
Efficient Multiresolution Scrolling Grid
for MAV Obstacle Avoidance

Eric Dexheimer
CMU-RI-TR-20-26

August 2020

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Thesis Committee:
Michael Kaess (Chair)

George Kantor
Alex Spitzer

Submitted in partial fulfillment of the requirements
for the degree of Master of Science.

Copyright c© 2020 Eric Dexheimer

Abstract
Fast, aerial navigation in unknown, cluttered environments requires a suitable map

representation for path planning. In this thesis, we propose the use of an efficient,
structured multiresolution representation for robot mapping and planning. We focus
on expanding the sensor range of dense local grids for memory-constrained platforms.
While multiresolution data structures have been proposed previously, we avoid pro-
cessing redundant information and use the organization of the grid to improve effi-
ciency. By layering 3D circular buffers that double in resolution at each subsequent
level, objects near the robot are represented at finer resolutions while coarse spatial
information is maintained at greater distances. We also introduce a novel method for
efficiently calculating the Euclidean distance transform on the multiresolution grid by
leveraging its structure. Lastly, we utilize our proposed framework to demonstrate
improved stereo vision-based MAV obstacle avoidance with an optimization-based
planner in simulation.

iv

Acknowledgments
First, I would like to thank my advisor, Michael Kaess, for his guidance and sup-

port throughout the past two years. I really appreciate his patience with my learning
and development. In addition, I am grateful for my colleagues in the Robot Perception
Lab. I have learned a lot from everyone in the lab through countless discussions, and
they have also made my experience at CMU very enjoyable. I would like to thank the
rest of my MSR thesis committee, George Kantor and Alex Spitzer. I really appreciate
the time, feedback, and questions they have given me. I am grateful for all of my col-
leagues in the Air Lab, on the DARPA Subterranean Challenge team, and in the FRC.
It has been a pleasure working with all of you. Lastly, I would like to thank my family
and friends for providing support during these last two years.

vi

Contents

1 Introduction 1

2 Related Work 5

3 Structured Multiresolution Occupancy Mapping 9
3.1 Data Structure . 9
3.2 Occupancy Updates . 10
3.3 Scrolling . 11

3.3.1 Coarse-to-Fine . 11
3.3.2 Fine-to-Coarse . 12

4 Structured Multiresolution Euclidean Distance Transform 15
4.1 L1 Distance Scan . 15
4.2 L2 Distance Scans . 18
4.3 Beyond Full Batch Solution . 19

5 Experiments 23
5.1 Experimental Setup . 23
5.2 Memory Considerations . 23
5.3 Timing . 25
5.4 Planning Simulation . 25

6 Conclusion and Future Work 33
6.1 Conclusion . 33
6.2 Future Work . 33

Appendices 35

A Structured Multiresolution Raycasting 35
A.1 Finest-Resolution Bresenham . 35
A.2 Multiresolution Bresenham . 36
A.3 Multiresolution Voxel Traversal . 38

vii

viii

List of Figures

1.1 (Top) 3D multiresolution occupancy grid colored by height in simulated envi-
ronment along with stereo images. (Bottom) Top-down view of multiresolution
scrolling grid. The goal of the discrete grid is to approximate the true distance
field for path planning. 3

2.1 Visual comparison of single-frame, multi-frame, and volumetric methods. Volu-
metric data structures can fuse data temporally into a unified representation. 6

2.2 High-level comparison of finer and coarser resolutions in cluttered environments
and for high velocities. Finer resolutions can better navigate tight spaces while
coarser resolutions allow for planning further ahead. 6

3.1 Plot of log-odds values after scrolling through a number of coarse-to-fine transi-
tions. In this case, it is assumed that cells are not updated with sensor measurements. 12

3.2 Two views of example scrolling between layers with the grid moving to the right.
The order of highest resolution to lowest is red, blue, green. Darker colors within
a level can be viewed as leaving the volume and being cleared, while lighter colors
indicate cells entering the volume and being initialized. While not visible, coarser
cells that transfer data to finer layers are also cleared. 14

4.1 L1 scan on uniform grid consisting of forward and backward passes. Free cells are
initialized to zero while occupied cells are set to infinity. 16

4.2 Forward pass for L1 scan. Darker colors indicate that the operation is performed
first on that layer, while lighter colors are scans that must be initialized from finer
levels. A similar backward pass is also needed to finish the scan. 17

4.3 Reflection that yields incorrect distance in L1 scan. Since updates are done in
place, distance from the occupied cell is propagated into the coarser levels, and
then propagated from the coarser cells into finer ones on the backward pass. Two
examples of cells that are given incorrect distance values are shaded here. This
is an overestimate of the distance, so it is corrected in future scans. The correct
version would be to have a distance of infinity in this case, but it will not change
the result of subsequent scans. 17

ix

4.4 Multiresolution lower envelope calculation for bottom row of 2D half-grid. Oc-
cupancy is shown above, while the corresponding distance parabolas are below.
Lower envelopes are shown as solid lines, while potential parabolas are dotted
lines. The vertical lines show the transition from different layers in the scan. In the
middle, since there are four valid rows in the finest level, each has its own lower
envelope, while there are only two in the second level, and one in the coarsest level.
Vertices are shown to be zero at obstacle locations, but will take different values
when other scans are involved. 19

4.5 Organizing L2 scans at the finest possible level in the 3D case. Morton decoding
takes the odd bits as the x-coordinate, and the even bits as the y-coordinate. This
yields the iteration pattern shown by the white line, which is used to enforce de-
pendencies among scans for coarser levels. In this case, twelve distinct L2 scans
must be completed and merged for the coarsest level shown. 20

4.6 Example of updating relevant rows and columns for 2D multiresolution EDT. The
blue cell switches from free to occupied, so the row at the coarsest level requires a
new scan. In the second scan axis, the truncation distance is added on both sides
to determine which columns need to be updated. 21

5.1 Example of realistic, randomly-generated Gazebo forest world used in experiments. 24
5.2 Simulation views of Gazebo environment using RotorS MAV [1] and planner from

[2]. (Top) View of realistic simulation forest. (Center) Baseline grid plans around
first tree, but new trees appear in collision after scrolling, resulting in less smooth
trajectories. (Bottom) Our multiresolution grid allows for planning further ahead
without sacrificing significant memory or computation. 27

5.3 Success fraction vs. max velocity for different map representations in environments
with 0.1 trees per meter squared. Each max velocity contains results across 50
environments and 10 trials per environment. 28

5.4 Box-plots of integral of squared jerk vs. max velocity for different map representa-
tions in environments with 0.1 trees per meter squared. Each max velocity contains
results across 50 environments and 10 trials per environment. 28

5.5 Qualitative example with max velocity of 2m/s. Each map representation is shown
with 25 successful trials. The aspect ratio of the y-axis to the x-axis is magnified
to enhance visualization. 30

5.6 Qualitative example with max velocity of 3m/s. Each map representation is shown
with 25 successful trials. The aspect ratio of the y-axis to the x-axis is magnified
to enhance visualization. 31

5.7 Success fraction vs. max velocity for different map representations in environments
with 0.05 trees per meter squared. Each max velocity contains results across 50
environments and 10 trials per environment. 32

5.8 Box-plots of integral of squared jerk vs. max velocity for different map repre-
sentations in environments with 0.05 trees per meter squared. Each max velocity
contains results across 50 environments and 10 trials per environment. 32

x

A.1 Bresenham algorithm at finest resolution and indexing into parents of the grid in
2D. Discretization of endpoints to allow for integer operations can create inaccu-
rate raycasting. 36

