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Abstract— In this work, we develop a novel dense planar-
inertial SLAM (DPI-SLAM) system to reconstruct dense 3D
models of large indoor environments using a hand-held RGB-D
sensor and an inertial measurement unit (IMU). The preinte-
grated IMU measurements are loosely-coupled with the dense
visual odometry (VO) estimation and tightly-coupled with the
planar measurements in a full SLAM framework. The poses,
velocities, and IMU biases are optimized together with the
planar landmarks in a global factor graph using incremental
smoothing and mapping with the Bayes Tree (iSAM2). With
odometry estimation using both RGB-D and IMU data, our
system can keep track of the poses of the sensors even without
sufficient planes or visual information (e.g. textureless walls)
temporarily. Modeling planes and IMU states in the fully
probabilistic global optimization reduces the drift that distorts
the reconstruction results of other SLAM algorithms. Moreover,
structural constraints between nearby planes (e.g. right angles)
are added into the DPI-SLAM system, which further recovers
the drift and distortion. We test our DPI-SLAM on large indoor
datasets and demonstrate its state-of-the-art performance as the
first planar-inertial SLAM system.

I. INTRODUCTION

Recent studies have shown that using planes as land-
marks in simultaneous localization and mapping (SLAM)
systems provides advantages over other existing dense 3D
reconstruction methods on accuracy, efficiency, or even both
[12, 14, 20, 27]. However, all existing planar SLAM solu-
tions can still drift over time due to the accumulation of small
errors along the trajectory estimation, or lose tracking due to
insufficient observations of geometric features or photometric
textures. Fusing inertial sensors with vision-based SLAM
systems is a good solution to reduce all these problems,
which results from the complementary nature of these two
types of sensors. An inertial measurement unit (IMU) can
temporarily track the motion of the sensor even when there
are not enough features or texture for visual tracking. On
the other hand, consistent visual observations help correct
the biases in the inertial measurements. Therefore, the main
idea in this work is to fuse inertial measurements with planar
observations to achieve better SLAM performance.

There are several existing methods that fuse IMU and
camera for various tasks. Filtering methods are frequently
used for visual-inertial navigation (VIN) [18, 28], which
marginalize out all the previous IMU states, including poses,
velocities, and biases, to achieve fast computation. However,
because the highly nonlinear inertial states are marginalized
out at each frame, which cannot be further corrected by
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Fig. 1: The reconstruction of a large indoor environment using DPI-SLAM
system with structural constraints. The drift in the output 3D dense model
(a) is significantly reduced, which can also be observed from the top (b)
and side (c) views.

later observations or loop closures, filtering methods cannot
generate consistent solutions and therefore are not suitable
for SLAM tasks. Smoothing or batch optimizing IMU states
at each camera frame are the most accurate ways to solve
the visual-inertial SLAM problems in theory, but the fast
growing number of states and constraints can be very compu-
tationally expensive, which prohibits the use of such systems
for real-time applications. Sliding window smoothing or
local bundle adjustment (BA) solutions find a good balance
between filtering and batch optimization methods to solve
visual-inertial SLAM problems [17, 19, 22], which preserves
the accuracy of batch optimization locally while achieving
real-time performance. However, they also marginalize the
previous states that exceed the local optimization window,
and therefore the inconsistent problem still exists. To achieve
both consistency and efficiency, we first apply the on-
manifold IMU preintegration method [9] to combine all the
IMU measurements between two sparsely selected frames
as a single factor. Then we follow a framework similar
to that in our previous work [12] to jointly optimize the



preintegrated IMU factors with the planar observations as
well as the visual odometry (VO) constraints from the fast
dense RGB-D odometry method [12] in a global factor graph,
which preserves all the IMU states of the selected frames
and can be solved efficiently using iSAM2 [16, 6]. This
framework also locally fuses the depth images into a dense
depth maps [12], which preserves the detail structures of
the environments and allows more accurate plane extraction.
With a proper implementation of the online data acquisition
and factor graph update (see section VI), this novel dense
planar-inertial SLAM (DPI-SLAM) can reconstruct dense 3D
models of indoor environments in real-time on a CPU only.

To further extend DPI-SLAM, we also implement a loop
closing function that automatically detects loops and merges
duplicate planes. Moreover, structural constraints between
planes, such as orthogonality and parallelism, are added into
the global optimization. They not only reduce the drift and
distortion of the output map even before or without loop clos-
ing, but also speed up the loop closing process and generate
more accurate maps. We demonstrate the improvements of
our SLAM system on self-collected large indoor datasets.

