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ABSTRACT

Representation learning has had a tremendous impact in machine learning and natural lan-
guage processing (NLP), especially in recent years. Learned representations provide useful
features needed for downstream tasks, allowing models to incorporate knowledge from
billions of tokens of text. The result is better performance and generalization on many
important problems of interest. Often these representations can also be used in an un-
supervised manner to determine the degree of semantic similarity of text or for finding
semantically similar items, the latter useful for mining paraphrases or parallel text. Lastly,
representations can be probed to better understand what aspects of language have been
learned, bringing an additional element of interpretability to our models.

This thesis focuses on the problem of learning paraphrastic representations for units of
language. These units span from sub-words, to words, to phrases, and to full sentences —
the latter being a focal point. Our primary goal is to learn models that can encode arbitrary
word sequences into a vector with the property that sequences with similar semantics are
near each other in the learned vector space, and that this property transfers across domains.

We first show several effective and simple models, PARAGRAM and CHARAGRAM, to learn
word and sentence representations on noisy paraphrases automatically extracted from bilin-
gual corpora. These models outperform contemporary and more complicated models on a
variety of semantic evaluations.

We then propose techniques to enable deep networks to learn effective semantic represen-
tations, addressing a limitation of our prior work. We found that in order to learn represen-
tations for sentences with deeper, more expressive neural networks, we need large amounts
of sentential paraphrase data. Since this did not exist yet, we utilized neural machine trans-
lation models to create PARANMT-50M, a corpus of 50 million English paraphrases which
has found numerous uses by NLP researchers, in addition to providing further gains on
our learned paraphrastic sentence representations.

We next propose models for bilingual paraphrastic sentence representations. We first pro-
pose a simple and effective approach that outperforms more complicated methods on cross-
lingual sentence similarity and mining bitext, and we also show that we can also achieve

strong monolingual performance without paraphrase corpora by just using parallel text.
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We then propose a generative model capable of concentrating semantic information into
our embeddings and separating out extraneous information by viewing parallel text as two
different views of a semantic concept. We found that this model has improved performance
on both monolingual and cross-lingual tasks. Lastly, we extend this bilingual model to the
multilingual setting and show it can be effective on multiple languages simultaneously,
significantly surpassing contemporary multilingual models.

Finally, this thesis concludes by showing applications of our learned representations and
PARANMT-50M. The first of these is on generating paraphrases with syntactic control for
making classifiers more robust to adversarial attacks. We found that we can generate a
controlled paraphrase for a sentence by supplying just the top production of the desired
constituent parse — and the generated sentence will follow this structure, filling in the
rest of the tree as needed to create the paraphrase. The second application is applying
our representations for fine-tuning neural machine translation systems using minimum
risk training. The conventional approach is to use BLEU (Papineni et al., 2002), since that
is what is commonly used for evaluation. However, we found that using an embedding
model to evaluate similarity allows the range of possible scores to be continuous and, as a
result, introduces fine-grained distinctions between similar translations. The result is better
performance on both human evaluations and BLEU score, along with faster convergence

during training.
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INTRODUCTION

Representation learning has had a tremendous impact in machine learning and natural
language processing, especially in recent years. Learned representations provide useful
features needed for downstream tasks, allowing models to incorporate knowledge from
billions of tokens of text. The result is better performance downstream tasks and better gen-
eralization. Representations are also useful because they can be probed to better understand
what aspects of language have been learned. Vector representations can additionally be use-
ful for finding semantically similar items quickly, an important aspect for text retrieval and
mining.

Word representations have had an especially rich history in natural language processing.
A common form of these representations are mathematical objects like vectors, points in a
high dimensional space (Deerwester et al., 1990; Turney, 2001; Bengio et al., 2003; Turian
et al.,, 2010; Mikolov et al., 2013b). With these representations, the relationship between
words can be inferred from this space. For instance, words with similar meaning could
be near each other or the different dimensions of the word vectors may also correspond
to semantic or grammatical properties. It is important to note that there are other types
of lexical representations beyond word vectors. Word clusters (Brown et al., 1992; Kneser
and Ney, 1993) are another type of representation that can be represented by a vector
indicating membership into a specific cluster. There has also been significant work on cre-
ating word ontologies or lexicons such as Wordnet (Miller, 1995), Verbnet (Schuler, 2005),
Framenet (Baker et al., 1998), and the Proposition Bank (Palmer et al., 2005). These contain
rich linguistic information and also can specify the relationships between words. They are
also manually created resources and are therefore costlier to construct than automatic ap-
proaches. Moreover, they tend to be more sparse than automatic methods that are able to
learn representations from data consisting of billions of words incorporating vocabularies
that can number in the millions.

There are many techniques for learning word vectors, most of these relying on the distri-
butional hypothesis (Harris, 1954) which states that the meaning of words can be inferred by

the contexts in which they occur. This was famously restated by Firth (Firth, 1957) that You



INTRODUCTION

shall know a word by the company it keeps. This insight led to many of the distributional word
embedding approaches that have made such an impact on the field. Early approaches to
learn word embeddings factorize a matrix of co-occurrence count statistics using singular
value decomposition (SVD) (Deerwester et al., 1990). Co-occurrence statistics of other rela-
tions have also been successfully used like syntactic dependencies (Lin, 1998). In contrast
to word counts, methods using dependencies tend to capture more functional similarity as
opposed to topical similarity. Often counts are transformed into other statistics to better
differentiate surprising from expected co-occurrences such as pointwise mutual informa-
tion (PMI) (Church and Hanks, 1990). Besides methods focused on matrix factorization, the
other main approach to learning word embeddings involve neural networks. These include
methods based on language modelling (Bengio et al., 2003) and methods based on pre-
dicting co-occurrences (Mikolov et al., 2013b; Pennington et al., 2014). (Faruqui and Dyer,
2014) found that models based on estimating co-occurrences usually lead to better perfor-
mance owing to incorporating both sides of the context of a word. Interestingly, (Levy and
Goldberg, 2014) found that the skip-gram model of (Mikolov et al., 2013b) can be seen as
equivalent to factoring a matrix of PMI statistics shifted by log(k), where k is the number
of negative samples used during training.

Recently, contextualized representations (Dai and Le, 2015, McCann et al., 2017; Peters
et al., 2018; Devlin et al., 2018) of words have found a great deal of success, often improv-
ing on downstream tasks over static word embeddings. In these models, the representations
for words change depending on their current context. Therefore, a single word is no longer
limited to a specific vector, but instead its representation is generated specifically for its cur-
rent context. These models are learned through language modelling, machine translation
or related objectives such as masked language modelling.

With the success of word representations in many tasks in natural language process-
ing (Clark, 2003; Turian et al., 2010; Bansal et al., 2014), a natural question to ask is what
about learning representations for larger units of text such as word bigrams, phrases, sen-
tences, or even paragraphs and documents? These representations pose additional chal-
lenged because unlike words, the possible number of instances increases exponentially as
the text sequences become larger. Therefore, developing ontologies or borrowing techniques
from learning distributional word vectors is infeasible, and therefore different approaches
to learning these representations must be used.

Many approaches for learning sentential representations have been proposed in the lit-

erature. These include constituent parsing (Klein and Manning, 2003), dependency pars-



INTRODUCTION

ing (McDonald et al., 2005), semantic parsing (Berant and Liang, 2014), semantic role la-
belling (Punyakanok et al., 2008), and abstract meaning representations (Banarescu et al.,
2013). These representations can be seen as analogs to the ontology and lexicons for words
since they are also created with the input of human linguists and provide rich syntac-
tic and/or semantic information about the text. However drawbacks include that models
must be trained to predict these structures, which can introduce errors when applied to
new text, especially if it is out-of-domain from the training data. Further, to apply these
representations to downstream tasks, additional processing is required whether they are
mined for features or transformed into continuous representations to be incorporated as
features into neural models.

Perhaps the earliest work on vector representations of sentences are feature vectors for
classification tasks. In these early models, features would be extracted by manually de-
signed feature functions, which could be as simple as the identity of the words in the
sentence. Later, with approaches using neural networks in (Collobert and Weston, 2008;
Collobert et al., 2011; Socher et al., 2011), features were learned automatically. The first gen-
eral purpose sentence embeddings however, are relatively recent in the literature (Le and
Mikolov, 2014; Kiros et al., 2015). In contrast to the supervised approaches, these embed-
dings were not trained for any particular goal task, but to provide useful features for any
task.

There have been many approaches proposed for learning sentence embeddings. These
include predicting the next and previous sentences (Kiros et al., 2015), machine transla-

tion (Espana-Bonet et al., 2017; Schwenk and Douze, 2017; Schwenk, 2018; Artetxe and

Schwenk, 2018b), training on natural language inference (NLI; (Bowman et al., 2015)) data (Con-

neau et al., 2017), discourse based objectives (Jernite et al., 2017; Nie et al., 2017), and multi-
task objectives which include some of the previously mentioned objectives (Cer et al., 2018)
as well as additional tasks like constituency parsing (Subramanian et al., 2018).