A.2 Multiresolution Bresenham algorithm in 2D. Discretization of endpoints to allow
for integer operations and coarser resolutions can both cause inaccurate raycasting. 37

A.3 Multiresolution voxel traversal algorithm in 2D. Note that all cells that the ray
touches are flagged. 38

xi

xii

List of Tables

5.1 Memory comparison of uniform and multiresolution grids. 24
5.2 Average timing comparison in milliseconds between a ”Baseline” uniform grid

from [2] and our method. Raycasting is performed on disparity images downsam-
pled to 160 × 120. Each grid from [2] uses a 0.15m resolution, and we use the
same for the finest resolution. Thirteen control points were used for the trajec-
tory optimization. Total average time assumes mapping and planning run at same
frequency. 25

5.3 Planning simulation statistics comparison over all 2500 runs. Mean and standard
deviation of the integral of squared jerk are counted only for successful runs. The
”Baseline” columns refer to the uniform grid implementation from [2]. 26

xiii

xiv

Chapter 1

Introduction

As micro-aerial vehicles (MAVs) become more prevalent in the real-world, there is still a need
for efficient on-board algorithms. Specifically, navigation in unknown and cluttered environments
remains an active area of research. The major components of autonomy, such as localization,
mapping, and planning, are all interdependent. Vision-based tracking requires smooth trajectories,
low-drift odometry is needed to produce consistent maps, and planning needs an adequate map
representation to generate safe and smooth trajectories.

Volumetric representations are frequently used to fuse data temporally into a spatially-organized
map. Scrolling local grids maintain a constant memory footprint and can represent distance infor-
mation densely, which is useful for trajectory optimization. However, the memory consumption of
dense grids forces a trade-off between resolution and range for MAVs. Finer resolution is neces-
sary for planning in cluttered environments, and longer-range is needed for fast and smooth flight.
Although the limited range of these dense grids is compatible with RGB-D sensors, passive stereo
cameras provide longer-range distance measurements.

To address this issue, we propose an efficient multiresolution scrolling grid for robot mapping and
planning. Detail can be preserved near the MAV and grid limits can be extended while avoiding
storage and computational constraints. A naive multiresolution grid implementation would per-
form independent map updates at each resolution before fusing the levels together. However, this
requires computing redundant information and ensuring consistency across level boundaries. We
propose an improved alternative which tracks level boundaries during sensor data integration and
transfers data between layers as the grid scrolls.

While occupancy is sufficient for finding collision-free paths, the Euclidean distance transform
(EDT) can provide gradient information for optimization-based planners to generate smooth paths.
For multiple resolutions, a naive EDT computation would update each level before merging the
results. Considering all levels jointly is difficult because of irregular dependencies with multiple
levels present. We propose a novel method that handles these dependencies and leverages the grid’s
structure in order to improve efficiency.

1

Our main contributions are:

• A structured multiresolution occupancy framework that avoids integrating redundant infor-
mation and handles data transfer between layers.

• A method for efficiently calculating the multiresolution EDT by exploiting the grid’s struc-
ture.

• Simulation results demonstrating the memory and performance improvements over a single-
resolution grid, as well as improved safety and smoothness of planned trajectories.

2

Figure 1.1: (Top) 3D multiresolution occupancy grid colored by height in simulated environment along with stereo
images. (Bottom) Top-down view of multiresolution scrolling grid. The goal of the discrete grid is to approximate the
true distance field for path planning.

3

4

Chapter 2

Related Work

A robot’s map representation depends heavily on the task at hand. For collision avoidance, free-
space information is needed. Some representations only maintain obstacles, and assume all other
space is free. For example, obstacles can be represented by points in 3D space, such as those
obtained from stereo triangulation. NanoMap performs a greedy uncertainty-aware point obstacle
search in a history of frames, which is susceptible to stereo outliers [3]. Obstacle avoidance directly
in disparity space has also been proposed [4], but the obstacle position directly corresponds to
the raw sensor measurement. To reduce the influence of noise, a pose graph for a history of
disparity frames, as well as a pseudo-occupancy measure, was introduced in [5]. While polar
representations, such as egocylinders [6] and spherical maps [7], can filter out noise with temporal
fusion, they are expensive to center around the MAV. Along with single-image methods, they are
also subject to occlusion.

In contrast to point-obstacles, occupancy grids store free-space information in a spatially orga-
nized structure such that noisy sensor data can be fused temporally [8]. A visual comparison of
volumetric data structures with frame-based methods is shown in Fig. 2.1. However, uniform grids
consume large amounts of memory for large areas or fine resolutions. Better memory efficiency in
global maps can be achieved by multiresolution maps, such as octrees, which prune repetitive spa-
tial information [9]. In [10], a local dynamically-tiled octree is constructed, and cached tiles are
loaded upon revisiting an area. Hierarchical voxel hashing reconstructs surfaces via a truncated
signed distance field (TSDF) using varying resolutions of sparsely allocated blocks [11]. These
global methods require dynamic memory allocation that can grow without bound, which reduces
efficiency and cannot support long-term MAV flight. To maintain constant memory usage, a dense
scrolling volume can be represented using a 3D circular buffer [12]. While the local grid is suit-
able for the limited range of RGB-D sensors, it cannot be extended to the range of stereo cameras
without sacrificing significant memory or resolution. Finer resolutions allow for precise movement
in cluttered environments, while coarser resolutions avoid myopic behavior. A comparison of this
resolution trade-off is shown in Fig. 2.2.

Although occupancy or point-based obstacle information is sufficient for determining if query

5

Single frame Multiple Frames Volumetric Data Structure

Figure 2.1: Visual comparison of single-frame, multi-frame, and volumetric methods. Volumetric data structures can
fuse data temporally into a unified representation.

Figure 2.2: High-level comparison of finer and coarser resolutions in cluttered environments and for high velocities.
Finer resolutions can better navigate tight spaces while coarser resolutions allow for planning further ahead.

points are in collision, it does not provide a smooth gradient for continuous-time planning. Trajec-
tory optimization is beneficial for local MAV replanning since it avoids discretization of the state
space and permits smooth flight, which in turn improves control, state estimation, and mapping
[2, 13]. Similar to occupancy, the EDT is defined over a spatial grid, but provides the distance to
the nearest obstacle [14]. In [2], a batch EDT is obtained from a scrolling occupancy grid to provide
uniform B-spline trajectory optimization with a smooth obstacle cost. Incremental distance trans-
forms have also been proposed to update scrolling grids [15] and larger environments on-board

6

MAVs [16]. However, these usually assume static environments, require a priority queue, and may
touch the same cell multiple times per update. In contrast, local planning for MAVs should be
able to update the representation quickly even with large changes in the environment. Since local
trajectory optimization requires dense distance information, it is well-suited for a scrolling map
representation.

In [17], a static multiresolution TSDF and EDT is used to map specific areas of a room with
varying detail. The GPU processing affords the use of extra computation, such that the TSDF and
EDT layers are updated independently before merging the results. Similar to [17], we organize
all resolutions into a robocentric grid for efficient mapping. However, our method is for CPU
processing, so we do not process redundant information. We also handle independently moving
and potentially misaligned layers. A layered 3D circular buffer data structure has been proposed
for multiresolution surfel-grids [18], which maintains a history of point measurements and surfels
for LiDAR scan registration. Unlike [18], we do not handle layers independently. Since there are
existing, highly accurate stereo visual-inertial odometry methods, we do not have to keep a history
of previous measurements for odometry, and instead focus on constant memory usage. We require
efficient occupancy and EDT updates that avoid processing and storing redundant information.

