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Abstract— This paper presents an on-line nonlinear least
squares algorithm for multi-sensor autonomous underwater
vehicle (AUV) navigation. The approach integrates the global
constraints of range to and GPS position of a surface vehicle
or buoy communicated via acoustic modems and relative pose
constraints arising from targets detected in side-scan sonar im-
ages. The approach utilizes an efficient optimization algorithm,
iSAM, which allows for consistent on-line estimation of the
entire set of trajectory constraints. The optimized trajectory
can then be used to more accurately navigate the AUV, to
extend mission duration, and to avoid GPS surfacing. As iSAM
provides efficient access to the marginal covariances of previ-
ously observed features, automatic data association is greatly
simplified — particularly in sparse marine environments. A
key feature of our approach is its intended scalability to
single surface sensor (a vehicle or buoy) broadcasting its GPS
position and simultaneous one-way travel time range (OWTT)
to multiple AUVs. We discuss why our approach is scalable
as well as robust to modem transmission failure. Results are
provided for an ocean experiment using a Hydroid REMUS
100 AUV co-operating with one of two craft: an autonomous
surface vehicle (ASV) and a manned support vessel. During
these experiments the ranging portion of the algorithm ran on-
line on-board the AUV. Extension of the paradigm to multiple
missions via the optimization of successive survey missions (and
the resultant sonar mosaics) is also demonstrated.

I. INTRODUCTION

Modern Autonomous Underwater Vehicles (AUVs) are
complex robotic systems containing several proprioceptive
sensors such as compasses, fiber optic gyroscopes (FOG) and
Doppler Velocity Loggers (DVL) [1]. The resultant sensor
output can be combined together using navigation filters,
such as the Extended Kalman Filter (EKF), to produce a
high quality estimate of the AUV position and uncertainty.
This estimate is then used by the AUV to inform on-board
decision making logic and to adaptively complete complex
survey and security missions. A recent survey by Kinsey et
al. provides a good overview of the state of the art [2].

In addition, many AUVs have installed multiple exterocep-
tive sensors. Side-scan sonar, initially developed by the US
Navy, has been widely used for ship, ROV and AUV survey
since its invention in the 1950s. More recently, forward
looking sonars, with the ability to accurately position a field
of features in two dimensions, have also been deployed for
a variety of applications such as 3-D reconstruction [3], ship
hull inspection [4] and harbor security [5]. In scenarios in
which water turbidity is not excessively high, cameras have
been used to produce accurate maps of ship-wrecks and
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Fig. 1. Optimizing the entire vehicle trajectory and target observation set
facilitates explicit alignment of sonar mosaics. In this figure this alignment
has been carried out for three different observations of a single target
corresponding to Mission 3 mentioned in Sec. 6(a).

underwater historical structures, for example the mapping
of RMS Titanic [6] and of Iron Age shipwrecks [7].

Typically the former approaches are intended to estimate
the (current) absolute georeferenced vehicle position while
the latter approaches can create locally consistent maps using
relative measurements. Traditional acoustic ranging, using
Long Baseline (LBL) and Ultra Short Baseline (USBL),
is commonly used to combine these two modes [8], [9],
but they suffer from some operational issues (more fully
discussed in Section II-A). Meanwhile advances in one–way
travel time ranging (OWTT) using acoustic data modems,
such as with the WHOI Micromodem [10], allows for a more
flexible type of multi-vehicle navigation.

This paper extends upon previous OWTT navigation
research as follows. Initially, the Moving Long Baseline
(MLBL) concept used two mobile Autonomous Surface
Vehicles (ASVs) to estimate the position of the AUV using
acoustic modem ranging. This was proposed by Vaganay et
al. [11] and later developed by Bahr [12]. More recently
research has focused on utilizing only a single surface vehicle
to support a single AUV using a recursive state estimator
such as the Extended Kalman filter ([13]) or the Distributed



Extended Information Filter (DEIF, [14]).
For many robotic applications, however, estimating the

vehicle’s entire trajectory as well as the location of any
observed features is important (for example in feature-based
AUV navigation) and is known as Simultaneous Localization
and Mapping (SLAM). The EKF has been shown to provide
an inconsistent SLAM solution due to information lost during
the linearization step [15]. Furthermore, our previous work,
[16], demonstrated (off-line) the superior performance of
NLS methods in the acoustic ranging problem domain versus
both an EKF and a particle filtering implementation —
although requiring growing computational resources.

