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Abstract

While most neural machine translation (NMT)
systems are still trained using maximum like-
lihood estimation, recent work has demon-
strated that optimizing systems to directly im-
prove evaluation metrics such as BLEU can
substantially improve final translation accu-
racy. However, training with BLEU has some
limitations: it doesn’t assign partial credit, it
has a limited range of output values, and it
can penalize semantically correct hypotheses
if they differ lexically from the reference. In
this paper, we introduce an alternative reward
function for optimizing NMT systems that is
based on recent work in semantic similarity.
We evaluate on four disparate languages trans-
lated to English, and find that training with our
proposed metric results in better translations as
evaluated by BLEU, semantic similarity, and
human evaluation, and also that the optimiza-
tion procedure converges faster. Analysis sug-
gests that this is because the proposed metric
is more conducive to optimization, assigning
partial credit and providing more diversity in
scores than BLEU.1

1 Introduction

In neural machine translation (NMT) and other
natural language generation tasks, it is common
practice to improve likelihood-trained models by
further tuning their parameters to explicitly max-
imize an automatic metric of system accuracy –
for example, BLEU (Papineni et al., 2002) or ME-
TEOR (Denkowski and Lavie, 2014). Directly op-
timizing accuracy metrics involves backpropagat-
ing through discrete decoding decisions, and thus
is typically accomplished with structured predic-
tion techniques like reinforcement learning (Ran-
zato et al., 2016), minimum risk training (Shen

1Code and data to replicate results are available at
https://www.cs.cmu.edu/˜jwieting.

et al., 2015), and other specialized methods (Wise-
man and Rush, 2016). Generally, these methods
work by repeatedly generating a translation under
the current parameters (via decoding, sampling, or
loss-augmented decoding), comparing the gener-
ated translation to the reference, receiving some
reward based on their similarity, and finally updat-
ing model parameters to increase future rewards.

In the vast majority of work, discriminative
training has focused on optimizing BLEU (or its
sentence-factored approximation). This is not sur-
prising given that BLEU is the standard metric for
system comparison at test time. However, BLEU
is not without problems when used as a training
criterion. Specifically, since BLEU is based on
n-gram precision, it aggressively penalizes lexical
differences even when candidates might be syn-
onymous with or similar to the reference: if an
n-gram does not exactly match a sub-sequence of
the reference, it receives no credit. While the pes-
simistic nature of BLEU differs from human judg-
ments and is therefore problematic, it may, in prac-
tice, pose a more substantial problem for a dif-
ferent reason: BLEU is difficult to optimize be-
cause it does not assign partial credit. As a re-
sult, learning cannot hill-climb through interme-
diate hypotheses with high synonymy or semantic
similarity, but low n-gram overlap. Furthermore,
where BLEU does assign credit, the objective is
often flat: a wide variety of candidate translations
can have the same degree of overlap with the ref-
erence and therefore receive the same score. This,
again, makes optimization difficult because gradi-
ents in this region give poor guidance.

In this paper we propose SIMILE, a simple al-
ternative to matching-based metrics like BLEU
for use in discriminative NMT training. As a
new reward, we introduce a measure of semantic
similarity between the generated hypotheses and
the reference translations evaluated by an embed-
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ding model trained on a large external corpus of
paraphrase data. Using an embedding model to
evaluate similarity allows the range of possible
scores to be continuous and, as a result, introduces
fine-grained distinctions between similar transla-
tions. This allows for partial credit and reduces
the penalties on semantically correct but lexically
different translations. Moreover, since the output
of SIMILE is continuous, it provides more infor-
mative gradients during the optimization process
by distinguishing between candidates that would
be similarly scored under matching-based metrics
like BLEU. Lastly, we show in our analysis that
SIMILE has an additional benefit over BLEU by
translating words with heavier semantic content
more accurately.

To define an exact metric, we reference the bur-
geoning field of research aimed at measuring se-
mantic textual similarity (STS) between two sen-
tences (Le and Mikolov, 2014; Pham et al., 2015;
Wieting et al., 2016; Hill et al., 2016; Conneau
et al., 2017; Pagliardini et al., 2017). Specifically,
we start with the method of Wieting and Gimpel
(2018), which learns paraphrastic sentence repre-
sentations using a contrastive loss and a parallel
corpus induced by backtranslating bitext. Wieting
and Gimpel showed that simple models that av-
erage word or character trigram embeddings can
be highly effective for semantic similarity. The
strong performance, domain robustness, and com-
putationally efficiency of these models make them
good candidates for experimenting with incor-
porating semantic similarity into neural machine
translation. For the purpose of discriminative
NMT training, we augment these basic models
with two modifications: we add a length penalty
to avoid short translations, and calculate similarity
by composing the embeddings of subword units,
rather than words or character trigrams. We find
that using subword units also yields better perfor-
mance on the STS evaluations and is more efficient
than character trigrams.