In this thesis, we focus on learning paraphrastic representations for sentences. We hypoth-
esize that a minimum requirement of quality representations is that the distance of the
representations in the learned vector space is related to the semantic distance of the un-
derlying text. This intuition motivates many of the algorithms and strategies in this thesis,
and distinguishes our work from much of the literature. The problem of learning these
representations is difficult because sentences with similar semantics can have significantly
different surface forms, while sentences with contradictory semantics can have very similar

surface forms. For instance, paraphrases can have large lexical and syntactic differences
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INTRODUCTION

such as Other ways are needed. and It is necessary to find other means., but have similar seman-
tics. Further, subtle lexical changes can drastically change the meaning of the sentences as
in Flights are on sale from New York to Paris. and Flights are on sale from Paris to New York.

This thesis is organized into five content chapters covering not only our approaches to
learning paraphrastic sentence embeddings, but applications of these embeddings from tasks
including the construction of large paraphrase corpora, adversarial paraphrase generation,
and fine-tuning machine translation outputs.

In Chapter 3, we discuss our first models for learning paraphrastic representations using
paraphrase text snippets from the Paraphrase Database (PPDB) (Ganitkevitch et al., 2013).
This chapter proposes three main models. The first are PARAGRAM word embeddings. These
significantly surpassed the state-of-the-art word embedding approaches for measuring sim-
ilarity and are even the basis for state-of-the-art models today. In the second model, we
learn sentence embeddings where our primary evaluation is on a suite of semantic textual
similarity (STS) datasets, but we also follow the setting of (Kiros et al., 2015) and show that
we can rival their performance with our simpler model. Lastly, we discuss our CHARAGRAM
models for learning word and sentence representations. In these representations, we repre-
sent a character sequence by a vector containing counts of character n-grams, inspired by
Huang et al. (2013). This vector is embedded into a low-dimensional space using a single
nonlinear transformation. We find that these CHARAGRAM embeddings outperforms charac-
ter recurrent neural networks (RNNs), character convolutional neural networks (CNNs), as
well as PARAGRAM embeddings. We find that modelling subwords yields large gains in per-
formance for rare words and can easily handle spelling variation, morphology, and word
choice.

Then in Chapter 4, we discuss strategies to improve our paraphrastic sentence embed-
dings. We do this by moving away from PPDB and also by incorporating deeper and
more expressive architectures. This chapter focuses on PARANMT-50M (Wieting and Gim-
pel, 2018), a large corpus of paraphrases that we created to use as training data. We realized
that important training on sentences, instead of text snippets was to performance, and we
found back-translation to be an effective way of creating a corpus of sentential paraphrases.
Therefore, we created a corpus of 50 million sentence paraphrases through back-translation
of a large bilingual corpus (Bojar et al., 2016). The subsequent performance gains with our
embeddings using PARANMT-50M, allowed us to outperform all competing systems in the
SemEval STS competitions held from 2012-2016 despite not using the training data for these

tasks.
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In Chapter 5, we experiment with learning paraphrastic sentence representations from
bilingual data. This chapter also contains our proposed work. We start with (Wieting et al.,
2019b) where we show: 1) Using bilingual text can rival performance of using PARANMT-
50M, simplifying the procedure if our focus is exclusively on sentence embeddings, since
back-translation is no longer required. 2) Using sub-word embeddings in this setting is
more effective than using character n-grams or words for cross-lingual similarity. In the
second part of the chapter, we propose learning paraphrastic sentence embeddings as a
source separation problem, leading to s significant boost in representation quality. We treat
parallel data as two views of the same semantic information, but with different surface
forms. We then propose a deep latent variable model, the Bilingual Generative Transformer
(BGT) that performs source separation, isolating what the parallel sentences have in com-
mon in a latent semantic vector, and explaining what is left over with language-specific
latent vectors. We find that the model is effective, pushing more semantic information into
the semantic representation, relative to strong baselines, leading to improvement in all
of our evaluations. We conclude this chapter with extending the BGT to the multilingual
setting with the Multilingual Generative Transformer MGT). This is an extension to the
multilingual setting and we show how we can collapse to the BGT model to use a single
encoder and decoder while training on many languages simultaneously, while retaining
strong performance — far surpassing a translation baseline which is used in contemporary
state-of-the-art models.

Our last two chapters 6 and 7 focus on application of our paraphrase corpus and our
paraphrastic sentence embeddings. In Chapter 6, we apply our PARANMT-50Mcorpus and
sentence embedding models towards learning controllable paraphrase generation. Specifi-
cally we focus on controlling the syntax of the generated sentences. We find that we can
learn a model where by just supplying a parse template, i.e. the top production of a con-
stituent parse, we can generate a sentence with that syntax. We show that when these
syntactic paraphrases are added to training, models become more robust to adversarial ex-
amples. In Chapter 7, we use our paraphrastic representations, along with a proposed length
penalty, for fine-tuning neural machine translation systems using minimum risk training.
The conventional approach is to use BLEU (Papineni et al., 2002), since that is what is com-
monly used for evaluation. However, we found that using an embedding model to evaluate
similarity allows the range of possible scores to be continuous and, as a result, introduces
fine-grained distinctions between similar translations. The result is better performance on

both human evaluations and BLEU score, along with faster convergence during training.
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BACKGROUND

2.1 SENTENCE EMBEDDING EVALUATION

2.1.1  Semantic Textual Similarity (STS)

The primary evaluation metric for many of the models used in this paper is semantic
textual similarity. These tasks were originally meant to test the performance of supervised
semantic similarity systems, training data was provided and teams were advised to make
use of resources like WordNet (Miller, 1995), Wikipedia, paraphrase tables, dictionaries, as
well as NLP tools for tagging, named entity recognition, and semantic role labeling.

We adopted these datasets to measure unsupervised semantic similarity. That is, we did
not use the training data. We were the first to propose this use of the datasets and it
has since become a standard tool for evaluating sentence embeddings. We selected these
datasets because they reflect semantic similarity (as opposed to relatedness like couch and

table) and cover many different domains to discourage overfitting on a specifc type of data.

2.1.1.1  English STS

The first STS task was held in 2012 and these tasks have been held every year since. Given
two sentences, the objective of the task is to predict how similar they are on a o-5 scale,
where o indicates the sentences are on different topics and 5 indicates that they are com-
pletely equivalent. Each STS task consists of 4-6 different datasets and the tasks cover a
wide variety of domains which we have categorized below. Most submissions for these
tasks use supervised models that are trained and tuned on either provided training data
or similar datasets from older tasks. Details on the number of teams and submissions for
each task and the performance of the submitted systems for each dataset are included in
Table 1 and Table 2 respectively. For more details on these tasks please refer to the relevant
publications for the 2012 (Agirre et al.,, 2012), 2013 (Agirre et al., 2013), 2014 (Agirre et al,,

2014), and 2015 (Agirre et al., 2015) tasks.
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2.1 SENTENCE EMBEDDING EVALUATION

Dataset No. of teams | No. of submissions
2012 STS 35 88
2013 STS 34 89
2014 STS 15 38
2015 STS 29 74
2016 STS 43 119
2014 SICK 17 66
2015 Twitter 19 26

Table 1: Details on numbers of teams and submissions in the STS tasks used for evaluation.

Below are the textual domains contained in the STS tasks:
News: Newswire was used in the 2012 task (MSRpar) and the 2013 and 2014 tasks (deft
news).
Image and Video Descriptions: Image descriptions generated via crowdsourcing were
used in the 2013 and 2014 tasks (images). Video descriptions were used in the 2012 task
(MSRvid).
Glosses: Glosses from WordNet, OntoNotes, and FrameNet were used in the 2012, 2013,
and 2014 tasks (OnWN and FNWN).
MT evaluation: The output of machine translation systems with their reference translations
was used in the 2012 task (SMT-eur and SMT-news) and the 2013 task (SMT).
Headlines: Headlines of news articles were used in the 2013, 2014, 2015, and 2016 tasks
(headline).
Web Forum: Forum posts were used in the 2014 task (deft forum).
Twitter: Pairs containing a tweet related to a news headline and a sentence pertaining to
the same news headline. This dataset was used in the 2014 task (tweet news).
Belief: Text from the Deft Committed Belief Annotation (LDC2014E55) was used in the
2015 task (belief).
Questions and Answers: Paired answers to the same question from Stack Exchange (answers-
forums) and the BEETLE corpus (Dzikovska et al., 2010) (answers-students) were used in
2015. A similar task Answer-Answer was used in the 2016 evaluation also based on Stack
Exchange. Question-Question: Similar to Answer-Answer, paired questions (the title of the
post when it ends in a question mark in this case) were used in the 2016 task. The questions
were also taken from Stack Exchange. Plagarism: The plagiarism dataset is based on the
Corpus of Plagiarised Short Answers (Clough and Stevenson, 2011). This corpus contains
short answers to computer science questions that exhibit plagiarism from related Wikipedia

articles. Post-Editing: (Specia, 2011)
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2.1 SENTENCE EMBEDDING EVALUATION

2.1.1.2 Non-English and Cross-Lingual STS

We evaluate on the cross-lingual STS tasks from SemEval 2017. This evaluation contains
Arabic-Arabic, Arabic-English, Spanish-Spanish, Spanish-English, and Turkish-English STS
datsets. These datasets were created by translating one or both pairs of an English STS pair
into Arabic (ar), Spanish (es), or Turkish (tr).

