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Abstract— Despite significant progress in GPS-denied au-
tonomous flight, long-distance traversals (> 100 km) in the
absence of GPS remain elusive. This paper demonstrates a
method capable of accurately estimating the aircraft state over
a 218 km flight with a final position error of 27 m, 0.012% of
the distance traveled. Our technique efficiently captures the full
state dynamics of the air vehicle with semi-intermittent global
corrections using LIDAR measurements matched against an
a priori Digital Elevation Model (DEM). Using an error-state
Kalman filter with IMU bias estimation, we are able to maintain
a high-certainty state estimate, reducing the computation time
to search over a global elevation map. A sub region of the
DEM is scanned with the latest LIDAR projection providing a
correlation map of landscape symmetry. The optimal position
is extracted from the correlation map to produce a position
correction that is applied to the state estimate in the filter.
This method provides a GPS-denied state estimate for long
range drift-free navigation. We demonstrate this method on two
flight data sets from a full-sized helicopter, showing significantly
longer flight distances over the current state of the art.

I. INTRODUCTION

Autonomous and manned aerial vehicles rely on accurate
localization for safe navigation and for finding their des-
tination. Relying on only inertial sensors for localization
is not feasible because navigation drift accumulates over
time without bounds. Typically, aerial vehicles complement
inertial sensing with a global positioning system such as
GPS to achieve drift-free navigation. While this is a simple
solution to integrate, GPS is not always a reliable sens-
ing mechanism. For one, satellite coverage breaks down
from obstructions and multipath caused by mountains or
skyscrapers. Also, GPS is susceptible to adversarial jamming
and spoofing, rendering it useless or outright dangerous for
navigation. Additionally, the satellite system is not immune
against system errors, such as the January 2016 incident
where wrong time information was temporarily broadcast
after the decommissioning of a GPS satellite. Lastly, GPS
only provides a navigation solution on Earth and extra-
terrestrial navigation requires a different sensing strategy.

GPS-denied navigation has gained much attention within
the past decade, particularly in the indoor and underwater
domains. The problem is challenging because in the absence
of a global reference such as GPS, onboard sensors can
only produce a drifting navigation solution with unbounded
error. Strategies for remaining localized with onboard sensors
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Fig. 1: GPS-denied 218 km helicopter flight (yellow trajectory), with a final
position error of 27 m, 0.012% of the distance traveled. The helicopter took
off from Zanesville airport, OH, and landed at Cedar Run airport, PA.

involve using a priori maps (e.g. [5]) as well as using simul-
taneous localization and mapping (SLAM) to build maps on
the fly (e.g. [3]). Development in perception and efficient
mapping algorithms have merged to form stable visual-
based localization methods using feature-rich environments
for GPS-denied navigation. These methods require repetitive
landmark observations for loop-closure to eliminate longer
term drift errors. This dependency, along with the payload
limitations of small indoor air vehicles, limits the range with
which localization algorithms can be demonstrated.

One area that has received less attention is extending the
GPS-denied navigation capabilities to long distance outdoor
missions (see Fig. 1). This scenario presents two major
challenges: (1) capture the dynamics of the vehicle at a high
rate and (2) estimate its 6 degrees of freedom (DOF) global
position and orientation in real-time. The first challenge has
been addressed for air vehicles in shorter range missions
using Kalman filters or smoothing techniques (e.g. [4]). The
second challenge however has not been addressed for long
distances without GPS, and we present our strategy here.

To achieve drift-free localization in the absence of GPS,
we match light detection and ranging (LIDAR) measure-
ments against a digital elevation model (DEM) for localiza-
tion. Our technique fits into the category of terrain referenced
navigation (TRN) [8] in which terrain models are used for
localization. The a priori DEM provides a surface elevation
map at various resolutions for the entire desired flight plan.
Instead of trying to scan a single LIDAR projection against
the entire geographical region or world, we use our inertial
propagation estimate to narrow the search space, reduce
computational cost, and provide real-time global localization.



The low-drift estimate also accounts for periods of inactive
corrections which may occur when flying at low altitudes,
over water where LIDAR returns fail, dense fog, or in areas
with low terrain variability.

Our work makes the following contributions:
1) We present a LIDAR localization algorithm that elim-

inates the need for cameras and therefore works inde-
pendent of lighting conditions.