The four main contributions of this work are:
1. Developing a novel dense planar-inertial SLAM (DPI-

SLAM) system that applies IMU preintegration for consistent
global optimization,

2. Implementing DPI-SLAM based on iSAM2 to achieve
real-time performance on CPU,

3. Incorporating the structural constraints between land-
mark planes based on the planar-inertial SLAM framework
to further correct the drift and distortion, and

4. Demonstrating the state-of-the-art performance of DPI-
SLAM with structural constraints by comparing its recon-
struction results with others as well as a ground truth model
from a survey lidar.

II. RELATED WORK

Various studies have focused on fusing inertial measure-
ments with sparse feature-based VO methods in recent years.
A simple way to fuse them is referred to as loosely-coupled
[18, 28], which optimizes the 6-DoF output from the VO
methods instead of the raw visual measurements together
with the inertial measurements. In contrast, tightly-coupled
methods [17, 19, 22] jointly optimize the raw sparse feature
point constraints together with the inertial measurements in
each iteration of the nonlinear optimization, which is more
costly but can achieve more accurate results.

However, fusing IMU with direct dense VO methods, such
as iterative closest point (ICP) [4] or dense RGB-D odometry
[26], are not discussed much in the existing literature. In
theory, smoothing or batch optimizing all the raw constraints
from direct dense methods and inertial measurements in a
tightly-coupled way can achieve the best possible estimates,
but it is too expensive for global optimization and therefore
cannot run in real-time. An alternative solution introduced
in visual-inertial direct SLAM [5] tightly-couples the inertial
measurements and the direct semi-dense VO constraints for
each pose estimation only, and marginalizes the IMU and

Fig. 2: The IMU (Microstrain 3DM-GX4-25) is rigidly attached on the top
of the RGB-D sensor (ASUS Xtion Pro Live).

VO measurements into pose-to-pose constraints in a pose
graph. Even though this method can estimate the relative
motion between frames more accurately, it does not allow
the later observations to update the IMU biases for global
optimization. A different approach in [21] loosely couples
the constraints from a dense stereo tracking method with the
inertial measurements within a sliding window, which also
cannot correct the IMU biases globally. IMU preintegration
[9] offers efficient solution to either loosely or tightly couple
the IMU measurements with visual constraints, which is
applied in this work to solve the planar-inertial SLAM
problem. In our DPI-SLAM, the preintegrated IMU factors
are loosely coupled with the dense VO constraints while
tightly coupled with the planar observations. Even though
the dense VO constraints and the inertial measurements are
not tightly coupled, our approach allows global correction of
the IMU biases in a much cheaper way, and therefore can
achieve consistent and accurate solutions online in real-time.

Structural constraints, such as orthogonal or parallel
planes, are expected to further correct the drift or distortion
in the reconstructions of man-made environments. [23] and
[24] demonstrate the advantages of applying these structural
constraints on 2D and 3D mapping respectively. A similar
but more limited concept called Manhattan world assumption
is also applied in [8, 25] to achieve better mapping results.
However, none of the recent studies of planar SLAM using
hand-held RGB-D sensors [12, 14, 20, 27] considers apply-
ing any of these ideas to improve the outputs. In this work
we will also exploit the structural constraints of the planes to
further improve reconstruction results, especially when there
is no loop closure constraint to correct the accumulated error
in the system.

III. SYSTEM STRUCTURE

Our DPI-SLAM system consists of three main parts (see
Fig. 3). The first part (a) includes the odometry estimation
and a frame labeling process. The second part (b) performs
local depth fusion. The third part (c) combines global planar-
inertial mapping with structural constraints and loop closing.

In the first part (a), the pose of each RGB-D frame is
predicted using the preintegrated IMU measurements, and
further estimated using our fast dense RGB-D odometry
method. Both pose prediction and estimation are relative to
the most recent reference frame Rj . Only the poses of the
specially selected keyframes, reference frames, and fusion
frames are estimated using the full precise fast dense RGB-
D odometry method (solid black lines in Fig. 3-a). For all
other frames, we only estimate their poses roughly using
a simplified method (dotted black lines in Fig. 3-a) for
efficiency. At each reference frame, the current preintegrated



Fig. 3: The system structure of DPI-SLAM, which is similar to KDP-SLAM [12] but modified to allow fusing IMU measurements: (a) IMU preintegration,
fast dense RGB-D odometry algorithm, and frame labeling process. (b) Selective local depth fusion algorithm. (c) Optimization of IMU states and planar
landmarks in the global factor graph G with structural constraints and loop closing. Note that for the set of all keyframes K, all reference frames R, and
all fusion frames U , K ⊂ R ⊂ U holds. Also, the loop closing constraints are not shown here but in Fig. 5 for readability.

