
Long-range GPS-denied Aerial

Inertial Navigation

Garrett Hemann

May 2016

Robotics Institute

Carnegie Mellon University

Pittsburgh, Pennsylvania 15213

Technical Report CMU-RI-TR-16-11

Thesis Committee

Prof. Michael Kaess

Prof. George Kantor

Prof. Sanjiv Singh

Humphrey Hu

2

Contents

Abstract 1

1. Introduction 2

1.1. Motivation . 2

1.2. Problem Statement . 3

1.3. Technical Contributions . 4

1.4. Notation . 5

2. Related Work 7

2.1. History of Long-range GPS-denied Solutions 7

2.1.1. Terrain Referenced Navigation 8

2.1.2. Radar Odometry . 9

2.1.3. Long-range Visual Odometry 10

2.2. Sensor Fusion . 11

3. LIDAR Localization 14

3.1. Digital Elevation Models . 15

3.2. Algorithm . 16

3.2.1. LIDAR Binning . 16

i

Contents

3.2.2. LIDAR DEM Matching . 19

3.2.3. Altitude Correction . 21

3.3. LIDAR Localization Failure Modes 21

3.4. Comparison to ICP . 22

4. State Estimation using Filtering 24

4.1. The Kalman Filter . 24

4.1.1. Types of Kalman Filters . 26

4.2. Error-State Kalman Filter . 31

4.2.1. State Propagation . 32

4.2.2. Error-State Prediction Step 34

4.2.3. Error-State Update Step . 36

4.3. Addressing Long-range Challenges 37

4.4. Stationary Monitoring . 39

5. Experimental Results 41

5.1. Hardware Setup . 41

5.2. Long-range LIDAR Localization Missions 43

5.3. Multi-hop Missions . 45

6. Conclusion 52

6.1. Lessons Learned . 52

7. Future Work 54

Acknowledgments 56

ii

Contents

A. Quaternions 57

A.1. Operations with Quaternions . 58

B. Global Coordinate Frames 59

B.1. UTM . 59

B.2. ECEF . 60

C. IMU Modeling 62

C.1. Types of IMU Noise . 63

C.1.1. White Noise . 63

C.1.2. Flicker Noise / Bias Walk 64

C.1.3. Scale Factor . 65

Bibliography 66

Nomenclature 71

iii

Abstract

Despite significant progress in GPS-denied autonomous flight, long-distance traver-

sals (over 100 km) in the absence of GPS remain elusive. This work focuses on

techniques that efficiently capture the full state dynamics of the air vehicle with

semi-intermittent global corrections using LIDAR measurements matched against

an a priori Digital Elevation Model (DEM). Using an error-state Kalman filter

with IMU bias estimation, we are able to maintain a high-certainty state estimate,

reducing the computation time to search over a global elevation map. A sub region

of the DEM is scanned with the latest LIDAR projection providing a correlation

map of landscape symmetry. The optimal position is extracted from the corre-

lation map to produce a position correction that is applied to the state estimate

in the filter. This method provides a GPS-denied state estimate for long-range

drift-free navigation. We demonstrate this method on multiple data sets from a

full-sized helicopter, showing significantly longer flight distances over the current

state of the art.

1

1. Introduction

1.1. Motivation

Autonomous and manned aerial vehicles rely on accurate localization for safe nav-

igation and for finding their destination. Relying on only inertial sensors for lo-

calization is not feasible because navigation drift accumulates over time without

bounds. Typically, aerial vehicles use GPS to localize their positions with respect

to the Earth. While this is a simple solution to integrate, GPS is not always a

reliable sensing mechanism. For one, satellite coverage breaks down from obstruc-

tions and multipath caused by mountains or skyscrapers. Also, GPS is susceptible

to adversarial jamming and spoofing, rendering it useless or dangerous for nav-

igation. Additionally, the satellite system is not immune against system errors,

such as the January 2016 incident1 where wrong time information was temporarily

broadcast after the decommissioning of a GPS satellite. Lastly, GPS only provides

a navigation solution on Earth and extra-terrestrial navigation requires a different

sensing strategy.

1http://www.insidegnss.com/node/4829

2

1.2 Problem Statement

1.2. Problem Statement

GPS-denied navigation has gained much attention within the past decade, partic-

ularly in the indoor and underwater domains. The problem is challenging because

in the absence of a global reference such as GPS, onboard sensors can only pro-

duce a drifting navigation solution with unbounded error. Strategies for remaining

localized with onboard sensors involve using a priori maps (e.g. [12]) as well as us-

ing SLAM to build maps on the fly (e.g. [9]). Development in perception and

efficient mapping algorithms have merged to form stable visual-based localization

methods using feature-rich environments for GPS-denied navigation. These meth-

ods require repetitive landmark observations for loop-closure to eliminate longer

term drift errors. This dependency, along with the payload limitations of small

indoor air vehicles, limits the range with which localization algorithms can be

demonstrated.

One area that has received less attention is extending the GPS-denied navigation

capabilities to long distance outdoor missions (see fig. 1.1). This scenario presents

two major challenges: (1) capture the dynamics of the vehicle at a high rate and (2)

estimate its 6DOF global position and orientation in real-time. The first challenge

has been addressed for air vehicles in shorter range missions using Kalman filters

or smoothing techniques (e.g. [11]). The second challenge however has not been

addressed for long distances without GPS, and therefore this work explores this

challenge.

3

1.3 Technical Contributions

Figure 1.1.: One result of the work presented here; a GPS-denied 218 km heli-
copter flight (yellow trajectory), with a final position error of 37 m, 0.017% of
the distance traveled. The helicopter took off from Zanesville airport, OH, and
landed at Cedar Run airport, PA.

1.3. Technical Contributions

To achieve drift-free localization in the absence of GPS, we match LIDAR measure-

ments against a Digital Elevation Model (DEM) for localization. Our technique

fits into the category of Terrain Referenced Navigation (TRN) [24] in which terrain

models are used for localization. The a priori DEM provides a surface elevation

map at various resolutions for the entire desired flight plan. Instead of trying to

scan a single LIDAR projection against the entire geographical region or world, we

use our inertial propagation estimate to narrow the search space, reduce computa-

tional cost, and provide real-time global pose estimation. The low-drift estimate

also accounts for periods of inactive corrections which may occur when flying at

4

1.4 Notation

low altitudes, over water where LIDAR returns fail, or in areas with low terrain

variability.

This work makes the following contributions:

1. We present a LIDAR localization algorithm that eliminates the need for

cameras and therefore works independent of lighting conditions.

2. We provide a tightly-coupled LIDAR-inertial integration that achieves low,

bounded position and orientation error using intermittent position correc-

tions in the absence of GPS.

These contributions demonstrate our ability for long distance drift-free navigation

on two datasets from the flight of a full-sized helicopter, each covering around

200 kilometers from takeoff to landing, a significant increase in distance over the

current state of the art.

This work has also contributed to a submitted paper under review [7].

1.4. Notation

The rest of the paper follows the following math notation conventions:

• A scalar value is a non-bold, lower case letter or symbol, p.

• A vector of values is a bold, lower case letter or symbol, p.

• A matrix of values is a bold, upper case letter or symbol, P.

• Estimated (not-directly measured or known) values are decorated with a hat,

p̂.

5

1.4 Notation

• Error values are decorated with a tilde, p̃.

• A capital superscript before a variable represents the frame of the value or

vector, Gp.

6

2. Related Work

2.1. History of Long-range GPS-denied Solutions

The earliest known techniques in long-range navigation were for military missile

tracking and guidance. Cruise missiles used a combination of sensors to navigate

at high speeds over long distances. Given the lower computation power in the

1970’s and 1980’s, this technology had limited accuracy. With the creation of the

GPS satellite network, intermittent coarse corrections via GPS could be used to

improve the accuracy.

As computer memory and processing power increased, the focus shifted away

from long-range navigation to indoor navigation. This shift towards indoor GPS-

denied navigation therefore has focused primarily on smaller Unmanned Air Vehi-

cles (UAVs) due to the ubiquity of cheap, easily available platforms like quadrotors.

Smaller platforms offer limited payload and limit the range to which long distance

autonomy can be tested. Without the emphasis on large environments, most re-

cent research in GPS-denied autonomy have used and expanded the techniques of

visual odometry (VO) which can provide reasonably accurate results in short-range

flight, but drift over time.

7

2.1 History of Long-range GPS-denied Solutions

2.1.1. Terrain Referenced Navigation

The earliest research in long-range GPS-denied navigation is Terrain Referenced

Navigation (TRN, but also sometimes referred to as terrain aided navigation or

terrain relative navigation), a technique that compares different measurements of

“broken terrain” to a previously recorded database of terrain (concept patented [1]

in 1958)1. If the stretch of terrain covers enough area and is “broken” (not flat),

then two separate measurements would always be unique. Not until the 1960’s

and 1970’s did computational power improve enough to validate this concept. The

U.S. military started using this strategy for long-range cruise missiles such as the

Tomahawk, and in the 1970’s the first well-developed system TERCOM ([6][22])

was introduced.

TRN for shorter segment flights has recently been motivated by planetary land-

ing, where GPS is not available. [13] provides a comprehensive analysis of TRN

and a comparison of different TRN-based landing techniques. Some strategies use

a pattern matching approach where cameras detect ground landmarks and match

to satellite imagery. This approach is viable in static environments like the Moon

or Mars, but for our Earth-based application, landmarks vary too frequently. The

other major approach is position correcting with active range sensing that uses

terrain structure. [13] shows results in simulation of an altimeter-based approach,

but an actual 300 second landing sequence was tested in [3] using a laser scanner.