2) We provide a tightly-coupled LIDAR-inertial integra-
tion that achieves low, bounded position and orienta-
tion error using intermittent position corrections in the
absence of GPS.

3) We demonstrate our ability for long distance drift-free
navigation on two datasets from the flight of a full-
sized helicopter, each covering around 200 km from
takeoff to landing, a significant increase in distance
over the current state of the art.

II. RELATED WORK

Research in GPS-denied navigation on smaller unmanned
aerial vehicles (UAVs) has received much attention in the
past decade. The ubiquity of cheap, easily available platforms
like quadrotors have opened opportunities for many different
areas of autonomous aerial research. Unfortunately, smaller
platforms are payload limited and restrict the range at which
long distance autonomy can be tested. Therefore, not as much
attention has been given to long distance aerial navigation.

Some visual odometry (VO) techniques for indoor GPS-
denied autonomy have been extended to attempt longer range
missions. Weiss et al. [11] discusses the state of the art for
minimal payload aerial vehicles using a monocular-camera
and inertial measurement unit (IMU) sensor setup. Their
parallel tracking and mapping (PTAM) based visual SLAM
approach was demonstrated on a 350 m flight with a final
position error of only 1.47 m, at which point the battery was
depleted. Another long-range visual odometry technique by
Warren et al. [10] uses a deformable stereo-rig baseline to
account for the vibrations of the vehicle and improve depth
accuracy. This was tested on a fixed-wing UAV on a 6.5 km
dataset. Currently the longest VO demonstration we know
of is Zhang and Singh [12]. This work reduces translational
drift of an inertial navigation solution by reparametrizing
features of a downward-facing camera along a ground plane
normal, extracted from a laser altimeter. On trajectories over
30 km they achieved an impressive 0.09% trajectory error.
While adding VO improves on inertial-only navigation solu-
tions, localization error still increases with traveled distance
without bounds.

To address the issue of long-range drift from visual or
inertial solutions, a ground referencing strategy is required.
Quist [7] uses radar odometry to estimate the position of
artificial ground radar scatterers. This process uses a Hough
transform on a radar signal to identify the targets and their
relative distance. Flight tests of their radar system with a
commercial-grade IMU show comparable results in drift
error to using a navigation-grade IMU only. Their flight
covered 2.4 km with a final drift of 2.3% over the distance

flown. The strength of using radar in this method gives
the system the ability to operate in more varied weather
conditions than a LIDAR, however it depends on artificial
radar scatterers to be placed in the environment, which is
often not a feasible solution.

A more effective ground referencing strategy is terrain
referenced navigation because it uses previously generated
elevation models of the natural terrain shape and does not
require placing artificial markers in the environment. LIDAR
scans of a landing strip are used by de Haag et al. [1] to
navigate a 300 s landing sequence. The LIDAR points are
converted to elevation estimates and aligned with the DEM
using a sum of squared error minimum. While the landing
drift error was considerably low (less than a meter in any
direction), the system incorporated GPS and radar altimeters
and only used the LIDAR when the data was reliable.

A more recent TRN-based method by Johnson and Ivanov
[5] evaluates the horizontal position accuracy of a lunar
lander approach by converting a LIDAR scan to an elevation
model. They perform the matching using the Fast Template
matching algorithm by Lewis [6] and finding the correction
from the shift of the maximum value in the correlation map.
We also use a normalized cross-correlation matching method,
but ours does not rely on precomputed integral tables. This
TRN approach was tested on Earth terrain models using 3 m
DEM and their landing trajectory guaranteed 90 m accuracy.
Their system however does not have a tightly coupled
navigation solution. We extend this work to incorporate a
high-rate fused state estimate, global corrections in three
axes instead of two, and operate over long distance flights
as opposed to just landing sequences.

The global correction method is just one half of the state
estimation problem. Highly dynamic platforms like UAVs
also require a continuous high-rate state estimate, typically
at a higher resolution than what the global corrector provides.
Most modern multi-sensor robotic platforms rely on efficient
sensor fusion algorithms to capture a consistent state estimate
from various input sensor rates. A common method is the
Kalman filter which handles propagating uncertainty and
providing a fused state estimate. A modified version of the
Kalman filter, or error-state Kalman filter, has been used
extensively by Trawny et al. [9] for state estimation in
planetary landing. The state is propagated with IMU input
and the Kalman filter estimates the time-varying IMU biases.
They use a camera to track features from craters and correct
the state estimate. We use a similar state estimation technique
with the modified EKF, but incorporate a different correction
method based on LIDAR.

