Precise, Dynamic
Information Flow
for Database-

Backed
Applications

Jean Yang, Travis Hance, Thomas H. Austin, Armando
Solar-Lezama, Cormac Flanagan, and Stephen Chong

PLDI 2016

T 1 5 4

N
]
a
—
[l
an
=
(]
b
=
o]
)
}1

http://www.huffingtonpost.com/2014/03/24/exxon-valdez-oil-spill-photos_n_5020845.html

;'95—‘{: Oil-covered otter. (Photo from the Human Impact Project). -

¥,

- R
cf' . : ,. ?,

.

Jean Yang / PLDI 2016

https://www.youtube.com/watch?v=6NQGZWZEaEM

The Relationship Between
Design and Accidents

Single hull Double hull

Crude o1l Crude o1l

Required by the Oil
Pollution Act of 1990.

e
—
(@)
(o]
]
A
—
[a W
~
on
=
<
>~
=
<
(o)
=

But what about

information
leaks?

©
—
)
N
—
a
—
ol
~
o0
g
<
b
g
©
N
p1

Wanted: Double Hull for

Information Security
Single hull Double hull

Research in language-based security looks at designs
for double hulls [Sabelfeld and Myers, JSAC 2003].

Our goal: make double hulls that are
as easy to construct as possible!

e
—
(@)
(o]
=
A
3
[a W
~
on
o
<
-
o
<
[¢D)
<

This Talk: Making It Easier to
Secure Web Programs

1. Why 1t’s hard to prevent
information leaks.

2. A programming model that
makes writing secure web
programs easler.

3. How we support that
programming model 1n
database-backed applications.

e
—
(@)
(o]
=
A
3
[a W
~
on
o
<
-
o
<
[¢D)
’j

Tue 6/14 Wed 615 Thu 6/16 Fri g7

ilton R
N

Social Calendar Example

Let’s say Arjun and I want to throw a
surprise paper discussion party for Emery.

Event

Surprise paper discussion party|

Wed, June 15, 2pm - 3pm

n
()
>
(<)
()
=
~
o0
o
®
e
=
&
)
2

Challenge: Different Viewers
Should See Different Events

Surprise
/_ discussion for /_ Pizza with
% 4 Emery at Arjun/Jean.
i : Chuck E. Y
Cheese. >4y
Guests Emery
/_ Private event
at Chuck E.

Cheese.

e
—
(@)
(o]
]
A
—
[a W
~
on
=
<
>~
=
<
(o)
=

Strangers

Policies May Depend on

Sensitive Values

Tue 6/14 oo . amersssesesres

ﬂ n -------‘: ------
BS Islsioh‘party

Leaky enforcement:
when the programmer
neglects dependencies
of policies on sensitive

values. s Inap

|

Must be member of list and the
list must be finalized.

Fri 6/17 Sat 6/18

X

Policy for event
depends on policy

., for guest list!

Q Guest List

el

Finalized list

pre
| party
Chuck E.

e
—
(@)
(o]
]
A
—
[a W
~
on
=
<
>~
=
<
(o)
=

A Story of Leaky Enforcement

@ We add Armando to
non-final guest list.

Guest List

S ¥

O Finalized list

Armando sees the
event on his calendar.

@ Armando figures out

he was uninvited.

There was a
party on my

calendar.,.
@,
a2
%'/:‘\\\\L.Hﬁ \
@ We run out of space

and remove Armando.

Guest List

R

B/Finalized list

e
—
(@)
(o]
]
A
—
[a W
~
on
=
<
>~
=
<
(o)
=

A Story of Leaky Enforcement

Problem: implementation for event
policy neglected to take 1nto account
oguest list policy.

This arises whenever we
trust programmers to get
policy checks right!

e
—
(@)
(o]
]
A
—
[a W
~
on
=
<
>~
=
<
(o)
=

Need to Track Policies and
Viewers Across the Code

“What 1s the

Update to
most popular A1l
location among

calendar

friends 7pm

users
Tuesday?” ,

)

-

Need to track how information flows
through derived values and where
derived values flow!