Recently developed Nonlinear Least Squares solutions to
SLAM have overcome these issues by recovering an exact
solution while avoiding the repeated solution of subproblems
— providing for the rapid and efficient solution of very large
data-sets. Incremental Smoothing and Mapping (iSAM) is
representative of the current state-of-the-art in pose graph
estimation for SLAM, and it is the core estimation algorithm
used in this work.

In this paper, we utilize iSAM both for pose estimation
using acoustic range data, and also concurrently for mapping
and localization of bottom targets identified in side-scan
sonar imagery. As an extension, we demonstrate the ability
to combine relative constraints across successive missions,
enabling multi-session AUV navigation and mapping, in
which data collected in previous missions is seamlessly
integrated on-line with data from the current mission on-
board the AUV.

Considering previous related research in AUV navigation
and mapping, the work of Tena Ruiz et al. [17], [18] is highly
relevant. This work demonstrated SLAM using side-scan
sonar, comparing the performance of a standard EKF with
use of the the Rauch-Tung-Streibel Kalman smoother. Their
results demonstrate the superiority of a smoothing approach
when applied to AUV side-scan mapping. Our work advances
on this work by applying a state-of-the-art pose graph SLAM
state estimation and integrating acoustic range measurements
from a surface vehicle, which has not to our knowledge been
addressed in previous research.

Other related research that has considered acoustic range
data to stationary beacons in a smoothing framework in-
clude [19], [20]. Finally, vision-based AUV navigation has
employed many techniques similar to those discussed here.
In many ways this modality can be complementary to sonar
navigation for example providing higher fidelity with reduced
sensor range, for example [21], [22].

Section II gives an overview of the sensor geometry be-
fore presenting the vehicle and sensor measurement models
within a common framework. This section also discusses
design issues for an acoustic ranging system which can
support any number of AUVs listening to the broadcasted
surface positions. Section III gives an overview of the
adaptation of the iSAM estimation algorithm to this problem
while also discussing the considerations for multi-vehicle
mapping. Presented in Section IV is a demonstration of how
a rich multi-sensor, multi-vehicle four mission dataset could

be combined into a single navigation problem which can be
solved in realtime on-board the AUV.

(a)

(b)

Fig. 2. The vehicles used in our experiments: the Hydroid Remus 100
AUV was supported by the MIT Scout ASV or our research vessel the
Steel Slinger.

II. MEASUREMENT MODEL

The full vehicle state is defined in three Cartesian and
three rotation dimensions, [x, y, z, φ, θ, ψ]. Absolute mea-
surements of the depth z, roll φ and pitch θ, are measured
using a water pressure sensor and inertial sensors. This
leaves three dimensions of the vehicle to be estimated in
the horizontal plane: x, y, ψ.

The heading is instrumented directly using a compass and
this information is integrated with inertial velocity measure-
ments to propagate estimates of the x and y position1. This
integration is carried out at a high frequency (∼ 10Hz) com-
pared to the exteroceptive range and sonar measurements,
O(1min).

Following the formulation in [23], [24], the motion of the
vehicle is described by a Gaussian process model as follows

xi = f(xi−1, ui) + wi wi ∼ N(0,Σi) (1)

where xi represents the 3-D vehicle state (as distinct from
the dimension x above).