IMU factor and VO factor estimated by the fast dense RGB-
D odometry method are added into the global factor graph G
(the arrows from Fig. 3-a to Fig. 3-c) for joint optimization.
If any new frame’s pose is too far away from that of Rj , it
will be set as the next reference frame Rj+1. Also, a new
frame is selected as a new keyframe Ki+1 if its pose is too
far away from that of the current keyframe Ki.

In the second part (b), we fuse the depth of the selected
fusion frames from Ki to the last frame before Ki+1 into
a local depth map Li. Since the poses of the reference
frames are further corrected by the inertial measurements, the
estimated poses of the fusion frames as well as the resulting
local depth maps Li are also more accurate.

In the third part (c), we extract planes and their corre-
sponding point clusters from Li at each keyframe, asso-
ciate them with existing landmark planes using a projective
method, add the planar factors into the global factor graph G,
and jointly optimize them with the existing VO and inertial
factors in G. After that, G is updated again with the newly
found structural constraints. Finally, loop closure constraints
are detected and optimized in G. The global factor graph G
is shown in Fig. 3-c, where the IMU states at both keyframes
and reference frames as well as the states of the landmark
planes are represented as variable nodes and linked with
each other by factors. The two types of factors between
IMU states encode the preintegrated IMU constraints (green)
and odometry constraints (black) from the fast dense RGB-D
odometry method respectively. The factors between the IMU
states of the keyframes and landmark planes encode plane
observations c1, ..., cq . Additional factors sp,p′ (dark red)
are added between landmark planes as structural constraints.
The system applies iSAM2 [16] to update G incrementally

whenever an IMU state is added into the factor graph with
its corresponding factors. When a loop is detected, the entire
graph G is updated for several iterations until convergence.

For more details about the fast dense RGB-D odometry,
local depth fusion, and projective data association of planes,
please refer to our previous work KDP-SLAM [12].

IV. PLANAR-INERTIAL SLAM

A. IMU Preintegration in the Global Factor Graph

Each IMU state contains the pose, velocity, and bias
terms for both gyroscope and accelerometer, which can be
represented as a 15-vector

xt =
[
ξ>t v>t b

>

ω b>a

]>
, (1)

at time t, where ξt represents the 6-DoF pose of the IMU,
which can also be represented as a rotation matrix Rt and
a translation vector pt, and vt is the 3-DoF velocity. bω

and ba are the 3-DoF bias terms for the gyroscope and
accelerometer respectively, which are assumed to be static
over each preintegration interval (and can change between
intervals). Assuming that the raw angular velocity ωt and
acceleration at arrives every ∆t seconds, we can define the
preintegrated rotation, velocity, and translation between the
two consecutive reference frames at time t and t′ = t+m∆t
respectively as

∆Rtt′ =

t′∏
k=t

Exp ((ωk − bω) ∆t) , (2)



∆vt
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t′∑
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∆Rtk (ak − ba) ∆t, (3)
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t′∑
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1

2
∆Rtk (ak − ba) ∆t2

]
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and the error functions of their corresponding factors in G
are

e∆Rt
t′

= Log

{[
∆Rtt′Exp

(
J∆Rt

t′

[
δbω

δba

])]>
R>t Rt′

}
, (5)
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= R>t (vt′ −vt −gm∆t)−∆vt
t′ −J∆vt

t′
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δbω
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]
, (6)
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(
pt′ −pt −vtm∆tm −

1

2
gm2∆t2

)
−∆pt

t′ − J∆pt
t′

[
δbω

δba

]
, (7)

where J∆Rt
t′

, J∆vt
t′

, and J∆pt
t′

are the Jacobians of ∆Rtt′ ,

∆vt
t′ , and ∆pt

t′ with respect to the bias vector
[
b>ω b>a

]>
respectively, which allows updating the bias terms linearly.
The Exp(.) and Log(.) functions are the exponential and log
maps that transform the rotation in 3D between SO(3) and
its minimal representation in R3. g is the constant gravity
vector, which should be defined in advance.

