
Precise, Dynamic
Information Flow
for Database-
Backed
Applications
Jean Yang, Travis Hance, Thomas H. Austin, Armando
Solar-Lezama, Cormac Flanagan, and Stephen Chong

PLDI 2016 J
e
a

n
 Y

a
n

g
 /
 P

L
D

I
2

0
1

6

An oil skimming operation works in a heavy oil slick after the
spill on April 1, 1989. (Photo from Huffington Post)

J
e
a

n
 Y

a
n

g
 /
 P

L
D

I
2

0
1

6

http://www.huffingtonpost.com/2014/03/24/exxon-valdez-oil-spill-photos_n_5020845.html

J
e
a

n
 Y

a
n

g
 /
 P

L
D

I
2

0
1

6

Oil-covered otter. (Photo from the Human Impact Project)

https://www.youtube.com/watch?v=6NQGZWZEaEM

The Relationship Between
Design and Accidents

J
e
a

n
 Y

a
n

g
 /
 P

L
D

I
2

0
1

6

Crude oil

Single hull

Crude oil

Double hull

Required by the Oil

Pollution Act of 1990.

J
e
a

n
 Y

a
n

g
 /
 P

L
D

I
2

0
1

6

But what about

information

leaks?

Wanted: Double Hull for
Information Security

J
e
a

n
 Y

a
n

g
 /
 P

L
D

I
2

0
1

6

Sensitive data

Single hull

Sensitive data

Double hull

Research in language-based security looks at designs

for double hulls [Sabelfeld and Myers, JSAC 2003].

Our goal: make double hulls that are

as easy to construct as possible!

This Talk: Making It Easier to
Secure Web Programs

1. Why it’s hard to prevent
information leaks.

2. A programming model that
makes writing secure web
programs easier.

3. How we support that
programming model in
database-backed applications. J

e
a

n
 Y

a
n

g
 /
 P

L
D

I
2

0
1

6

Social Calendar Example

J
e
a

n
 Y

a
n

g
 /
 J

e
e
v
e
s

Let’s say Arjun and I want to throw a
surprise paper discussion party for Emery.

Challenge: Different Viewers
Should See Different Events

J
e
a

n
 Y

a
n

g
 /
 P

L
D

I
2

0
1

6

Guests Emery

Strangers

Surprise

discussion for

Emery at

Chuck E.

Cheese.

Pizza with

Arjun/Jean.

Private event

at Chuck E.

Cheese.

Policies May Depend on
Sensitive Values

J
e
a

n
 Y

a
n

g
 /
 P

L
D

I
2

0
1

6

Guest List

Finalized list

Must be on guest list.

Must be member of list and the

list must be finalized.

Leaky enforcement:

when the programmer

neglects dependencies

of policies on sensitive

values.

Policy for event

depends on policy

for guest list!

A Story of Leaky Enforcement

J
e
a

n
 Y

a
n

g
 /
 P

L
D

I
2

0
1

6

Guest List

Finalized list

We add Armando to

non-final guest list.
1

We run out of space

and remove Armando.
3

Armando figures out

he was uninvited.
4

There was a

party on my

calendar…

Guest List

Finalized list

Armando sees the

event on his calendar.
2

A Story of Leaky Enforcement

J
e
a

n
 Y

a
n

g
 /
 P

L
D

I
2

0
1

6

Guest List

Finalized list

We add Armando to

non-final guest list.
1

We run out of space

and remove Armando.
3

Armando figures out

he was uninvited.
4

There was a

party on my

calendar…

Guest List

Finalized list

Armando sees the

event on his calendar.
2

Problem: implementation for event
policy neglected to take into account
guest list policy.

This arises whenever we

trust programmers to get

policy checks right!

Need to Track Policies and
Viewers Across the Code

J
e
a

n
 Y

a
n

g
 /
 P

L
D

I
2

0
1

6

“What is the

most popular

location among

friends 7pm

Tuesday?”

Update to

all

calendar

users

Need to track how information flows

through derived values and where

derived values flow!