We conduct experiments with our new metric
on the 2018 WMT (Bojar et al., 2018) test sets,
translating four languages, Czech, German, Rus-
sian, and Turkish, into English. Results demon-
strate that optimizing SIMILE during training re-
sults in not only improvements in the same metric
during test, but also in consistent improvements in
BLEU. Further, we conduct a human study to eval-
uate system outputs and find significant improve-

ments in human-judged translation quality for all
but one language. Finally, we provide an analysis
of our results in order to give insight into the ob-
served gains in performance. Tuning for metrics
other than BLEU has not (to our knowledge) been
extensively examined for NMT, and we hope this
paper provides a first step towards broader consid-
eration of training metrics for NMT.

2 SIMILE Reward Function

Since our goal is to develop a continuous metric
of sentence similarity, we borrow from a line of
work focused on domain agnostic semantic simi-
larity metrics. We motivate our choice for apply-
ing this line of work to training translation models
in Section 2.1. Then in Section 2.2, we describe
how we train our similarity metric (SIM), how we
compute our length penalty, and how we tie these
two terms together to form SIMILE.

2.1 SIMILE

Our SIMILE metric is based on the sentence simi-
larity metric of Wieting and Gimpel (2018), which
we choose as a starting point because it has state-
of-the-art unsupervised performance on a host of
domains for semantic textual similarity.2 Being
both unsupervised and domain agnostic provide
evidence that the model generalizes well to unseen
examples. This is in contrast to supervised meth-
ods which are often imbued with the bias of their
training data.

Model. Our sentence encoder g averages 300 di-
mensional subword unit3 embeddings to create a
sentence representation. The similarity of two sen-
tences, SIM, is obtained by encoding both with g
and then calculating their cosine similarity.

Training. We follow Wieting and Gimpel
(2018) in learning the parameters of the encoder
g. The training data is a set S of paraphrase pairs4

2In semantic textual similarity the goal is to produce
scores that correlate with human judgments on the degree to
which two sentences have the same semantics. In embedding
based models, including the models used in this paper, the
score is produced by the cosine of the two sentence embed-
dings.

3We use sentencepiece which is available at
https://github.com/google/sentencepiece.
We limited the vocabulary to 30,000 tokens.

4We use 16.77 million paraphrase pairs filtered from the
ParaNMT corpus (Wieting and Gimpel, 2018). The cor-
pus is filtered by a sentence similarity score based on the
PARAGRAM-PHRASE from Wieting et al. (2016) and word tri-
grams overlap, which is calculated by counting word trigrams

https://github.com/google/sentencepiece


Model 2012 2013 2014 2015 2016
SIM (300 dim.) 69.2 60.7 77.0 80.1 78.4
SIMILE 70.1 59.8 74.7 79.4 77.8
Wieting and Gimpel (2018) 67.8 62.7 77.4 80.3 78.1
BLEU 58.4 37.8 55.1 67.4 61.0
BLEU (symmetric) 58.2 39.1 56.2 67.8 61.2
METEOR 53.4 47.6 63.7 68.8 61.8
METEOR (symmetric) 53.8 48.2 65.1 70.0 62.7
STS 1st Place 64.8 62.0 74.3 79.0 77.7
STS 2nd Place 63.4 59.1 74.2 78.0 75.7
STS 3rd Place 64.1 58.3 74.3 77.8 75.7

Table 1: Comparison of the semantic similarity model
used in this paper (SIM) with a number of strong base-
lines including the model of (Wieting and Gimpel,
2018) and the top 3 performing STS systems for each
year. Symmetric refers to taking the average score of
the metric with each sentence having a turn in the ref-
erence position.

Model newstest2015 newstest2016
SIM 58.2 53.1
SIMILE 58.4 53.2
BLEU 53.6 50.0
METEOR 58.9 57.2

Table 2: Comparison of models on machine translation
quality evaluation datasets. Scores are in Spearman’s ρ.

〈s, s′〉 and we use a margin-based loss:

`(s, s′) = max(0, δ − cos(g(s), g(s′))

+ cos(g(s), g(t)))

where δ is the margin, and t is a negative example.
The intuition is that we want the two texts to be
more similar to each other than to their negative
examples. To select t, we choose the most similar
sentence in a collection of mini-batches called a
mega-batch.

Finally, we note that SIM is robust to domain, as
shown by its strong performance on the STS tasks
which cover a broad range of domains. We note
that SIM was trained primarily on subtitles, while
we use news data to train and evaluate our NMT
models. Despite this domain switch, we are able to
show improved performance over a baseline using
BLEU, providing more evidence of the robustness
of this method.