7

8

Chapter 3

Structured Multiresolution Occupancy
Mapping

We construct a multiresolution occupancy map by layering dense 3D occupancy grids, as shown in
Fig 1.1. Starting from an initial resolution for the finest grid at layer l = 0, the resolution doubles
for each subsequent layer. The grids do not rotate, and independently center themselves around the
robot, which triggers data transfer between layers. Since each layer is a dense grid, coarser cells
occluded by finer ones exist in memory, but are not actively maintained to avoid redundancy.

3.1 Data Structure
Each layer is a 3D circular buffer stored as a 1D array. A circular buffer is a fixed-size array
that circles back on itself when indexed with respect to an offset. In other words, indexing one
element past the last element will index the first element. Each level has its own integer offset
ol = (olx, o

l
y, o

l
z)

T specifying the origin of the grid in the world frame. Circular buffers avoid
copying large amounts of data when the map translates, as only the offset and trailing cells leaving
the map need to be updated. By keeping the scrolling of layers independent, finer resolutions will
scroll more frequently than coarser ones. One alternative would be to scroll only at the coarsest
level, which would ensure all grid layers are always aligned. While this would simplify operations
such as raycasting and the EDT calculations since there would be no offsets between grids, the
robot could reach the edge of the finest grid before the coarsest grid scrolls. This would severely
limit the finer resolution mapping volume in the robot’s field of view.

Similar to [2], we restrict the grid dimensions to be powers of two so that we can use bitwise
operations. However, we allow the z-dimension to differ from the xy-dimensions. To index into
layer l of the grid, we first obtain a voxel’s integer world coordinate vl = (xl, yl, zl)T by translating
the grid coordinates gl to the world frame via the offset ol:

vl = gl + ol. (3.1)

9

For a layer l with grid dimensions d = (dx, dy, dz)
T , and world coordinate vl, we can obtain the

3D circular buffer index along the x-axis x̄l by using the bitwise AND operator &:

x̄l = xl & (dx − 1). (3.2)

By restricting the dimensions to be powers of two, we can avoid using the modulo operator to get
the remainder, which is more expensive to calculate. This equation ensures we do not exceed the
grid dimensions by clearing bits that exceed the dimension. To find the full 3D index in the grid,
we repeat the above for the yl and zl coordinates, and then find the 1D array location:

il = x̄ldydz + ȳldz + z̄l. (3.3)

By indexing into the grid using world coordinates, it is also straightforward to index parent and
children cells. A parent cell is a coarser-resolution cell containing the current cell, while a parent
cell has eight finer-resolution children cells. The world coordinate parent cell index n levels above,
xl+n, can be obtained by a right arithmetic bit-shift in each dimension

xl+n = xl � n. (3.4)

Similarly, the children cells can be found by performing a left bit-shift and iterating over the re-
sulting 2 × 2 × 2 cube. Note that parent or children cells are not guaranteed to be inside the grid,
since they are just virtual locations in the world space. We can check whether world x-coordinate
xl resides inside a grid layer l by using the boolean NOT !, bitwise AND &, and bitwise NOT ∼
operators:

isInsideX(xl) = !((xl − olx) &(∼ (dx − 1))). (3.5)

This equation determines if the world coordinate is within the current grid coordinates given the
offset. This can be combined with the y and z dimensions to find whether a voxel lies inside a 2D
cross-section or 3D volume.

3.2 Occupancy Updates
Previous structured multiresolution grids, such as [17] and [18], update cells at each level inde-
pendently before fusing the levels together. To avoid processing redundant information and to
lessen the computational load, we always update occupancy at the finest possible level that a ray
intersects. Coarser levels further from the robot ensure fewer cells need to be updated, but the
raycasting needs to accommodate the change in structure. By centering each grid layer around the
robot, we only need to check if the next cell along the ray is within the current level before switch-
ing to a coarser level. The structure of the grid prevents having to check the level of every cell,
since the ray always marches toward coarser resolutions, which improves performance. Points tri-
angulated outside of the grid are projected into the grid as free rays. At the finest voxel resolution,
we perform the Bresenham algorithm [19], which increments the world coordinate along the axis
of greatest change at each step. This is efficient since it uses integer operations, and our extension

10

only requires an additional check on the validity of the level and bit-shifts for indexing. Although
cells at coarser levels may be flagged more than once, a fully multiresolution Bresenham was less
precise and slower in our experiments. More details on the developed raycasting methods can be
found in Appendix A.

For the occupancy probability, we update using a standard log-odds formulation, but also restrict
each cell to be updated only once per disparity image. This handles inconsistencies caused by
shallow viewing angles of large voxels [9]. This voting-based method is efficient, but a full sensor
model could be utilized if desired, especially if other sensors were included.

Prior to integrating sensor data, all levels of the grid are scrolled to be centered around the robot,
which will be discussed further in the next section.

3.3 Scrolling
For a single-resolution 3D circular buffer, scrolling only requires that trailing cells and the offset
be updated. In our multiresolution grid, we present an efficient method for handling the transfer of
data between finer and coarser levels. Since we scroll grid layers independently, they may become
misaligned. This needs to be handled explicitly to avoid information gaps along edges.

3.3.1 Coarse-to-Fine
Occupancy grids only represent the probability of an obstacle residing in a cell, so there is no
explicit sub-resolution information. Thus, when scrolling from coarse-to-fine, the problem is ill-
posed. Rather than copying the probability from the parent to the children cells, we introduce
uncertainty while maintaining a conservative estimate. Representing the log-odds of a cell at layer
l as Ll, and the maximum log-odds Lmax as unsigned integers, we set all eight children cells
according to

Ll
c =

1

4
Lmax +

1

2
Ll+1, c = 1 . . . 8. (3.6)

This equation ensures that cells retain their occupancy state for a threshold at Lmax/2. However,
since the log-odds value is forced closer to the threshold, future measurements will correct the
spatial details more quickly. If the coarse cells were naively copied into finer cells, a large number
of sensor measurements may be needed to carve out space. While not theoretically correct, the
equation essentially introduces uncertainty into the occupancy state without changing it. This
still avoids making navigation unsafe because cells are assumed to be occupied until sensor data
disagrees with this hypothesis. Once sensor data determines that a finer cell should be free, then it
will be carved out and allow for the drone to navigate tighter spaces.

A plot of the an occupancy cell scrolling into a number of finer levels without being modified by
sensor data is shown in Fig. 3.1. Note that the line converges to a horizontal line at unknown
occupancy, which is the value 128 when using a uint8 datatype for the log-odds, but cells will
never transition to a new occupancy state.

11

0 50 100 150 200 250
Original occupancy (uint8)

0

50

100

150

200

250

O
cc

up
an

cy
 a

fte
r s

cr
ol

lin
g

n
le

ve
ls

 (u
in

t8
)

Coarse-to-Fine Occupancy After Scrolling Through Levels

Occupied Space
Free Space
Occupancy Threshold
0 levels
1 levels
2 levels
3 levels
4 levels

Figure 3.1: Plot of log-odds values after scrolling through a number of coarse-to-fine transitions. In this case, it is
assumed that cells are not updated with sensor measurements.