Previous approaches to the long-distance GPS-denied state
estimation challenge have used various types of sensing
modalities and filter techniques to reduce track error and total
trajectory error. However, the limitations in the operational
environment or platform have prevented testing the long
distance robustness of these algorithms. Furthermore, most
of the techniques have only utilized either a robust filter
for IMU bias estimation or an efficient terrain matching
algorithm. Here we present a fusion of some of these



techniques and improve them individually for considerable
improvement in terrain matching and pushing the state of the
art in long-distance GPS-denied navigation.

III. LIDAR LOCALIZATION

Our LIDAR localization intermittently localizes the heli-
copter by aligning LIDAR measurements to a geo-referenced
Digital Elevation Model (DEM). Our goal is to estimate
our true 3D world position by searching for an optimal
alignment between a 3D LIDAR point cloud as measured
by the helicopter and the a priori DEM. We make use of
the current position estimate to restrict the search area to a
local DEM neighborhood. This requires a low-drift estimate,
which is achieved by tightly coupled LIDAR-inertial fusion
as discussed in section IV.

We decompose the 3D localization problem into a 2D
translation and a 1D altitude problem that are solved se-
quentially. The DEM is given as a regular grid of elevation
values, represented as a floating-point valued image ID. The
point cloud from the helicopter LIDAR is converted into an
image IL of the same grid size by binning, allowing for noise
filtering in the process. The localization problem is thereby
reduced to finding the 2D offset between both images that
provides the best correlation between DEM and LIDAR data.
Finally, to obtain a full 3D position correction, the difference
in elevation between predicted and measured ground surface
is estimated. Only translation is estimated with this process
since small angle misalignments cannot be recovered from
local LIDAR data. Instead, orientation is corrected in the
filter (see section IV).

A. LIDAR Binning

LIDAR binning takes the original LIDAR measurements
and transforms them into a virtual DEM. The LIDAR mea-
surements are obtained from a downward-facing 2D line
LIDAR sensor rigidly attached to the vehicle. The individual
measurements Lpi of each scan are transformed from the
LIDAR frame into the global frame using a time stamped
state estimate of the body-to-world transform G

V R(t) and a
rigid transform of the sensor relative to the vehicle V

LR, using
the transformation chain

Gpi = G
V R(t) · VLR ·L pi, (1)

where G denotes the global frame, V the vehicle frame and
L the LIDAR frame. To cover a region of sufficient size for
reliable offset estimation, a sufficient number of line scans
are accumulated, depending on the vehicle’s velocity.

A robust heightmap is computed by grouping the 3D
points into bins along the x-y plane at the exact resolution of
the DEM. These bins contain an array of estimated ground
elevation values predicted from the LIDAR returns. Bins
with a small range show an area with high certainty that the
LIDAR beams reflected off of the true ground surface. Bins
with high variability on the other hand indicate occlusions
such as trees, with only some beams reflected off the desired
ground surface. Fig. 2 shows an example of point bins that
have as much as 30 m in range variation due to foliage.
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Fig. 2: A cross section of 3D LIDAR points (blue circles) after binning. The
right half of the bins show high variability in height due to the presence
of trees. The lowest point in each bin (marked in red) shows the smooth
surface of the actual terrain.

The lowest elevation per bin (marked red) is the closest
representation of the true ground elevation for that cell. To
improve the likelihood that each bin has at least one return
from the ground, we discard bins with less than 30 points (we
get up to 500 points per bin at cruising altitude). The result
is a robust 2D heightmap IL based on the lowest valued
point of each valid bin. We have found this approach to
generate similar height maps despite vegetation variations
across different seasons.

Finally, the height map is smoothed using a mask. A mask
is required because removing invalid bins creates holes in
the image. A binary mask Iv is used to track the active valid
cells. Active regions are smoothed with a Gaussian kernel.
This produces IL to be a smooth surface-like heightmap
generated from the 3D LIDAR point cloud. Examples are
shown in column (c) of Fig. 3.