The LIDAR points are converted to elevation estimates and aligned with the DEM

using a sum of squared error minimum. While the landing drift error was consid-

erably low (less than a meter in any direction), the system incorporated GPS and

1Historically, we only focus on digital systems, but there are some earlier analog TRN systems
that are captured well in section 2.3.1 of [31].

8

2.1 History of Long-range GPS-denied Solutions

radar altimeters and only used the laser when the data was reliable.

Another TRN-based method [12] evaluates the horizontal position accuracy of

a lunar lander approach by converting a LIDAR scan to an elevation model. They

perform the matching using the Fast Template matching algorithm [16] and finding

the correction from the shift of the maximum value in the correlation map. We

instead use a normalized cross-correlation matching method which does not rely

on precomputed integral tables. This TRN approach was tested on Earth terrain

models using 3m DEM and their landing trajectory guaranteed 90m accuracy.

Their system however does not have a tightly coupled navigation solution. We

extend this work to incorporate a high-rate fused state estimate, global corrections

in 3 axes instead of 2, and operate over long distance flights as opposed to just

landing sequences.

A slightly different approach that uses TRN creates pre-generated flight trajec-

tory profiles and a binary search tree lookup method to find the most likely profile

in real time [4]. This system is unique in that it is not an inertial navigation

system (INS) meaning it has no dependency on an IMU. Because of this however,

it requires pre-processing the estimated flight profiles and does not scale well for

large, realistic systems.

2.1.2. Radar Odometry

Another type of ground localization is radar odometry, which uses artificial ground

scatters to reflect signal from an onboard radar. Though not as common of a

strategy, one in particular is [20]. This process uses a Hough transform on a radar

signal to identify the targets and their relative distance. The flight test results

9

2.1 History of Long-range GPS-denied Solutions

show that using a commercial-grade IMU is comparable in drift error to using a

navigation-grade IMU. Their flight was on a 2.4 kilometer dataset and had a final

drift accuracy of 2.3% over the distance flown. The strength of using radar in this

method gives the system the ability to operate in more varied weather conditions

than a LIDAR, however it depends on artificial radar scatterers to be placed in

the environment, which are not readily available.

2.1.3. Long-range Visual Odometry

Visual odometry is a process that tracks feature changes across sequences of im-

ages to compute the trajectory of the camera. Without a global correction, visual

odometry is prone to drift. Regardless, with the increasing interest in UAVs in the

past decade, the state of the art in visual odometry has considerably reduced this

drift, increasing the distance of feasible navigation. As a result, some visual odom-

etry techniques for indoor GPS-denied autonomy have been extended to attempt

longer range missions.

[33] discusses the state of the art for minimal payload aerial vehicles using a

monocular-camera and IMU sensor setup. Their PTAM-based visual SLAM ap-

proach was demonstrated on a 350 meter flight with a final position error of only

1.47 meters, at which point the battery was depleted. Another long-range visual

odometry technique by [32] uses a deformable stereo-rig baseline to account for the

vibrations of the vehicle and improve depth accuracy. This was tested on a fixed-

wing UAV for a 6.5 kilometer dataset. Currently the longest VO demonstration

we know of is [35]. This work reduces translational drift of an inertial navigation

solution by reparametrizing features of a downward-facing camera along a ground

10

2.2 Sensor Fusion

plane normal, extracted from a laser altimeter. They tested this on trajectories

over 30 km with 0.09% trajectory error. This impressive performance over the

distance traveled is still unbounded in drift however. Vision-based methods like

VO can improve on inertial navigation solutions, but do not work for significant

distances where target position error is critical.

2.2. Sensor Fusion

The global correction method is just one half of the state estimation problem.

Highly dynamic platforms like UAVs also require a continuous high-rate state esti-

mate, typically at a higher rate than what the absolute position corrector provides.

Most modern multi-sensor robotic platforms rely on efficient sensor fusion algo-

rithms to capture a consistent state estimate from various input sensor rates. A

common method is the Kalman filter which handles propagating uncertainty and

providing a fused state estimate of an inertial navigation system. A modified ver-

sion of the Kalman filter, or error-state Kalman filter (see sec. 4.2), has been used

extensively by [30] for state estimation in planetary landing. The state is propa-

gated with IMU input and the Kalman filter estimates the IMU biases. They use

a camera to track features from craters and correct the state estimate.

The Kalman filter and IMU bias estimation has improved the performance of

some of the previously stated GPS-denied algorithms. Most notable improvements

have been in an area of work called visual inertial odometry (VIO). VIO uses an

IMU along with visual odometry feature tracking and provides a tightly coupled

state estimate. [17] introduces the multi-state constraint Kalman filter (MSCKF)

which extends the error-state Kalman filter from [30] to include camera position

11

2.2 Sensor Fusion

history. Using a fixed length history, the camera position estimates help track

individual features over each sequence. These tracks are maintained in the state

estimate and propagated, providing a fused visual inertial estimate, IMU biases,

and a measurement for uncertainty. This reduces the long-term drift in a VO only

solution. With the addition of inertial data, it also improves results when the

camera moves in the direction of the optical axis, which degrades in a visual-only

algorithm.

Another common method for localization is the particle filter. The particle filter

localizes its state by sampling points throughout an a priori map and eliminat-

ing low-likelihood points to refine the estimate of the true position. [28] details

the advantages of using particle filters over the Kalman filter for SLAM applica-

tions, which include the Kalman filter’s single state estimate versus an entire path

estimate, as well as its lack of a data association solution. In our long-range appli-

cation, tracking the entire history is expensive and unnecessary. Data association

is also unnecessary since we are only localizing and any noise is filtered out from

our binning procedure (see sec. 3.2). One advantage of the particle filter is it does

not rely on the Gaussian noise assumption, but since our IMU noise model has

this property, the Kalman filter is more advantageous.

Previous approaches to the long-distance GPS-denied state estimation challenge

have used various types of sensing modalities and filter techniques to reduce track

error and total trajectory error. However, the limitations in the operational envi-

ronment or platform have prevented testing the long distance robustness of these

algorithms. Furthermore, most of the techniques have only utilized either a robust

filter for IMU bias estimation or an efficient terrain matching algorithm. Here we

present a fusion of several of these techniques and improve them individually for

12

2.2 Sensor Fusion

considerable improvement in terrain matching and pushing the state of the art in

long-distance GPS-denied navigation.

13

3. LIDAR Localization

LIDAR localization intermittently localizes the vehicle by aligning LIDAR mea-

surements to a geo-referenced elevation model (see sec. 3.1). The goal is to esti-

mate the vehicle’s true 3D world position by searching for an optimal alignment

between a 3D LIDAR point cloud as measured by the vehicle and the a priori

DEM. We make use of the current position estimate to restrict the search area to

a local DEM neighborhood. This requires a low-drift estimate, which is achieved

by tightly coupled LIDAR-inertial fusion as discussed in sec. 4.2.

The 3D localization problem is condensed into a 2D translation and a 1D altitude

problem that are solved sequentially. The DEM is given as a regular grid of

elevation values, represented as a floating-point valued image ID. The point cloud

from the vehicle’s LIDAR is converted into an image IL of the same grid size by

binning, allowing for noise filtering in the process. The localization problem is

thereby reduced to finding the 2D offset between both images that provides the

best correlation between DEM and LIDAR data. Finally, to obtain a full 3D

position correction, the difference in elevation between predicted and measured

ground surface is estimated.

14

3.1 Digital Elevation Models

3.1. Digital Elevation Models

For robotic localization problems in large-scale environments, the ground surface

needs to be modeled appropriately. Generally for small environment applications

(and especially for indoor applications), vehicle altitude is represented as distance

to a flat surface or ground plane. In large-scale environments however, the ground

plane is no longer flat and therefore no longer a viable reference frame. Therefore,

a new frame of reference is required and the terrain must be represented in the

frame.

Digital elevation models accomplish this by representing the surface of terrain

in 3D against some reference frame. For Earth-based surface models, a common

reference frame is the WGS84 spheroid. DEMs are raster height maps where each

pixel represents the distance of the terrain surface to the reference spheroid at

some (x, y) position. The term “terrain surface” is used loosely here as DEMs

can represent one of two different types of models, a Digital Terrain Model (DTM)

where the top layer of ground is modeled, or a Digital Surface Model (DSM) where

the highest point of any obstruction (ground, tree, man-made building) is modeled

(see fig. 3.1). These models are generated by various means of LIDAR scanning

and surveying techniques over the last 20 years and are provided in most areas of

the United States. The DEM we use provided by USGS1 is a DTM.

15

3.2 Algorithm

DIGITAL SURFACE MODEL

DIGITAL TERRAIN MODEL

Figure 3.1.: DEM can be represented as a surface model (DSM, yellow) that
follows the surface obstructions or as a terrain model (DTM, red) that follows
the soil line.

3.2. Algorithm

3.2.1. LIDAR Binning

LIDAR binning takes the original LIDAR measurements and transforms them into

a virtual DEM. The 3D-point measurements are obtained from a downward-facing

2D line LIDAR sensor rigidly attached to the vehicle. The individual timestamped

measurements of each scan Lpi are transformed from the laser frame into the

global frame using a time stamped state estimate of the body-to-world transform
G
V R̂(t) and a rigid transform of the sensor relative to the vehicle V

LR, using the

1http://nationalmap.gov/elevation.html

16

http://nationalmap.gov/elevation.html

3.2 Algorithm

Figure 3.2.: A conceptual example of the binning process. The top row shows
a raw cross section of the 3D LIDAR point cloud. The second row depicts the
true ground profile (red) versus the obstructions (cyan). The bottom row demon-
strates the binning procedure. All points except the lowest will be discarded per
bin to extract the ground profile.

transformation chain

Gp̂i = G
V R̂(t) · VLR ·L pi, (3.1)

where G denotes the global frame, V the vehicle frame and L the LIDAR frame.