3.3.2 Fine-to-Coarse
When scrolling from fine-to-coarse, we again use a conservative approach by taking the maximum
log-odds from the set of children cells:

Ll = max {Ll−1
c : c = 1 . . . 8} (3.7)

where c is the index of the children cell. This is a standard formulation to ensure a cell is counted
as occupied if any of the children cells are occupied.

12

The transfer of data between levels must be handled in a specific order to avoid extra copy op-
erations. The following method is summarized in Algorithm 1. First, the offset of the coarsest
level is adjusted by finding the scroll difference needed to center the robot in the grid. The cells
from the trailing edge in each dimension are cleared, and now represent the leading edges. In the
3D circular buffer, no new memory is allocated, as the shift in the offset only affects the indexing
into the 1D array. Next, the trailing edge of the second coarsest level is transferred to the coarsest
level using the fine-to-coarse transfer described above and shown in Fig. 3.2. Since the two levels
may not be aligned and partial offsets are possible, all children may not be transferred at the same
time. Only the children cells that need to be placed at the leading edge are used. The level offset is
updated, and then the coarse-to-fine transfer is performed for the leading edge. All levels including
the finest level follow this procedure. Lastly, any coarse cells that become occluded by finer ones
are cleared to zero. This ensures that when the grids continue scrolling, and these coarser cells
become active again, they start with the smallest possible log-odds value. Furthermore, the max
operation from fine-to-coarse scrolling can then be correctly applied even when there is a partial
offset, at which point only some of the children cells are factored into the log-odds of the parent
cell. To clear the occluded inner cells, the scroll difference from one level lower than that of the
level being cleared is required.

Algorithm 1 Multiresolution scrolling
Input: Robot position p,

Number of levels L,
Offsets ol, l = 1 . . . L,
Resolutions rl, l = 1 . . . L

sL← GetScrollDiff(p, oL, rL)
oL ← oL + sL

ClearEdges(sL, L)
for l = L− 1 to 1 do

sl← GetScrollDiff(p, ol, rl)
FineToCoarse(sl, l)
ol ← ol + sl

CoarseToFine(sl, l)
for l = 2 to L do

ClearInnerCells(sl−1, l)

13

Fine-to-Coarse Coarse-to-Fine

Fine-to-Coarse Coarse-to-Fine

Figure 3.2: Two views of example scrolling between layers with the grid moving to the right. The order of highest
resolution to lowest is red, blue, green. Darker colors within a level can be viewed as leaving the volume and being
cleared, while lighter colors indicate cells entering the volume and being initialized. While not visible, coarser cells
that transfer data to finer layers are also cleared.

14

Chapter 4

Structured Multiresolution Euclidean
Distance Transform

From the occupancy grid, we can now determine the distance to the nearest occupied cell for every
cell. The Euclidean distance transform (EDT) is a method for calculating these distances across the
grid. By storing this in a volumetric data structure, distances can be interpolated at real locations,
and gradients can be accessed for trajectory optimization.

While there are previous methods for calculating the EDT on uniform grids, we propose a novel
method for efficiently calculating the EDT on a structured multiresolution grid. We avoid perform-
ing the EDT on each grid independently, and instead consider all grids jointly, such that redundant
information is not processed. Similar to [20], [14], we decompose the calculation into 1D scans
along each axis. However, the multiresolution grid has added complexity, since a 1D scan at the
coarsest level has dependencies on multiple finer level scans. We first present the batch multires-
olution case, where all operations can be done in place on one multiresolution grid. Since the
Euclidean and Manhattan distances are equivalent in the binary 1D case, we first conduct a two-
pass L1 scan in the z-axis to find the distance to the nearest obstacle for each cell along the scan
direction. Next, L2 scans in the x-axis and then y-axis build upon previous scans by calculating
the lower envelope of parabolas, which yields the 3D EDT. We also discuss speed improvements
to the batch case at the expense of additional memory usage.

4.1 L1 Distance Scan

For the first scan of a binary image, the L1 and L2 distance are equivalent, so we calculate a two-
pass L1 distance in the z-axis. The forward pass calculates the distance for free cells that follow
obstacles, while the backward pass corrects overestimates in the true distance. This is useful
since the L1 scan is significantly faster than L2 and does not require additional memory to store
temporary results. Note that we neglect any of the sub-voxel distances in the x and y directions
between coarse and fine cell centers.

15

The first step is to set all occupied cells to have a distance of zero, and all free cells to have a
distance of infinity. For the forward pass, the distance for the next cell is

f(p)← min(f(p), f(q) + d(q, p)) (4.1)

where p is the current cell position along the scan direction, q is the previous cell position, f is the
sampled distance function, and d(q, p) is the distance along the scan direction between the voxel
centers of q and p. The same distance equation can be used for the backward pass as well. An
example of a 1D L1 scan is shown in Fig. 4.1.

Figure 4.1: L1 scan on uniform grid consisting of forward and backward passes. Free cells are initialized to zero while
occupied cells are set to infinity.

The forward scan is organized in the xy-plane into two groups: cells that overlap with finer levels,
and cells that do not. For cells that do not overlap, a forward scan passes all the way through. Cells
that do overlap are scanned until the next level, and the finer level is initialized. The same strategy
is performed through the finest level. At this point, the finer levels initialize coarser levels with the
minimum distance of the children. It can be viewed as a series of branching and merging scans,
with a 2D example shown in Fig. 4.2. The same strategy is used for the backward pass, and all
distances are squared to initialize the L2 scans.

When calculating distances across levels, we account for the partial offset between levels. The
partial offset indicates whether the outer edge of a grid level aligns with the level directly above. If
the partial offset is odd, the outer edge of the finer level is not aligned with an edge in the coarser
level.

During the backward scan, finer cells may be an overestimate of the distance due to the many-to-
one dependency between coarse and fine cells in the same scan. This happens when an occupied
finer cell propagates distance forward in the scan, which is then “reflected” at the coarsest grid

16

Figure 4.2: Forward pass for L1 scan. Darker colors indicate that the operation is performed first on that layer, while
lighter colors are scans that must be initialized from finer levels. A similar backward pass is also needed to finish the
scan.

boundary back into adjacent rows. Although this can introduce incorrect distances in the L1 scan,
these cells will be corrected in subsequent L2 scans, since they are still overestimates of the true
distance. An example of this case is shown in Fig. 4.3.

Figure 4.3: Reflection that yields incorrect distance in L1 scan. Since updates are done in place, distance from the
occupied cell is propagated into the coarser levels, and then propagated from the coarser cells into finer ones on the
backward pass. Two examples of cells that are given incorrect distance values are shaded here. This is an overestimate
of the distance, so it is corrected in future scans. The correct version would be to have a distance of infinity in this
case, but it will not change the result of subsequent scans.

17

4.2 L2 Distance Scans
An L2 scan is first conducted in the x-axis, and then the y-axis. Since we ultimately want the
nearest squared distance to each cell, we can imagine placing a parabola at each cell, with the
vertex being the distance calculated prior to the current scan. Then, we can find the intersections
between these parabolas, and fill in the distances of the discrete locations in the grid by looking at
the lower envelope of the parabolas. This is the high-level algorithm defined in [14].

More specifically, to get the lower envelope, the intersection s of two parabolas defined by vertices
p and q is needed, which is shown in [14] to be

s =
(f(p) + p2)− (f(q) + q2)

2(p− q)
, (4.2)

where f is the squared distance prior to including the current scan. The intersection point s is
used to determine whether the current parabola should be added or the other parabola should be
removed from the lower envelope.