Cross-lingual STS started as a pilot task in 2014 and repeated again in 2015 using Spanish-
Spanish pairs. The 2016 task included a pilot track on cross-lingual Spanish-English pairs.
In 2017, semantic similarity between non-English sentences and cross-lingual semantic simi-
larity became the primary focus. To create the pairs used in evaluation, sentence pairs were
sampled from the Stanford Natural Language Inference (SNLI) dataset (Bowman et al.,
2015) and translated into the appropriate language. Scores for the sentence pairs were ob-
tained by human evaluation via Amazon Mechanical Turk.".

In the 2017 competition, 31 teams submitted 84 submissions with 17 teams provided 44
systems participating all in tracks (datasets). The best system (Tian et al., 2017) ensembled
feature engineered models with deep learning approaches. They also used Google Translate
to translate them to English to simplify the problem. Note that they also used the Paragram

embeddings we created outlined in Chapter 3.

2.1.2  Transfer Learning

In addition to the semantic similarity evaluations introduced by us, there is an alternative
approach measuring the effectiveness of sentence embeddings. on a range of tasks that have
previously been used for evaluating sentence representations (Kiros et al., 2015). These
include sentiment analysis (MR, Pang and Lee, 2005; CR, Hu and Liu, 2004; SST, Socher
et al., 2013), subjectivity classification (SUBJ; Pang and Lee, 2004), opinion polarity (MPQA;
Wiebe et al., 2005), question classification (TREC; Li and Roth, 2002), paraphrase detection
(MRPC; Dolan et al., 2004), semantic relatedness (SICK-R; Marelli et al., 2014), and textual
entailment (SICK-E). We use the SentEval package from Conneau et al. (2017) to train

models on our fixed sentence embeddings for each task.?

1 https://www.mturk.com
2 github.com/facebookresearch/SentEval
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2.2 PARAPHRASE CORPORA

2.2.1 Paraphrase Database

The Paraphrase Database (PPDB; Ganitkevitch et al., 2013), a collection of confidence-
rated paraphrases created using the pivoting technique of Bannard and Callison-Burch
(2005) over large parallel corpora. The PPDB is a massive resource, containing 220 million
paraphrase pairs. It captures many short paraphrases that would be difficult to obtain using
any other resource. For example, the pair {we must do our utmost, we must make every effort}
has little lexical overlap but is present in PPDB. The PPDB has recently been used for
monolingual alignment (Yao et al., 2013), for predicting sentence similarity (Bjerva et al.,
2014), and to improve the coverage of FrameNet (Rastogi and Van Durme, 2014).

Though already effective for multiple NLP tasks, we note some drawbacks of PPDB. The
tirst is lack of coverage: to use the PPDB to compare two phrases, both must be in the
database. The second is that PPDB is a nonparametric paraphrase model; the number of
parameters (phrase pairs) grows with the size of the dataset used to build it. In practice, it
can become unwieldy to work with as the size of the database increases. A third concern
is that the confidence estimates in PPDB are a heuristic combination of features, and their

quality is unclear.
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LEARNING PARAPHRASTIC REPRESENTATIONS

In this chapter, we discuss our first models for learning paraphrastic representations. This
chapter encompasses work that has appeared in three papers: (Wieting et al., 2015, 2016b,a).

While (Wieting et al., 2015), is not discussed in detail in this chapter, a lot of the work
in this paper formed the backbone of this thesis. In this work, we find that state-of-the-art
phrase embeddings could be learned by using text snippets from the Paraphrase Database
(PPDB) (Ganitkevitch et al., 2013) as training data. PPDB is created by bilingual pivot-
ing (Bannard and Callison-Burch, 2005) on parallel bitext, where two text snippets are
paraphrases when they align to the same snippet in another language. While the recur-
sive RNN (Socher et al., 2011) architecture in this paper was overly complicated (which is
shown in later papers), we laid the groundwork with a focus on paraphrastic similarity, our
training strategy, and our proposed objective function. We use the term paraphrastic simi-
larity to distinguish it from other types of similarity which were largely inter-mixed at the
time - specifically separating the notion of relatedness from paraphrastic where relatedness
refers to words that appear in similar contexts (table and chair) while paraphrastic refers to
words that could be paraphrases in some context (chair and seat). One other important con-
tribution from that paper were PARAGRAM word embeddings. These significantly surpassed
the state-of-the-art word embedding approaches for measuring similarity and are even the
basis for state-of-the-art models today.

In (Wieting et al., 2016b). we extended (Wieting et al., 2015) to learn sentence embeddings.
Our primary evaluation was on a suite of semantic textual similarity (STS) datasets but we
also follow the setting of (Kiros et al., 2015) and show that we can rival their performance
with our simpler model. This is also the first paper to use these suite of tasks as an evalu-
ation approach for sentence embeddings, which has become a standard. We experimented
with a wide variety of encoding architectures, and we fount that the simplest approach,
averaging word embeddings, to be the most effective and are able to surpass the vast ma-
jority of proposed STS systems despite being unsupervised. This was a surprising result,
considering LSTM (Hochreiter and Schmidhuber, 1997) were setting new state-of-the-arts

for many problems in natural language processing. In this paper, we analyzed some hy-
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3.1 PARAGRAM

potheses to explain these results, finding that the reason wasn’t due to length, over-fitting,
or insufficient parameter tuning. LSTMs (and deeper architectures in general) can work
well on this problem, but the training strategies need to change. This is further discussed
in Chapter 4 and Chapter 5.

Lastly, we discuss our CHARAGRAM models for learning word and sentence representa-
tions. In these representations, we represent a character sequence by a vector containing
counts of character n-grams, inspired by Huang et al. (2013). This vector is embedded into
a low-dimensional space using a single nonlinear transformation. This can be interpreted
as learning embeddings of character n-grams, which are learned so as to produce effec-
tive sequence embeddings when a summation is performed over the character n-grams in
the sequence. We evaluate on three tasks: word similarity, sentence similarity, and part-of-
speech tagging and show that CcHARAGRAM outperforms character RNNs, character CNNSs,
as well as PARAGRAM embeddings. We find that modelling subwords yields large gains
in performance for rare words and can easily handle spelling variation, morphology, and

word choice.

3.1 PARAGRAM

Word embeddings have become ubiquitous in natural language processing (NLP). Several
researchers have developed and shared word embeddings trained on large datasets (Col-
lobert et al., 2011; Mikolov et al., 2013b; Pennington et al., 2014), and these have been used
effectively for many downstream tasks (Turian et al., 2010; Socher et al., 2011; Kim, 2014;
Bansal et al., 2014; Tai et al., 2015). There has also been recent work on creating representa-
tions for word sequences such as phrases or sentences. Many functional architectures have
been proposed to model compositionality in such sequences, ranging from those based on
simple operations like addition (Mitchell and Lapata, 2010; Yu and Dredze, 2015; Iyyer et al.,
2015) to those based on richly-structured functions like recursive neural networks (Socher
et al., 2011), convolutional neural networks (Kalchbrenner et al., 2014), and recurrent neu-
ral networks using long short-term memory (LSTM) (Tai et al., 2015). However, there is
little work on learning sentence representations that can be used across domains with the
same ease and effectiveness as word embeddings. In this chapter, we explore compositional
models that can encode arbitrary word sequences into a vector with the property that se-
quences with similar meaning have high cosine similarity, and that can, importantly, also

transfer easily across domains. We consider six compositional architectures based on neu-
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3.1 PARAGRAM

ral networks and train them on noisy phrase pairs from the Paraphrase Database (PPDB;
Ganitkevitch et al., 2013).

We consider models spanning the range of complexity from word averaging to LSTMs.
With the simplest word averaging model, there are no additional compositional parame-
ters. The only parameters are the word vectors themselves, which are learned to produce
effective sequence embeddings when averaging is performed over the sequence. We add
complexity by adding layers, leading to variants of deep averaging networks (lyyer et al.,
2015). We next consider several recurrent network variants, culminating in LSTMs because
they have been found to be effective for many types of sequential data (Graves et al., 2008,
2013; Greff et al., 2015), including text (Sutskever et al., 2014; Vinyals et al., 2014; Xu et al.,
2015a; Hermann et al., 2015; Ling et al., 2015a; Wen et al., 2015).