A. Acoustic Ranging

Acoustic Ranging has been widely used to contribute to
AUV navigation [25], [26]. LBL navigation was initially
developed in the 1970’s [27], [28] and is commonly used

1In our case this integration is carried out on a separate proprietary vehicle
control computer and the result is passed to the payload computer.



by industrial practitioners. It requires the installation of
stationary beacons at known locations surrounding the area
of interest which measure round-trip acoustic time of flight
before triangulating for 3D position estimation. Operating
areas are typically restricted to a few km2.

USBL navigation is an alternative method which is typ-
ically used for tracking an underwater vehicle’s position
from a surface ship. Range is measured via time of flight
to a single beacon while bearing is estimated using an array
of multiple hydrophones on the surface vehicle transducer.
Overall position accuracy is highly dependent on many
factors, including the range of the vehicle from the surface
ship, the motion of the surface ship, and acoustic propagation
conditions.

Instead of either LBL or USBL, our work aims to utilize
acoustic modems, such as the WHOI Micro-Modem [29],
which are already installed on the majority of AUVs for
command and control. The most accurate inter-vehicle rang-
ing is through one-way travel time ranging with precisely
synchronized clocks, for example using the design by Eustice
[30], which also allows for broadcast ranging to any number
of vehicles in the vicinity of the transmitting vehicle. An
alternative is round trip ranging (RTR), which while resulting
in more complexity during operation and higher variance,
requires no modification of existing vehicles.

Regardless of the ranging method, the range measurement
rj,3D, the 2-D position of the transmitting beacon, bj =
[xbj , ybj ], and associated covariances will be known to the
AUV at intervals on the order of 10–120 seconds. Having
transformed the range to a 2-D range over ground rj (using
the directly instrumented depth), a measurement model can
be defined as follows

rj = d(xj , bj) + µj µj ∼ N(0,Ξj) (2)

where xj represents the position of AUV state at that time.
GPS measurements of the beacon position are assumed to
be distributed via a normal distribution represented by Φj .

Comparing the on-board position estimates of the AUV
and the ASV in the experiments in Section IV, round trip
ranging is estimated to have a variance of approximately
7 meters, compared with a variance of 3 meters for one-
way ranging reported in [16]. An extra issue is that with
the ranging measurement occurring as much as 10 seconds
before the position and range are transmitted to the AUV, an
acausal update of the vehicle position estimate is required.

The operational framework used by Webster et al. [14],
[31] is quite similar to ours. Their approach is based on
a decentralized estimation algorithm that jointly estimates
the AUV and a supporting research vessel positions using a
distributed extended information filter. Incremental updates
of the surface vehicle’s position are integrated into the AUV-
based portion of the filter via a simple and compact addition
which, it is assumed, can be packaged within a single modem
data packet.

This precise approach hypothesizes the use of a surface
vehicle equipped with a high accuracy gyrocompass and a
survey-grade GPS (order of 50cm accuracy). Furthermore, as

described in [31], the approach can be vulnerable to packet
loss, resulting in missing incremental updates which would
cause the navigation algorithm to fail. While re-broadcasting
strategies to correct for such a failure could be envisaged, it is
likely that significant (scarce) bandwidth would be sacrificed,
making multi-vehicle operations difficult.

Our approach instead aims to provide independent surface
measurements to the AUV in a manner that is robust to
inevitable acoustic modem packet loss. The goal is a flexible
and scalable approach that fully exploits the one-way travel
time ranging data that the acoustic modems enable. The
solution should be applicable to situations in which only
low-cost GPS sensors are available on the ASVs or gateway
buoys, to provide maximum flexibility.

B. Side-scan Sonar

Side-scan sonar is a common sonar sensor often used for
ocean seafloor mapping [32]. As the name suggests, the sonar
transducer device scans laterally when towed behind a ship
or flown attached to an AUV through the water column. A
series of acoustic pings are transmitted and the amplitude
and timing of the returns combined with speed of sound in
water is used to determine the existence of features located
perpendicular to the direction of motion.