Length Penalty. Our initial experiments showed
that when using just the similarity metric, SIM,

in the reference and translation, then dividing the number of
shared trigrams by the total number in the reference or trans-
lation, whichever has fewer. These form a balance between
semantic similarity (similarity score) and diversity (trigram
overlap). We kept all sentences in ParaNMT with a similar-
ity score ≥ 0.5 and a trigram overlap score ≤ 0.2. Recently,
in (Wieting et al., 2019) it has been shown that strong per-
formance on semantic similarity tasks can also be achieved
using bitext directly without the need for backtranslation.

there was nothing preventing the model from
learning to generate long sentences, often at the
expense of repeating words. This is the oppo-
site case from BLEU, where the n-gram preci-
sion is not penalized for generating too few words.
Therefore, in BLEU, a brevity penalty (BP) was
introduced to penalize sentences when they are
shorter than the reference. The penalty is:

BP(r, h) = e
1− |r||h|

where r is the reference and h is the generated hy-
pothesis, with |r| and |h| their respective lengths.
We experimented with modifying this penalty to
only penalize generated sentences that are longer
than the target (so we switch r and h in the equa-
tion). However, we found that this favored short
sentences. We instead penalize a generated sen-
tence if its length differs at all from that of the tar-
get. Therefore, our length penalty is:

LP(r, h) = e
1−max(|r|,|h|)

min(|r|,|h|)

SIMILE. Our final metric, which we refer to as
SIMILE, is defined as follows:

SIMILE = LP(r, h)αSIM(r, h)

In initial experiments we found that performance
could be improved slightly by lessening the influ-
ence of LP, so we fix α to be 0.25.

2.2 Motivation
There is a vast literature on metrics for evaluating
machine translation outputs automatically (For in-
stance, WMT metrics task papers like Bojar et al.
(2017)). In this paper we demonstrate that train-
ing towards metrics other than BLEU has signif-
icant practical advantages in the context of NMT.
While this could be done with any number of met-
rics, in this paper we experiment with a single se-
mantic similarity metric, and due to resource con-
straints leave a more extensive empirical compar-
ison of other evaluation metrics to future work.
That said, we designed SIMILE as a semantic sim-
ilarity model with high accuracy, domain robust-
ness, and computational efficiency to be used in
minimum risk training for machine translation.5

While semantic similarity is not an exact
replacement for measuring machine translation

5SIMILE, including time to segment the sentence, is about
20 times faster than METEOR when code is executed on a
GPU (NVIDIA GeForce GTX 1080).



quality, we argue that it serves as a decent proxy at
least as far as minimum risk training is concerned.
To test this, we compare the similarity metric term
in SIMILE (SIM) to BLEU and METEOR on two
machine quality datasets6 and report their corre-
lation with human judgments in Table 2. Machine
translation quality measures account for more than
semantics as they also capture other factors like
fluency. A manual error analysis and the fact that
the machine translation correlations in Table 2 are
close, but the semantic similarity correlations7 in
Table 1 are not, suggest that the difference be-
tween METEOR and SIM largely lies in fluency.
However, not capturing fluency is something that
can be ameliorated by adding a down-weighted
maximum-likelihood (MLE) loss to the minimum
risk loss. This was done by Edunov et al. (2018),
and we use this in our experiments as well.

3 Machine Translation Preliminaries

Architecture. Our model and optimization pro-
cedure are based on prior work on structured
prediction training for neural machine transla-
tion (Edunov et al., 2018) and are implemented in
Fairseq.8 Our architecture follows the paradigm
of an encoder-decoder with soft attention (Bah-
danau et al., 2015) and we use the same ar-
chitecture for each language pair in our experi-
ments. We use gated convolutional encoders and
decoders (Gehring et al., 2017). We use 4 layers
for the encoder and 3 for the decoder, setting the
hidden state size for all layers to 256, and the filter
width of the kernels to 3. We use byte pair encod-
ing (Sennrich et al., 2015), with a vocabulary size
of 40,000 for the combined source and target vo-
cabulary. The dimension of the BPE embeddings
is set to 256.

Objective Functions. Following (Edunov
et al., 2018), we first train models with

6We used the segment level data from newstest2015
and newstest2016 available at http://statmt.org/
wmt18/metrics-task.html. The former contains 7
language pairs and the latter 5.

7Evaluation is on the SemEval Semantic Textual Similar-
ity (STS) datasets from 2012-2016 (Agirre et al., 2012, 2013,
2014, 2015, 2016). In the SemEval STS competitions, teams
create models that need to work well on domains both repre-
sented in the training data and hidden domains revealed at test
time. Our model and those of Wieting and Gimpel (2018), in
contrast to the best performing STS systems, do not use any
manually-labeled training examples nor any other linguistic
resources beyond the ParaNMT corpus (Wieting and Gimpel,
2018).