To cover a region of sufficient size for reliable offset estimation, a sufficient number

of line scans are accumulated, depending on the vehicle’s velocity.

A robust heightmap is computed by grouping the 3D points into bins along the

x-y plane at the exact resolution of the DEM (fig. 3.2). These bins contain an array

of estimated ground elevation values predicted from the LIDAR returns. Bins with

a small range show an area with high certainty that the LIDAR beams reflected off

17

3.2 Algorithm

of the true ground surface. Bins with high variability on the other hand indicate

occlusions such as trees, with only a few beams reflected off the desired ground

surface. fig. 3.3 shows a cross-sectioned example of point bins that have as much as

30m in range variation due to foliage. The lowest elevation per bin (marked red)

is the closest representation of the true ground elevation for that cell. To improve

the likelihood that each bin has at least one return from the ground, we discard

bins with less than 30 points. The result is a robust 2D heightmap IL based on

the lowest valued point of each valid bin.

distance (m)
-150 -100 -50 0 50 100 150

gr
ou

nd
 h

ei
gh

t a
bo

ve
 W

G
S8

4
(m

)

430

440

450

460

470

480

490

Figure 3.3.: A cross section of 3D LIDAR points (blue circles) after binning. The
right half of the bins show high variability in height due to the presence of trees.
The lowest point in each bin (marked in red) shows the smooth surface of the
actual terrain. This is performed for every row of the x-y grid.

Removing invalid bins creates holes in the image. A binary mask Iv is used to

track the active valid cells. Active regions are smoothed with a Gaussian kernel.

This produces IL to be a smooth surface-like heightmap generated from the 3D

18

3.2 Algorithm

LIDAR point cloud. Examples are shown in column (c) of fig. 3.4.

3.2.2. LIDAR DEM Matching

With both measured and ground truth heightmap available, the next step is to

identify an offset based on the best alignment. The DEM image ID is created from

a local neighborhood window around the current state estimate. To account for

the uncertainty of the state estimate, a region larger than the LIDAR image IL is

searched. An exhausive search is performed over all offsets between IL along ID

with the goal of finding the offset with the best match. This is now a common

image matching problem and there are various types of cost aggregation methods

available to solve this (see [19]), such as Sum of Absolute Difference (SAD), Sum

of Squared difference (SSD) and Normalized Cross-Correlation (NCC). We use the

normalized cross-correlation matching because it is invariant to linear brightness

shift meaning that if every pixel in one image were scaled by the same amount

in another image, the matching would still succeed. For our purposes, brightness

corresponds to height values. For the first step where matching is done only

laterally, this invariance in altitude is important.

We calculate a normalized cross-correlation value

NCC(i,j) = 1
N(Iv)

∑(ID,(i,j) − µD,(i,j))(IL − µL)
σDσL

(3.2)

at each offset (i, j) to obtain a cross-correlation map (see column (d) of fig. 3.4 for

examples). Note that the height images are multiplied element-wise. Also note

that the summation is over all valid pixels of the image, where N(Iv) is the number

of valid pixels in image mask Iv.

19

3.2 Algorithm

Given this correlation map, we can now extract the position offset between the

prior state estimate and the true position. The maximum value of this normalized

cross-correlation cost map represents the highest correlation match between the

LIDAR image IL and a sub region of the DEM ID at index (i∗,j∗). The shift from

the center of ID to (i∗,j∗) represents the horizontal correction of the vehicle. If

max(NCC) is greater than an empirically determined threshold (we use 0.922),

then it is a confident match and used to correct the position. Otherwise we treat

it as a failed match and no correction is sent to the filter. Low confidence matches

below this threshold are caused by dissimilar terrain features or low contrast areas

(see fig. 3.4). This metric does not directly provide a confidence in the correctness

of the match and is therefore not used as a noise model when updating the filter

(see sec. 4.2.3).

For robustness, we also require some level of variability in the terrain before we

accept a match. The matching algorithm only matches similarities in the images

and ignores the actual shape and variation of the terrain. To ensure the terrain

provides sufficient constraints, the standard deviation of all valid elevation values

in the LIDAR image is computed. A successful match is returned only if this

standard deviation is above a threshold (we use 2.5).

Two examples of LIDAR-DEM matches are shown in fig. 3.4. The top row shows

a successful match with terrain variability in multiple directions, giving a single

optimal location for the matching. The bottom row shows a failed match caused

by nearly flat terrain within the matching region, seen by the low contrast of IL

and ID, and due to a river running through the center, leading to missing data in

IL.

20

3.3 LIDAR Localization Failure Modes

3.2.3. Altitude Correction

The final step is to compute a vertical correction (z) from the elevation images.

The DEM image at the optimal index of the lateral matching ID,(i∗,j∗) is subtracted

element-wise from the measured heightmap IL. The median of the resulting dif-

ference image is the average elevation offset between the estimated and the true

altitude. The offset represents the state estimation error as measured by the LI-

DAR against the ground truth DEM.

3.3. LIDAR Localization Failure Modes

The matching algorithm is susceptible to failures in specific environments. Dense

urban environments fully occlude the laser returns from capturing the true ground

plane providing little to no similarities between the LIDAR image and the DEM

sub region. Also areas of thick vegetation (heavy forests or jungles) prevent the

laser returns from penetrating the canopy and capturing the ground plane. Most

long-range LIDAR sensors return invalid data when bouncing off water, so flying

above a river, lake, or other large body of water causes matching failures. Lastly,

large areas of flat terrain create a uniform cost map with no optimal location for

correction, and so any attempted matches are discarded to avoid a degenerate

solution.

A robust long-range navigation solution should account for these failure modes.

We address this using a tightly-coupled inertial navigation solution that can dead

reckon for periods of failed LIDAR localization matches. This method is discussed

in chapter 4.

21

3.4 Comparison to ICP

3.4. Comparison to ICP

Other algorithms, such as Iterative Closest Point (ICP) and its variants [25], can

also solve the terrain matching problem. ICP minimizes the distance between two

point clouds by fixing one point cloud and iteratively reducing a per-point distance

measure to a source point cloud. Although this technique solves many localization

problems, we chose the image matching algorithm over ICP for several reasons.

The DEM’s grid provides bins through which filtering can be used to isolate the

ground plane. For ICP, filtering would run post-matching or in parallel, therefore

processing more noisy points making the matching more expensive and less robust.

Also, the alignment of image matching first in 2D reduces the complexity and

later solving for altitude becomes trivial. ICP would require a full 3DOF iterative

matching process and therefore is more computationally expensive.

22

3.4 Comparison to ICP

Figure 3.4.: Diagram of a successful match (top row) and an unsuccessful match
(bottom row). The first column shows an aerial image of the terrain, the second
shows a DEM region ID of the same area at 10 m resolution, the third column
shows a LIDAR projection IL after binning and filtering, and the last column
shows the normalized cross-correlation cost map of the matching (white denotes
higher correlation) with the optimal value. The successful match (top) has
an NCC image with a distinct optimum near its center, whereas the failed
match (bottom) shows no clear optimum because of the low variation in terrain
elevation.

23

4. State Estimation using Filtering

4.1. The Kalman Filter

Since its creation in the early 1960’s, the Kalman filter has been used extensively

in controls and state estimation. The low-cost incremental design of the filter and

its ability to produce pseudo-optimal state estimates has made it a key component

of many modern perception and mechanical systems.

Every type of Kalman filter is comprised of two steps; a prediction step that

takes a measurement or control input to estimate its state, and an update step

that uses a separate measurement modality to correct the previous prediction.

Because of this simplicity, all Kalman filters can be derived from a model of basic

stochastic equations

xk = Fkxk−1 + Bkuk−1 + wk−1

zk = Hkxk + vk (4.1)

written in linearized discrete-time. xk represents a state-vector at timestep k,

Fk is the discrete-time state transition matrix that propagates the state from time

k − 1 to k, Bk is the discrete time control-input model, uk−1is the deterministic

24

4.1 The Kalman Filter

control input to the system, zk is the observed measurement vector of the state xk,

and Hk is the measurement model. Equation 4.1 is stochastic due to the process

(or system) noise wk and measurement noise vk, both assumed to be zero-mean,

Gaussian white noise, and uncorrelated to each other, and are written as

wk ∼ N (0,Qk)

vk ∼ N (0,Rk). (4.2)

Qk is the process (system propagation) noise covariance matrix and Rk is the

measurement noise covariance matrix, which can both be represented in their

discrete outer product notation as E[wkwT
j] and E[vkvTj] respectively.

Often, the basic equations will ignore the control-input model matrix Bk if it is

a perception or state-estimation only component with

xk = Fkxk−1 + wk−1

zk = Hkxk + vk. (4.3)

For a background on the probability and derivation of these equations, see [27].

The Kalman filter uses equations 4.1 to propagate the state and covariance

xk|k−1 = Fkxk−1|k−1 + Bkuk−1

Pk|k−1 = FkPk−1|k−1FT
k + Qk (4.4)

where Pn|m is the state covariance. n is the discrete timestamp of the state before

processing the measurement (a priori state) and m is the discrete timestamp of the

state after processing the measurement (a posteriori state). The correction step is

25

4.1 The Kalman Filter

then defined as

Kk = Pk|k−1HT
k (HkPk|k−1HT

k + Rk)−1

xk|k = xk|k−1 + Kk(zk −Hkxk|k−1) (4.5)

Pk|k = (I−KkHk)Pk|k−1

where Kk is the discrete-time Kalman gain and I is simply the identity matrix

with the same dimensionality as the Kalman gain.