Because of the two assumptions that (1) the bias is
constant within each preintegration interval and (2) the bias
states only require linear updates in each update step, the
IMU preintegration interval should not be too long. There-
fore, we choose the interval between each two consecutive
reference frames instead of two keyframes for IMU prein-
tegration, which helps improve the odometry estimate. We
apply the implementation of IMU preintegration in GTSAM
[2] library in our system, which calculates the preintegrated
IMU measurements as well as the Jacobians incrementally.
For more details of IMU preintegration, please refer to [9].

B. Fast Dense RGB-D Odometry with IMU Preintegration

The same fast dense RGB-D odometry method proposed
in KDP-SLAM [12] is applied in this work with few mod-
ifications to calculate the VO constraints between frames.
The original fast dense RGB-D odometry method initializes
the pose of each new input RGB-D frame as the pose of
its previous frame based on a small motion assumption.
However, because of incorporating the IMU sensor in this
work, we can predict the relative pose of each frame to the
most recent reference frame using the preintegrated rotation
∆Rtt+n∆t and translation ∆pt

t+n∆t over the n number of
IMU measurements between the two frames as

R̃t+n∆t = Rt∆Rtt+n∆t, (8)

p̃t+n∆t = pt + Rt∆pt
t+n∆t + vtn∆t− 1

2
gn∆t2. (9)

Using the preintegrated IMU measurements to predict
the initial pose of each frame results in better odometry

(a) Bases of planar constraints

(b) Bases of structural constraints

Fig. 4: Both planar and structural constraints have links (blue lines) to their
bases. (a) All the planar factors that link to the same landmark plane are
also linked to the same base, which is the IMU state of the keyframe that
first observes that landmark plane. (b) Each structural constraint is linked
to two bases, which are the IMU states of the keyframes that first observe
the two landmark planes that the structural constraint is linking to.

estimation, especially in the cases of fast rotation and lack
of texture.

Jointly optimizing RGB-D odometry with IMU measure-
ments at every reference frame further results in more
robust and accurate estimation of IMU states in the global
optimization, which also allows the correction of the biases
of the IMU measurements. The inertial constraints between
each two consecutive reference frames is defined as in Eq. 5-
7, and the RGB-D odometry constraint is defined as a 6-DoF
pose-to-pose factor. Notice that since the poses of the IMU
states represent the poses of the IMU instead of RGB-D
camera, each original RGB-D odometry estimation cTrgbd

has to be transformed into the IMU coordinates before taken
as a odometry factor between IMU states. The transformation

Trgbd = Tc · cTrgbd · T−1
c (10)

is based on the relative camera pose Tc in the IMU coordi-
nates, which can be calibrated offline in advance.

C. Global Planar Mapping with IMU Preintegration

Planes are segmented and extracted at each keyframe from
the locally fused depth map using [11] and [7], associated
with each other using a projective method proposed in [12],
and tightly-coupled with the IMU measurements in the global
optimization. Each plane π is modeled as a unit length
homogeneous vector π =

[
n> d

]> ∈ P3, ‖π‖ = 1 in the
projective space on the unit sphere S3, where n is its normal
vector and d the distance to the origin. The overparametrized
plane model has the same minimal representation ω ∈ R3

as quaternions, which is used to update each plane in the
optimization through the exponential map [14]:

exp (ω) =

(
1
2 sinc

(
1
2 ‖ω‖

)
ω

cos
(

1
2 ‖ω‖

) )
∈ S3. (11)



The plane observations will be added as factors be-
tween the corresponding landmark planes and IMU states
of keyframes, which tightly-couples planar and inertial mea-
surements in the global optimization. As a result, the biases
of the IMU measurements can be corrected again by the
planar constraints at every keyframe, which allows even
better initialization for the next preintegration interval and
refines the estimations of previous IMU states. Similar to
the RGB-D odometry constraints in Eq. 10, since each
plane measurement πc is originally observed in the camera
coordinates, it should be transform into the IMU coordinates
as π = T−>c πc before being added into the optimization.

A relative formulation is applied for each landmark plane
πp by setting its base as the IMU state xi that corresponds
to the keyframe Ki that first observes πp. Every plane
observation factor cq that links an IMU state node to πp
will be additionally linked to xi (the corresponding IMU
state of Ki) through a ternary factor (see Fig. 4-a). This
allows faster convergence especially in loop closures since
the planes anchored to a pose will be automatically moved
along with the pose when there is a global update.