To evaluate our models, we consider two tasks drawn from the same distribution as the
training data, as well as 22 SemEval textual similarity datasets from a variety of domains
(such as news, tweets, web forums, and image and video captions). Interestingly, we find
that the LSTM performs well on the in-domain task, but performs much worse on the out-of-
domain tasks. We discover surprisingly strong performance for the models based on word
averaging, which perform well on both the in-domain and out-of-domain tasks, beating
the best LSTM model by 16.5 Pearson’s r on average. Moreover, we find that learning word
embeddings in the context of vector averaging performs much better than simply averaging
pretrained, state-of-the-art word embeddings. Our average Pearson’s r over all 22 SemEval
datasets is 17.1 points higher than averaging GloVe vectors' and 12.8 points higher than
averaging PARAGRAM-SL9Q99 vectors.>

Our final sentence embeddings? place in the top 25% of all submitted systems in every
SemEval STS task from 2012 through 2015, being best or tied for best on 4 of the datasets.*
This is surprising because the submitted systems were designed for those particular tasks,
with access to training and tuning data specifically developed for each task.

While the above experiments focus on transfer, we also consider the fully supervised
setting (Table 5). We compare the same suite of compositional architectures for three super-
vised NLP tasks: sentence similarity and textual entailment using the 2014 SemEval SICK

dataset (Marelli et al., 2014), and sentiment classification using the Stanford Sentiment Tree-

1 We used the publicly available 300-dimensional vectors that were trained on the 840 billion token Common
Crawl corpus, available at http://nlp.stanford.edu/projects/glove/.

2 These are 300-dimensional vectors from (Wieting et al., 2015) and are available at http://ttic.uchicago.edu/
~wieting. They give human-level performance on two commonly used word similarity datasets, WordSim353
(Finkelstein et al., 2001) and Simlex-9g99 (Hill et al., 2015).

3 Denoted PARAGRAM-PHRASE-XXL and discussed in Section 3.2.3.

4 As measured by the average Pearson’s r over all datasets in each task; see Table 4.
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3.1 PARAGRAM

bank (Socher et al., 2013). We again find strong performance for the word averaging models
for both similarity and entailment, outperforming the LSTM. However, for sentiment clas-
sification, we see a different trend. The LSTM now performs best, achieving 89.2% on the
coarse-grained sentiment classification task. This result, to our knowledge, is the new state
of the art on this task.

We then demonstrate how to combine our PPDB-trained sentence embedding models
with supervised NLP tasks. We first use our model as a prior, yielding performance on
the similarity and entailment tasks that rivals the state of the art. We also use our sentence
embeddings as an effective black box feature extractor for downstream tasks, comparing
favorably to recent work (Kiros et al., 2015).

We release our strongest sentence embedding model, which we call PARAGRAM-PHRASE
XXL, to the research community.> Since it consists merely of a new set of word embeddings,
it is extremely efficient and easy to use for downstream applications. Our hope is that this
model can provide a new simple and strong baseline in the quest for universal sentence

embeddings.

3.1.1 Related Work

Researchers have developed many ways to embed word sequences for NLP. They mostly
focus on the question of compositionality: given vectors for words, how should we create
a vector for a word sequence? (Mitchell and Lapata, 2008, 2010) considered bigram compo-
sitionality, comparing many functions for composing two word vectors into a single vector
to represent their bigram. Follow-up work by (Blacoe and Lapata, 2012) found again that
simple operations such as vector addition performed strongly. Many other compositional
architectures have been proposed. Some have been based on distributional semantics (Ba-
roni et al., 2014; Paperno et al., 2014; Polajnar et al., 2015; Tian et al., 2015), while the current
trend is toward development of neural network architectures. These include neural bag-of-
words models (Kalchbrenner et al., 2014), deep averaging networks (DANSs) (lyyer et al.,
2015), feature-weighted averaging (Yu and Dredze, 2015), recursive neural networks based
on parse structure (Socher et al., 2011, 2012, 2013; Irsoy and Cardie, 2014; Wieting et al.,
2015), recursive networks based on non-syntactic hierarchical structure (Zhao et al., 2015;
Chen et al., 2015b), convolutional neural networks (Kalchbrenner et al., 2014; Kim, 2014;

Hu et al., 2014; Yin and Schiitze, 2015; He et al., 2015), and recurrent neural networks using

5 Available at http://ttic.uchicago.edu/~wieting.
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long short-term memory (Tai et al,, 2015; Ling et al., 2015a; Liu et al., 2015). In this paper,
we compare six architectures: word averaging, word averaging followed by a single linear
projection, DANs, and three variants of recurrent neural networks, including LSTMs.6

Most of the work mentioned above learns compositional models in the context of su-
pervised learning. That is, a training set is provided with annotations and the composition
function is learned for the purposes of optimizing an objective function based on those
annotations. The models are then evaluated on a test set drawn from the same distribution
as the training set.

In this paper, in contrast, we are primarily interested in creating general purpose, do-
main independent embeddings for word sequences. There have been research efforts also
targeting this goal. One approach is to train an autoencoder in an attempt to learn the
latent structure of the sequence, whether it be a sentence with a parse tree (Socher et al.,
2011), or a longer sequence such as a paragraph or document (Li et al., 2015). Other recently
proposed methods, including paragraph vectors (Le and Mikolov, 2014) and skip-thought
vectors (Kiros et al., 2015), learn sequence representations that are predictive of words inside
the sequence or in neighboring sequences. These methods produce generic representations
that can be used to provide features for text classification or sentence similarity tasks. While
skip-thought vectors capture similarity in terms of discourse context, in this paper we are
interested in capturing paraphrastic similarity, i.e., whether two sentences have the same
meaning.

Our learning formulation draws from a large body of related work on learning input
representations in order to maximize similarity in the learned space (Weston et al., 2010;
Yih et al., 2011; Huang et al., 2013; Hermann and Blunsom, 2014; Socher et al., 2014; Faruqui
and Dyer, 2014; Bordes et al., 2014b,a; Lu et al., 2015), including our prior work (Wieting
et al., 2015). We focus our exploration here on modeling and keep the learning methodology
mostly fixed, though we do include certain choices about the learning procedure in our

hyperparameter tuning space for each model.

3.1.2  Models

Our goal is to embed sequences into a low-dimensional space such that cosine similarity

in the space corresponds to the strength of the paraphrase relationship between the se-

In prior work, we experimented with recursive neural networks on binarized parses of the PPDB (Wieting
et al.,, 2015), but we found that many of the phrases in PPDB are not sentences or even constituents, causing
the parser to have unexpected behavior.

21
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quences. We experimented with six models of increasing complexity. The simplest model
embeds a word sequence x = (x1,X2, ..., Xn) by averaging the vectors of its tokens. The only

parameters learned by this model are the word embedding matrix W,,:
-] n
JPARAGRAM-PHRASE (x) = E Z V\/x)/cv1
1

where W,y is the word embedding for word x;. We call the learned embeddings PARAGRAM-
PHRASE embeddings.

In our second model, we learn a projection in addition to the word embeddings:

1 &
proj(X) = Wp (nZW:,i}> +b
i

where W, is the projection matrix and b is a bias vector.

Our third model is the deep averaging network (DAN) of (Iyyer et al., 2015). This is a
generalization of the above models that typically uses multiple layers as well as nonlinear
activation functions. In our experiments below, we tune over the number of layers and
choice of activation function.

Our fourth model is a standard recurrent network (RNN) with randomly initialized

weight matrices and nonlinear activations:

he = FIW,WES + Whhe_q +b)

grRNN(X) = h_;4

where f is the activation function (either tanh or rectified linear unit; the choice is tuned),
W, and W4, are parameter matrices, b is a bias vector, and h_j refers to the hidden vector
of the last token.

Our fifth model is a special RNN which we call an identity-RNN. In the identity-RNN, the
weight matrices are initialized to identity, the bias is initialized to zero, and the activation is
the identity function. We divide the final output vector of the identity-RNN by the number
of tokens in the sequence. Thus, before any updates to the parameters, the identity-RNN
simply averages the word embeddings. We also regularize the identity-RNN parameters to
their initial values. The idea is that, with high regularization, the identity-RNN is simply
averaging word embeddings. However, it is a richer architecture and can take into account

word order and hopefully improve upon the averaging baseline.
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Our sixth and final model is the most expressive. We use long short-term memory
(LSTM) (Hochreiter and Schmidhuber, 1997), a recurrent neural network (RNN) archi-
tecture designed to model sequences with long-distance dependencies. LSTMs have re-
cently been shown to produce state-of-the-art results in a variety of sequence processing
tasks (Chen et al., 2015a; Filippova et al.,, 2015; Xu et al., 2015¢; Belinkov and Glass, 2015;
Wang and Nyberg, 2015). We use the version from (Gers et al., 2003) which has the follow-

ing equations:

it = 0 (WiWif + Whihe 1 + Weice 1 +by)

ft = 0 (WxsW3 +Whehi1 +Weecr—1 +by)

ct = frcr—1 + i tanh (W Wit + Whehie—1 + be)
0t = 0 (Wyxo Wit + Whohe 1 +Weocr +bo)

h¢ = oy tanh(cy)

grstMm(x) =h_;

where o is the logistic sigmoid function. We found that the choice of whether or not to
include the output gate had a significant impact on performance, so we used two versions
of the LSTM model, one with the output gate and one without. For all models, we learn the
word embeddings themselves, denoting the trainable word embedding parameters by W,,,.
We denote all other trainable parameters by W, (“compositional parameters”), though the
PARAGRAM-PHRASE model has no compositional parameters. We initialize W,, using some

embeddings pretrained from large corpora.