4.1.1. Types of Kalman Filters

Various forms of the Kalman filter have been developed to suit different types

of systems. The four base-type filters are the linear Kalman filter, the extended

Kalman filter (EKF), the unscented Kalman filter (UKF), and the error-state

Kalman filter (ESKF). The primary difference between these is how the covariance

is modeled and propagated.

4.1.1.1. Linear Kalman Filter

Equation sets 4.4 and 4.5 represent the standard linear Kalman filter for a linear

system modeled in equation 4.1. While this is the simplest Kalman filter to im-

plement, it typically only works for signal processing or single DOF systems. Any

more complex system that requires rotations becomes non-linear and the basic

Kalman filter cannot be used.

26

4.1 The Kalman Filter

4.1.1.2. Extended Kalman Filter

To address the limitations of the linearity of the model, the EKF is used for

complex, non-linear systems. The following model

xk = f(xk−1,uk−1) + wk−1

zk = h(xk) + vk (4.6)

is a slight modification to the linear model 4.1 where instead of having linear tran-

sition matrices, a non-linear state transition function f and measurement model

function h are introduced. The Kalman prediction and update equations now

become

xk|k−1 = f(xk−1|k−1,uk−1)

Pk|k−1 = δf
δx

Pk−1|k−1
(δf
δx
)T

+ Qk (4.7)

Kk = Pk|k−1
(δh
δx
)T

(δh
δx

Pk|k−1
(δh
δx
)T

+ Rk)−1

xk|k = xk|k−1 + Kk(zk − h(xk|k−1)) (4.8)

Pk|k = (I−Kk
δh
δx

)Pk|k−1.

where Fk and Hk have become Jacobians, δf
δx and δh

δx respectively, over the state

vector xk. The challenge with an EKF is that these Jacobian matrix representa-

tions are non-trivial to derive and do not easily migrate between systems. Also,

because the EKF is built on approximations of a non-linear model, it is not an

optimal filter. A highly non-linear system will perform poorly with an EKF.

27

4.1 The Kalman Filter

4.1.1.3. Unscented Kalman Filter

To accommodate highly non-linear systems, the UKF [14] was developed. Instead

of propagating the full state through a non-linear function, individual samples of

the state (called sigma points) are propagated through the non-linear equations

and a mean and covariance can be extracted from these.

These sigma points are represented as a concatenation of 2L+ 1 sigma vectors,

where L is the dimension of the state xk. They are calculated as

Xk−1 =


x̂k−1

x̂k−1 +
√

(L+ λ)Pk−1|k−1 for i=1,...,L

x̂k−1 −
√

(L+ λ)Pk−1|k−1 for i=L+1...2L,


(4.9)

and associated weights

Wm
0 = λ/(L+ λ)

W c
0 = λ/(L+ λ) + (1− α2 + β)

Wm
1 = W c

i = 1/{2(L+ λ)} for i=1,...,2L (4.10)

where λ = α2(L+ κ)− L and α, β, and κ help determine the spread of the sigma

points. Three sigma matrices are used to maintain the state X x, the propagation

noise Xw, and the measurement noise X v.

28

4.1 The Kalman Filter

The propagation equation sets then become

X x
k|k−1 = F[X x

k−1,Xw
k−1]

xk|k−1 =
2L∑
i=0

Wm
i X x

i,k|k−1

Pk|k−1 =
2L∑
i=0

W c
i [X x

i,k|k−1 − xk|k−1][X x
i,k|k−1 − xk|k−1]T (4.11)

Yk|k−1 − H[X x
i,k|k−1,X v

i,k|k−1]

yk|k−1 =
2L∑
i=0

Wm
i Yi,k|k−1

and

Pỹkỹk
=

2L∑
i=0

W c
i [Yi,k|k−1 − yk|k−1][Yi,k|k−1 − yk|k−1]T

Px̃kỹk
=

2L∑
i=0

W c
i [Xi,k|k−1 − xk|k−1][Yi,k|k−1 − yk|k−1]T

K = Px̃kỹk
P−1
ỹkỹk

(4.12)

xk|k = xk|k−1 +K(yk|k − yk|k−1)

Pk|k = Pk|k−1 −KPỹkỹk
KT

respectively. This version of the Kalman filter now can handle highly non-linear

functions, but requires some tuning of the sigma point values and still a derivation

of these propagation matrices.

4.1.1.4. Error-State Kalman Filter

Both the EKF and UKF provide solutions for non-linear systems, but introduce a

lot of complexity and computation when modeling the dynamic system to create

the state transition matrix F. The ESKF [23] (also called an indirect Kalman

29

4.1 The Kalman Filter

filter) solves that problem by returning to a linear model, except that the model

propagates the errors of the state (denoted x̃k) instead of the actual state xk. The

errors are assumed to be linear and therefore the standard linear Kalman filter

model can be used. [34] compares the indirect to the direct approach, and demon-

strates that both perform equally as well, but the ESKF is less computationally

expensive1.

The model for the indirect filter is

x̃k = Fkx̃k−1 + wk−1

z̃k = Hkx̃k + vk. (4.13)

The second equation in the model now outputs a residual measurement z̃k (more

commonly referred to as rk) instead of a direct measurement. This residual is

simply the difference between the measured state and the propagated state.

The ESKF prediction step equation

x̃k|k−1 = Fkx̃k−1|k−1 + Gknk−1

Pk|k−1 = FkPk−1|k−1FT
k + Qk (4.14)

introduces a new transition matrix Gk which is the discrete-time noise transition

1The conclusion of this work mentions that the dead-reckoning works better for the EKF, but
since this propagation is done outside of the filter, dead-reckoning is independent of the filter
and can perform just as well with the ESKF.

30

4.2 Error-State Kalman Filter

matrix. The new update step equations

Kk = Pk|k−1HT
k (HkPk|k−1HT

k + Rk)−1

xk|k = xk|k−1 ⊕Kk(z̃k −Hkx̃k|k−1) (4.15)

Pk|k = (I−KkHk)Pk|k−1

only modify the second equation that computes the error and updates the actual

state. Note the use of the paramaterized addition ⊕ as opposed to + to signify

this is handled uniquely for non-linear terms (see sec. 4.2.3). The full details of

computing the various matrices needed for the ESKF are described in sec. 4.2.

4.2. Error-State Kalman Filter

The state we are estimating consists of vehicle orientation, velocity, position and

IMU (accelerometer and gyroscope) biases. This is represented within a 16-

dimensonal vector as

x(t) =
[
G
LqT (t) Lbg

T (t) GvT (t) Lba
T (t) GpT (t)

]T
(4.16)

where our notation closely follows [30]. We represent the orientation of the vehicle

as a rotation of the global frame {G} with respect to the local frame {L} in the

form of the quaternion G
Lq(t). We denote the equivalent 3x3 rotation matrix as

Cq. Therefore, our rotation representation transforms a vector from the local to

the global frame as Gv = Cq ·L v. The gyroscope bias Lbg
T (t) and accelerome-

ter bias Lba
T (t) are represented in the local vehicle frame. The vehicle velocity

GvT (t) and position GpT (t) are in the global frame. The global frame is an earth-

31

4.2 Error-State Kalman Filter

centered, earth-fixed (ECEF) reference frame so that long distance sprints are

treated linearly and not corrupted by earth’s curvature (see Appendix B). This

also simplifies the model of earth’s rotation, taken as Gωe. The global gravity

vector Gg is calculated at each time step using the WGS84 reference ellipsoid as

described in [5].

4.2.1. State Propagation

State propagation, also called mechanization, is the process of predicting a new

state estimate x̂k+1 given a starting state x̂k, transition measurements, and a

time delta. For our purposes, this is estimating a new position, orientation, and

velocity given input from the IMU, i.e. rotational velocity and linear acceleration.

If the IMU had no noise and the system was linear, then the propagation would

provide an exact solution and no filtering would be needed. Following our notation

convention, where the hat ’ˆ’ represents an estimated state, we rewrite our state

estimate vector as

x̂(t) =
[
G
L q̂T (t) Lb̂Tg (t) Gv̂T (t) Lb̂Ta (t) Gp̂T (t)

]T
. (4.17)

The vehicle state is first estimated by propagating the kinematic equations given

the input IMU sensor data. The measured IMU data, Lωm(t) (angular velocity)

and Lam(t) (linear acceleration), is modeled as

Lωm(t) = Lωtrue(t) +L bg(t) + ng(t)

Lam(t) = Cq
T (Gatrue(t)−G g) +L ba(t) + na(t). (4.18)

32

4.2 Error-State Kalman Filter

For the gyroscope and accelerometer measurements, we assume zero-mean white

Gaussian noise (ng(t), na(t)) and zero-mean first-order random walk (Lbg(t),
Lba(t)) (see Appendix C for more details on IMU noise models). The estimated

state x̂(t) is propagated using the following kinematic equations

G
L

˙̂q(t) = 1
2Ω(ω̂(t))GL q̂ (4.19)

˙Lb̂g(t) = 03x1

G ˙̂v(t) = Cq̂ ·L â(t) +G g− 2bGωe×cGv̂(t)

− bGωe×c2Gp̂(t)
˙̂Lba(t) = 03x1

G ˙̂p(t) = Gv̂(t)

where ω̂(t) =L ωm(t) −L b̂g(t) − CT
q̂ ·G ωe and â(t) =L am(t) −L b̂a(t). The

quaternion derivative uses the matrix operation Ω

Ω(ω) =

 −bω×c ω

−ωT 0

 =



0 ωz −ωy ωx

−ωz 0 ωx ωy

ωy −ωx 0 ωz

−ωx −ωy −ωz 0


(4.20)

where bω×c is the skew-symmetric matrix of ω. This propagation is carried out

using the Runge-Kutta integration method RK4, and it is important to note that

this has significant improvement over other lower order methods. Pushing (4.19)

directly into an RK4 solver as a coupled linear/rotational integration improves

accuracy vital for long distance dead-reckoning, particularly in the linear velocity

33

4.2 Error-State Kalman Filter

estimate.