By the motion of the transducer through the water column,
two-dimensional images can be produced which survey the
ocean floor and features on it. See Fig. 3 for an example side-
scan sonar image. These images, while seemingly indicative
of what exists on the ocean floor, contain no localization
information to register them with either a relative or global
position. Also it is often difficult to repeatedly detect and
recognize features of interest, for example, Fig. 3 illustrates
two observations each of two different targets of interest.
Target 1 (a metallic icosahedron) appears differently in its
two observations. Targets are typically not identified using
the returned echoes from the target itself, but by the shadow
cast by the target [32].

For these reasons we must be careful in choosing side-scan
sonar features for loop closure. Appearance-based match-
ing techniques, such as FABMAP [33], would most likely
encounter difficulties with acoustic imagery. Metric-based
feature matching requires access to accurate, fully optimized
position and uncertainty estimates of the new target relative
to all previously observed candidate features. For these
reasons, we propose to use an efficient on-line smoothing
and mapping algorithm, iSAM [23], to optimize the position
and uncertainty of the entire vehicle trajectory, the sonar
target positions, as well as all the beacon range estimates
mentioned in Section II-A.

The geometry of the side-scan sonar target positioning is
illustrated in Fig. 3. Distance from the side-scan sonar to
a feature corresponds to the slant range, dm,3D, while the
distance of the AUV off the ocean floor (altitude, am) can
be instrumented. We will assume the ocean floor to be locally
flat2 which allows the slant range to be converted into the

2In the experiments presented in Section IV, the ocean floor had a gradient
of 0.5% — justifying this assumption.



horizontal range, resulting in the following relative position
measurement

dm,2D =
√
d2
m,3D − a2

m (3)

ψm = ±π/2 (4)

where ψm is the bearing to the target defined from the
front of the vehicle anti-clockwise. These two measurements
paired together give a relative position constraint, zm =
[dm,2D, ψm] for an observation of target sm. This target can
either be a new, previously unseen target or a re-observation
of an older target. In the experiments in Section IV this
data association is done manually while in future work we
will aim to do this automatically as in [18]. The resultant
measurement model will be as follows

zm = h(xm, sm) + vm vm ∼ N(0,Λm) (5)

where xm is the pose of the AUV at that time. In effect,
repeated observations of the same sonar target correspond
to loop-closures. Such repeated observations of the same
location allow uncertainty to be bounded for the navigation
between the observations.

III. SMOOTHING AND MAPPING

The overall measurement system is described by the factor
graph in Fig. 4. The joint probability distribution of the
vehicle trajectory, X = [x1 x2 . . . xN ]; acoustic range mea-
surements, R = [r1 r2 . . . rJ ]; relative sonar measurements,
Z = [z1 z2 . . . zM ]; and the set of control measurements
between two successive poses U = [u1 u2 . . . uN ] is given
by

P (R,Z,U,X) = P (x0)

N∏
i=1

P (xi|xi−1, ui)

J∏
j=1

P (gj)

J∏
j=1

P (rj |xj , bj)
M∏

m=1

P (zm|xm, sm) (6)

where xj represents the vehicle pose when measuring the
range rj to beacon bj , and xm when observing sonar target
sm at relative position zm. This maintains the approach
presented in [23], [24]. Note that each beacon position bj
is initialized using its GPS measurment gj as a prior P (gj),
as indicated in Figure 4, which implicitly assumes successive
measurements to be independent which is important to
maintain flexibility.

Our specific implementation incorporated absolute mea-
surements from a proprietary INS system in the global frame.
For this reason we also required a prior on the vehicle
heading ψi which has been omitted here for clarity.