3.1.3 Training

We mostly follow the approach of (Wieting et al., 2015). The training data consists of (pos-
sibly noisy) pairs taken directly from the original Paraphrase Database (PPDB) and we

optimize a margin-based loss.
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Our training data consists of a set X of phrase pairs (x1,x2), where x; and x, are assumed

to be paraphrases. The objective function follows:

Wff‘,ivrv‘wgq<<x 3 max0—cos(glai) glxa) +eoslgl)gfta)

- max(0, 5 — cos(g(x1), glx2)) +cos(g(xz),g(tz))))

+Ac ||VV(:”2 +Aw HWWinitial 7WWH2

where g is the embedding function in use (e.g., grstm), O is the margin, A. and A,, are

regularization parameters, W,, is the initial word embedding matrix, and t; and t;

initial
are carefully-selected negative examples taken from a mini-batch during optimization. The
intuition is that we want the two phrases to be more similar to each other (cos(g(x1),g(x2)))

than either is to their respective negative examples t; and t;, by a margin of at least 5.

3.1.3.1 Selecting Negative Examples

To select t; and t; in Eq. 3.1.3, we tune the choice between two approaches. The first, MAX,
simply chooses the most similar phrase in some set of phrases (other than those in the
given phrase pair). For simplicity and to reduce the number of tunable parameters, we use
the mini-batch for this set, but it could be a separate set. Formally, MAX corresponds to

choosing t; for a given (x1,x2) as follows:

t = argmax cos(g(x1),g(t))
ti(t, ) €Xp \{{x1,%x2)}

where Xy, C X is the current mini-batch. That is, we want to choose a negative example
t; that is similar to x; according to the current model parameters. The downside of this
approach is that we may occasionally choose a phrase t; that is actually a true paraphrase
of x;.

The second strategy selects negative examples using MAX with probability 0.5 and selects
them randomly from the mini-batch otherwise. We call this sampling strategy MIX. We tune

over the strategy in our experiments.
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3.2 PARAGRAM!: EXPERIMENTS

3.2.1 Data

We experiment on 24 textual similarity datasets, covering many domains, including all
datasets from every SemEval semantic textual similarity (STS) task (2012-2015). We also
evaluate on the SemEval 2015 Twitter task (Xu et al., 2015b) and the SemEval 2014 Semantic
Relatedness task (Marelli et al., 2014), as well as two tasks that use PPDB data (Wieting et al.,
2015; Pavlick et al., 2015).

For tuning, we use two datasets that contain PPDB phrase pairs scored by human an-
notators on the strength of their paraphrase relationship. One is a large sample of 26,456
annotated phrase pairs developed by (Pavlick et al., 2015). The second, called Annotated-
PPDB, was developed in our prior work (Wieting et al., 2015) and is a small set of 1,000

annotated phrase pairs that were filtered to focus on challenging paraphrase phenomena.

3.2.2  Transfer Learning

3.2.2.1  Experimental Settings

As training data, we used the XL section” of PPDB which contains 3,033,753 unique phrase
pairs. However, for hyperparameter tuning we only used 100k examples sampled from
PPDB XXL and trained for 5 epochs. Then after finding the hyperparameters that maximize
Spearman’s p on the Pavlick et al. PPDB task, we trained on the entire XL section of PPDB
for 10 epochs. We used PARAGRAM-SL999 embeddings to initialize the word embedding
matrix (W,,) for all models.

We chose the Pavlick et al. task for tuning because we wanted our entire procedure to
only make use of PPDB and use no other resources. In particular, we did not want to use
any STS tasks for training or hyperparameter tuning. We chose the Pavlick et al. dataset
over Annotated-PPDB due to its larger size. But in practice the datasets are very similar

and tuning on either produces similar results.

7 PPDB comes in different sizes (S, M, L, XL, XXL, and XXXL), where each larger size subsumes all smaller ones.
The phrases are sorted by a confidence measure and so the smaller sets contain higher precision paraphrases.
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To learn model parameters for all experiments in this section, we minimize Eq. 3.1.3.
Our models have the following tunable hyperparameters:® A, the L, regularizer on the
compositional parameters W, (not applicable for the word averaging model), the pool of
phrases used to obtain negative examples (coupled with mini-batch size B, to reduce the
number of tunable hyperparameters), A,,, the regularizer on the word embeddings, and 5,
the margin. We also tune over optimization method (either AdaGrad (Duchi et al., 2011)
or Adam (Kingma and Ba, 2014)), learning rate (from {0.05,0.005,0.0005}), whether to clip
the gradients with threshold 1 (Pascanu et al., 2012), and whether to use MIX or MAX
sampling. For the classic RNN, we further tuned whether to use tanh or rectified linear
unit activation functions; for the identity-RNN, we tuned A. over {1000, 100, 10, 1} because
we wanted higher regularization on the composition parameters; for the DANs we tuned
over activation function (tanh or rectified linear unit) and the number of layers (either 1
or 2); for the LSTMs we tuned on whether to include an output gate. We fix the output
dimensionalities of all models that require doing so to the dimensionality of our word

embeddings (300).

3.2.2.2 Results

The results on all STS tasks as well as the SICK and Twitter tasks are shown in Table 2. We
include results on the PPDB tasks in Table 3. In Table 2, we first show the median, 75th per-
centile, and highest score from the official task rankings. We then report the performance of
our seven models: PARAGRAM-PHRASE (PP), identity-RNN (iRNN), projection (proj.), deep-
averaging network (DAN), recurrent neural network (RNN), LSTM with output gate (0.g.),
and LSTM without output gate (no o.g.). We compare to three baselines: skip-thought vec-
tors? (Kiros et al., 2015), denoted “ST”, averaged GloVe' vectors (Pennington et al., 2014),
and averaged PARAGRAM-SL999 vectors (Wieting et al., 2015), denoted “PSL”. Note that the
GloVe vectors were used to initialize the PARAGRAM-SL99g9 vectors which were, in turn,
used to initialize our PARAGRAM-PHRASE embeddings. We compare to skip-thought vectors
because trained models are publicly available and they show impressive performance when

used as features on several tasks including textual similarity.

For A we searched over {1073,10™%,107>,107¢)}, for b we searched over {25, 50, 100}, for A,, we searched over
{1075,107%,1077,10~8} as well as the setting in which we do not update W,,, and for & we searched over
{0.4,0.6,0.8}.

Note that we pre-processed the training data with the tokenizer from Stanford CoreNLP (Manning et al., 2014)
rather than the included NLTK (Bird et al., 2009) tokenizer. We found that doing so significantly improves the
performance of the skip-thought vectors.

We used the publicly available 300-dimensional vectors that were trained on the 840 billion token Common
Crawl corpus, available at http://nlp.stanford.edu/projects/glove/.
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Dataset 50% | 75% | Max || PP | proj. || DAN | RNN | iRNN | LSTM | LSTM| ST | GloVe | PSL
(no (0.g.)
0.g.)
MSRpar 51.5 | 57.6 | 73.4 || 42.6 | 43.7 || 40.3 | 18.6 | 43.4 16.1 9.3 | 16.8 | 47.7 | 41.6
MSRvid 75.5 | 80.3 | 88.0 || 74.5 | 74.0 || 70.0 | 66.5 | 73.4 71.3 71.3 | 41.7 | 63.9 | 60.0
SMT-eur 444 | 48.1 | 56.7 || 47.3 | 494 || 438 | 409 | 471 418 | 44.3 | 35.2| 46.0 | 424
OnWN 608 | 65.9 | 72.7 || 70.6 | 70.1 65.9 | 63.1 70.1 65.2 56.4 | 29.7 | 55.1 | 63.0
SMT-news 40.1 | 45.4 | 60.9 || 58.4 | 62.8 60.0 | 51.3 58.1 60.8 51.0 | 30.8 | 49.6 | 57.0
STS 2012 Average || 54.5 | 59.5 | 70.3 || 58.7 | 60.0 || 56.0 | 48.1 | 584 51.0 46.4 | 308 | 52.5 |52.8
headline 64.0 | 68.3 | 78.4 || 72.4 | 72.6 || 712 | 59.5 72.8 57.4 48.5 | 346 | 63.8 | 688
OnWN 52.8 | 64.8 | 84.3 || 677 | 68.0 || 64.1 | 546 | 69.4 68.5 50.4 | 10.0 | 49.0 | 48.0
FNWN 32.7 | 38.1 | 58.2 || 43.9 | 46.8 || 43.1 | 30.9 | 45.3 24.7 38.4 | 30.4 | 342 |379
SMT 31.8 | 34.6 | 40.4 || 39.2 | 39.8 || 383 | 338 | 394 30.1 28.8 | 24.3 | 22.3 | 31.0
STS 2013 Average || 45.3 | 51.4 | 65.3 || 55.8 | 56.8 || 54.2 | 44.7 | 56.7 45.2 415 | 248 | 42.3 | 46.4
deft forum 36.6 | 46.8 | 53.1 || 48.7 | 51.1 || 49.0 | 41.5 | 49.0 44.2 46.1 | 12.9 | 27.1 | 37.2
deft news 66.2 | 74.0 | 785 || 73.1 | 72.2 || 71.7 | 53.7 | 72.4 52.8 39.1 | 23.5| 68.0 | 67.0
headline 67.1 | 75.4 | 78.4 || 69.7 | 70.8 || 69.2 | 57.5 | 70.2 57.5 50.9 | 37.8 | 59.5 | 65.3
images 75.6 | 79.0 | 83.4 || 78.5 | 78.1 76.9 | 67.6 | 782 68.5 62.9 | 51.2 | 61.0 | 62.0
OnWN 78.0 | 81.1 | 87.5 || 78.8 | 79.5 757 | 67.7 | 78.8 76.9 61.7 | 23.3 | 584 |61.1
tweet news 64.7 | 72.2 | 79.2 || 76.4 | 75.8 || 742 | 58.0 | 76.9 58.7 48.2 | 39.9 | 51.2 | 64.7