In the single resolution case, since there are no levels and the vertices are uniformly spaced, it is
straightforward to determine the next vertex and cell index. Thus, the vertex spacing is coupled
with the cell index, and can be computed on-the-fly using integer coordinates, with the resolution
only needed in post-processing. For the multiresolution grid, the spacing between parabola vertices
is not uniform since the resolution varies and there are irregular boundaries when scrolling. To
avoid calculating vertex positions, grid indices, and grid levels along the scan direction for all
scans, we calculate these values once per EDT update for each direction according to the number
of levels a scan must go through. For example, with three levels, the vertices are computed for
scans intersecting with one, two, or three levels. Since scrolling will offset the layers with respect
to each other, the vertices have to be computed every EDT update. This method saves computation
during the lower envelope computation and distance fill-in since the vertices, indices, and levels
can be directly accessed from the precomputed vectors.

The L2 scans need the distance values to be stored in a separate array before placing them in the
grid, since they would otherwise introduce errors in the parabolic intersections. Thus, to avoid large
amounts of temporary memory, the L2 scans are organized by scanning over cells at the coarsest
level as shown in a 2D example in Fig. 4.4. However, we must calculate the lower envelope at the
finest cell levels independently, and then merge by taking the minimum distance among scans that
overlap at coarser levels.

In the 3D case, the scan cross-section is 2D, so we organize the cell dependencies using 2D Mor-
ton decoding as shown in Fig. 4.5. With a grid containing three levels, the lower envelopes are
independent at the first level. In the second and third levels, a maximum of four and sixteen cells,
respectively, must be merged by taking the minimum distance. We also need to monitor cases with
partially overlapping cells. A check is done to see if a cell at the finest level used is actually inside
the grid, and if not, the corresponding parent cell is used when scanning, as in the blue layers in
Fig. 4.5. This ensures full coverage of the multiresolution grid and avoids calculating the same
lower envelope more than once when the layers are not aligned.

18

Figure 4.4: Multiresolution lower envelope calculation for bottom row of 2D half-grid. Occupancy is shown above,
while the corresponding distance parabolas are below. Lower envelopes are shown as solid lines, while potential
parabolas are dotted lines. The vertical lines show the transition from different layers in the scan. In the middle, since
there are four valid rows in the finest level, each has its own lower envelope, while there are only two in the second
level, and one in the coarsest level. Vertices are shown to be zero at obstacle locations, but will take different values
when other scans are involved.

4.3 Beyond Full Batch Solution

We also examine a method for speeding up the distance transform when few cells are updated,
without adding significant complexity. For robotic planning, optimization-based planners typically
only require a distance up to a maximum value, after which no penalty is incurred in the cost

19

Figure 4.5: Organizing L2 scans at the finest possible level in the 3D case. Morton decoding takes the odd bits as the
x-coordinate, and the even bits as the y-coordinate. This yields the iteration pattern shown by the white line, which is
used to enforce dependencies among scans for coarser levels. In this case, twelve distinct L2 scans must be completed
and merged for the coarsest level shown.

function. Thus, when cells switch from occupied to unoccupied and vice versa, only cells within
the truncation distance of these modifications need to be updated. For each of the three axes, a 2D
grid at the coarsest cell-level is used to indicate changes. When a cell in a cross-section flips, the
indicator grid is dilated by the truncation distance, as shown in Fig. 4.6. This ensures all affected
distance cells will be updated. The L1 scan is still computed from scratch at each update because
it is not organized at the coarsest level and is relatively fast.

Instead of one 3D grid being updated in-place, a multiresolution distance transform grid is needed
for each axis to maintain cells that do not need to be updated. Since our distance transform has no
knowledge of the nearest obstacle for each cell, scrolling must be handled conservatively. Scrolling
across layers from coarse-to-fine is handled by incorporating the squared distance between the par-
ent cell center and the finer cell centers in the cumulative scan directions. Therefore, the distance
along the z-axis is used for the first grid, while the complete distance is used for the third grid.
Since updating the distance requires a non-constant square root in the former two cases, the scroll-
time increases. However, this increase in scrolling time is a very minor performance hit compared
to the speedup achieved in the EDT step since fewer cells need to be updated. For fine-to-coarse
scrolling, the maximum distance is used, which means that similar to the occupancy case, coarse
cells that are occluded must be cleared as well. Lastly, to ensure that the leading edge of the coars-

20

Figure 4.6: Example of updating relevant rows and columns for 2D multiresolution EDT. The blue cell switches from
free to occupied, so the row at the coarsest level requires a new scan. In the second scan axis, the truncation distance
is added on both sides to determine which columns need to be updated.

21

est level is correct, the distance of newly cleared cells and neighbors within the truncation distance
are updated whenever scrolling occurs.

22

Chapter 5

Experiments

We demonstrate the memory and performance properties of the proposed representation compared
to a baseline method. Simulated results in a realistic environment also demonstrate the use of an
expanded grid range with fine resolution near the robot, as the safety and trajectory smoothness
are improved.

5.1 Experimental Setup
A Gazebo simulation environment with textured random forest generation from [13] was used for
all experiments. Realistic MAV dynamics and sensors are simulated using RotorS [1]. Noisy
image data was also generated, which is then used for stereo semi-global block matching (SGBM)
[21]. This results in realistic noise profiles of the 3D points used for mapping. An example of the
Gazebo environment is shown in Fig. 5.1.

5.2 Memory Considerations
We compare the memory required to map a fixed volume with a single-resolution grid and our
multiresolution map. For the uniform grid, we have the number of cells m1:

m1 = dxdydz. (5.1)

With N layers that double in resolution, the number of cells needed to map the same-sized volume
is

mN = N
m1

23(N−1)
. (5.2)

Assuming storage of an occupancy grid (uint8), a flag grid (uint8) for updating occupancy, and the
three Euclidean distance grids (float), then the uniform 643 grid is 3.670 MB. A summary of the
memory comparison is shown in Table 5.1.

23

Figure 5.1: Example of realistic, randomly-generated Gazebo forest world used in experiments.

Uniform
643

Uniform
2563

Ours
643

L = 3

Ours
642 × 32
L = 3

Memory (MB) 3.670 234.881 11.010 5.505
Factor increase
over 643 grid

1x 64x 3x 1.5x

Table 5.1: Memory comparison of uniform and multiresolution grids.

24

Although some coarser cells are occluded by finer resolutions in our representation, the extra mem-
ory is useful for preserving the circular buffer structure and efficiency. By reducing the overall
memory usage, additional dense information beyond occupancy and distance fields, such as ac-
tive localization fields [22], could be introduced into a local map without running into on-board
memory constraints.

5.3 Timing
To demonstrate the efficiency of the proposed method, we compare the timing of the framework
against [2] in Table 5.2. The timings are gathered from simulation runs in RotorS [1] using the
uniform B-spline trajectory optimization from [2]. Increasing the dimension of a single-resolution
grid quickly becomes infeasible, as shown by the 2563 grid. Specifically, the distance transform
calculation is not suitable for real-time, and the raycasting is significantly slower as well. Although
fewer control points could be used with the 643 grid since it covers past the mapped area, it is inter-
esting to note the speed-up for larger grids. The greater look-ahead properties of the map allow for
better initialization and faster convergence in future steps. Even with the increased sensing hori-
zon, the multiresolution grid provides comparable performance. Note that although the scrolling
and raycasting times increase over the single-resolution 643 grid, these steps are much less expen-
sive than the EDT update and trajectory optimization. The total times are thus comparable, even
though the mapped area is much larger using the multiresolution grid. The additional memory
needed over the single 643 grid is not significant, and the overall computation is similar as well.