A maximum a posteriori (MAP) estimate of the vehicle
trajectory, X, can be formed given the measurements R,
Z, and U. Denoting this estimate X̂ , the resultant MAP

(a)

(b)

Fig. 3. (a): As the AUV travels through the water the side-scan sonar
images laterally with objects on the ocean floor giving strong returns. (b):
A top down projection of the side-scan sonar for a 120m of vehicle motion
(left to right). The lateral scale is 30m in each direction which yields a 1:1
aspect ratio. Note that in this case Targets 1 and 2 have been observed twice
each after an about turn.

estimator is given by

X̂ = arg max
X

P (R,Z,U |X)P (X) (7)

= arg max
X

P (R,Z,U,X) (8)

= arg min
X

− logP (R,Z,U,X) (9)

Assuming Gaussian measurement noise and using the pro-
cess and measurement models defined in preceding sections,
we arrive at the following nonlinear least-squares problem

X̂ = arg min
X

N∑
i=1

‖f(xi−1, ui)− xi‖2Σi

+

J∑
j=1

‖bj − ĝj‖2Φj
+

J∑
j=1

‖d(xj , bj)− r̂j‖2Ξj

+

M∑
m=1

‖h(xm, sm)− ẑm‖2Λm
(10)



Fig. 4. Factor graph formulation of the measurement system showing
vehicle states xi, surface beacons bj and sonar targets sk . Also illustrated
are the respective constraints: range rj in the case of the surface beacons
and range and relative bearing zm in the case of sonar targets. Ranges are
paired with surface beacon measurements while multiple observations of a
particular sonar target is in effect a loop closure.

where ‖x‖2Σ := xT Σx.
The resultant problem is sparse, which lends itself to

solution using incremental Gauss-Newton methods such as
Incremental Smoothing and Mapping (iSAM) [23]. This
approach updates the entire vehicle trajectory and landmark
set when new measurements are received rather than recalcu-
lating the nonlinear least squares system anew each iteration.
Computation analysis presented therein indicate that this
approach could run in real-time for missions of our type for
tens hours, assuming that range and/or sonar measurements
are obtained approximately once per minute.

A. Multi-Mission Operation

While SLAM algorithms are most commonly utilized
on a single vehicle during operation, extensions have been
developed to support operation across multiple robots or
missions [34], [35] for faster or persistent operation. As GPS
is typically not assumed, careful consideration of robot-to-
robot encounters so as to combine the vehicle maps is a
key consideration. In the AUV domain, however, operation
is explicitly within the global coordinate frame due to ini-
tialization at known GPS positions (with some uncertainty)
and the use of a compass or a fiber optic gyroscope (FOG)
for heading measurement. However, simultaneous multiple
AUV navigation has only begun to be investigated due to
low acoustic communication bandwidth [36] as well as the
high cost of operating the vehicles.

Instead, we consider the optimization of successive mis-
sions with a single AUV in the same part of the ocean. This
is important because many AUV applications require either
revisiting previously surveyed locations to more closely
observe targets of interest, or resurveying to detect changing
environments over time.

The problem will be proposed as the joint optimization
of two vehicle trajectories which are independent — except
for the observation of the same sonar target across different
missions. This requires only minor indexing modification of
Eq. 10. The individual portions of the resulting combined
map will in fact be more accurate than individual opti-
mization alone. Computationally, the optimization will be

no more intensive than a single extended mission. (See [34]
for a related discussion.) This approach is demonstrated in
Section 6(a).

IV. EXPERIMENTS

A series of experiments were carried out in St. Andrews
Bay in Panama City, Florida to demonstrate the proposed
approach. A Hydroid REMUS 100 AUV carried out four
different missions while collecting side-scan sonar data (us-
ing a Marine Sonics transducer) as well as range and GPS
position information transmitted from either the Scout ASV
(Fig.2) or a deck-box on the 10m support vessel. In each case
a low cost Garmin 18x GPS Sensor was used to provide GPS
position estimates.

The Kearfott T16 INS, connected to the REMUS frontseat
computer, fused its RLG measurements with those of a
Teledyne RDI DVL, an accelometer and a GPS sensor to
produce excellent navigation performance. For example after
a 40 minute mission the AUV surfaced with a 2m GPS
correction - drift of the order of 0.1% of the distance traveled.

The AUV did not have the ability to carry out one-way
ranging and as a result two-way ranging was used instead.
The navigation estimate was made available to a backseat
computer which ran an implementation of the algorithm in
Sec. III (less the sonar portion).