V. STRUCTURAL CONSTRAINTS

Orthogonality and parallelism are the two most common
structural constraints found between two planar surfaces in
indoor environments, which can be added into our planar-
inertial SLAM system to further correct the drift in rotation.

In our system, two landmark planes πa and πb that are
observed within a short interval are the candidate pairs for
structural constraints. For each pair πa and πb, we first
compute hab =

∣∣∣(Rana)
>
Rbnb

∣∣∣, which is the absolute value
of the dot product of their normal vectors in the global
coordinates, where Ra, Rb are the rotation matrices of their
base poses respectively. Then, the two planes are regarded
as parallel if hab is greater than a parallel threshold h‖,
orthogonal if hab is less than an orthogonal threshold h⊥, or
no specific relationship if none of the above.

Each structural constraint factor is linked to not only the
two corresponding landmark planes but also their bases as a
quaternary factor (see Fig. 4-b) because of the relative for-
mulation (see Sec. IV-C), which results in faster convergence
in the optimization as well. For any pair of πa and πb, the
error function of their orthogonal constraint factor is

e⊥ =
1

σ2
⊥

[
(Rana)

>
Rbnb

]2
, (12)

and the error function of the parallel constraint factor is

e‖ =
1

σ2
‖

∥∥[Rana]× Rbnb

∥∥2
. (13)

The variances σ⊥ and σ‖ for the orthogonal and parallel
factors are set to be small (3× 10−5) for strong constraints.

VI. IMPLEMENTATION

Proper implementation is required to make the DPI-SLAM
system efficient. The first key idea is to implement the
three main parts described in section III in three concurrent

threads respectively, which speeds up the system a lot. More
implementation details are discussed as follows.

A. Online Data Synchronization

For our online real-time SLAM system, it is crucial to
synchronize the input data from the RGB-D and IMU sen-
sors. Our implementation assumes that IMU measurements
are available at much higher frequency than RGB-D images,
and both of them are measured with timestamps. Even
though the temporal offset between RGB-D images and IMU
measurements can be calibrated in advance, the image data
can still arrive later than the IMU data due to the delay of
transmission and preprocessing. So if we preintegrate every
input IMU data immediately after it arrives, the “future IMU
data” that exceeds the desired preintegration interval might
be accidentally added into the current preintegrated IMU
factor. A naive solution to avoid this problem is to store all
of the input IMU measurements and only preintegrate those
within the interval at once at each reference frame. However,
in our system, there can be tens of thousands of IMU data
to be preintegrated at each reference frame (depends on the
sensor motion that affects reference frame selection), which
might occasionally slow down the system. As a result, we
use a buffer to temporarily store the IMU data stream. Upon
the arrival of each new RGB-D frame, only those with earlier
timestamps than the timestamp of the new frame are taken
out from the buffer and preintegrated. This distributes the
work load to each frame and makes the processing time more
stable.

B. Gravity Initialization

A constant gravity is assumed in the IMU preintegration
framework and has to be set in advance. If the IMU and
camera are static in the first few frames, and we assume that
the initial accelerometer biases are much smaller than the
gravity, we can take the average direction of the first few
acceleration measurements to be the initial gravity direction
ginit. Then, we set the orientation of the prior p (see Fig. 3-c)
in a way such that ginit is rotated and aligned with the z-
direction of the global coordinates. Finally, we set the gravity
magnitude to 9.81m/s2.

C. Updating Factor Graph with Parallel Subgraphs

As described in Sec. III, the global factor graph G can be
updated by either the RGB-D odometry and preintegrated
IMU factors from the first thread with a higher frequency of
every reference frame, or the planar or structural constraints
from the third thread (see Fig. 3) with a lower frequency of
every keyframe. To allow conflict-free and efficient updates
from both threads, the new states and factors in the two
threads are added into two different subgraphs respectively in
parallel. Whenever one of the subgraphs is ready, the system
will add it into G and update the entire G while using mutex
lock to avoid adding the other subgraph or accessing the
same piece of memory from the other thread in the mean
time. This implementation is also based on GTSAM [2].