“Policy Spaghetti” in HotCRP

J
e
a

n
 Y

a
n

g
 /
 P

L
D

I
2

0
1

6

Conditional permissions

checks everywhere!

Jacqueline Web Framework to
the Rescue!

J
e
a

n
 Y

a
n

g
 /
 P

L
D

I
2

0
1

6

Enhanced runtime

encompasses applications

and databases, preventing

leaks between the two.

Runtime prevents information

leaks according to policy

annotations.

Sensitive data

Policy annotations

Database

Programmer specifies

information flow policies

separately from other

functionality.

1

2

3

Contributions

• Policy-agnostic programming
model for database-backed web
applications.

• Semantics and proofs for policy-
agnostic programming that
encompasses SQL databases.

• Demonstration of practical
feasibility with Python
implementation and application
case studies.

J
e
a

n
 Y

a
n

g
 /
 P

L
D

I
2

0
1

6

Enhanced runtime

Jacqueline Web Framework

J
e
a

n
 Y

a
n

g
 /
 P

L
D

I
2

0
1

6

Policies

Framework attaches

policies based on

annotations.

Framework

shows

appropriate

values based

on viewer and

policies.

Object-relational

mapping propagates

policies and sensitive

values through

computations.

@jacqueline

def has_host(self, host):

return EventHost.objects.get(

event=self, host=host) != None

@jacqueline

def has_guest(self, guest):

return EventGuest.objects.get(

event=self, host=host) != None

J
e
a

n
 Y

a
n

g
 /
 P

L
D

I
2

0
1

6

Base schema

Policy helper

functions

class Event(JacquelineModel):

name = CharField(max_length=256)

location = CharField(max_length=512)

time = DateTimeField()

description = CharField(max_length)=1024)

@staticmethod

@label_for(‘location’)

def restrict_event(event, ctxt):

return event.has_host(ctxt) or event.has_guest(ctxt)

@staticmethod

def jacqueline_get_private_location(event):

return “Undisclosed location”

Public value for location field

Information flow policy for location field

Coding in Jacqueline

Centralized Policies in
Jacqueline

J
e
a

n
 Y

a
n

g
 /
 P

L
D

I
2

0
1

6

Model View Controller

Centralized policies! No checks or

declassifications needed anywhere else!

20

J
e
a

n
 Y

a
n

g
 /
 J

e
e
v
e
s

if == :

userCount += 1

return userCount

userCount = 0

print { } print { }

1 0

Closer Look at the Policy-
Agnostic Runtime

Runtime

propagates

values and

policies.

Runtime

solves for

values to show

based on

policies and

viewer.

21

Jeeves [Yang et al 2012, Austin et al 2013] uses facets

[Austin et al 2012] to simulate simultaneous multiple

executions.

Labels Track Sensitive Values
to Prevent Leaks

J
e
a

n
 Y

a
n

g
 /
 J

e
e
v
e
s

21

if == :

c += 1

true false
if :

c += 1

c =
cold+1 cold

Labels follow

values through

all computations,

including

conditionals and

assignments.
Emery can’t see secret

party information or

results of computations

on those values!

guest

guest

guest

J
e
a

n
 Y

a
n

g
 /
 P

L
D

I
2

0
1

6

J
e
a

n
 Y

a
n

g
 /
 P

L
D

I
2

0
1

6

The Dangers of Interacting
with Vanilla Databases

Database
queries can
leak
information!

J
e
a

n
 Y

a
n

g
 /
 P

L
D

I
2

0
1

6

Application
Queries

select * from Users

where location =

Database

Application All data

Database
select * from Users

Impractical

and potentially

slow!

Challenge: Support faceted execution when
interacting with an unmodified SQL database.

Need faceted queries!

save()

Semantics of a Faceted
Database

J
e
a

n
 Y

a
n

g
 /
 P

L
D

I
2

0
1

6

SQL

Database select * from Users

where location =

Too expensive! Too difficult to extend the

formal semantics!

Primary key Location

1

Conceptual row
Store facets

as strings?