Given the variance of two-way ranging (∼7m) and the
accuracy of the vehicle INS, it would be ambitious to expect
to demonstrate significant improvement using cooperative
ranging-assisted navigation in this case. For this reason these
missions primarily present an opportunity to validate and
demonstrate the system with combined sensor input and mul-
tiple mission operation. As stated previously, the intended
application area of this technology is not in the improvement
of the performance of short (hour-long) missions with such
an AUV but rather for very long duration missions (∼10 hrs)
or with much less accurate AUVs.

Given these issues, we estimate that the resultant bounded
error for a non-RLG enabled AUV with several percent drift
would be of the order of 3–5m (depending on the relative
geometry and frequency of the OWTT range measurements).
Future work will aim to properly quantify this value on such
a platform.

For simplicity we will primarily focus on the longest
mission — Mission 3 in Fig. 6(a) — before discussing
the extension to successive missions in Section IV-B. The
missions are numbered chronologically.

A. Single Mission

During Mission 3, the AUV navigation data was combined
with the acoustic range/position pairs and optimized on-
line on-board the AUV using iSAM to produce a real-
time estimate of its position and uncertainty. After the
experiments, sonar targets were manually extracted from the
Marine Sonics data file and used in combination with the
other navigation data to produce the combined optimization
illustrated in Fig. 5. An overview of the mission is presented



in Fig. 6 as well as quantitative results from the optimization
where 3σ uncertainty was determined using 3

√
σ2
x + σ2

y .
Starting at (400,250), the vehicle carried out a set of four

re-identification (RID) patterns. These overlapping patterns
are designed to provide multiple opportunities to observe
objects on the ocean floor using the side-scan sonar. Typically
this mission is carried out after having first coarsely surveyed
the entire ocean floor. In this case two artificial targets were
placed at the center of patterns 2 and 3 and were detected
between 15-24 mins (6 times) and 27-36 mins (7 times)
respectively. The surface beacon, in this case the support
vessel on anchor at (400,250), transmitted round-trip ranges
to the AUV on a 20 second cycle.

A quantitative analysis of the approach is presented in
Fig. 6(a). The typical case (black) of using only dead reck-
oning for navigation results in ever increasing uncertainty.
The second approach (blue) utilizes target re-identifications
in the sonar data but not acoustic range measurements. This
temporarily halts the growth of uncertainty but monotonic
growth continues in their absence.

Acoustic ranging by comparison (red) can achieve
bounded error navigation — in this case with a 3σ-bound
of about 2m. As the AUV’s mission encircled the support
vessel, sufficient observability was achieved to properly
estimate the AUV’s state — which results in the changing
alignment of the uncertainty function. However performance
deteriorates when the relative positions of the vehicles do not
vary significantly (such as during patterns 3-4; 40-53 mins).

Finally, the best performance is observed when the sonar
and acoustic ranging data are fully fused. Interestingly,
the two modalities complement each other: during re-
identification patterns 2 and 3, sonar target observations
bound the uncertainty while the AUV does not move relative
to the support vessel. Later the vehicle transits between
patterns — allowing for the range observability to improve.

Note that the initial fall in uncertainty is due to the algo-
rithm being initialized with a conservative initial covariance
of 5m in each direction. Also the covariances presented in
Fig. 6(a) are for the fully converged system at the end of
the mission. A full-trajectory optimization of the AUV pose
would have been available to the AUV for path planning
during operation via iSAM, this estimate would later have
been improved upon using as yet unreceived measurements
to generate Fig. 6(a). See [16] for more information.

In summary, the combination of the on-board, sonar and
ranging sensor measurements allows for on-line navigation
to be both globally bounded and locally drift-free.

B. Multiple Missions

In this section we will describe how the algorithm has
been extended to combine the maps produced by multiple
successive AUV missions within a single optimization frame-
work. As mentioned in previous sections, it is advantageous
to provide a robot with as much prior information of its
environment before it begins its mission, which it can then
improve on as it navigates.