_

e
—
(@)
(o]
]
A
—
[a W
~
on
=
<
>~
=
<
(o)
=

“Pohcy Spaghett1’” in HotCRP

| limitName = |

llmltName ="

limitName = "
limitName =
contactId ";

contactId

LimitName = S _AUTHOR

I limitName I I

limitName -
limitName = " "

limitName - "

q(59);
= edb_row($

is empty
return
imitName =

limitName = "
PaperSearch(5
allowAuthor = ", B

paperList

session_list_object

Ne
—
-
N
—
a
—
Ay
~~
o0
g
«
>
g
o]
)
=

Conditional permissions
checks everywhere!

Jacqueline Web Framework to
the Rescue!

1) Programmer specifies 3) Enhanced runtime
information flow policies encompasses applications
separately from other and databases, preventing
functionality. leaks between the two.

Policy annotations

2) Runtime prevents information
leaks according to policy
annotations.

e
—
(@)
(o]
]
A
—
[a W
~
on
=
<
>~
=
<
(o)
=

Contributions

- Policy-agnostic programming
model for database-backed web
applications.

- Semantics and proofs for policy-
agnostic programming that
encompasses SQL databases.

- Demonstration of practical
feasibility with Python
1mplementation and application
case studies.

e
—
(@)
(o]
=
A
3
[a W
~
on
o
<
-
o
<
[¢D)
’j

Jacqueline Web Framework

- Object-relational
mapping propagates

policies and sensitive

MODEL
Framework values through
o computations.
, V: UPDATES MANIPULATES
appropriate :
Pprop l Enhanced Iluntlme
values based
on viewer 6}nd VIEW CONTROLLER
policies. =
Ne / a
o\ > Framework attaches B
policies based on -
USER annotations. 2

Coding 1n Jacqueline

class Event (JacquelineModel) : Base schema
name = CharField(max length=256)
location = CharField(max length=512)
time = DateTimeField()
description = CharField(max_length)=1024)

e e Policy helper
def has host(self, host):

return EventHost.objects.get(functions
event=self, host=host) != None
@jacqueline
def has guest(self, guest):
return EventGuest.objects.get (
event=self, host=host) != None
@staticmethod Information flow policy for location field

@label for(‘location’)
def restrict event (event, ctxt):
return event.has host(ctxt) or event.has guest(ctxt)

e
—
(@)
(o]
]
A
—
[a W
~
on
=
<
>~
=
<
(o)
=

Public value for location field
def (event) :

return “Undisclosed location”

Centralized Policies 1n
Jacqueline

orm-heading”>Edit Your Event.</hZ> @login_required
m-group”> @request_wrapper
“name" class=

class Event(Model):
VISIBILITY = (('

yone'}, ('G', 'Guests'))

trol-label”s<a rels! @jeeves
def profile view(request, user_profile):
profile = UserProfile.objects.get(username=request.user.username)

name = CharField(max_length=256)

location = Charfield(max_length=512)

time = DateTimeField()

description = CharField(max_length=1824)

visibility = Charfield(max_length=1, choices=VISIBILITY, default

ntrol® names"name" ids"name" value="{{ con

if profile == None:
profile = user_profile

-group">

if request.method 'POST':
cation

assert(request.user.username==userprofile.username)
profile.name = request.POST.get('name’, '')
profile.email = request.POST.get('enail’, ')

@jeeves
def has_host(self, host):
return EventHost.objects.get(event=self, host=host) != Hone

profile.save()

Faseves host_events = EventHost.objects.filter(host=profile).all()
def has_guest(self, guest): trol-label"s<a relet . guest_events = EventGuest.objects.filter(guest=profile).all()
return EventGuest.objects.get(event=self, guest-guest) != None

ile.html”, {
profile,

le": request.user.username==user_profile.username,

"host_svents": host_events,

guest_events,

name="time" id="time" value="{{

etize(time)