Step
Baseline

643
Baseline
2563

Ours
643

L = 3

Ours
642 × 32
L = 3

Scrolling <0.1 1.6 <0.1 <0.1
Occupancy Update 1.0 8.2 3.9 3.4
EDT Update 11.6 631.3 25.8 18.2
Traj. Optimization 33.8 27.8 23.6 20.7

Total 46.4 668.9 53.3 42.3

Table 5.2: Average timing comparison in milliseconds between a ”Baseline” uniform grid from [2] and our method.
Raycasting is performed on disparity images downsampled to 160× 120. Each grid from [2] uses a 0.15m resolution,
and we use the same for the finest resolution. Thirteen control points were used for the trajectory optimization. Total
average time assumes mapping and planning run at same frequency.

5.4 Planning Simulation
To show that increasing the mapped volume while maintaining a finer resolution near the robot
improves the safety and smoothness of the resulting flight, we conduct simulation experiments
in multiple environments. Fifty realistic 50m × 50m forests were randomly generated with a
density of 0.1 trees per meter squared using a modified version of the forest generation in [13].

25

For baselines, we use 643 uniform grids from [2] with 0.15m and 0.3m voxel resolutions. For the
multiresolution grid, we choose the dimensions for our method to be 642 × 32 with 3 levels since
the timing best matches that of the uniform grid and it is only a 50% increase in memory. The
finest resolution of the multiresolution grid is also set to 0.15m. We use the B-spline trajectory
optimization framework from [2], and give a straight-line global trajectory through the forest to
guide the local replanning. The max velocity is also varied from 1m/s to 3m/s in increments of
0.5m/s, so that for each max velocity and environment, ten trials are conducted. All occupancy,
distance transform, and planning parameters are matched to isolate the representation differences.
To measure smoothness, we use the integral of squared jerk over the planned path [23]. We denote
the cost as

J =

∫ tend

tstart

∥∥p(3)(t)
∥∥2 dt. (5.3)

A qualitative example of the uniform and multiresolution grid simulation runs can be seen in
Fig. 5.2. The overall success rates, mean smoothness, and standard deviation of smoothness are
written in Table 5.3. Since the mean may be skewed by outliers, boxplots can provide a better
comparison, as shown in Fig. 5.4.

Altogether, our method has a higher success rate and improved trajectory smoothness over both
single-resolution grids. In addition, our method results in more consistently smooth trajectories
as seen by the standard deviation and error bars in the box plot. Optimization-based planners
are susceptible to local minima, so this explains the overall low success rates, but these results
generally agree with that of [2]. In general, using a search-based planner to initialize the trajectory
[24] or randomly restarting the optimization initialization as in [13] could mitigate this issue. For
our purposes, it is sufficient to use only the optimization-based method since it allows for a more
direct comparison of the map representations.

Baseline
643

0.15 m

Baseline
643

0.3 m

Ours
642 × 32
L = 3

Success rate 0.538 0.504 0.636
Mean J (m2/s5) 219.188 196.463 138.543
Stdev J (m2/s5) 231.421 173.431 165.410

Table 5.3: Planning simulation statistics comparison over all 2500 runs. Mean and standard deviation of the integral of
squared jerk are counted only for successful runs. The ”Baseline” columns refer to the uniform grid implementation
from [2].

26

Figure 5.2: Simulation views of Gazebo environment using RotorS MAV [1] and planner from [2]. (Top) View
of realistic simulation forest. (Center) Baseline grid plans around first tree, but new trees appear in collision after
scrolling, resulting in less smooth trajectories. (Bottom) Our multiresolution grid allows for planning further ahead
without sacrificing significant memory or computation.

27

1 1.5 2 2.5 3
Max Velocity (m/s)

0

0.2

0.4

0.6

0.8

1

Su
cc

es
s

fra
ct

io
n

Baseline 0.15m
Baseline 0.30m
Multigrid

Figure 5.3: Success fraction vs. max velocity for different map representations in environments with 0.1 trees per
meter squared. Each max velocity contains results across 50 environments and 10 trials per environment.

1 1.5 2 2.5 3
Max Velocity (m/s)

0

200

400

600

800

1000

J
(m

2 /s
5)

Baseline 0.15m
Baseline 0.30m
Multigrid

Figure 5.4: Box-plots of integral of squared jerk vs. max velocity for different map representations in environments
with 0.1 trees per meter squared. Each max velocity contains results across 50 environments and 10 trials per environ-
ment.

28

The smoother trajectories from our method can be attributed to both the increased range over the
0.15m grid, and the finer resolution around the robot compared to the 0.3m grid, which allows
for more precise distance and gradient computation in the trajectory optimization. Note that at
lower velocities, the finer resolution baseline outperforms the coarser baseline, but as the velocity
increases, the coarser baseline performs better due to the further look-ahead distance. In terms
of smoothness, the multiresolution grid outperforms both baselines across all velocities, and the
success rate is higher, except at 3m/s, where it is comparable with the coarser baseline.

Qualitative examples of 25 successful runs per method are shown in Fig. 5.5 and Fig. 5.6. In
Fig. 5.5, which has a max velocity of 2m/s, the 0.15m uniform grid is myopic, and thus has very
sharp turns at multiple points in the trajectory. While the 0.3m uniform grid reduces many of these,
there are still points, such as at y = −3m and y = 11m to y = 15m where there are consistently
aggressive turns between trees. The multiresolution grid largely reduces these aggressive turns,
but does appear to have a wider range of actions starting at y = 10m than the 0.3m uniform grid.
Although there are a couple of aggressive turns, the actions are generally less so than the 0.3m uni-
form grid. In Fig. 5.6, a different environment with a max velocity of 3m/s is shown. The reactive
behavior of the 0.15m grid is even more evident, while the 0.3m grid also has more aggressive tra-
jectories than for the 2m/s case. The multiresolution grid has mostly smooth trajectories, although
there is some diversity in the trajectory selection at the start.

As the velocity increases, the gap between the multiresolution grid and 0.3m resolution uniform
grid starts to decrease. Since the success rate drops to 50%, we reduce the density of the forest to
be 0.05 trees per meter squared, and conduct experiments with max velocities of 3, 4, and 5 m/s.
The success rate plot is shown in Fig. 5.7, while the smoothness boxplots are shown in Fig. 5.8.
The success rate of the multiresolution grid is only slightly lower across all velocities, but the
multiresolution grid starts to have a higher smoothness cost at 4 m/s. This can be attributed to
the coarser 0.6m cells scrolling into the grid, but due to the high speed of the MAV, there are
insufficient observations to carve out free space. The conservative assumption that the occupancy
should not change as cells scroll to finer boundaries causes this issue, since the uniform 0.3m
grid assumes all points outside the grid are still free space. While this does not result in a large
gap in terms of success rate, the behavior highlights the potential coupling between grid size and
max velocity. If the multiresolution grid had larger dimensions, then coarser cells would only be
initialized much further from the robot, and have more opportunities to be carved out. Increasing
the grid dimensions does come at the cost of increased memory and computation, especially for
the EDT. Using a TSDF or a volumetric representation that contains sub-voxel information could
be used at the expense of more complex and computationally-demanding scrolling logic.