New

database

for each

label?

Solution: Use ORM to Map
Facets onto Database Rows

Jeeves key Location Labels

1 {𝑎}

1 {¬𝑎}

J
e
a

n
 Y

a
n

g
 /
 P

L
D

I
2

0
1

6

select * from Users

where location =

ORM refacets

Jeeves key Location Labels

1 {𝑎}

Jeeves key Location

1
NULL

Primary key Location

1
a

Conceptual row

a

Supporting Queries in
Jacqueline

Jacqueline

Supports

SQL

Implements

ORM Implements

get select refaceting

all select refaceting

filter select refaceting

sort order by refaceting

foreign keys join -

save delete, insert turning a faceted value into

multiple rows

delete delete keeping track of which

facets to delete

J
e
a

n
 Y

a
n

g
 /
 P

L
D

I
2

0
1

6

Can use SQL

implementations

for many

queries!

J
e
a

n
 Y

a
n

g
 /
 P

L
D

I
2

0
1

6

Early Pruning Optimization

J
e
a

n
 Y

a
n

g
 /
 P

L
D

I
2

0
1

6

Observation:

Framework can

often (but not

always) track

viewer.

Enhanced runtime

Policies

Optimization: Can

often explore fewer

possible paths!

J
e
a

n
 Y

a
n

g
 /
 P

L
D

I
2

0
1

6

Review: Traditional Non-
Interference

J
e
a

n
 Y

a
n

g
 /
 J

e
e
v
e
s

if == :

userCount += 1

print { }

0

0 1

if == :

userCount += 1

Challenge:

Compute labels from

program—may have

dependencies on

secret values!

Secret values should not affect public output.

guest guest

guest

J
e
a

n
 Y

a
n

g
 /
 J

e
e
v
e
s

if == :

userCount += 1

print { }

0

0 1

if == :

userCount += 1

Theorem:

All executions where

guest must be

public produce

equivalent outputs.

Can’t tell apart secret

values that require

guest to be public.

Policy-Agnostic Non-
Interference

guest guest

guest

J
e
a

n
 Y

a
n

g
 /
 P

L
D

I
2

0
1

6

Application Case Studies

J
e
a

n
 Y

a
n

g
 /
 P

L
D

I
2

0
1

6

Course

manager

Health

record

manager

Conference

management

system

(deployed!)

Jacqueline reduces the number

of lines of policy code and has

reasonable overheads!

Demo

J
e
a

n
 Y

a
n

g
 /
 P

L
D

I
2

0
1

6

Conference Management System
Running Times

J
e
a

n
 Y

a
n

g
 /
 P

L
D

I
2

0
1

6

Tests from Amazon AWS machine via HTTP requests from another machine.

0

0.05

0.1

0.15

0.2

0 500 1000

T
im

e
 t

o
 s

h
o
w

 p
a

g
e
 (

s)

Papers in database

Single paper

Jacqueline Django

0

2

4

6

8

10

12

14

16

0 500 1000

T
im

e
 t

o
 s

h
o
w

 a
ll

 p
a
p

e
rs

 (
s)

Papers in database

All Papers*

Jacqueline Django

*Different from numbers in paper.

Summary: Policy-Agnostic Web
Programming with Jacqueline

J
e
a

n
 Y

a
n

g
 /
 P

L
D

I
2

0
1

6

Enhanced runtime

encompasses applications

and databases, preventing

leaks between the two.

Runtime prevents

information leaks according

to policy annotations.

Sensitive data

Policy annotations

Database

Programmer specifies

information flow policies

separately from other

functionality.

1

2

3

We have strong

formal

guarantees and

evidence that

this can be

practical!

J
e
a

n
 Y

a
n

g
 /
 P

L
D

I
2

0
1

6

http://jeeveslang.org

http://github.com/jeanqasaur/jeeves

You can factor out

information flow policies

from other code to avoid

policy spaghetti!

You can enforce policies

across the application and

database by using a

carefully-crafted ORM!

You can build realistic

systems using this approach!