4.2.2. Error-State Prediction Step

After the estimated state vector x̂(t) has been propagated for a single timestep, the

covariance of the error-state is propagated. The measurement prediction step of

the Kalman filter propagates the error-state and the respective state covariances.

The error-states are a linearized version of our physical state. These states are

represented in a 15-dimensional error vector defined as

x̃(t) =
[
δ̃θ

T (t) Lb̃Tg (t) GṽT (t) Lb̃Ta (t) Gp̃T (t)
]T
. (4.21)

Note that the drop in dimensionality occurs in the orientation representation. As-

suming orientation errors are small, the over-constrained four dimensional quater-

nion format is approximated by a three-dimensional vector, defined by

δq w

 1
2 δ̃θ

1

 . (4.22)

The continuous-time linearized dynamics of the error-state is written as

˙̃x = Fc(x)x̃ + Gcn, (4.23)

34

4.2 Error-State Kalman Filter

where Fc is the continuous-time error-state transition matrix and Gc is the continuous-

time noise propagation matrix:

Fc =



−bω̂×c −I3 03 03 03

03 03 03 03 03

−Cq bâ×c 03 −2bGωe×c −Cq −bGωe×c2

03 03 03 03 03

03 03 I3 03 03


(4.24)

Gc =



−I3 03 03 03

03 I3 03 03

03 03 −Cq 03

03 03 03 I3

03 03 03 03


. (4.25)

Both Fc and Gc are common state transition matrices, used in [30], [18], [17], a

model that does not incorporate Earth’s rotation in [8], and a slightly modified

Gc in [10].

The continuous-time matrix 4.24 is converted to a discrete-time matrix Φk using

Taylor series expansion on a matrix:

Φk = e
´

Fc(t)dt = I15 + Fcdt+ 1
2!F

2
cdt

2 + 1
3!F

3
cdt

3 + ... (4.26)

where Φ0 = I15. This is applied to the covariance update equation

Pk+1|k = ΦkPk|kΦT
k + Qd (4.27)

35

4.2 Error-State Kalman Filter

where the discrete-time propagation noise matrix Qd is updated by

Qd = ΦkGcQcGT
c ΦT

k · dt (4.28)

and Qc represents the process noise model matrix, defined as

Qc =



σ2
gn
· I3 03 03 03

03 σ2
gb
· I3 03 03

03 03 σ2
an
· I3 03

03 03 03 σ2
ab
· I3


. (4.29)

The σ terms are found from the sensor specs of the IMU with white noise terms

as σgn , σan and bias stability (random walk) as σgb
, σab

, each pair for gyroscope

and accelerometer respectively.

4.2.3. Error-State Update Step

The update step (or correction step) takes a second sensor measurement with a

corresponding noise model and updates the first propagated measurement and its

covariance.

The measurement update step of the error-state Kalman filter is used to update

the uncertainty of the state given a global correction. These global corrections are

supplied to the filter from a three dimensional position correction from the LIDAR

localization described in sec. 3.2. The measurement directly (and only) affects the

position estimate, reflected by the Jacobian H =
[

03 03 03 03 I3

]
. The rest

36

4.3 Addressing Long-range Challenges

of the update follows the standard Kalman filter equations

S = HPk+1|kHT + R (4.30)

K = Pk+1|kHTS−1

x̃k = Kr

Pk+1|k+1 = (I15 −KH)Pk+1|k(I15 −KH)T + KRKT

where R is the measurement noise matrix of the correction and the correction

residual is r = pcorrection − p̃ . We treat the measurement noise matrix as a static

uncertainty on the resolution of the DEM. Although orientation is not computed or

corrected from LIDAR localization, the measurement update indirectly estimates

the orientation error from the position error over time. The newly computed

covariance Pk+1|k+1 is then used for the prediction step as described previously in

sec. 4.2.2.

The last step is to update the actual state estimate. The linear terms of the

state vector x̂(t) are updated by x̂k+1 = x̂k + x̃k. The orientation is updated using

Quaternion multiplication

G
L q̂k+1 =G

L q̂k ⊗ δqk+1. (4.31)

4.3. Addressing Long-range Challenges

Filters are susceptible to linearization errors and these errors become more appar-

ent for long-range missions. To mitigate these issues and maintain stability, we

apply the following five techniques.

37

4.3 Addressing Long-range Challenges

First, the matching procedure in the LIDAR localization algorithm (for one

scan) exceeds that of a single propagation step in the filter. When the position

correction is received by the filter, the state has already been propagated multiple

times. Therefore, the filter is rolled back to the state at which the correction

occurred, applied with the correction, and the propagation is recomputed. We

keep a history of states that is longer in duration than the amount of processing

time required for the LIDAR localization. This history tracks state estimates,

uncertainties, and input IMU measurements.

Second, the Kalman gain K includes the inversion of the S matrix (see equation

4.30). Doing inversions on poorly condition matrices can cause the covariance

matrix to diverge. Ill-condition matrices can occur from iteratively inverting large

high-precision numbers, such as what the ECEF reference frame uses. To prevent

the ill-conditioning of these matrices, a position offset is applied in the initialization

of the filter and added back outside of the filter.

Third, even with an offset applied, long distance traversals will accumulate larger

numbers in the matrix inversion. As an additional layer of precision, we use

a more expensive matrix inversion method, the full householder QR inverse in

Eigen2. Because of the lightweight nature of the Kalman filter, this more expensive

computation is temporally negligible, even at 200Hz.

Fourth, numerical stability is improved by using a more stable version of the

measurement update, called the Joseph form, derived as

Pk+1|k+1 = (I15 −KH)Pk+1|k (4.32)

= (I15 −KH)Pk+1|k(I15 −KH)T + KRKT .

2http://eigen.tuxfamily.org/index.php?title=Main_Page

38

4.4 Stationary Monitoring

Lastly, the covariance matrix P must always be symmetric. While the Joseph form

of the Kalman update does help prevent numerical issues, we ensure the covariance

matrix maintains symmetry by regularly re-symmetrizing using

P := 1
2(P + PT) (4.33)

at every correction step.

4.4. Stationary Monitoring

For multi-hop missions (missions in which the vehicle will land for a period of time

at various points along its trajectory), the stationary vehicle’s INS solution will

continue to drift. This presents a problem for state estimation. Both the LIDAR

and camera are too close to the ground for correcting our estimate. After a period

of time, the INS solution could drift outside of the feasible search region for LIDAR

localization when the vehicle is back in flight.

To address the drifting INS issue, the IMU can be used to monitor a stationary

vehicle. Vibrations from the vehicle’s engines disrupt the accelerometer data.

The gyroscope however still provides a clear separation to classify a stationary

versus a dynamic state. At each timestep, if all three gyro data channels are

below a threshold, the vehicle is determined to be in a stationary state, and a

zero-movement correction is applied to the filter.

The vehicle’s transition from a landed state is highly sensitive to errors. If

the vehicle is falsely declared in a landed state when it is in motion, the velocity

estimate at initial takeoff can severely corrupt the trajectory estimate. In practice,

39

4.4 Stationary Monitoring

it is better to apply a strict threshold so false positives (estimate moving when

physically stationary) occur more often than true negatives (estimate stationary

when physically moving). To prevent noisy data from repeatedly jumping our

state estimate between stationary and moving, a voting scheme is used and if 95

or more of the last 100 samples are within the threshold, we declare a landing

state. For the 200Hz IMU, this window covers a half-second interval.

40

5. Experimental Results

5.1. Hardware Setup

Figure 5.1.: The Near Earth Autonomy m4 sensor suite on a Bell 206L helicopter.

41

5.1 Hardware Setup

Our datasets were collected from a Bell 206L (LongRanger) helicopter outfitted

with the Near Earth Autonomy m4 sensor suite (see fig. 5.1) which includes a 2D

LIDAR and a strapdown fiber-optic IMU. The LIDAR provides roughly 105 point

measurements per second, each with a separate time stamp. Additionally, a GPS

inertial solution is collected to serve as ground truth in our evaluation. All sensors

are time synchronized. The initial vehicle position and orientation in ECEF is

provided, as well as the position and orientation uncertainty.

We use publicly available 10m resolution DEMs from USGS as prior elevation

maps to localize against. To build a local 3D elevation model from LIDAR, we

accumulate 350 sequential scans. It is important to note that this number can

be adjusted based on vehicle speed to ensure a sufficiently large scan region. As

shown in tab. 5.2, the vehicle averaged at about 50 m/s (180 km/hr).

We tested on a quad-core 2.5GHz i7 processor, running two parallel threads

for filtering and matching separately. The filter is updated at 200Hz, taking

a constant 0.1ms for propagation, while the less frequent LIDAR measurement

updates take 11ms. The time required for the LIDAR localization algorithm is

on average 22 ms with a standard deviation of 3 ms for the presented results.

Three separate datasets were collected for the analysis (see tab. 5.1). Two

datasets were long-range (A,B) and one dataset (C) was a multi-hop mission (land-

ing at various points along the trajectory).