29

-5 0 5

x (m)

-30

-20

-10

0

10

20

30

Multigrid

-5 0 5

x (m)

-30

-20

-10

0

10

20

30

Baseline 0.30m

-5 0 5

x (m)

-30

-20

-10

0

10

20

30

y
(m

)

Baseline 0.15m

Figure 5.5: Qualitative example with max velocity of 2m/s. Each map representation is shown with 25 successful
trials. The aspect ratio of the y-axis to the x-axis is magnified to enhance visualization.

30

-5 0 5

x (m)

-30

-20

-10

0

10

20

30

Multigrid

-5 0 5

x (m)

-30

-20

-10

0

10

20

30

Baseline 0.30m

-5 0 5

x (m)

-30

-20

-10

0

10

20

30

y
(m

)

Baseline 0.15m

Figure 5.6: Qualitative example with max velocity of 3m/s. Each map representation is shown with 25 successful
trials. The aspect ratio of the y-axis to the x-axis is magnified to enhance visualization.

31

3 4 5
Max Velocity (m/s)

0

0.2

0.4

0.6

0.8

1

Su
cc

es
s

fra
ct

io
n

Baseline 0.30m
Multigrid

Figure 5.7: Success fraction vs. max velocity for different map representations in environments with 0.05 trees per
meter squared. Each max velocity contains results across 50 environments and 10 trials per environment.

3 4 5
Max Velocity (m/s)

0

500

1000

1500

2000

2500

3000

J
(m

2 /s
5)

Baseline 0.30m
Multigrid

Figure 5.8: Box-plots of integral of squared jerk vs. max velocity for different map representations in environments
with 0.05 trees per meter squared. Each max velocity contains results across 50 environments and 10 trials per
environment.

32

Chapter 6

Conclusion and Future Work

6.1 Conclusion
We have investigated the use of a structured multiresolution scrolling grid for occupancy and dis-
tance transform mapping. The multiple layers allow for representing the area near the robot at a
finer resolution, while also expanding the sensing range. We presented efficient methods for up-
dating occupancy and Euclidean distance information without processing redundant data. Due to
its structure, the multiresolution grid provides both computational and memory benefits. Lastly,
integration with an optimization-based planner in simulation demonstrated improved MAV flight
in unknown, cluttered environments.

6.2 Future Work
Achieving even higher velocities may require modification to the presented map representation.
Coarse voxels may provide over-conservative estimates of free-space, and without sufficient ob-
servations, these cells may not be carved out quickly enough. Using a representation that captures
sub-voxel information, such as a TSDF or the occupancy formulation in [25], would allow for
improved resolution when scrolling between layers. Incremental EDT methods could also be ex-
plored to compare against the method presented here. In addition, developing a receding-horizon
planner would better suit fast obstacle avoidance, and hardware trials are needed to assess the
behavior in different environments. Lastly, incorporating active visual information into the map
could be used to supplement the trajectory optimization.

33

34

Appendix A

Structured Multiresolution Raycasting

When updating the occupancy values in a grid from sensor measurements, raycasting is often used.
A ray from the robot’s sensor is followed, updating cells along the way with information. This
may take different forms, such as using a sensor-model that defines the probability of occupancy
all along the ray, or a voting-method that only updates the cell containing the observed point with
an occupancy hypothesis, and all other cells along the way with a free-space hypothesis. In either
case, the cells that the ray may influence need to be tracked.

The Bresenham algorithm, is one framework, that first finds an axis-aligned driving-axis, and then
marches in voxel-coordinates along this direction [19]. This algorithm is particularly efficient,
because all calculations can be completed in integer coefficients. The true sensor position and
observed point may be real-valued, so the Bresenham algorithm first rounds the endpoints of the
ray into voxel coordinates. This discretization may introduce errors, especially at larger voxel sizes,
as the utilized ray no longer corresponds to the true ray. One other popular algorithm, is the voxel
traversal algorithm from [26]. In this case, floating-point coordinates are used, and all cells that
the ray intersects are included. The downside of this method is the relatively higher computation
needed, which becomes more pronounced with an increasing number of sensor points.

For the multiresolution grid, three raycasting methods were implemented: finest-resolution Bre-
senham, multiresolution Bresenham, and multiresolution voxel traversal. Examples are shown in
2D here, but in practice, the algorithms are easily extended to 3D.

A.1 Finest-Resolution Bresenham
In the finest-resolution Bresenham, the ray is virtually traced in the finest possible voxel size, and
the current cell is always indexed up to its non-occluded parent cell. Since the grid is structured
and centered around the robot, only one check for the parent level needs to be completed for each
driving-axis iteration. The structure avoids having to check through all potential levels, so the ray
always marches from the finest level to coarser levels. As mentioned previously, the Bresenham
algorithm can introduce errors due to the discretization of the ray’s endpoints, but this is minimized

35

when raycasting only at the finest-resolution, while also leveraging the speed of integer operations
in the original algorithm. A visualization of 2D examples is shown in Fig. A.1.

Figure A.1: Bresenham algorithm at finest resolution and indexing into parents of the grid in 2D. Discretization of
endpoints to allow for integer operations can create inaccurate raycasting.

A.2 Multiresolution Bresenham
The multiresolution Bresenham algorithm essentially switches the algorithm to use coarser cells
every time a level boundary is crossed. Compared to the finest-resolution Bresenham, there are
fewer total iterations, since coarser cells are treated as a single cell, while the finest-resolution
Bresenham only traverses virtually at the finest resolution. The multiresolution Bresenham can

36

introduce more significant errors at coarser resolutions, since iterating along the driving-axis may
cause intersected cells to be skipped. Examples of the 2D results can be seen in Fig. A.2. For the
practical dimensions used in this document, the multiresolution Bresenham was slower than the
finest-resolution Bresenham, due to the logic needed to switch over to a coarser resolution loop. In
some cases, the multiresolution Bresenham may be faster, if the dimensions of the grids are larger
with relatively few levels, as duplicate work in the cell iteration steps may be avoided.

Figure A.2: Multiresolution Bresenham algorithm in 2D. Discretization of endpoints to allow for integer operations
and coarser resolutions can both cause inaccurate raycasting.

37

A.3 Multiresolution Voxel Traversal
The multiresolution voxel traversal algorithm builds off of [26], by checking when the ray leaves
a level, and updating intermediate variables accordingly. While it is the most expensive algorithm
by around 2x-3x in general, it is also the most accurate, as integer-coordinate rounding and axis-
aligned iteration are avoided. A visualization of 2D examples is shown in Fig. A.3.

Figure A.3: Multiresolution voxel traversal algorithm in 2D. Note that all cells that the ray touches are flagged.