"guest_events”

ontrol-label"><a rel="tooltip" title= class="glyph

name="description” id="description”s{{ concretize(description

def register_account(request):
if request.user.is_authenticated():
return HttpResponseRedirect("index")

-group™>
isibility” class="control-label"<a re

if request.method 'POST "
form = UserCrestionForm(request.POST)
if form.is_valid():

user = form.save()

type="button" class="btn btn-default {%¥ if visiblit

U user.save()
type="but btn btn-default {% if visipili

clas.

UserProfile.objects.create(
username=user.username,
email=request.POST.get('email’, '),

btn btn-primary” type="submit” value="Submit" onClick="myApp.showPleaseWait();">Submi)

Nej
—
(@)
N
fa—
A
—
Ay
~
on
=
<
b
=
<
)
[

Centralized policies! No checks or
declassifications needed anywhere else!

Closer Look at the Policy-
Agnostic Runtime

Jeeves [Yang et al 2012, Austin et al 2013] uses facets
[Austin et al 2012] to simulate simultaneous multiple
executions.

: userCount = 0
@Runtlme @Runtim o

propagates - solves for

valggs and jif ,. == . values to show

policies. << il ~ based on
userCount += 1 policies and

return userCount Viewer.

print {@&} print {&’}
1 0

n
()
>
(<)
()
=
~
o0
o
®
e
=
&
)
2

Labels Track Sensitive Values
to Prevent Leaks

guest

guest

if true false

c +=1

guest

Co1at1 Co1d

Labels follow

values through
all computations,
including
conditionals and
assignments.

9103 IA1d / Suex ueap

3
a
L]
u
“
=
o
B
H
8
I

9103 IA1d / Suex ueap

The Dangers of Interacting
with Vanilla Databases

Avplicat Database
bpHeanon Queries queries can
® Database | leak

ais select * from User

0 where location @ @

5

Application Impractical
o il datsa Datab and potentially

atabase
ey ? T select * from Users @ l | slow!

Challenge: Support faceted execution when
interacting with an unmodified SQL database.

information!

-

e
—
(@)
(o]
]
A
—
[a W
~
on
=
<
>~
=
<
(o)
=

Need faceted queries!

Semantics of a Faceted
Database

I SQL I @

Database select * from Users
save(ﬁ) where location :&

Store facets
as strings?

Conceptual row

1

New
database

for each
label?

Jean Yang / PLDI 2016

Too expensive! Too difficult to extend the
formal semantics!

Solution: Use ORM to Map
Facets onto Database Rows

Conceptual row
) = 0
1 ~ {—a}
1
g

g Rt select * from Useﬁ l

= where location =

1 & {a}
ORM refacets l

e Loaion
. ™ NULL

Nej
—
(@)
N
fa—
A
—
Ay
~
an
=
o]
b
=
x
<
[

Supporting Queries in
Jacqueline

Jacqueline ORM Implements
Supports Implements

get select refaceting Can use SQL
all select refaceting | implementations
filter select refaceting | 10" many
, queries!
sort order by refaceting

foreign keys join

save delete, insert turning a faceted value into
multiple rows

delete delete keeping track of which
facets to delete

Nej
—
(@)
N
fa—
A
—
Ay
~
on
=
<
b
=
<
)
[

9103 IA1d / Suex ueap

Early Pruning Optimization

UPDATES MANIPULATES

Observation: l Enhanced Iluntime
Framework can
often (but not
always) track
viewer.

-

VIEW CONTROLLER

Optimization: Can
often explore fewer
possible paths!