8https://github.com/pytorch/fairseq

maximum-likelihood with label-smoothing
(LTokLS) (Szegedy et al., 2016; Pereyra et al.,
2017). We set the confidence penalty of label
smoothing to be 0.1. Next, we fine-tune the model
with a weighted average of minimum risk training
(LRisk) (Shen et al., 2015) and (LTokLS), where the
expected risk is defined as:

LRisk =
∑

u∈U(x)

cost(t,u)
p(u|x)∑

u′∈U(x) p(u
′|x)

where u is a candidate hypothesis, U(x) is a set
of candidate hypotheses, and t is the reference.
Therefore, our fine-tuning objective becomes:

LWeighted = γLTokLS + (1− γ)LRisk

We tune γ from the set {0.2, 0.3, 0.4} in our ex-
periments. In minimum risk training, we aim to
minimize the expected cost. In our case that is
1 − BLEU(t, h) or 1 − SIMILE(t, h) where t is
the target and h is the generated hypothesis. As
is commonly done, we use a smoothed version of
BLEU by adding 1 to all n-gram counts except
unigram counts. This is to prevent BLEU scores
from being overly sparse (Lin and Och, 2004).
We generate candidates for minimum risk train-
ing from n-best lists with 8 hypotheses and do not
include the reference in the set of candidates.

Optimization. We optimize our mod-
els using Nesterov’s accelerated gradient
method (Sutskever et al., 2013) using a learning
rate of 0.25 and momentum of 0.99. Gradients are
renormalized to norm 0.1 (Pascanu et al., 2012).
We train the LTokLS objective for 200 epochs and
the combined objective, LWeighted, for 10. Then
for both objectives, we anneal the learning rate
by reducing it by a factor of 10 after each epoch
until it falls below 10−4. Model selection is done
by selecting the model with the lowest validation
loss on the validation set. To select models across
the different hyperparameter settings, we chose
the model with the highest performance on the
validation set for the evaluation being considered.

4 Experiments

4.1 Data
Training models with minimum risk is expensive,
but we wanted to evaluate in a difficult, realistic
setting using a diverse set of languages. There-
fore, we experiment on four language pairs: Czech

http://statmt.org/wmt18/metrics-task.html
http://statmt.org/wmt18/metrics-task.html
https://github.com/pytorch/fairseq


Lang. Train Valid Test
cs-en 218,384 6,004 2,983
de-en 284,286 7,147 2,998
ru-en 235,159 7,231 3,000
tr-en 207,678 7,008 3,000

Table 3: Number of sentence pairs in the train-
ing/validation/test sets for all four languages.

(cs-en), German (de-en), Russian (ru-en),
and Turkish (tr-en) translating to English (en).
For training data, we use News Commentary v139

provided by WMT (Bojar et al., 2018) for cs-en,
de-en, and ru-en. For training the Turkish sys-
tem, we used the WMT 2018 parallel data which
consisted of the SETIMES210 corpus. The vali-
dation and development sets for de-en, cs-en,
and ru-en were the WMT 2016 and WMT 2017
validation sets. For tr-en, the validation set was
the WMT 2016 validation set and the WMT 2017
validation and test sets. Test sets for each language
were the official WMT 2018 test sets.

4.2 Automatic Evaluation
We first use corpus-level BLEU and the corpus av-
erage SIM score to evaluate the outputs of the dif-
ferent experiments. It is important to note that in
this case, SIM is not the same as SIMILE. SIM is
only the semantic similarity component of SIM-
ILE and therefore lacks the length penalization
term. We used this metric to estimate the degree
to which the semantic content of a translation and
its reference overlap. When evaluating semantic
similarity, we find that SIM outperforms SIMILE

marginally as shown in Table 1.
We compare systems trained with 4 objectives:

• MLE: Maximum likelihood with label smooth-
ing
• BLEU: Minimum risk training with 1-BLEU as

the cost
• SIMILE: Minimum risk training with 1-SIMILE

as the cost
• Half: Minimum risk training with a new cost

that is half BLEU and half SIMILE: 1 −
1
2(BLEU + SIMILE)

The results are shown in Table 4. From the ta-
ble, we see that using SIMILE performs the best

9http://data.statmt.org/wmt18/
translation-task/training-parallel-nc-
v13.tgz

10http://opus.lingfil.uu.se/SETIMES2.
php

when using BLEU and SIM as evaluation metrics
for all four languages. It is interesting that us-
ing SIMILE in the cost leads to larger BLEU im-
provements than using BLEU alone, the reasons
for which we examine further in the following sec-
tions. It is important to emphasize that increasing
BLEU was not the goal of our proposed method,
human evaluations were our target, but this is a
welcome surprise. Similarly, using BLEU as the
cost function leads to large gains in SIM, though
these gains are not as large as when using SIMILE

in training.