Flight trajectory distance dataset duration # of datapoints
A 196 km 01:12:31 ~894,000
B 218 km 01:06:47 ~890,000
C 56.7 km 00:30:09 ~360,000
Table 5.1.: 3 datasets that our algorithm performed on.

42

5.2 Long-range LIDAR Localization Missions

5.2. Long-range LIDAR Localization Missions

Table 5.2.: Statistics for the two long distance flights, including LIDAR localiza-
tion and state estimate performance.

Flight Trajectory Avg. flight # of match % of match Longest duration Landing position Max. position

distance speed attempts successes without a match error error

A 196 km 44.5 m/s 853 83.4% 62.8 s 38.6 m 90.2 m
B 218 km 55.6 m/s 851 71.3% 92.2 s 37.8 m 77.9 m

The fusion of IMU with LIDAR localization helped to reduce drift and to main-

tain a good state estimate for periods of poor localization performance. fig. 5.2

shows the matches for the entire trajectory of flight B, with an inset showing a

period that had very few corrections due to buildings, flat terrain, and a river.

The rest of the dataset shows very frequent successful matches, despite the mostly

dense vegetation encountered.

tab. 5.2 shows the success ratio for two separate flights. The LIDAR matching

succeeded at least 70% of the time. The robustness of the Kalman filter is tested

during longer periods of unsuccessful matches. The system kept the state estimate

within 100m of ground truth throughout the entirety of both trajectories. fig. 5.3

plots the errors in individual axes against the ground truth. The blue line is

the LIDAR-inertial solution estimate and the red line represents the IMU-only

dead reckoning attempt over the same duration. Although the maximum position

error for this trajectory is 77.9m, this magnitude occurs very rarely, and the

solution stays within a 20m error laterally and 5m error vertically for most of the

flight. Our maximum position error of 90 m is comparable to the results found

in [12], however we demonstrate smaller position errors on average over the entire

trajectory, as well as significantly longer distances achieved.

43

5.2 Long-range LIDAR Localization Missions

Figure 5.2.: LIDAR localization match successes (green rectangles) and failures
(red rectangles) for the entire trajectory of flight B. The inset shows an enlarged
section of the trajectory in which very few successes occurred and therefore
the navigation relied on the bias-corrected inertial solution. At this scale, the
ground truth trajectory (blue line) is nearly identical to the estimated trajectory
(yellow line) and just barely visible in the inset.

fig. 5.4 shows Euclidean position error in relation to successful and failed match-

ing events. As expected, during flight segments in which we fail to successfully

match the LIDAR with the terrain, the position error grows over time. The growth

is determined by the robustness of the IMU bias estimate and state propagation.

Note that we stop acquiring successful matches near the end of the trajectory.

This is due to the landing sequence, where the vehicle is too close to the ground

to observe the terrain shape. Before that point, the error is less than 20m from

ground truth, while the final position error is close to 40m.

44

5.3 Multi-hop Missions

We visualize the resulting percentage of error over distance flown in fig. 5.5,

comparing it to an IMU-only dead reckoning estimate. The flight lands with a

distance error ratio of 0.019% over the entire 196 km trajectory. The data shows

that the position error is bounded independent of the length of the flight. In

contrast, the IMU-only solution drifts without bounds, showing that even for a

high quality fiber-optic IMU, an IMU-only solution is infeasible and integration of

additional information such as from our LIDAR localization is needed.

5.3. Multi-hop Missions

Longer missions require short stops to refuel, so we have tested the robustness of

the state estimation in periods of LIDAR localization blackout, i.e., when landed

on the ground. VO methods work at lower altitudes than the LIDAR localization

technique, so for a better comparison, we have also run a VO method [35].

fig. 5.6 shows the overhead profile of a two-stop mission. The bottom right corner

of the image was the initial takeoff and final landing position, and the vehicle flew

in a clockwise direction, landing at both of the furthest points of the triangle. The

mission was 56.7 km and the final landing error for the LIDAR localization was

less than 10 m and no more than a total of 26.1 m at any point during the mission.

fig. 5.7 shows a closer look at the final landing position.

45

5.3 Multi-hop Missions

-50

0

50

p
o
si

ti
o
n
 e

rr
o
r

(m
)

-50

0

50

time (s)
0 500 1000 1500 2000 2500 3000 3500 4000

-10

-5

0

5

LIDAR-inertial
IMU only

X

Y

Z

-0.5

0

0.5

a
n
g

u
la

r
e
rr

o
r

(d
e
g

)

-0.5

0

0.5

time (s)
0 500 1000 1500 2000 2500 3000 3500 4000

-0.5

0

0.5

LIDAR-inertial
IMU only

R

P

Y

Figure 5.3.: Linear and angular errors of the state estimate for flight B. Our
LIDAR-inertial solution (blue) is compared against an IMU-only dead reckoning
attempt (red).

46

5.3 Multi-hop Missions

Figure 5.4.: Euclidean position error for the last 40 kilometers of flight A, with
successful (green) and failed (red) matching attempts marked. The drift from the
inertial estimate grows the position error over periods of failed LIDAR matches
until a successful match resets the error.

47

5.3 Multi-hop Missions

distance traveled (km)
0 20 40 60 80 100 120 140 160 180

p
o
si

ti
o
n
 e

rr
o
r

(m
)

100

101

102

103

104

105

LIDAR-inertial
IMU dead reckoning

Figure 5.5.: Euclidean position error over the entirety of flight A. We compare
our solution (blue) against an IMU-only estimate (red) which quickly drifts away
from the correct position. Our LIDAR-inertial solution keeps the position error
bounded independent of distance.

48

5.3 Multi-hop Missions

Figure 5.6.: The overhead flight plan for the multi-hop mission, flight C. The red
trajectory is an IMU-only (with stationary monitoring) dead-reckoning. The
cyan trajectory is the visual odometry comparison. The yellow trajectory is our
LIDAR DEM localization and the green trajectory is the ground truth reference.
This full flight was 56.7 km.

49

5.3 Multi-hop Missions

Figure 5.7.: A closeup of the initial and final landing point for flight C. The red
trajectory is an IMU-only (with stationary monitoring) dead-reckoning. The
cyan trajectory is the visual odometry comparison. The yellow trajectory is our
LIDAR DEM localization and the green trajectory is the ground truth reference.

50

5.3 Multi-hop Missions

time (s)
0 200 400 600 800 1000 1200 1400 1600

p
o
si

ti
o
n
 e

rr
o
r

(m
e
te

rs
)

-30

-20

-10

0

10

20
north
east
down

Figure 5.8.: The linear trajectory error for the multi-hop mission, flight C. The
largest position errors occur when in a takeoff or landing sequence, where the LI-
DAR is too close to the ground to perform corrections. This plot also shows that
the stationary monitoring (described in sec. 4.4) keeps the error from growing
when landed.

51

6. Conclusion

This thesis presented a solution to long-distance aerial state estimation for LIDAR-

based sensor systems. Using available a priori DEM, we are able to match a LIDAR

scan region against this elevation model efficiently in real-time. By using an error-

state Kalman filter, we can estimate IMU biases and provide a better position

estimate. This allows us to reduce the search region of the DEM as well as fly

longer distances without LIDAR position corrections.

6.1. Lessons Learned

A few key components that significantly improved the results:

1. Using the rectangular coordinate frame ECEF instead of the warped trape-

zoidal UTM coordinate frame eliminated position errors caused from Earth’s

curvature, UTM grid scaling, and true north versus UTM north misalign-

ments. For more details on ECEF, see Appendix B.

2. The dead-reckoning / state propagation had considerable improvements us-

ing a robust 4th-order Runge Kutta integration, as mentioned in sec. 4.2.1.

Previously, both Euler and a decoupled RK4 implementation provided a

52

6.1 Lessons Learned

higher drifting state estimate that was erroneously perceived as incorrect

bias calculations. Having a coupled RK4 method that recomputes the linear

vectors from the rotation estimates at each state provides smaller lineariza-

tion errors. There exists higher order versions of the Runge Kutta integrator

[21] that could provide even better results.

3. The frame transformation direction as expressed by the rotation matrix is

critical. Most research papers express rotation as a global-to-local rotation

which can be less intuitive for real data. Rotations expressed with Euler

angles (e.g. an aircraft with 30◦ pitch) is a rotation expressed from the local

(body) to the global (inertial) frame. In other words, the matrix representa-

tion of this orientation would convert a vector in the local frame to a vector

in the global frame. This is briefly shown in sec. 4.2.

53

7. Future Work

Additional sensors can be added to improve robustness or reduce the requirement

of a high-cost IMU. Drift depends on both the quality of the IMU and the accuracy

of the bias estimation. To improve bias estimation accuracy, visual odometry can

be fused with the system. This would provide continuous bias estimate corrections

for periods of unsuccessful LIDAR localization possibly due to flight over water,

low terrain variability, or low-altitude flight (see failure cases in sec. 3.3). Therefore

less drift is expected over time, allowing for longer duration missions in a wider

range of terrains.

The 10m resolution DEM provides too coarse of a correction estimate if a

smooth trajectory is desired. We have tested our method on a 3m resolution DEM

over shorter trajectories and have achieved tighter position estimates. The associ-

ated 10-fold increase in memory requirements necessitate dynamic DEM manage-

ment solutions to cover long trajectories.

Kalman filters are susceptible to linearization errors, but there are additional

techniques beyond the presented work that can improve their performance. The

discrete-time error-state transition matrix Φk is currently approximated using the

Taylor series expansion of Fc. To increase accuracy and reduce computational cost

a closed-form solution to Φk can be derived as in [33].