STS 2014 Average || 64.7 | 71.4 | 76.7 || 70.9 | 71.3 69.5 | 57.7 | 70.9 59.8 51.5 | 31.4 | 54.2 | 59.5
answers-forums 61.3 | 68.2 | 73.9 || 68.3 | 65.1 62.6 | 328 | 674 51.9 50.7 | 36.1 | 30.5 | 38.8

answers-students || 67.6 | 73.6 | 78.8 || 78.2 | 77.8 78.1 | 64.7 | 78.2 71.5 55.7 | 33.0| 63.0 |69.2

belief 67.7 | 72.2 | 77.2 || 76.2 | 75.4 || 72.0 | 51.9 | 75.9 61.7 52.6 | 24.6 | 40.5 | 53.2
headline 74.2 | 80.8 | 84.2 || 74.8 | 75.2 || 73.5 | 65.3 | 75.1 64.0 56.6 | 43.6 | 61.8 | 69.0
images 80.4 | 84.3 | 87.1 || 81.4 | 80.3 77.5 | 71.4 81.1 70.4 64.2 | 17.7 | 67.5 | 69.9
STS 2015 Average || 70.2 | 75.8 | 80.2 || 75.8 | 74.8 72.7 | 57.2 75.6 63.9 56.0 | 31.0 | 52.7 | 60.0
2014 SICK 71.4 | 79.9 | 82.8 || 71.6 | 71.6 70.7 | 61.2 71.2 63.9 59.0 | 49.8 | 65.9 | 66.4
2015 Twitter 49.9 | 52.5 | 61.9 || 52.9 | 52.8 || 53.7 | 45.1 | 52.9 47.6 36.1 | 24.7 | 30.3 | 36.3

Table 2: Results on SemEval textual similarity datasets (Pearson’s r x 100). The highest score in each
row is in boldface (omitting the official task score columns).

The results in Table 2 show strong performance of our two simplest models: the PARAGRAM-
PHRASE embeddings (PP) and our projection model (proj.). They outperform the other mod-
els on all but 5 of the 22 datasets. The iRNN model has the next best performance, while
the LSTM models lag behind. These results stand in marked contrast to those in Table 3,
which shows very similar performance across models on the in-domain PPDB tasks, with
the LSTM models slightly outperforming the others. For the LSTM models, it is also in-
teresting to note that removing the output gate results in stronger performance on the
textual similarity tasks. Removing the output gate improves performance on 18 of the 22
datasets. The LSTM without output gate also performs reasonably well compared to our

strong PARAGRAM-sL999 addition baseline, beating it on 12 of the 22 datasets.
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3.2 PARAGRAM: EXPERIMENTS

Model Pavlick et al. | Pavlick et al. Annotated-
(oracle) (test) PPDB
(test)
PARAGRAM-PHRASE 60.3 60.0 53.5
projection 61.0 58.4 52.8
DAN 60.9 60.1 52.3
RNN 60.5 60.3 51.8
iRNN 60.3 60.0 53.9
LSTM (no o.g.) 61.6 61.3 53.4
LSTM (o.g.) 61.5 60.9 52.9
skip-thought 39.3 39.3 31.9
GloVe 44.8 44.8 25.3
PARAGRAM-SL99Q 55.3 55.3 40.4

Table 3: Results on the PPDB tasks (Spearman’s p x 100). For the task in (Pavlick et al., 2015), we
include the oracle result (the max Spearman’s p on the dataset), since this dataset was used
for model selection for all other tasks, as well as test results where models were tuned on
Annotated-PPDB.

3.2.3 PARAGRAM-PHRASE XXL

Since we found that PARAGRAM-PHRASE embeddings have such strong performance, we
trained this model on more data from PPDB and also used more data for hyperparame-
ter tuning. For tuning, we used all of PPDB XL and trained for 10 epochs, then trained
our final model for 10 epochs on the entire phrase section of PPDB XXL, consisting of
9,123,575 unique phrase pairs."* We show the results of this improved model, which we
call PARAGRAM-PHRASE XXL, in Table 4. We also report the median, 75th percentile, and
maximum score from our suite of textual similarity tasks. PARAGRAM-PHRASE XXL matches
or exceeds the best performance on 4 of the datasets (SMT-news, SMT, deft forum, and
belief) and is within 3 points of the best performance on 8 out of 22. We have made this

trained model available to the research community."*

3.2.4 Using Representations in Learned Models

We explore two natural questions regarding our representations learned from PPDB: (1)
can these embeddings improve the performance of other models through initialization and
regularization? (2) can they effectively be used as features for downstream tasks? To address

these questions, we used three tasks: The SICK similarity task, the SICK entailment task,

We fixed batchsize to 100 and b to 0.4, as these were the optimal values for the experiment in Table 2. Then,
for A, we searched over {107¢,10~7,108}, and tuned over MIX and MAX sampling. To optimize, we used
AdaGrad with a learning rate of 0.05.

12 Available at http://ttic.uchicago.edu/~wieting.
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3.2 PARAGRAM: EXPERIMENTS

Dataset 50% | 75% | Max || PARAGRAMH
PHRASE-
XXL
MSRpar 51.5 | 57.6 | 73.4 44.8
MSRvid 75.5 | 80.3 | 88.0 79.6
SMT-eur 44.4 | 48.1 | 56.7 49.5
OnWN 60.8 | 65.9 | 72.7 70.4
SMT-news 40.1 | 45.4 | 60.9 63.3
STS 2012 Average || 54.5 | 59.5 | 70.3 61.5
headline 64.0 | 68.3 | 78.4 73.9
OnWN 52.8 | 64.8 | 84.3 73.8
FNWN 32.7 | 38.1 | 58.2 47.7
SMT 31.8 | 34.6 | 404 40.4
STS 2013 Average || 45.3 | 51.4 | 65.3 58.9
deft forum 36.6 | 46.8 | 53.1 53.4
deft news 66.2 | 74.0 | 78.5 74.4
headline 67.1 | 75.4 | 78.4 71.5
images 75.6 | 79.0 | 83.4 80.4
OnWN 78.0 | 81.1 | 87.5 81.5
tweet news 64.7 | 72.2 | 79.2 77.4
STS 2014 Average || 64.7 | 71.4 | 76.7 73.1
answers-forums 61.3 | 68.2 | 73.9 69.1
answers-students || 67.6 | 73.6 | 78.8 78.0
belief 67.7 | 72.2 | 77.2 78.2
headline 74.2 | 80.8 | 84.2 76.4
images 80.4 | 84.3 | 87.1 83.4
STS 2015 Average || 70.2 | 75.8 | 80.2 77.0
2014 SICK* 71.4 | 79.9 | 82.8 72.7
2015 Twitter 49.9 | 52.5 | 61.9 52.4

Table 4: Results on SemkEval textual similarity datasets (Pearson’s v x 100) for PARAGRAM-PHRASE
XXL embeddings. Results that match or exceed the best shared task system are shown in
bold. *For the 2014 SICK task, the median, 75th percentile, and maximum include only the
primary runs as the full set of results was not available.

and the Stanford Sentiment Treebank (SST) binary classification task (Socher et al., 2013).

For the SICK similarity task, we minimize the objective function® from (Tai et al., 2015).

13 This objective function has been shown to perform very strongly on text similarity tasks, significantly better
than squared or absolute error.
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Given a score for a sentence pair in the range [1, K], where K is an integer, with sentence

representations hp and hg, and model parameters 6, they first compute:

hy =hy ®©hg, hy =|hg —hgl,
hy = o (WOIh, + Wi R b)),
Po = softmax (W(p)hS + b(p)> ,

TA
=T Po,

<>

where T = [1 2 ... K]. They then define a sparse target distribution p that satisfies y = rp:

Pi= |yl —y+1, i=|y]

0 otherwise

for T < i < K. Then they use the following loss, the regularized KL-divergence between p

and Po:

7(6) =;gKL(p“” | 88), (1)

where m is the number of training pairs and where we always use L, regularization on all
compositional parameters'# but omit these terms for clarity.