B. LIDAR DEM Matching

With both measured and ground truth heightmap available,
the next step is to identify an offset based on the best
alignment. The DEM image ID is created from a local
neighborhood window around the current state estimate. To
account for the uncertainty of the state estimate, a region
larger than the LIDAR image IL is searched. We perform an
exhaustive sliding window search over offsets between IL
along ID, calculating a normalized cross-correlation value

NCC(i,j) =
1

N(Iv)

∑
(ID,(i,j) − µD,(i,j))(IL − µL)

σDσL
(2)

at each offset (i, j) to obtain a cross-correlation map (see
column (d) of Fig. 3 for examples). Note that the height
images are multiplied element-wise. Also note that the sum-
mation is over all valid pixels of the image, where N(Iv) is
the number of valid pixels in image mask Iv .

Given this correlation map, we can now extract the po-
sition offset between the prior state estimate and the true
position. The maximum value of this normalized cross-
correlation cost map represents the highest correlation match
between the LIDAR image IL and a sub region of the DEM
ID at index (i∗,j∗). The shift from the center of ID to



Fig. 3: Cost map of a successful match (top row) and an unsuccessful
match (bottom row). The columns show (a) an aerial image of the terrain,
(b) a DEM region ID of the same area at 10m resolution, (c) the LIDAR
projection IL after binning and filtering, and (d) the normalized cross-
correlation image of the matching (white denotes higher correlation). The
successful match (top) has an NCC image with a distinct optimum near its
center, whereas the failed match (bottom) shows no clear optimum because
of the low variation in terrain elevation.

(i∗,j∗) represents the horizontal correction to the estimated
vehicle position. If max(NCC) is greater than an empirically
determined threshold (we use 0.922), then it is a confident
match and is used to correct the position. Otherwise we treat
it as a failed match and no correction is sent to the filter.

For robustness, we also require some level of variability in
the terrain before we accept a match. The matching algorithm
only matches similarities in the images and ignores the actual
shape and variation of the terrain. To ensure the terrain
provides sufficient constraints, the standard deviation of all
valid elevation values in the LIDAR image is computed. A
successful match is returned only if this standard deviation
is above a threshold (we use 2.5 m).

Two examples of LIDAR-DEM matches are shown in
Fig. 3. The top row shows a successful match with terrain
variability in multiple directions, giving a single optimal
location for the matching. The bottom row shows a failed
match caused by nearly flat terrain within the matching
region, seen by the low contrast of IL and ID, and due to a
river running through the center that is difficult to detect for
the LIDAR, leading to missing data in IL.

C. Altitude Correction

The final step is to compute a vertical correction (z) from
the elevation images. The DEM image at the optimal index
of the lateral matching ID,(i∗,j∗) is subtracted element-wise
from the measured heightmap IL. The mean of the resulting
difference image is the average elevation offset between the
estimated and the true altitude. The offset represents the
state estimation error as measured by the LIDAR against
the ground truth DEM.

IV. STATE ESTIMATION

Robust state estimation relies on inertial sensing to be
paired with an additional sensor to eliminate drift. Given
an inertial sensor with a zero-mean Gaussian noise model,
a Kalman filter can be used to fuse these different sensing
modalities to obtain a drift-free high-dynamic state estimate.
The extended Kalman filter (EKF) is typically used to model
nonlinear systems, but it suffers from linearization errors.
Instead of modeling the full state, a simplification of the
algorithm is to propagate the error state. This type of filter,
known as an error-state Kalman filter, improves the accuracy
while still correctly modeling the system dynamics. Inertial
navigation will then be sufficiently accurate to provide a
robust state estimate between the LIDAR localization mea-
surements.

