.5-n, in this example the final
output map still contains two similar hypotheses that cannot be disambiguated.
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B.3 Real World Results of Assistive Mapping System
Fig. B.7 shows one example of the active mapping process using the assistive mapping system
(see Sec. 7.7), where its final output 3D model is visualized and evaluated in Fig. 7.16. Similar
to Fig. B.5, we take the snapshots of both the online AR viewer and the top-down viewer each
time when the number of submaps grows, and show the uniformly downsampled set of images
here. In this example, we set ntrigger = 2 and nlimit = 16, which is able to run in real-time on a
CPU.

We also test the assistive mapping system with one single hypothesis (nlimit = ntrigger = 1),
which runs into numerical issue and crashes soon after a false positive loop closure measurement
being added into the optimization in the example shown in Fig. B.8.
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(a) Number of submaps: 1

(b) Number of submaps: 41

(c) Number of submaps: 81
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(d) Number of submaps: 121

(e) Number of submaps: 161

(f) Number of submaps: 201
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(g) Number of submaps: 241

(h) Number of submaps: 281

(i) Number of submaps: 321
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(j) Number of submaps: 361

(k) Number of submaps: 401

(l) Number of submaps: 441
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(m) Number of submaps: 481

(n) Number of submaps: 521

(o) Number of submaps: 561

119



(p) Number of submaps: 601

(q) Number of submaps: 637 (final result)

Figure B.7: An example of the mapping process using the assistive mapping system. The left
column is the AR viewer, and the right column is the corresponding top-down viewer that shows
the reconstructed maps in all hypotheses. Instructions (target view points P ∗, its corresponding
target frontiers, and the poses of the loop closing target submaps M∗) are visualized in both of
them online in real-time.
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(a) Number of submaps: 1

(b) Number of submaps: 21

(c) Number of submaps: 41

121



(d) Number of submaps: 51 (crash here)

Figure B.8: An example of the mapping process using the assistive mapping system with only a
single hypothesis. The left column is the AR viewer, and the right column is the corresponding
top-down viewer that shows the reconstructed maps in all hypotheses.
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