4.3 Human Evaluation

We also perform human evaluation, comparing
MLE training with minimum risk training using
SIMILE and BLEU as costs. We selected 200
sentences along with their translation from the re-
spective test sets of each language. The sentences
were selected nearly randomly with the only con-
straints that they be between 3 and 25 tokens long
and also that the outputs for SIMILE and BLEU
were not identical. The translators then assigned a
score from 0-5 based on how well the translation
conveyed the information contained in the refer-
ence.11

From the table, we see that minimum risk train-
ing with SIMILE as the cost scores the highest
across all language pairs except Turkish. Turk-
ish is also the language with the lowest test BLEU
(See Table 4). An examination of the human-
annotated outputs shows that in Turkish (unlike
the other languages) repetition was a significant
problem for the SIMILE system in contrast to
MLE or BLEU. We hypothesize that one weak-
ness of SIMILE may be that it needs to start with
some minimum level of translation quality in or-
der to be most effective. The biggest improvement
over BLEU is on de-en and ru-en, which have
the highest MLE BLEU scores in Table 4 which
further lends credence to this hypothesis.

5 Quantitative Analysis

We next analyze our model using the validation
set of the de-en data unless stated otherwise. We
chose this dataset for the analysis since it had the
highest MLE BLEU scores of the languages stud-
ied.

11Wording of the evaluation is available in Section A.1.

http://data.statmt.org/wmt18/translation-task/training-parallel-nc-v13.tgz
http://data.statmt.org/wmt18/translation-task/training-parallel-nc-v13.tgz
http://data.statmt.org/wmt18/translation-task/training-parallel-nc-v13.tgz
http://opus.lingfil.uu.se/SETIMES2.php
http://opus.lingfil.uu.se/SETIMES2.php


de-en cs-en ru-en tr-en
Model BLEU SIM BLEU SIM BLEU SIM BLEU SIM
MLE 27.52 76.19 17.02 67.55 17.92 69.13 14.47 65.97
BLEU 27.92‡ 76.28‡ 17.38‡ 67.87‡ 17.97 69.29‡ 15.10‡ 66.53‡

SIMILE 28.56†‡ 77.52†‡ 17.60†‡ 68.89†‡ 18.44†‡ 70.69†‡ 15.47†‡ 67.76†‡

Half 28.25†‡ 76.92†‡ 17.52†‡ 68.26†‡ 18.26†‡ 70.32†‡ 15.40†‡ 67.14†‡

Table 4: Results on translating four languages to English for MLE, BLEU, SIMILE and Half. † denotes statistical
significance (p < 0.05) over BLEU and ‡ denotes statistical significance over MLE. Statistical significance was
computed using paired bootstrap resampling (Koehn, 2004).

Avg. Score
Lang. MLE BLEU SIMILE

cs-en 0.98 0.90 1.02†

de-en 0.93 0.85 1.00†

ru-en 1.22 1.21 1.31†‡
tr-en 0.98∗ 1.03∗ 0.78

Table 5: Average human ratings on 200 sentences from
the test set for each of the respective languages. † de-
notes statistical significance (p < 0.05) over BLEU,
except for the case of cs-en, where p = 0.06. ‡
denotes statistical significance over MLE, and * de-
notes statistical significance over SIMILE. Statistical
significance was computed using paired bootstrap re-
sampling.

5.1 Partial Credit
We analyzed the distribution of the cost function
for both SIMILE and BLEU on the de-en vali-
dation set before any fine-tuning. Again, using an
n-best list size of 8, we computed the cost for all
generated translations and plotted their histogram
in Figure 1. The plots show that the distribution of
scores for SIMILE and BLEU are quite different.
Both distributions are not symmetrical Gaussian,
however the distribution of BLEU scores is signif-
icantly more skewed with much higher costs. This
tight clustering of costs provides less information
during training.

Next, for all n-best lists, we computed all dif-
ferences between scores of the hypotheses in the
beam. Therefore, for a beam size of 8, this results
in 28 different scores. We found that of the 86,268
scores, the difference between scores in an n-best
list is ≥ 0 99.0% of the time for SIMILE, but
85.1% of the time for BLEU. The average differ-
ence is 4.3 for BLEU and 4.8 for SIMILE, show-
ing that SIMILE makes finer grained distinctions
among candidates.

5.2 Validation Loss
We next analyze the validation loss during train-
ing of the de-en model for both using SIMILE

and BLEU as costs. We use the hyperparameters
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Figure 1: Distribution of scores for SIMILE and BLEU.

of the model with the highest BLEU on the vali-
dation set for model selection. Since the distribu-
tions of costs vary significantly between SIMILE

and BLEU, with BLEU having much higher costs
on average, we compute the validation loss with
respect to both cost functions for each of the two
models.