The state we are estimating consists of vehicle orientation,
velocity, position and IMU (accelerometer and gyroscope)
biases. This is represented within a 16-dimensonal vector as

x(t) =[
G
Lq>(t) Lbg

>(t) Gv>(t) Lba
>(t) Gp>(t)

]>
(3)

where our notation closely follows [9]. We represent the
orientation of the vehicle as a rotation of the global frame
{G} with respect to the local frame {L} in the form of
the quaternion G

Lq(t). We denote the equivalent 3x3 rota-
tion matrix as Cq. Therefore, our rotation representation
transforms a vector from the local to the global frame as
Gv = Cq ·Lv. The gyroscope bias Lbg

>(t)nd accelerometer
bias Lba

>(t) are represented in the local frame. The vehicle
velocity Gv>(t) and position Gp>(t) are expressed in the
global frame. The global frame is an earth-centered, earth-
fixed (ECEF) reference frame that remains Cartesian even
over long distance sprints and is not corrupted by earth’s
curvature. This also simplifies the model of earth’s rotation,
taken as Gωe. The global gravity vector Gg is calculated
at each time step using the WGS84 reference ellipsoid as
described in Farrell [2].

A. State Propagation

The vehicle state is first estimated by propagating the
kinematic equations given the input IMU sensor data. The
measured IMU data, angular velocity Lωm(t) and linear
acceleration Lam(t), is modeled as

Lωm(t) = Lωtrue(t) + Lbg(t) + ng(t)
Lam(t) = Cq

>(Gatrue(t)− Gg) + Lba(t) + na(t). (4)

For the gyroscope and accelerometer measurements, we
assume zero-mean white Gaussian noise (ng(t), na(t)) and
zero-mean first-order random walk (Lbg(t), Lba(t)). The
estimated state x(t) is propagated using the following kine-
matic equations

G
L

˙̂q(t) =
1

2
Ω(ω̂(t))GL q̂ (5)

˙Lb̂g(t) = 03x1



G ˙̂v(t) = Cq̂ · Lâ(t) + Gg − 2bGωe×cGv̂(t)

− bGωe×c2Gp̂(t)

˙̂Lba(t) = 03x1

G ˙̂p(t) = Gv̂(t)

where ω̂(t) = Lωm(t) − Lb̂g(t) − C>q̂ · Gωe and â(t) =
Lam(t)− Lb̂a(t). The quaternion derivative uses the matrix
operation Ω

Ω(ω) =

[
−bω×c ω
−ω> 0

]
(6)

where bω×c is the skew-symmetric matrix of ω. This
propagation is carried out using the Runge-Kutta integration
method RK4, and it is important to note that this provides
significant improvement over lower order methods. Feeding
(5) directly into an RK4 solver as coupled linear/rotational
integration improves accuracy vital for long distance dead-
reckoning, particularly in the linear velocity estimate.

The measurement prediction step of the Kalman filter
propagates the error state and the respective state covari-
ances. The error states are a linearized version of our physical
state. These states are represented in a 15-dimensional error
vector defined as

x̃(t) =[
δ̃θ
>

(t) Lb̃>g (t) Gṽ>(t) Lb̃>a (t) Gp̃>(t)

]>
.

(7)

Note that the drop in dimensionality occurs in the orientation
representation. Assuming orientation errors are small, the
over-constrained four dimensional quaternion is approxi-
mated by a three-dimensional vector, defined by

δq w

[
1
2 δ̃θ
1

]
. (8)

The continuous-time linearized dynamics of the error state
is written as

˙̃x = Fc(x)x̃ + Gcn, (9)

where Fc is the continuous-time error state transition matrix
and Gc is the continuous-time noise propagation matrix:

Fc =


−bω̂×c −I3 03 03 03

03 03 03 03 03

−Cq bâ×c 03 −2bGωe×c −Cq −bGωe×c2
03 03 03 03 03

03 03 I3 03 03


(10)

Gc =


−I3 03 03 03

03 I3 03 03

03 03 −Cq 03

03 03 03 I3
03 03 03 03

 . (11)

The continuous-time matrix (10) is converted to a discrete-
time matrix Φk using Taylor series expansion on a matrix:

Φk = e
´
Fc(t)dt = I15 + Fcdt+

1

2!
F2

cdt
2 +

1

3!
F3

cdt
3 + ...

(12)

where Φ0 = I15. This is applied to the covariance update
equation

Pk+1|k = ΦkPk|kΦ>k + Qd (13)

where the discrete-time propagation noise matrix Qd is
updated by

Qd = ΦkGcQcG
>
c Φ>k · dt (14)

and Qc represents the process noise model matrix, defined
as

Qc =


σ2
gn · I3 03 03 03

03 σ2
gb
· I3 03 03

03 03 σ2
an
· I3 03

03 03 03 σ2
ab
· I3

 . (15)

The σ terms are found from the sensor specs of the IMU,
white noise terms being σgn and σan

and bias stability
(random walk) being σgband σab

, each pair for gyroscope
and accelerometer respectively.