54

Future Work

Smoothing is an extension of filtering where the entire trajectory is recomputed

instead of a single position [15]. This reduces linearization errors and provides

better trajectory estimates. While this is expensive for long-trajectories, a fixed-

lag smoother which only recomputes a short history could provide better position

estimates without the expense of recomputing the entire trajectory.

55

Acknowledgments

I would like to thank my advisor, Dr. Michael Kaess, for his patience with me in

my journey through this research. I would also like to thank my other advisor, Dr.

Sanjiv Singh, for giving me the opportunity to work on this project. Thank you

as well to my other committee members, Dr. George Kantor and Humphrey Hu

for reviewing and supporting my work. Thank you to Jeff Mishler of Near Earth

Autonomy for providing me with data and various tools to help me progress with

my work, as well as everyone else at Near Earth Autonomy who contributed to the

overarching GPS-denied effort. I also extend thanks to Aaron Acton of Astrobotic

for validating some of my uncertainty (no pun intended) in bias estimation.

56

A. Quaternions

Quaternions are rotations represented by 4 numbers instead of 3 (Euler angles) or

9 (rotation matrices). They are preferred over Euler angles because they do not

suffer from gimbal lock and are preferred over rotation matrices because of the

lower space requirement (4 scalars per rotation instead of 9).

A quaternion orientation or rotation is represented by a single scalar value and

an imaginary vector

q = (qi, q3) = q0i+ q1j + q2k + q3 (A.1)

or represented in vector form

q =

 qi

q3

 =
[
q0 q1 q2 q3

]T
(A.2)

where q is the real/scalar component and the other values represent an axis in

an imaginary plane. The imaginary bases i, j, and k follow the non-commutative

properties

57

A.1 Operations with Quaternions

× i j k
i −1 k −j
j −k −1 i
k j −i −1

Table A.1.: Imaginary bases that define the Hamiltonian form (right hand coor-
dinate frame) of quaternion operations.

A.1. Operations with Quaternions

Quaternion multiplication is defined as

q ⊗ p = (q0i+ q1j + q2k + q3)(p0i+ p1j + p2k + p3)

=



q3p0 − q2p1 + q1p2 + q0p3

q2p0 + q3p1 − q0p2 + q1p3

−q1p0 + q0p1 + q3p2 + q2p3

−q0p0 − q1p1 − q2p2 + q3p3


(A.3)

which is a non-commutative operation.

For a more thorough analysis of the quaternion derivations, see [29]. Note that

they do not use Hamiltonian form, but instead the “natural order”. This is a

left-handed coordinate convention, and while that does not follow most modern

engineering practices, the derivation for the quaternion math is more natural (see

pg. 473 of [26]).

× i j k
i −1 −k j
j k −1 −i
k −j i −1

Table A.2.: Imaginary bases in a non-Hamiltonian, left hand coordinate frame.

58

B. Global Coordinate Frames

Coordinate frames play a significant role in integrating a Kalman filter into an

actual physical system. In many cases, taking a Cartesian frame with respect to

an arbitrary origin works. When using external references, external forces, and a

large environment, such as the Earth, a more robust reference frame is necessary.

Global navigation coordinates can be provided in a geographic frame by a lat-

itude and longitude (sometimes called geodetic if in reference to a spheroid, such

as WGS84). However, for propagation of position and orientation, a rectangular

or Cartesian coordinate frame is preferred. In the following sections, two common

global/inertial coordinate frames are discussed. Note that for the body/vehicle

frame, either East-North-Up (ENU) or North-East-Down (NED) axis conventions

are fine. This work uses NED.

B.1. UTM

One common global coordinate frame for Earth navigation is Universal Transverse

Mercator (UTM) coordinate system. This projection divides up the surface of the

Earth into pseudo-rectangular zones and provides a distance from the lower left

corner. UTM is preferred for its simplicity and the coordinates usually make sense

59

B.2 ECEF

physically.

Unfortunately UTM is not truly Cartesian. The grid that aligns to the earth’s

surface actually warps with the surface of the Earth. This means that the length

of a meter changes as you traverse along the North-South direction. Additionally,

the North lines all point to the same point on the Earth, so a heading of North

in a UTM frame will shift the further from the center of a UTM zone you are,

by as much as a half degree. Both of these cause significant problems for long

distance, high-precision state estimation. Therefore, a different Cartesian reference

is preferred.

B.2. ECEF

The correct coordinate frame to use for the Earth is earth-centered, earth-fixed.

This creates a rectangular coordinate frame in which the origin sits at the center of

the Earth, with X and Y axes pointing out from the Earth at the equator and the

Z axis pointing up through the North pole (see fig. B.1). Although this reference

frame does not suffer from non-linearities, it is less intuitive given position relative

to the center of the Earth in meters. There are standard equations that can be

found in [5] that convert a local tangent plane or geographic frame to ECEF. Also

note that now gravity will need to be converted, but several high-fidelity software

libraries exist that express gravity in the ECEF frame.

60

B.2 ECEF

X

Z

N

E D

Y

LON

LAT

Geographic

ECEF

LTP

Figure B.1.: The Earth expressed in an ECEF frame, geographic frame, and
showing a local tangent plane.

61

C. IMU Modeling

MEMS IMUs suffer from various noises and manufacturing defects which lead to

time-varying biases and integration errors. In order to extract meaningful data

from the IMU, modeling the noise is critical. IMUs range in quality and cost,

and typically the more expensive the sensor, the lower the biases will deviate.

Regardless of the cost however, modeling is still required to estimate the biases.

The gyroscope noise model

ωm(t) = ωtrue(t) + bg(t) + nwn(t) (C.1)

ḃg(t) = nrw(t)

and the equivalent accelerometer noise model

am(t) = atrue(t) + ba(t) + nwn(t) (C.2)

ḃa(t) = nrw(t)

show the measured value (ωm,am) is equal to the true value with some bias and

a zero-mean white Gaussian noise. The second lines show that their respective

biases change over time based on a zero-mean first-order random walk.

A more complex model of the IMU that takes into account an additional noise

62

C.1 Types of IMU Noise

parameter (see sec. C.1) is

ωm(t) = (1 + k)ωtrue(t) + bg(t) + d(t) + nwn(t) (C.3)

ḃg(t) = −αbg(t) + nrw(t)

ḋ(t) = 0

k̇(t) = 0

for the gyroscope and

am(t) = (1 + k)atrue(t) + ba(t) + d(t) + nwn(t) (C.4)

ḃa(t) = −αba(t) + nrw(t)

ḋ(t) = 0

˙k(t) = 0

for the accelerometer. Here k is the scale factor (see sec. C.1.3) and d is the bias

repeatability.

For the derivation of these noise models, see the appendix of [2].

C.1. Types of IMU Noise

C.1.1. White Noise

White noise, denoted here as nwn(t), is a standard Gaussian noise applied to both

the gyroscope and accelerometer signal. It is sometimes referred to as random

noise, rate noise, angle or velocity random walk (for gyroscope and accelerometer

respectively), noise density and band noise. In fig.C.1, this is labeled as “white

63

C.1 Types of IMU Noise

sensor input magnitude

se
n

so
r

o
u

tp
u

t
er

ro
r

bias

white
noise

scale factor
(slope)

Figure C.1.: IMU noises for a single timestep. This shows bias as a constant
value, although in realty bias is time varying, and therefore this is an instanta-
neous snapshot of the sensor (accelerometer or gyroscope). The x-axis represents
the input of the true value of the measurement, and the y-axis is any error added
to the true output.

noise”.

C.1.2. Flicker Noise / Bias Walk

Flicker noise or bias random walk is the bias stability measure. It directly deter-

mines how fast the bias (nrw(t)) will change over time. It is sometimes referred to

as bias stability, bias instability, bias variation, random walk, or Brownian motion.

Because fig.C.1 is a single snapshot in history, flicker noise is not depicted in the

graphic.

64

C.1 Types of IMU Noise

C.1.3. Scale Factor

Scale factor, denoted here as k is a multiplier of the input. In other words, the

input will be proportionally scaled to some output, determined by the value of

k. Most often scale factor is measured in ppm (parts per million), and therefore

a scale factor of say 30000 would mean an input of 10 units becomes 10.3 units

(3%). fig. C.1 shows scale factor as the slope.

65

Bibliography

[1] F. B. Berger, “Aircraft navigation system,” U.S. Patent US2 847 855 A, Aug.

19, 1958. [Online]. Available: http://www.google.com/patents/US2847855

[2] J. Crassidis, “Sigma-point kalman filtering for integrated GPS and inertial

navigation,” in AIAA Guidance, Navigation, and Control Conference, San

Francisco, CA, Aug. 2005.

[3] M. U. de Haag, A. Vadlamani, J. L. Campbell, and J. Dickman, “Application

of laser range scanner based terrain referenced navigation systems for aircraft

guidance,” Electronic Design, Test, and Applications, Proceedings of the Third

IEEE International Workshop, 2006.

[4] O. Eroglu and G. Yilmaz, “A terrain referenced navigation UAV localization

algorithm using binary search method,” in Journal of Intelligent and Robotic

Systems, vol. 73, Jan. 2014, pp. 309–323.

[5] J. Farrell, Aided navigation: GPS with high rate sensors, ser. Electronic En-

gineering. McGraw-Hill New York, 2008.

[6] J. P. Golden, “Terrain contour matching (tercom): A cruise missile guidance

aid,” in The Intl. Society for Optics and Photonics, Dec. 1980.

66

http://www.google.com/patents/US2847855

Bibliography

[7] G. Hemann, S. Singh, and M. Kaess, “Long-range GPS-denied aerial inertial

navigation with LIDAR localization,” 2016, under submission.