In Figure 2, we plot the risk objective for the
first 10 epochs of training. In the top plot, we
see that the risk objective for both BLEU and
SIMILE decreases much faster when using SIM-
ILE to train than BLEU. The expected BLEU also
reaches a significantly lower value on the valida-
tion set when training with SIMILE. The same
trend occurs in the lower plot, this time measuring
the expected SIMILE cost on the validation set.

From these plots, we see that optimizing with
SIMILE results in much faster training. It also
reaches a lower validation loss, and from Ta-
ble 4, we’ve already shown that the SIMILE and
BLEU on the test set are higher for models trained
with SIMILE. To hammer home the point at
how much faster the models trained with SIMILE

reach better performance, we evaluated after just 1
epoch of training and found that the model trained
with BLEU had SIM/BLEU scores of 86.71/27.63
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Figure 2: Validation loss comparison for SIMILE and
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plot shows the expected SIMILE cost when training
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and performance as measured by average SIM score
or corpus-level BLEU when training using SIMILE or
BLEU as a cost.

while the model trained with SIMILE had scores
of 87.14/28.10. A similar trend was observed in
the other language pairs as well, where the vali-
dation curves show a much larger drop-off after a
single epoch when training with SIMILE than with
BLEU.

5.3 Effect of n-best List Size
As mentioned in Section 3, we used an n-best
list size of 8 in our minimum risk training experi-
ments. In this section, we train de-en translation
models with various n-best list sizes and investi-
gate the relationship between beam size and test
set performance when using SIMILE or BLEU as
a cost. We hypothesize that since BLEU is not

Lang./Bucket cs-en ∆ de-en ∆ ru-en ∆ tr-en ∆ Avg.
1 0.1 0.8 0.2 0.1 0.30
2-5 1.2 0.6 0.0 0.2 0.50
6-10 0.4 0.7 1.4 -0.3 0.55
11-100 0.2 0.6 0.6 0.4 0.45
101-1000 -0.3 0.3 0.4 0.2 0.15
1001+ -0.2 0.5 0.4 -0.0 0.08
DET 0.1 -0.1 0.7 -0.5 0.03
PRON 0.6 -0.3 0.1 0.9 0.33
PREP 0.2 -0.3 0.5 0.5 0.24
CONJ 0.1 1.1 0.3 -0.5 0.27
PUNCT -0.4 1.3 0.8 -0.4 0.34
NUM 0.6 2.2 1.8 1.3 1.48
SYM 0.3 3.6 4.4 1.7 2.50
INTJ 3.2 -1.1 3.2 -2.6 0.66
VERB 0.2 0.3 0.0 0.0 0.13
ADJ 0.2 0.7 0.3 -0.2 0.25
ADV -0.2 0.1 0.8 0.7 0.34
NOUN 0.3 1.1 0.8 0.4 0.63
PRNOUN 0.5 1.2 0.6 0.4 0.65

Table 6: Difference in F1 score for various buckets
of words. The values in the table are the difference
between the F1 obtained when training using SIMILE
and when training using BLEU (positive values means
SIMILE had a higher F1). The first part of the table
shows F1 scores across bins defined by word frequency
on the test set. So words appearing only 1 time are in
the first row, between 2-5 times are in the second row,
etc. The next part of the table buckets words by coarse
part-of-speech tags.

as fine-grained a metric as SIMILE, expanding the
number of candidates would close the gap between
BLEU and SIMILE as BLEU would have access to
a more candidates with more diverse scores. The
results of our experiment on the are shown in Fig-
ure 3 and show that models trained with SIMILE

actually improve in BLEU and SIM more signif-
icantly as n-best list size increases. This is pos-
sibly due to small n-best sizes inherently upper-
bounding performance regardless of training met-
ric, and SIMILE being a better measure overall
when the n-best is sufficiently large to learn.

5.4 Lexical F1
We next attempt to elucidate exactly which parts
of the translations are improving due to using
SIMILE cost compared to using BLEU. We com-
pute the F1 scores for target word types based on
their frequency and their coarse part-of-speech tag
(as labeled by SpaCy12) on the test sets for each
language and show the results in Table 6.13

From the table, we see that training with SIM-
ILE helps produce low frequency words more ac-
curately, a fact that is consistent with the part-of-
speech tag analysis in the second part of the table.
Wieting and Gimpel (2017) noted that highly dis-

12 https://github.com/explosion/spaCy
13We use compare-mt (Neubig et al., 2019) available at

https://github.com/neulab/compare-mt.

https://github.com/explosion/spaCy
https://github.com/neulab/compare-mt


Reference System Human Score Translation

I will tell you my personal opinion
of him.

. BLEU 2 I will have a personal opinion on it.
SIMILE 4 I will tell my personal opinion about it.
MLE 2 I will have a personal view of it.

In my case, it was very varied.
BLEU 0 I was very different from me.
SIMILE 4 For me, it was very different.
MLE 1 In me, it was very different.