Space considerations do not permit a full analysis of
this feature, but briefly: during Missions 1 and 2 surface
information was transmitted from an Autonomous Surface
Vehicle, MIT’s Scout kayak (shown in Fig. 2), which moved
around the AUV so as to improve the observability of
the AUV, as previously demonstrated in [16]. In Mission
4, as in Mission 3, the support vessel was instead used
— although in this case the support vessel moved from a
location due east of the AUV to another location due west
of the AUV, as illustrated in Fig. 5. This demonstrates that a
basic maneuver by the support vessel is sufficient to ensure
mission observability. The mission started at (350,200).

While no quantitative results of the 4-mission optimization
are presented here, Fig. 6(b) illustrates the inter-mission
connectivity. This demonstrates that the two targets were
observed numerous times during the missions, which allows
us to combine the navigation across all of the missions into
a single fully optimized estimate of the entire operation area.
Note that targets seen on only one or two occasions are not
presented for clarity.

While such an approach could possibly be carried out for
several vehicles operating simultaneously, sharing minimal
versions of their respective maps [36], it is unclear if the
acoustic bandwidth available would be sufficient to share
sonar target observation thumbnails to verify loop closure.

V. CONCLUSIONS AND FUTURE WORK

The paper has presented a method for the fusion of on-
board proprioceptive navigation and relative sonar observa-
tions with acoustic ranges transmitted from an autonomous
surface vehicle. The approach is optimal and consistent
while maintaining computational efficiency, which allows for
operation for many hours in real-time for missions of the type
described above.

Factors resulting in a reduction in performance of this
approach are as follows: (1) infrequent ranging (2) ranging
from the same relative direction (3) sonar targets not being
present or being infrequently observed.

Future work will focus on the implementation of this
approach combined with on-board decision making which
will allow the AUV to maintain accurate navigation —
so called active localization. While the ranging portion of
the algorithm operated entirely online on-board an AUV,
accurate on-line detection of sidescan sonar targets will also
be required using an approach similar to [18], [24].

This approach will again utilize a Hydroid REMUS 100,
but specifically the vehicle will not have a laser gyroscope
resulting in on-board navigation which will be less accurate
but of a much more typical performance. One-way ranging
will also be supported — giving more balanced sensor inputs
and allowing each modalities to contribute evenly.

Multi-AUV cooperative navigation (without a surface
node) is substantially different to the problem discussed
here, the solution of which requires careful consideration of
intervehicle correlation in the context of extremely limited
underwater bandwidth.
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Fig. 5. An overview of the optimized trajectory estimates of the AUV (blue)
and the surface vehicle (red), as well as the estimated position of three sonar
targets (magenta) for two of the missions. Note that the single magenta line
between the two figures demonstrates the mutually observed target which
allows for the joint optimization of the two missions. This corresponds to
Target 3 in Figure 6(b). The red lines indicate the relative vehicle positions
during ranging while the ellipses indicate position uncertainty.
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Fig. 6. (a): Navigation uncertainty for Mission 3 for four different
algorithm configurations. As expected the dead reckoning-only solution
suffers from continuous uncertainty growth (black). When sonar targets
are observed, uncertainty growth can be halted using loop closures, before
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error growth — subject to observability (red); while the full sensor fusion
produces the solution with minimum uncertainty (magenta). See Sec. 6(a)
for more details. (b): During the four (consecutive) missions, range measure-
ments (represented by the red lines) were frequently received from the ASV
(Mission 1 and 2) or the research vessel (Mission 3 and 4). Occasionally
targets were detected in the side-scan sonar data. Repeated observations of
the same target (illustrated in magenta) allow for a SLAM loop closure and
for inter-loop uncertainty to be bounded. Note that multiple observations
of the same targets occur across the four missions enabling multi-session
mapping. Finally, the events presented for Mission 3 synchronize with
Fig. (a).
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