We use nearly the same model for the entailment task, with the only differences being
that the final softmax layer has three outputs and the cost function is the negative log-
likelihood of the class labels. For sentiment, since it is a binary sentence classification task,
we first encoded the sentence and then used a fully-connected layer with a sigmoid acti-
vation followed by a softmax layer with two outputs. We used negative log-likelihood of
the class labels as the cost function. All models use L, regularization on all parameters,
except for the word embeddings, which are regularized back to their initial values with an
L, penalty.

We first investigated how these models performed in the standard setting, without using
any models trained using PPDB data. We tuned hyperparameters on the development set

of each dataset’> as well as on two optimization schemes: AdaGrad with learning rate of

Word embeddings are regularized toward their initial state.

For all models, we tuned batch-size over {25,50,100}, output dimension over {50,150,300}, A. over
{1073,1074,1073,107°}, As = A, and Ay, over {1073,1074,1075,107°,107,1078} as well as the option of
not updating the embeddings for all models except the word averaging model. We again fix the output di-
mensionalities of all models which require this specification, to the dimensionality of our word embeddings
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Task word proj. | DAN | RNN LSTM LSTM w/ universal
averaging (noo.g) | (o.g) regularization
similarity (SICK) 86.40 85.93 | 85.96 | 73.13 85.45 83.41 86.84
entailment (SICK) 84.6 84.0 84.5 76.4 83.2 82.0 85.3
binary sentiment (SST) 83.0 83.0 83.4 86.5 86.6 89.2 86.9

Table 5: Results from supervised training of each compositional architecture on similarity, entail-
ment, and sentiment tasks. The last column shows results regularizing to our universal
parameters from the models in Table 2. The first row shows Pearson’s r x 100 and the last
two show accuracy.

0.05 and Adam with a learning rate of 0.001. We trained the models for 10 epochs and
initialized the word embeddings with PARAGRAM-SL999 embeddings.

The results are shown in Table 5. We find that using word averaging as the compositional
architecture outperforms the other architectures for similarity and entailment. However,
for sentiment classification, the LSTM is much stronger than the averaging models. This
suggests that the superiority of a compositional architecture can vary widely depending
on the evaluation, and motivates future work to compare these architectures on additional
tasks.

These results are very competitive with the state of the art on these tasks. Recent strong
results on the SICK similarity task include 86.86 using a convolutional neural network (He
et al., 2015) and 86.76 using a tree-LSTM (Tai et al., 2015). For entailment, the best re-
sult we are aware of is 85.1 (Beltagy et al., 2015). On sentiment, the best previous result
is 88.1 (Kim, 2014), which our LSTM surprisingly outperforms by a significant margin. We
note that these experiments simply compare compositional architectures using only the pro-
vided training data for each task, tuning on the respective development sets. We did not use
any PPDB data for these results, other than that used to train the initial PARAGRAM-5L999
embeddings. Our results appear to show that standard neural architectures can perform
surprisingly well given strong word embeddings and thorough tuning over the hyperpa-

rameter space.

3.2.4.1 Regularization and Initialization to Improve Textual Similarity Models

In this setting, we initialize each respective model to the parameters learned from PPDB
(calling them universal parameters) and augment Eq. 1 with three separate regularization
terms with the following weights: A; which regularizes the classification parameters (the

two layers used in the classification step after obtaining representations), A,, for regular-

(300). Additionally, for the classic RNN, we further tuned whether to use tanh or rectified linear unit activation
functions; for the DANs we tuned over activation function (tanh or rectified linear unit) and the number of
layers (either 1 or 2).
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izing the word parameters toward the learned W,, from PPDB, and A. for regularizing
the compositional parameters (for all models except for the word averaging model) back
to their initial values.’® In all cases, we regularize to the universal parameters using L,
regularization.

The results are shown in the last column of Table 5, and we only show results for the
best performing models on each task (word averaging for similarity/entailment, LSTM
with output gate for sentiment). Interestingly, it seems that regularizing to our universal
parameters significantly improves results for the similarity and entailment tasks which are
competitive or better than the state-of-the-art, but harms the LSTM’s performance on the

sentiment classification task.

3.2.4.2 Representations as Features

Task PARAGRAM-PHRASE skip-thought
300 | 1200 | 2400 | uni-skip | bi-skip
similarity (SICK) 82.15 | 82.85 | 84.94 84.77 84.05
entailment (SICK) 80.2 | 80.1 | 831 - -
binary sentiment (SST) || 79.7 | 78.8 | 794 - -

Table 6: Results from supervised training on similarity, entailment, and sentiment tasks, except that
we keep the sentence representations fixed to our PARAGRAM-PHRASE model. The first row
shows Pearson’s T x 100 and the last two show accuracy, with boldface showing the highest
score in each row.

We also investigate how our PARAGRAM-PHRASE embeddings perform as features for su-
pervised tasks. We use a similar set-up as in (Kiros et al., 2015) and encode the sentences
by averaging our PARAGRAM-PHRASE embeddings and then just learn the classification pa-
rameters without updating the embeddings. To provide a more apt comparison to skip-
thought vectors, we also learned a linear projection matrix to increase dimensionality of
our PARAGRAM-PHRASE embeddings. We chose 1200 and 2400 dimensions in order to both
see the dependence of dimension on performance, and so that they can be compared fairly
with skip-thought vectors. Note that 2400 dimensions is the same dimensionality as the
uni-skip and bi-skip models in (Kiros et al., 2015).

The 300 dimension case corresponds to the PARAGRAM-PHRASE embeddings from Ta-
ble 2. We tuned our higher dimensional models on PPDB as described previously in Sec-

tion 3.2.2.2 before training on PPDB XL.'7 Then we trained the same models for the simi-

We tuned As over {1073,1074,1075,107°}, Ac over {107%,1073,107%,107>,107°)}, and A, over
{1073,1074,1075,107°,10=7,108). All other hyperparameters were tuned as previously described.

Note that we fixed batch-size to 100, 6 to 0.4, and used MAX sampling as these were the optimal parameters for
the PARAGRAM-PHRASE embeddings. We tuned the other hyperparameters as described in Section 3.2.2.2 with
the exception of A¢ which was tuned over {104,1075,107%,10=7,108}.
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larity, entailment, and sentiment tasks as described in Section 3.2.4 for 20 epochs. We again
tuned A over {1073,10~%,107>,10~°} and tuned over the two optimization schemes of
AdaGrad with learning rate of 0.05 and Adam with a learning rate of 0.001. Note that we
are not updating the word embeddings or the projection matrix during training.

The results are shown in Table 6. The similarity and entailment tasks show clear improve-
ments as we project the embeddings into the 2400 dimensional space. In fact, our results
outperform both types of skip-thought embeddings on the single task that we overlap. How-
ever, the sentiment task does not benefit from higher dimensional representations, which
is consistent with our regularization experiments in which sentiment also did not show im-
provement. Therefore, it seems that our models learned from PPDB are more effective for

similarity tasks than classification tasks, but this hypothesis requires further investigation.

3.3 PARAGRAM: DISCUSSION

It is interesting that the LSTM, with or without output gates, is outperformed by much sim-
pler models on the similarity and entailment tasks studied in this paper. We now consider
possible explanations for this trend.

The first hypothesis we test is based on length. Since PPDB contains short text snippets of
a few words, the LSTM may not know how to handle the longer sentences that occur in our
evaluation tasks. If this is true, the LSTM would perform much better on short text snippets
and its performance would degrade as their length increases. To test this hypothesis, we
took all 12,108 pairs from the 20 SemEval STS tasks and binned them by length.™® We then
computed the Pearson’s r for each bin. The results are shown in Table 7 and show that while
the LSTM models do perform better on the shortest text pairs, they are still outperformed,
at all lengths, by the PARAGRAM-PHRASE model.™

We next consider whether the LSTM has worse generalization due to overfitting on the
training data. To test this, we analyzed how the models performed on the training data
(PPDB XL) by computing the average difference between the cosine similarity of the gold
phrase pairs and the negative examples.>® We found that all models had very similar scores:

0.7535, 0.7572, 0.7565, and 0.7463 for PARAGRAM-PHRASE, projection, LSTM (o0.g.), and LSTM

For each pair, we computed the number of tokens in each of the two pieces of text, took the max, and then
binned based on this value.

Note that for the analysis in Sections 3.3 and 3.4, the models used were selected from earlier experiments. They
are not the same as those used to obtain the results in Table 2.

More precisely, for each gold pair (g7, g2), and n;, the respective negative example of each g;, we computed
2-cos(g1,92) —cos(ny,gq1) —cos(ny, gz) and averaged this value over all pairs.
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Max | rpARAGRAMT LSTM LSTM | PARAGRAM;
Length | PHRASE (no (o.g.) SL999
0.g.)
<4 72.7 63.4 58.8 66.3
5 74-0 54.5 48.4 65.0
6 70.5 52.6 48.2 50.1
7 737 56.9 50.6 56.4
8 75.5 60.2 52.4 60.1
9 73.0 58.0 48.8 58.8
> 10 72.6 55.6 53.8 58.4

Table 7: Performance (Pearson’s r x 100) as a function of the maximum number of tokens in the
sentence pairs over all 20 SemEval STS datasets.