We’re making the city liveable.
BLEU 0 We make the City of Life Life.
SIMILE 3 We make the city viable.
MLE 0 We make the City of Life.

The head of the White House said
that the conversation was ridicu-
lous.

BLEU 0 The White House chairman, the White House chip called a ridiculous.
SIMILE 4 The White House’s head, he described the conversation as ridiculous.
MLE 1 The White House chief, he called the White House, he called a ridiculous.

According to the former party lead-
ers, so far the discussion has been
predominated by expressions of
opinion based on emotions, without
concrete arguments.

BLEU 3 According to former party leaders, the debate has so far had to be ”elevated
to an expression of opinion without concrete arguments.”

SIMILE 5 In the view of former party leaders, the debate has been based on emotions
without specific arguments.”

MLE 4 In the view of former party leaders, in the debate, has been based on emotions
without specific arguments.”

We are talking about the 21st cen-
tury: servants.

BLEU 4 We are talking about the 21st century: servants.
SIMILE 1 In the 21st century, the 21st century is servants.
MLE 0 In the 21st century, the 21st century is servants.

Prof. Dr. Caglar continued:
BLEU 3 They also reminded them.
SIMILE 0 There are no Dr. Caglar.
MLE 3 They also reminded them.

Table 7: Translation examples for min-risk models trained with SIMILE and BLEU and our baseline MLE model.

criminative parts-of-speech, such as nouns, proper
nouns, and numbers, made the most contribution
to the sentence embeddings. Other works (Pham
et al., 2015; Wieting et al., 2016) have also found
that when training semantic embeddings using an
averaging function, embeddings that bear the most
information regarding the meaning have larger
norms. We also see that these same parts-of-
speech (nouns, proper nouns, numbers) have the
largest difference in F1 scores between SIMILE

and BLEU. Other parts-of-speech like symbols
and interjections have high F1 scores as well, and
words belonging to these classes are both rela-
tively rare and highly discriminative regarding the
semantics of the sentence.14 In contrast, parts-of-
speech that in general convey little semantic infor-
mation and are more common, like determiners,
show very little difference in F1 between the two
approaches.

6 Qualitative Analysis

We show examples of the output of all three sys-
tems in Table 7 from the test sets, along with
their human scores which are on a 0-5 scale. The
first 5 examples show cases where SIMILE bet-
ter captures the semantics than BLEU or MLE.
In the first three, the SIMILE model adds a cru-
cial word that the other two systems omit. This
makes a significant difference in preserving the se-
mantics of the translation. These words include

14Note that in the data, interjections (INTJ) often corre-
spond to words like Yes and No which tend to be very impor-
tant regarding the semantics of the translation in these cases.

verbs (tells), prepositions (For), adverbs (viable)
and nouns (conversation). The fourth and fifth ex-
amples also show how SIMILE can lead to more
fluent outputs and is effective on longer sentences.

The last two examples are failure cases of using
SIMILE. In the first, it repeats a phrase, just as the
MLE model does and is unable to smooth it out as
the BLEU model is able to do. In the last example,
SIMILE again tries to include words (Dr. Caglar)
significant to the semantics of the sentence. How-
ever it misses on the rest of translation, despite be-
ing the only system to include this noun phrase.

7 Metric Comparison

We took all outputs of the validation set of the
de-en data for our best SIMILE and BLEU mod-
els, as measured by BLEU validation scores, and
we sorted the outputs by the following statistic:

|∆BLEU| − |∆SIM|

where BLEU in this case refers to sentence-level
BLEU. Examples of some of the highest and low-
est scoring sentence pairs are shown in Table 8
along with the system they came from (either
trained with a BLEU cost or SIMILE cost).

The top half of the table shows examples where
the difference in SIM scores is large, but the dif-
ference in BLEU scores is small. From these ex-
amples, we see that when SIM scores are very dif-
ferent, there is a difference in the meanings of the
generated sentences. However, when the BLEU
scores are very close, this is not the case. In fact,
in these examples, less accurate translations have



System Sentence BLEU SIM ∆BLEU ∆SIM
Reference Workers have begun to clean up in Röszke. - - - -
BLEU Workers are beginning to clean up workers. 29.15 69.12 - -
SIMILE In Röszke, workers are beginning to clean up. 25.97 95.39 -3.18 26.27
Reference All that stuff sure does take a toll. - - - -
BLEU None of this takes a toll. 25.98 54.52 - -
SIMILE All of this is certain to take its toll. 18.85 77.20 -7.13 32.46
Reference Another advantage is that they have fewer enemies. - - - -
BLEU Another benefit : they have less enemies. 24.51 81.20 - -
SIMILE Another advantage: they have fewer enemies. 58.30 90.76 56.69 9.56
Reference I don’t know how to explain - it’s really unique. - - - -
BLEU I do not know how to explain it - it is really unique. 39.13 97.42 - -
SIMILE I don’t know how to explain - it is really unique. 78.25 99.57 39.12 2.15

Table 8: Translation examples where the |∆BLEU| − |∆SIM| statistic is among the highest and lowest in the
validation set. The top two rows show examples where the generated sentences have similar sentence-level BLEU
scores but quite different SIM scores. The bottom two rows show the converse. Negative values indicate the
SIMILE system had a higher score for that sentence.

higher BLEU scores than more accurate ones. In
the first sentence, an important clause is left out (in
Röszke) and in the second, the generated sentence
from the BLEU system actually negates the refer-
ence, despite having a higher BLEU score than the
sentence from the SIMILE system.