(a) Before merging two landmark planes

(b) After two landmark planes are merged

Fig. 5: Loop closing with landmark planes merging in the global factor graph
G. (a) A pose-to-pose loop closing constraint is added, and two landmark
planes πa and πb are detected to be representing the same plane. (b) The
two landmark planes are merged, and the new factors c′r and c′r+1 are added
into G to replace cr and cr+1. When all of the factors of the landmark plane
πb are removed, πb will be automatically removed from G in the applied
GTSAM implementation of iSAM2.

D. Loop Closing

Even though incorporating IMU measurements helps to
reduce drift, and the additional structural constraints further
reduce the drift in rotation, some small amount of drift still
plagues the optimized trajectory and map. As a result, we
apply a bag-of-words approach [10] to detect loops and the
following algorithm based on iSAM2 [16] to close the loops.

For every keyframe Kj that is detected to be a loop
closure candidate with a previous keyframe Ki, we apply
the RANSAC-based perspective-n-point (PnP) algorithm in
OpenCV [1] on the SURF [3] feature points extracted from
Ki and Kj to estimate the relative transformation first, then
apply our fast dense RGB-D odometry method to refine it.
The refined output is added into G as a constraint between
the poses of Ki and Kj . Optimizing G with the keyframe-to-
keyframe loop closing constraint usually requires updating a
larger part of the underlying Bayes tree in iSAM2, which
takes several iterations to converge.

Finally, we check the similarity of landmark planes that are
observed in these two keyframes using the same association
method, and merge those that are actually representing the
same plane to further constrain the solution and avoid the
duplication of landmarks. The merging is implemented by
relinking the factors of each new landmark plane to the
corresponding old one while also updating their base poses
(see Fig. 5).

VII. EXPERIMENTAL RESULTS

A. Experimental Settings

We evaluate DPI-SLAM on a desktop computer with an
Intel Core i7-4790 processor, and GPU being used only
for visualization, not computation. There are five separate
threads in the system, including the three main threads

(a) (b)

(c) (d)

Fig. 6: The real-time dense 3D reconstructions (from top view) without loop
closure in four different settings: (a) planar SLAM without using IMU data,
(b) planar-inertial SLAM with IMU preintegrated over each two keyframes,
(c) DPI-SLAM: planar-inertial SLAM with IMU preintegrated over each
two reference frames, and (d) DPI-SLAM with structural constraints.

introduced in Sec. III, an IMU and camera data input thread,
and a visualization thread. Our implementation, which has
not been optimized, runs at 30 fps.

We use an ASUS Xtion Pro Live attached with a Mi-
crostrain 3DM-GX4-25 (see Fig. 2) to collect indoor RGB-
D datasets with inertial measurements for evaluation. Both
color and depth images from Xtion have 640 × 480 reso-
lution at 30 fps, and both the raw rotational velocity and
acceleration measurements from Microstrain are provided
at 1000 Hz. We adopt LCM [13] to transmit the RGB-D
and inertial data to our system online, or log and replay
them to simulate the real-time process. We compare the 3D
reconstructions generated by different settings of our system
for qualitative evaluation. We also provide a quantitative
evaluation by comparing the output model from DPI-SLAM
with a ground truth model. The dense 3D ground truth model
is obtained with a FARO Focus3D survey lidar scanner from
a sequence of stationary 360 degree scans.

B. Results and Discussion

The reconstruction results from the various settings of the
system are shown in Figs. 6 and 7. Even though pure planar
SLAM without inertial fusion (which is actually KDP-SLAM
[12] with its iSAM [15] part replaced by iSAM2) can reduce
drift along each corridor, the drift at each corner and along
the long corridor are still visible in the output map (see
Fig. 6-a). Naively adding preintegrated IMU factors between
keyframes does affect the result in some way (see Fig. 6-b),
but its drift is still quite large in both rotation (e.g. the upper-
right corner) and translation (e.g. the upper long corridor)
because the IMU biases are not corrected frequently enough,
and also the assumption of constant bias for IMU preinte-
gration might not hold within longer preintegration intervals.
The proposed method of preintgerating IMU measurements
over each two consecutive reference frames results in a much
better reconstruction (see Fig. 6-c), where the drift in rotation
at the corners and translation along the corridor are both
reduced significantly. Adding structural constraints between



(a) (b)

Fig. 7: The dense 3D reconstructions with loop closure (circled in red) in
two different system settings. (a) DPI-SLAM without structural constrains
(corresponds to Fig. 6-c), which takes about 30 iterations to close the loop.
(b) DPI-SLAM with structural constrains (corresponds to Fig. 6-d), which
takes only 10 iterations to close the loop.

landmark planes further corrects the drift (see Fig. 6-d) and
allows better loop closing results, which is also true when
the loop is detected and closed (see Fig. 7). Finally, we can
use DPI-SLAM with structural constraints to reconstruct the
3D dense model of the entire floor from the full dataset
(see Fig. 1). More reconstruction results of different indoor
environments are shown in Figs. 9 and 10.