B. Measurement Update

The measurement update step of the error-state Kalman
filter is used to update the uncertainty of the state given
a global correction. These global corrections are supplied
to the filter from a three dimensional position correction
from the LIDAR localization described in section III. The
measurement directly (and only) affects the position estimate,
reflected by the Jacobian H =

[
03 03 03 03 I3

]
.

The rest of the update follows the standard Kalman filter
equations

S = HPk+1|kH> + R (16)

K = Pk+1|kH>S−1

x̃k = Kr

Pk+1|k+1 = (I15 −KH)Pk+1|k(I15 −KH)> + KRK>

where R is the noise covariance matrix of the correction
and the correction residual is r = pcorrection− p̃ . Although
orientation is not computed or corrected from LIDAR lo-
calization, the measurement update indirectly estimates the
orientation error from the position error over time. The
newly computed covariance Pk+1|k+1 is then used for the
prediction step as described previously in section IV-A.

The last step is to update the actual state estimate. The
linear terms of the state vector x are updated by xk+1 =
xk + x̃k. The orientation is updated using Quaternion mul-
tiplication

G
Lqk+1 =G

L qk ⊗ δqk+1. (17)

C. Filter Stability

Filters are susceptible to linearization errors and these
errors become more apparent for long-range missions. To
mitigate these issues and maintain stability, we apply the
following three techniques.

First, the LIDAR localization algorithm requires time to
process and when the position correction is received by the
filter, the state has already been propagated multiple times.
Therefore, the filter is rolled back to the state at which the



Fig. 4: The Near Earth Autonomy m4 sensor suite on a Bell 206L helicopter.

correction occurred, applied with the correction, and then
the propagation is recomputed. We keep a history of states
that is longer in duration than the amount of processing time
required for the LIDAR localization.

Second, numerical stability is affected by the limits on
the floating-point precision of the machine. Over time, small
numerical errors cause the covariance matrix to diverge,
causing non-optimality. To prevent this, the Joseph form of
the Kalman filter measurement update is used

Pk+1|k+1 = (I15 −KH)Pk+1|k (18)

= (I15 −KH)Pk+1|k(I15 −KH)> + KRK>.

Lastly, the covariance matrix P must always be symmetric.
While the Joseph form of the Kalman update does help
prevent numerical issues, we ensure the covariance matrix
maintains symmetry by regularly re-symmetrizing using

P :=
1

2
(P + P>) (19)

at every correction step.

V. EXPERIMENTAL RESULTS

A. Hardware Setup

Our datasets were collected from a Bell 206L (Long-
Ranger) helicopter outfitted with the Near Earth Autonomy
m4 sensor suite (see Fig. 4) which includes a 2D LIDAR
and a strapdown fiber-optic IMU. The LIDAR scans have a
100 degree FOV providing 42,000 point measurements per
second with a max range of 1.1 km. Additionally, a GPS
inertial solution is collected to serve as ground truth in our
evaluation. All sensors are time synchronized. The initial
vehicle position and orientation in ECEF is provided, as well
as the position and orientation uncertainty.

We use publicly available 10 m resolution DEMs from
USGS1 as prior elevation maps to localize against. To build

1http://nationalmap.gov/elevation.html
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Fig. 5: Linear and angular errors of the state estimate for flight B. Our
LIDAR-inertial solution (blue) is compared against an IMU-only dead
reckoning attempt (red).

a local 3D elevation model from LIDAR, we accumulate 350
sequential scans. It is important to note that this number can
be adjusted based on vehicle speed to ensure a sufficiently
large scan region. As shown in Table I, the vehicle averaged
at about 50 m/s (180 km/hr).

We tested on a quad-core 2.5GHz i7 processor, running
two parallel threads for filtering and matching separately.
The filter is updated at 200 Hz, taking a constant 0.1 ms for
propagation, while the less frequent LIDAR measurement
updates take 11 ms because of numerical stability consider-
ations described in section IV-C. The time required for the
LIDAR localization algorithm is on average 22 ms with a
standard deviation of 3 ms for the presented results.