Conversely, the bottom half of the table shows
examples where the difference in BLEU scores is
large, but the difference in SIM scores is small.
From these examples, we can see that when BLEU
scores are very different, the semantics of the sen-
tence can still be preserved. However, the SIM
score of these generated sentences with the refer-
ences are close to each other, as we would hope
to see. These examples illustrate a well-known
problem with BLEU where synonyms, punctua-
tion changes, and other small deviations from the
reference can have a large impact on the score. As
can be seen from the examples, these are less of a
problem for the SIM metric.

8 Related Work

The seminal work on training machine translation
systems to optimize particular evaluation mea-
sures was performed by Och (2003), who intro-
duced minimum error rate training (MERT) and
used it to optimize several different metrics in
statistical MT (SMT). This was followed by a
large number of alternative methods for optimiz-
ing machine translation systems based on mini-
mum risk (Smith and Eisner, 2006), maximum
margin (Watanabe et al., 2007), or ranking (Hop-
kins and May, 2011), among many others.

Within the context of SMT, there have also been
studies on the stability of particular metrics for
optimization. Cer et al. (2010) compared several

metrics to optimize for SMT, finding BLEU to
be robust as a training metric and finding that the
most effective and most stable metrics for training
are not necessarily the same as the best metrics
for automatic evaluation. The WMT shared tasks
included tunable metric tasks in 2011 (Callison-
Burch et al., 2011) and again in 2015 (Stanojević
et al., 2015) and 2016 (Jawaid et al., 2016). In
these tasks, participants submitted metrics to op-
timize during training or combinations of metrics
and optimizers, given a fixed SMT system. The
2011 results showed that nearly all metrics per-
formed similarly to one another. The 2015 and
2016 results showed more variation among met-
rics, but also found that BLEU was a strong choice
overall, echoing the results of Cer et al. (2010).
We have shown that our metric stabilizes training
for NMT more than BLEU, which is a promising
result given the limited success of the broad spec-
trum of previous attempts to discover easily tun-
able metrics in the context of SMT.

Some researchers have found success in terms
of improved human judgments when training to
maximize metrics other than BLEU for SMT. Lo
et al. (2013) and Beloucif et al. (2014) trained
SMT systems to maximize variants of MEANT,
a metric based on semantic roles. Liu et al. (2011)
trained systems using TESLA, a family of met-
rics based on softly matching n-grams using lem-
mas, WordNet synsets, and part-of-speech tags.
We have demonstrated that our metric similarly
leads to gains in performance as assessed by hu-
man annotators, and our method has an auxiliary
advantage of being much simpler than these previ-
ous hand-engineered measures.

Shen et al. (2016) explored minimum risk train-



ing for NMT, finding that a sentence-level BLEU
score led to the best performance even when evalu-
ated under other metrics. These results differ from
the usual results obtained for SMT systems, in
which tuning to optimize a metric leads to the best
performance on that metric (Och, 2003). Edunov
et al. (2018) compared structured losses for NMT,
also using sentence-level BLEU. They found risk
to be an effective and robust choice, so we use risk
as well in this paper.

9 Conclusion

We have proposed SIMILE, an alternative to
BLEU for use as a reward in minimum risk train-
ing. We have found that SIMILE not only outper-
forms BLEU on automatic evaluations, it corre-
lates better with human judgments as well. Our
analysis also shows that using this metric eases op-
timization and the translations tend to be richer in
correct, semantically important words.

This is the first time to our knowledge that a
continuous metric of semantic similarity has been
proposed for NMT optimization and shown to out-
perform sentence-level BLEU, and we hope that
this can be the starting point for more research in
this direction.

A Appendix

A.1 Annotation Instructions

Below are the annotation instructions used by
translators for evaluation.

• 0. The meaning is completely different or the
output is meaningless

• 1. The topic is the same but the meaning is
different

• 2. Some key information is different

• 3. The key information is the same but the
details differ

• 4. Meaning is essentially equal but some ex-
pressions are unnatural

• 5. Meaning is essentially equal and the two
sentences are well-formed English
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Miloš Stanojević, Amir Kamran, and Ondřej Bojar.
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