[8] J. A. Hesch, D. G. Kottas, S. L. Bowman, and S. I. Roumeliotis, “Consis-

tency analysis and improvement of vision-aided inertial navigation,” IEEE

Transactions on Robotics, vol. 30, pp. 158–176, Jan. 2014.

[9] F. Hover, R. Eustice, A. Kim, B. Englot, H. Johannsson, M. Kaess, and

J. Leonard, “Advanced perception, navigation and planning for autonomous

in-water ship hull inspection,” Intl. Journal of Robotics Research, vol. 31,

no. 12, pp. 1445–1464, Oct. 2012.

[10] G. Huang, M. Kaess, and J. Leonard, “Towards consistent visual-inertial nav-

igation,” in IEEE Intl. Conf. on Robotics and Automation (ICRA), Hong

Kong, Jun. 2014, pp. 4926–4933.

[11] V. Indelman, S. Williams, M. Kaess, and F. Dellaert, “Information fusion in

navigation systems via factor graph based incremental smoothing,” Journal

of Robotics and Autonomous Systems, RAS, vol. 61, no. 8, pp. 721–738, Aug.

2013.

[12] A. Johnson and T. Ivanov, “Analysis and testing of a LIDAR-based approach

to terrain relative navigation for precise lunar landing,” in AIAA Guidance,

Navigation, and Control Conference, Portland, Oregon, Aug. 2011.

[13] A. Johnson and J. Montgomery, “Overview of terrain relative navigation ap-

proaches for precise lunar landing,” in IEEE Aerospace Conference, 2008, pp.

1–10.

67

Bibliography

[14] S. Julier and J. Uhlmann, “A new extension of the Kalman filter to nonlinear

systems,” in The Intl. Society for Optics and Photonics, Jul. 1997.

[15] M. Kaess, A. Ranganathan, and F. Dellaert, “iSAM: Incremental smoothing

and mapping,” IEEE Trans. on Robotics (TRO), vol. 24, no. 6, pp. 1365–1378,

Dec. 2008.

[16] J. Lewis, “Fast template matching,” in Vision Interface, Quebec City, Canada,

May 1995.

[17] A. Mourikis and S. Roumeliotis, “A multi-state constraint Kalman filter for

vision-aided inertial navigation,” in IEEE Intl. Conf. on Robotics and Au-

tomation (ICRA), 2007, pp. 3565–3572.

[18] A. I. Mourikis, N. Trawny, S. I. Roumeliotis, A. E. Johnson, A. Ansar, and

L. Matthies, “Vision-aided inertial navigation for spacecraft entry, descent,

and landing,” IEEE Transactions on Robotics, vol. 25, pp. 264–280, Apr.

2009.

[19] S. Patil, J. S. Nadar, J. Gada, S. Motghare, and S. S. Nair, “Comparison of

various stereo vision cost aggregation methods,” in International Journal of

Engineering and Innovative Technology, vol. 2, Feb. 2013.

[20] E. Quist, “UAV navigation and radar odometry,” Ph.D. dissertation, Bring-

ham Young University, 2015.

[21] F. Rabiei and F. Ismail, “Fifth-order improved Runge Kutta method with

reduced number of function evaluations,” in Australian Journal of Basic and

Applied Sciences, 2012, pp. 97–105.

68

Bibliography

[22] F. Riedel, S. Hall, J. Barton, J. Christ, B. Funk, T. Milnes, P. Neperud, and

D. Stark, “Guidance and navigation in the global engagement department,”

Johns Hopkins APL Technical Digest, Tech. Rep. 2, 2010.

[23] S. Roumeliotis, G. Sukhatme, and G. Bekey, “Circumventing dynamic mod-

eling: Evaluation of the error-state Kalman filter applied to mobile robot lo-

calization,” in IEEE Intl. Conf. on Robotics and Automation (ICRA), vol. 2,

Jan. 1999.

[24] A. R. Runnalls, P. D. Groves, and R. J. Handley, “Terrain-referenced naviga-

tion using the IGMAP data fusion algorithm,” in ION Annual Meeting, Jun.

2005.

[25] A. Segal, D. Hahnel, and S. Thrun, “Generalized-ICP,” in Robotics: Science

and Systems (RSS), Jun. 2009.

[26] M. D. Shuster, “A survey of attitude representations,” in Journal of the As-

tronautical Sciences, vol. 41, no. 4, oct-dec 1993, pp. 439–517.

[27] D. Simon, Optimal State Estimation: Kalman, H Infinity, and Nonlinear

Approaches. Wiley-Interscience, 2006.

[28] S. Thrun, “Particle filters in robotics,” in in Proceedings of the 17th Annual

Conference on Uncertainty in AI (UAI), 2002.

[29] N. Trawny and S. I. Roumeliotis, “Indirect Kalman filter for 3D attitude

estimation,” Department of Computing Science and Engineering, University

of Minnesota, Tech. Rep. 2005-002, Jan. 2005.

69

Bibliography

[30] N. Trawny, A. I. Mourikis, S. I. Roumeliotis, A. E. Johnson, and J. F. Mont-

gomery, “Vision-aided inertial navigation for pin-point landing using obser-

vations of mapped landmarks: Research articles,” Journal of Field Robotics,

vol. 24, no. 5, pp. 357–378, May 2007.

[31] D. Vaman, “A GPS inspired terrain referenced navigation algorithm,” Ph.D.

dissertation, TU Delft, Nov. 2014.

[32] M. Warren, P. Corke, and B. Upcroft, “Long-range stereo visual odometry for

extended altitude flight of unmanned aerial vehicles,” Intl. Journal of Robotics

Research, 2015.

[33] S. Weiss, M. W. Achtelik, S. Lynen, M. C. Achtelik, L. Kneip, M. Chli,

and R. Siegwart, “Monocular vision for long-term micro aerial vehicle state

estimation: A compendium,” Journal of Field Robotics, vol. 30, no. 5, pp.

803–831, Sep. 2013.

[34] J. Wendel, C. Schlaile, and G. Trommer, “Direct Kalman filtering of GPS/INS

for aerospace applications,” in International Symposium on Kinematic System

in Geodesy, Geomatics, and Navigation, 2001.

[35] J. Zhang and S. Singh, “Visual-inertial combined odometry system for aerial

vehicles,” Journal of Field Robotics, vol. 32, no. 8, pp. 1043–1055, Dec. 2015.

70

Nomenclature

Abbreviations

DEM digital elevation model

DOF degree(s) of freedom

DSM digital surface model

DTM digital terrain model

ECEF earth-centered, earth-fixed

EKF extended Kalman filter

ENU east-north-up

ESKF error-state Kalman filter

GPS global positioning system

ICP iterative closest point

IMU inertial measurement unit

INS inertial navigation system

71

Nomenclature

LIDAR light detection and ranging, light radar

MEMS micro-electro-mechanical system

MSCKF multi-state constraint Kalman filter

NCC normalized cross correlation

NED north-east-down

RK4 Runge Kutta 4th order

SAD sum of absolute difference

SINS strapdown inertial navigation system

SLAM simultaneous localization and mapping

SSD sum of squared difference

TAN terrain aided navigation

TRN terrain referenced navigation

UAV unmanned air vehicle

UKF unscented Kalman filter

USGS United States Geological Survey

UTM universal transverse mercator

VIO visual inertial odometry

VO visual odometry

72

Nomenclature

WGS84 World Geodetic System 1984

Mathematical Symbols

x̂k vehicle state estimate at timestep k

x̃k error-state at timestep k

z̃k measurement residual at timestep k

Bk discrete-time control input model

Fk discrete-time state transition matrix

Gk discrete-time noise transition matrix

Hk discrete-time measurement model

ID DEM image matrix

IL LIDAR image matrix

Iv binary mask image matrix

Kk discrete-time Kalman gain

Pk discrete-time state covariance

Qk discrete-time process noise covariance

Rk discrete-time measurement noise covariance

vk measurement noise (zero-mean Gaussian white noise)

wk process noise (zero-mean Gaussian white noise)

73

Nomenclature

xk vehicle state at timestep k

zk measurement vector at timestep k

74

	Contents
	Abstract
	1 Introduction
	1.1 Motivation
	1.2 Problem Statement
	1.3 Technical Contributions
	1.4 Notation

	2 Related Work
	2.1 History of Long-range GPS-denied Solutions
	2.1.1 Terrain Referenced Navigation
	2.1.2 Radar Odometry
	2.1.3 Long-range Visual Odometry

	2.2 Sensor Fusion

	3 LIDAR Localization
	3.1 Digital Elevation Models
	3.2 Algorithm
	3.2.1 LIDAR Binning
	3.2.2 LIDAR DEM Matching
	3.2.3 Altitude Correction

	3.3 LIDAR Localization Failure Modes
	3.4 Comparison to ICP

	4 State Estimation using Filtering
	4.1 The Kalman Filter
	4.1.1 Types of Kalman Filters

	4.2 Error-State Kalman Filter
	4.2.1 State Propagation
	4.2.2 Error-State Prediction Step
	4.2.3 Error-State Update Step

	4.3 Addressing Long-range Challenges
	4.4 Stationary Monitoring

	5 Experimental Results
	5.1 Hardware Setup
	5.2 Long-range LIDAR Localization Missions
	5.3 Multi-hop Missions

	6 Conclusion
	6.1 Lessons Learned

	7 Future Work
	Acknowledgments
	A Quaternions
	A.1 Operations with Quaternions

	B Global Coordinate Frames
	B.1 UTM
	B.2 ECEF

	C IMU Modeling
	C.1 Types of IMU Noise
	C.1.1 White Noise
	C.1.2 Flicker Noise / Bias Walk
	C.1.3 Scale Factor

	Bibliography
	Nomenclature