Nej
—
(@)
N
fa—
A
—
Ay
~
on
=
o]
b
=
x
<
[

_

Jean Yang

Carnegie Mellon University and
Harvard Medical School, USA

Armando Solar-Lezama

Massachusetts Institute of
Technology, USA

Abstract

We present an approach for dynamic information flow control
across the application and database. Our approach reduces
the amount of policy code required, yields formal guarantees
across the application and database, works with existing rela-
tional database implementations, and scales for realistic appli-
cations. In this paper, we present a programming model that
factors out information flow policies from application code
and database queries, a dynamic semantics for the underlying
A'P8 core language, and proofs of termination-insensitive
non-interference and policy compliance for the semantics.
We implement these ideas in Jacqueline, a Python web frame-
work, and demonstrate feasibility through three application
case studies: a course manager, a health record system, and

Precise, Dynamic Information Flow
for Database-Backed Applications

Travis Hance

Dropbox, USA

Cormac Flanagan

University of California, Santa Cruz,

Thomas H. Austin

San Jose State University, USA

Stephen Chong

Harvard University, USA

1. Introduction

From social networks to electronic health record systems,
programs increasingly process sensitive data. As information
leaks often arise from programmer error, a promising way to
reduce leaks is to reduce opportunities for programmer error.

A major challenge in securing web applications involves
reasoning about the flow of sensitive data across the appli-
cation and database. According to the OWASP report [42],
errors frequently occur at component boundaries. Indeed,
the difficulty of reasoning about how sensitive data flows
through both application code and database queries has led
to leaks in systems from the HotCRP conference manage-
ment system [3] to the social networking site Facebook [47].
The patch for the recent HotCRP bug involves policy checks

Nej
—
(e}
(A
—
a
—_
A~
~
an
=)
o]
>
=)
x
)
)

Review: Traditional Non-
Interterence

Secret values should not affect public output.

uest

if

i7ZA

userCount += 1

Challenge:

Compute labels from
program—may have
dependencies on

print {Eg} secret values!
0

wn
[¢D)
>
[¢]
()
<
~
on
o
<
-
o
<
[¢D)
=

Policy-Agnostic Non-

Interterence
== | 1 u€8t n == |
userCount +=1 userCount += 1

0 1 Theorem:
All executions where
guest must be
public produce

print { é} equivalent outputs.
0

wn
[¢D)
>
[¢]
()
<
~
on
o
<
-
o
<
[¢D)
=

9103 IA1d / Suex ueap

P

Application Case Studies

Course Health Conference
manager record management
manager system
(deployed!)

(.
Jacqueline reduces the number

of lines of policy code and has
reasonable overheads!

e
—
(@)
(o]
]
A
—
[a W
~
on
=
<
>~
=
<
(o)
=

-

9102 Ia'1d / Suex uesp

Demo

Conference Management System
Running Times

Single paper All Papers*®

0.2

—
[op)

~ ~
£ 214
0 0.15 Bt — ?a
a0 0
< o, 10
2 0.1 < 8
3 — 6
O r—{
= 0.05 < 4
2 Z 9 ©
Q = S
O 0 500 1000 S0 500 1000 é
.) . -
£ Papers in database ' Papers in database gv
= = K
. . o r= . . =i
——Jacqueline Django = -e-Jacqueline Django E

Tests from Amazon AWS machine via HTTP requests from another machine.

*Different from numbers in paper.

Summary: Policy-Agnostic Web
Programming with Jacqueline

1) Programmer specifies g) Enhanced runtime
information flow policies encompasses applications
separately from other and databases, preventing
functionality. leaks between the two.

Policy annotations

ﬁ

_
e have strong

(w
formal

2) Runtime prevents guarantees and

information leaks according evidence that
to policy annotations. this can be

\ practical!)

e
—
(@)
(o]
]
A
—
[a W
~
on
=
<
>~
=
<
(o)
=

You can factor out
information flow policies
from other code to avoid | database by using a
policy spaghetti! ' carefully-crafted ORM!

You can build realistic
systems using this approach!

http:/[jeeveslang. org = -

«,....._._-— http //glthub com/Jeanqasaur/Jeeves »

Jean Yang / PLDI 2016