B. Evaluation

The fusion of IMU with LIDAR localization helped to
reduce drift and to maintain a good state estimate for periods
of poor localization performance. Fig. 6 shows the matches
for the entire trajectory of flight B, with an inset showing
a period that had very few corrections due to buildings,
flat terrain, and a river. The rest of the dataset shows
very frequent successful matches, despite the mostly dense
vegetation encountered.

Table I shows the success ratio for two separate flights
(recorded during the summer with dense vegetation). The
LIDAR matching succeeded at least 70% of the time. The
robustness of the Kalman filter is tested during longer periods
of unsuccessful matches. The system kept the state estimate
within 100 m of ground truth throughout the entirety of
both trajectories. Fig. 5 plots the errors in individual axes
against the ground truth. The blue line is the LIDAR-inertial
solution estimate and the red line represents the IMU-only
dead reckoning attempt over the same duration. Although



TABLE I: Statistics for two long distance flights, including LIDAR localization and state estimate performance.

Flight Trajectory Avg. flight Cruising # of match % of match Longest duration Landing position Max. position RMSE
distance speed altitude range attempts successes without a match error error

A 196 km 44.5 m/s 210-340 m 853 83.4% 62.8 s 38.6 m 90.2 m 4.22 m
B 218 km 55.6 m/s 150-250 m 851 74.1% 92.2 s 27.2 m 42.4 m 2.91 m

Fig. 6: LIDAR localization match successes (green rectangles) and failures (red rectangles) for the entire trajectory of flight B. The inset shows an enlarged
section of the trajectory in which very few successes occurred and therefore relied on the bias-corrected inertial solution. At this scale, the ground truth
trajectory (blue line) is nearly identical to the estimated trajectory (yellow line) and just barely visible in the inset.

the maximum position error between both datasets is 90.2 m,
the solution stays within a 20 m error laterally and 5 m error
vertically for most of the flight. Our maximum position error
of 90 m is comparable to the results found in [5], however we
demonstrate smaller position errors on average over the entire
trajectory, as well as significantly longer distances achieved.

Fig. 7 shows Euclidean position error in relation to suc-
cessful and failed matching events. As expected, during flight
segments in which we fail to successfully match the LIDAR
with the terrain, the position error grows over time. The
growth is determined by the robustness of the IMU bias
estimate and state propagation. Note that we stop acquiring
successful matches near the end of the trajectory. This is due
to the landing sequence, where the vehicle is too close to the
ground to observe the terrain shape. Before that point, the
error is less than 20 m from ground truth, while the final
position error is close to 40 m.

We visualize the resulting percentage of error over distance

flown in Fig. 8, comparing it to an IMU-only dead reckoning
estimate. The flight lands with a distance error ratio of
0.019% over the entire 196 km trajectory. The data shows
that the position error is bounded independent of the length
of the flight. In contrast, the IMU-only solution drifts without
bounds, showing that even for a high quality fiber-optic
IMU, an IMU-only solution is infeasible and integration of
additional information such as from our LIDAR localization
is needed.

VI. CONCLUSION AND FUTURE WORK

We presented a solution to long-distance aerial state es-
timation for LIDAR-based sensor systems. Using available
a priori DEM, we are able to match a LIDAR scan region
against this elevation model efficiently in real-time. By using
an error-state Kalman filter, we can estimate IMU biases and
provide a better position estimate. This allows us to reduce



Fig. 7: Euclidean position error for the last 40 km of flight A, with
successful (green) and failed (red) matching attempts marked. Each blue
point represents a single 2D line LIDAR scan mapped at the vehicle’s
current position error, i.e. after a successful match we can see the increase
or decrease of the position error by finding the start of the next blue line.
The drift from the inertial estimate grows the position error over periods of
failed LIDAR matches until a successful match resets the error.
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Fig. 8: Euclidean position error over the entirety of flight A. We compare
our solution against an IMU-only estimate which quickly drifts away from
the correct position. Our LIDAR-inertial solution keeps the position error
bounded independent of distance.

the search region of the DEM as well as fly longer stretches
without LIDAR position updates.