38

Bibliography

[1] F. Furrer, M. Burri, M. Achtelik, and R. Siegwart, “Rotors—a modular gazebo mav simulator
framework,” in Robot Operating System (ROS): The Complete Reference (Volume 1), 2016,
pp. 595–625. 5.1, 5.3

[2] V. Usenko, L. von Stumberg, A. Pangercic, and D. Cremers, “Real-time trajectory replanning
for MAVs using uniform B-splines and a 3D circular buffer,” in IEEE/RSJ Intl. Conf. on
Intelligent Robots and Systems (IROS), 2017, pp. 215–222. 2, 3.1, 5.3, 5.4, 5.4

[3] P. R. Florence, J. Carter, J. Ware, and R. Tedrake, “NanoMap: Fast, uncertainty-aware prox-
imity queries with lazy search over local 3D data,” in IEEE Intl. Conf. on Robotics and
Automation (ICRA), 2018, pp. 7631–7638. 2

[4] L. Matthies, R. Brockers, Y. Kuwata, and S. Weiss, “Stereo vision-based obstacle avoidance
for micro air vehicles using disparity space,” in IEEE Intl. Conf. on Robotics and Automation
(ICRA), 2014, pp. 3242 – 3249. 2

[5] G. Dubey, S. Arora, and S. Scherer, “DROAN — Disparity-space Representation for Obstacle
AvoidaNce,” in IEEE/RSJ Intl. Conf. on Intelligent Robots and Systems (IROS), 2017, pp.
1324–1330. 2

[6] C. Cigla, R. Brockers, and L. Matthies, “Image-based visual perception and representation
for collision avoidance,” in IEEE Conf. on Computer Vision and Pattern Recognition (CVPR)
Workshops, 2017, pp. 104–112. 2

[7] P. Gohl, D. Honegger, S. Omari, M. Achtelik, M. Pollefeys, and R. Siegwart, “Omnidirec-
tional visual obstacle detection using embedded FPGA,” in IEEE/RSJ Intl. Conf. on Intelli-
gent Robots and Systems (IROS), 2015, pp. 3938 – 3943. 2

[8] H. Moravec and A. Elfes, “High resolution maps from wide angle sonar,” in IEEE Intl. Conf.
on Robotics and Automation (ICRA), vol. 2, 1985, pp. 116–121. 2

[9] A. Hornung, K. Wurm, M. Bennewitz, C. Stachniss, and W. Burgard, “OctoMap: an efficient
probabilistic 3D mapping framework based on octrees,” Autonomous Robots, vol. 34, pp.
189–206, 2013. 2, 3.2

[10] L. Heng, D. Honegger, G. Hee Lee, L. Meier, P. Tanskanen, F. Fraundorfer, and M. Polle-
feys, “Autonomous visual mapping and exploration with a micro aerial vehicle,” J. of Field
Robotics, vol. 31, pp. 654–675, 2014. 2

[11] O. Kähler, V. Prisacariu, J. Valentin, and D. Murray, “Hierarchical voxel block hashing for

39

efficient integration of depth images,” IEEE Robotics and Automation Letters (RA-L), vol. 1,
pp. 192–197, 2016. 2

[12] T. Whelan, J. McDonald, M. Kaess, M. Fallon, H. Johannsson, and J. Leonard, “Kintinuous:
Spatially extended KinectFusion,” in RSS Workshop on RGB-D: Advanced Reasoning with
Depth Cameras, Sydney, Australia, Jul. 2012. 2

[13] H. Oleynikova, M. Burri, Z. Taylor, J. Nieto, R. Siegwart, and E. Galceran, “Continuous-time
trajectory optimization for online UAV replanning,” in IEEE/RSJ Intl. Conf. on Intelligent
Robots and Systems (IROS), 2016, pp. 5332–5339. 2, 5.1, 5.4, 5.4

[14] P. F. Felzenszwalb and D. P. Huttenlocher, “Distance transforms of sampled functions,” The-
ory of Computing, vol. 8, pp. 415–428, 2012. 2, 4, 4.2

[15] S. Scherer, J. Rehder, S. Achar, H. Cover, A. Chambers, S. Nuske, and S. Singh, “River
mapping from a flying robot: state estimation, river detection, and obstacle mapping,” Au-
tonomous Robots, vol. 33, pp. 189–214, 2012. 2

[16] H. Oleynikova, Z. Taylor, M. Fehr, R. Siegwart, and J. Nieto, “Voxblox: Incremental 3D
Euclidean signed distance fields for on-board MAV planning,” in IEEE/RSJ Intl. Conf. on
Intelligent Robots and Systems (IROS), 2017, pp. 1366–1373. 2

[17] R. Wagner, U. Frese, and B. Bäuml, “Real-time dense multi-scale workspace modeling on a
humanoid robot,” in IEEE/RSJ Intl. Conf. on Intelligent Robots and Systems (IROS), 2013,
pp. 5164–5171. 2, 3.2

[18] D. Droeschel, J. Stückler, and S. Behnke, “Local multi-resolution representation for 6D mo-
tion estimation and mapping with a continuously rotating 3D laser scanner,” in IEEE Intl.
Conf. on Robotics and Automation (ICRA), 2014, pp. 5221–5226. 2, 3.2

[19] J. E. Bresenham, “Algorithm for computer control of a digital plotter,” IBM Systems Journal,
vol. 4, pp. 25–30, 1965. 3.2, A

[20] A. Meijster, J. B. T. M. Roerdink, and W. H. Hesselink, “A general algorithm for computing
distance transforms in linear time,” in Mathematical Morphology and its Applications to
Image and Signal Processing, 2002, pp. 331–340. 4

[21] H. Hirschmuller, “Stereo processing by semiglobal matching and mutual information,” IEEE
Trans. Pattern Anal. Machine Intell., vol. 30, no. 2, pp. 328–341, 2007. 5.1

[22] Z. Zhang and D. Scaramuzza, “Beyond point clouds: Fisher information field for active visual
localization,” in IEEE Intl. Conf. on Robotics and Automation (ICRA), 2019, pp. 5986–5992.
5.2

[23] T. Flash and N. Hogan, “The coordination of arm movements: An experimentally confirmed
mathematical model,” The Journal of Neuroscience, vol. 5, pp. 1688–1703, 1985. 5.4

[24] B. Zhou, F. Gao, L. Wang, C. Liu, and S. Shen, “Robust and efficient quadrotor trajectory
generation for fast autonomous flight,” IEEE Robotics and Automation Letters (RA-L), vol. 4,
pp. 3529–3536, 2019. 5.4

[25] E. Vespa, N. Nikolov, M. Grimm, L. Nardi, P. H. Kelly, and S. Leutenegger, “Efficient
octree-based volumetric SLAM supporting signed-distance and occupancy mapping,” IEEE

40

Robotics and Automation Letters (RA-L), vol. 3, pp. 1144–1151, 2018. 6.2

[26] J. Amanatides and A. Woo, “A fast voxel traversal algorithm for ray tracing,” in Proc. of the
European Computer Graphics Conference and Exhibition (Eurographics), 1987, pp. 3–10.
A, A.3

41

	1 Introduction
	2 Related Work
	3 Structured Multiresolution Occupancy Mapping
	3.1 Data Structure
	3.2 Occupancy Updates
	3.3 Scrolling
	3.3.1 Coarse-to-Fine
	3.3.2 Fine-to-Coarse

	4 Structured Multiresolution Euclidean Distance Transform
	4.1 L1 Distance Scan
	4.2 L2 Distance Scans
	4.3 Beyond Full Batch Solution

	5 Experiments
	5.1 Experimental Setup
	5.2 Memory Considerations
	5.3 Timing
	5.4 Planning Simulation

	6 Conclusion and Future Work
	6.1 Conclusion
	6.2 Future Work

	Appendices
	A Structured Multiresolution Raycasting
	A.1 Finest-Resolution Bresenham
	A.2 Multiresolution Bresenham
	A.3 Multiresolution Voxel Traversal