After registering our output model in Fig. 7-b with the
survey lidar model using ICP, we calculate the point-to-
plane root-mean-square error (RMSE) and mean absolute
error (MAE) between the two models, which are 0.069m
and 0.049m respectively. Given that the entire model is about
30m× 13m× 3m, the average error ratio is less than 0.7%.
Since we cannot record the RGB-D and IMU data sequence
at the same time when the lidar scans are collected, there
can be uncontrollable changes in the public environment (see
Fig. 8). Therefore, the actual errors between the two methods
should be even smaller.

From the experiments, we can conclude that adding inertial
measurements improves planar SLAM, and further combin-
ing structural constraints can achieve the best reconstruction
results. In addition, even though some of the datasets are
collected in the same environments shown in our previous
paper [12], the sensors are allowed to move about 3 times
faster in this work because the odometry estimations from
visual-inertial fusion are more robust than pure VO.

Comparing to our previous work KDP-SLAM [12], DPI-
SLAM has to estimate more states in the global factor
graph and calculate additional IMU preintegration terms and
structural constraints. However, these two SLAM systems
actually have similar speed because IMU provides better
initial pose estimation for the fast dense RGB-D odometry
method to converge in fewer iterations. Also, using iSAM2 to
update and optimize the global factor graph is more efficient
than using iSAM, which requires periodic batch optimization
steps. As a result, DPI-SLAM can generally achieve the same
real-time performance as KDP-SLAM.

As for closing a loop until convergence, DPI-SLAM
sometimes cannot run in real-time because having more IMU
states in the global factor graph requires more iterations to
converge (e.g. the loop closure process in Fig. 10). Fortu-
nately, with structural constraints, the drift in the trajectory
can be much smaller, and therefore the loop closure process
can be faster (see Fig. 7). Also, if a converged result is not

Fig. 8: The registration of our output model (colored) onto the survey lidar
ground truth model (black), both downsampled approximately 100 times
to save calculation. The points with small deviation from ground truth
are shown in blue, while larger RMSE is indicated by yellow. Notice that
between recording these two datasets, some doors (green circles) and chairs
(red circles) had been moved.

(a) (b)

Fig. 9: Dense 3D reconstruction of various indoor environments using our
DPI-SLAM system. (a) An open space with three round tables. (b) Corridors
in a loop with lighting changes.

required immediately, DPI-SLAM can distribute the iteration
steps to the later update steps of the global factor graph at
each reference frame so that the system will not slow down
during loop closing (e.g. the right loop in Fig. 1 gradually
converges as the mapping process of the left part continues).

Lastly, adding structural constraints into the pure planar
SLAM system might also improve its results. However,
without IMU measurements, the drift in rotation can be too
large for the system to decide if there should be structural
constraints or not. In this case, if a relaxed threshold is
chosen, wrong structural constraints might be added into the
system and cause more errors.

VIII. CONCLUSION

We present a novel dense planar-inertial SLAM (DPI-
SLAM) approach with structural constraints to reconstruct
dense 3D models of indoor environments in real-time using
CPU only. The preintegrated IMU measurements improve
the fast dense RGB-D tracking as well as the global planar
mapping, and the structural constraints further reduce the
drift and distortion in the output maps. We demonstrate
the advantages of DPI-SLAM through real-world experi-
ments, and its efficiency as a CPU-based dense visual-inertial
SLAM system with real-time performance.

In the near future, we would like to publicly share multiple
RGB-D and IMU data sequences together with the survey
lidar models. As for further improving our SLAM system,
keyframe reusing strategies can be adopted to allow long-
term localization and mapping in the same environments. We



(a) (b)

Fig. 10: The reconstruction result of a large two-floor dataset with a loop using DPI-SLAM, where the dense model of the corridors and the stairs are
clearly shown in (a). The top view (b) shows that the two long corridors on the different floors are well aligned with each other.

also want to extend our current system to SLAM in dynamic
environments.
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