Additional sensors can be added to improve robustness or
reduce requirements on IMU quality. Drift depends on both
the quality of the IMU and the accuracy of the bias estima-
tion. To improve bias estimation accuracy, visual odometry
can be fused into the system. This would provide continuous
bias estimate corrections for periods of unsuccessful LIDAR
localization possibly due to flight over water, low terrain
variability, or low-altitude flight. Therefore less drift is
expected over time, allowing for longer duration missions
in a wider range of terrains.

The 10 m resolution DEM provides too coarse of a
correction estimate if a smooth trajectory is desired. We have
tested our method on a 3 m resolution DEM over shorter
trajectories and have achieved tighter position estimates.
The associated 10-fold increase in memory requirements

necessitate dynamic DEM management solutions to cover
long trajectories.

Kalman filters are susceptible to linearization errors, but
there are additional techniques beyond the presented work
that can improve their performance. The discrete-time error-
state transition matrix Φk is currently approximated using
the Taylor series expansion of Fc. To increase accuracy and
reduce computational cost a closed-form solution to Φk can
be derived as in Weiss et al. [11]. Another option is to use
a fixed-lag smoother, allowing to revise past state estimates
and therefore also improving the current state.

ACKNOWLEDGMENT

The authors would like to thank Jeffrey Mishler, Adam
Stambler, and Marcel Bergerman at Near Earth Autonomy.

REFERENCES

[1] M. U. de Haag, A. Vadlamani, J. L. Campbell, and J. Dick-
man, “Application of laser range scanner based terrain ref-
erenced navigation systems for aircraft guidance,” Electronic
Design, Test, and Applications, Proceedings of the Third IEEE
International Workshop, 2006.

[2] J. Farrell, Aided navigation: GPS with high rate sensors, ser.
Electronic Engineering. McGraw-Hill New York, 2008.

[3] F. Hover, R. Eustice, A. Kim, B. Englot, H. Johannsson,
M. Kaess, and J. Leonard, “Advanced perception, navigation
and planning for autonomous in-water ship hull inspection,”
Intl. Journal of Robotics Research, vol. 31, no. 12, pp. 1445–
1464, Oct. 2012.

[4] V. Indelman, S. Williams, M. Kaess, and F. Dellaert, “Infor-
mation fusion in navigation systems via factor graph based
incremental smoothing,” Journal of Robotics and Autonomous
Systems, RAS, vol. 61, no. 8, pp. 721–738, Aug. 2013.

[5] A. Johnson and T. Ivanov, “Analysis and testing of a lidar-
based approach to terrain relative navigation for precise lunar
landing,” in AIAA Guidance, Navigation, and Control Confer-
ence, Portland, Oregon, Aug. 2011.

[6] J. Lewis, “Fast template matching,” in Vision Interface, Que-
bec City, Canada, May 1995, pp. 120–123.

[7] E. Quist, “UAV navigation and radar odometry,” Ph.D. disser-
tation, Bringham Young University, 2015.

[8] A. R. Runnalls, P. D. Groves, and R. J. Handley, “Terrain-
referenced navigation using the IGMAP data fusion algo-
rithm,” in ION Annual Meeting, Jun. 2005, pp. 976–987.

[9] N. Trawny, A. I. Mourikis, S. I. Roumeliotis, A. E. Johnson,
and J. F. Montgomery, “Vision-aided inertial navigation for
pin-point landing using observations of mapped landmarks:
Research articles,” Journal of Field Robotics, vol. 24, no. 5,
pp. 357–378, May 2007.

[10] M. Warren, P. Corke, and B. Upcroft, “Long-range stereo
visual odometry for extended altitude flight of unmanned
aerial vehicles,” Intl. Journal of Robotics Research, vol. 35,
pp. 381–403, Apr. 2016.

[11] S. Weiss, M. W. Achtelik, S. Lynen, M. C. Achtelik, L. Kneip,
M. Chli, and R. Siegwart, “Monocular vision for long-term
micro aerial vehicle state estimation: A compendium,” Journal
of Field Robotics, vol. 30, no. 5, pp. 803–831, Sep. 2013.

[12] J. Zhang and S. Singh, “Visual-inertial combined odometry
system for aerial vehicles,” Journal of Field Robotics, vol. 32,
no. 8, pp. 1043–1055, Dec. 2015.