(no o.g.). This, along with the similar performance of the models on the PPDB tasks in
Table 3, suggests that overfitting is not the cause of the worse performance of the LSTM
model.

Lastly, we consider whether the LSTM’s weak performance was a result of insufficient
tuning or optimization. We first note that we actually ran more hyperparameter tuning
experiments for the LSTM models than either the PARAGRAM-PHRASE or projection mod-
els, since we tuned the decision to use an output gate. Secondly, we note that (Tai et al.,
2015) had a similar LSTM result on the SICK dataset (Pearson’s r of 85.28 to our 85.45) to
show that our LSTM implementation/tuning procedure is able to match or exceed perfor-
mance of another published LSTM result. Thirdly, the similar performance across models
on the PPDB tasks (Table 3) suggests that no model had a large advantage during tuning;
all found hyperparameters that comfortably beat the PARAGRAM-SLg99 addition baseline.
Finally, we point out that we tuned over learning rate and optimization strategy, as well as

experimented with clipping gradients, in order to rule out optimization issues.

3.3.1 Under-Trained Embeddings

One limitation of our new PARAGRAM-PHRASE vectors is that many of our embeddings are
under-trained. The number of unique tokens occurring in our training data, PPDB XL,
is 37,366. However, the number of tokens appearing more than 100 times is just 7,113.
Thus, one clear source of improvement for our model would be to address under-trained
embeddings for tokens appearing in our test data.

In order to gauge the effect under-trained embeddings and unknown words have on our

model, we calculated the fraction of words in each of our 22 SemEval datasets that do not
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occur at least 100 times in PPDB XL along with our performance deviation from the 75t
percentile of each dataset. We found that this fraction had a Spearman’s p of -45.1 with the

5th

deviation from the 75" percentile indicating that there is a significant negative correlation

between the fraction of OOV words and performance on these STS tasks.

3.3.2 Using More PPDB

3.3.2.1  Performance Versus Amount of Training Data

Models in related work such as (Kiros et al., 2015) and (Li et al., 2015) require significant
training time on GPUs, on the order of multiple weeks. Moreover, dependence of model
performance upon training data size is unclear. To investigate this dependence for our
PARAGRAM-PHRASE model, we trained on different amounts of data and plotted the perfor-
mance. The results are shown in Figure 1. We start with PPDB XL which has 3,033,753
unique phrase pairs and then divide by two until there are fewer than 10 phrase pairs.?*
For each data point (each division by two), we trained a model with that number of phrase
pairs for 10 epochs. We use the average Pearson correlation for all 22 datasets in Table 2 as

the dependent variable in our plot.

Performance vs. Training Data Size

0.7 %
= Random

- ° Ordered
=065 | a"e . —— PARAGRAM-SL999
< '.5:0. --- GloVe
m '
& 0.6 "
% "o
= "
j% 055 | 8%e °

0 1 2 3 4 5 6 7
Log1o of Training Data Size

Figure 1: Performance of the PARAGRAM-PHRASE embeddings as measured by the average Pearson’s
T on 22 textual similarity datasets versus the amount of training data from PPDB on a log
scale. Each datapoint contains twice as much training data as the previous one. Random
and Ordered refer to whether we shuffled the XL paraphrase pairs from PPDB or kept
them in order. We also show baselines of averaging PARAGRAM-sL999 and GloVe embed-
dings.

21 The smallest dataset contained 5 pairs.
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3.4 PARAGRAM: QUALITATIVE ANALYSIS

We experimented with two different ways of selecting training data. The first (“Ordered”)
retains the order of the phrase pairs in PPDB, which ensures the smaller datasets contain
higher confidence phrase pairs. The second (“Random”) randomly permutes PPDB XL
before constructing the smaller datasets. In both methods, each larger dataset contains the
previous one plus as many new phase pairs.

We make three observations about the plot in Figure 1. The first is that performance con-
tinually increases as more training data is added. This is encouraging as our embeddings
can continually improve with more data. Secondly, we note the sizable improvement (4
points) over the PARAGRAM-SL999 baseline by training on just 92 phrase pairs from PPDB.
Finally, we note the difference between randomly permuting the training data and using
the order from PPDB (which reflects the confidence that the phrases in each pair possess the
paraphrase relationship). Performance of the randomly permuted data is usually slightly
better than that of the ordered data, until the performance gap vanishes once half of PPDB
XL is used. We suspect this behavior is due to the safe phrase pairs that occur in the begin-
ning of PPDB. These high-confidence phrase pairs usually have only slight differences and

therefore are not as useful for training our model.

3.4 PARAGRAM: QUALITATIVE ANALYSIS

Word PARAGRAM-PHRASE Nearest Neighbors PARAGRAM-5L999 Nearest Neighbors

unlike contrary, contrast, opposite, versa, conversely, opposed, contradiction | than, although, whilst, though, albeit, kinda, alike

2 2.0, two, both, ii, 2nd, couple, 02 2.0, 3, 1, b, ii, two, 2nd

ladies girls, daughters, honorable, females, girl, female, dear gentlemen, colleague, fellow, girls, mr, madam, dear
lookin staring, looking, watching, look, searching, iooking, seeking doin, goin, talkin, sayin, comin, outta, somethin
disagree | agree, concur, agreeing, differ, accept disagreement, differ, dispute, difference, disagreements

Table 8: Nearest neighbors of PARAGRAM-PHRASE and PARAGRAM-SL999 word embeddings sorted by
cosine similarity.

To explore other differences between our PARAGRAM-PHRASE vectors and the PARAGRAM-
sL999 vectors that were used for initialization, we inspected lists of nearest neighbors in
each vector space. When obtaining nearest neighbors, we restricted our search to the 10,000
most common tokens in PPDB XL to ensure that the PARAGRAM-PHRASE vectors were not
too under-trained. Some informative neighbors are shown in Table 8. In the first four rows,
we see that the PARAGRAM-PHRASE embeddings have neighbors with a strong paraphrasing
relationship. They tend to avoid having neighbors that are antonyms or co-hyponyms such
as unlike and alike or 2 and 3 which are an issue for the PARAGRAM-SL999 embeddings. In

contrast to the first four rows, the last row shows a problematic effect of our bag-of-words
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3.4 PARAGRAM: QUALITATIVE ANALYSIS

composition function: agree is the nearest neighbor of disagree. The reason for this is that
there are numerous pairs in PPDB XL such as i disagree and i do not agree that encourage
disagree and agree to have high cosine similarity. A model that takes context into account
could resolve this issue. The difficulty would be finding a model that does so while still
generalizing well, as we found that our PARAGRAM-PHRASE embeddings generalize better
than learning a weight matrix or using a recurrent neural network. We leave this for future

work.

When we take a closer look at our PARAGRAM-PHRASE embeddings, we find that information-

bearing content words, such as poverty, kidding, humanitarian, 18, and july have the largest
L, norms, while words such as of, it, to, hereby and the have the smallest. Pham et al. (2015)
noted this same phenomenon in their closely-related compositional model. Interestingly,
we found that this weighting explains much of the success of our model. In order to quan-
tify exactly how much, we calculated a weight for each token in our working vocabulary?*
simply by summing up the absolute value of all components of its PARAGRAM-PHRASE vec-
tor. Then we multiplied each weight by its corresponding PARAGRAM-SL999 word vector.
We computed the average Pearson’s r over all 22 datasets in Table 2. The PARAGRAM-SL999
vectors have an average correlation of 54.94, the PARAGRAM-PHRASE vectors have 66.83, and
the scaled PARAGRAM-SL999 vectors, where each is multiplied by its computed weight, have
an average Pearson’s r of 62.64. Therefore, it can be surmised that at least 64.76% of the
improvement over the initial PARAGRAM-SL999 vectors is due to weighting tokens by their
importance.?3

We also investigated the connection between these multiplicative weights and word fre-
quency. To do so, we calculated the frequency of all tokens in PPDB XL.** We then nor-
malized these by the total number of tokens in PPDB XL and used the reciprocal of these
scores as the multiplicative weights. Thus less frequent words have more weight than more
frequent words. With this baseline weighting method, the average Pearson’s  is 45.52, indi-
cating that the weights we obtain for these words are more sophisticated than mere word
frequency. These weights are potentially useful for other applications that can benefit from

modeling word importance, such as information retrieval.

This corresponds to the 42,091 tokens that appear in the intersection of our PARAGRAM-5L999 vocabulary, the
test sets of all STS tasks in our evaluation, and PPDB XL plus an unknown word token.

We also trained a model in which we only a learn a single multiplicative parameter for each word in our
vocabulary, keeping the word embeddings fixed to the PARAGRAM-5L999 embeddings. We trained for 10 epochs
on all phrase pairs in PPDB XL. The resulting average Pearson’s 1, after tuning on the Pavlick et al. PPDB
task, was 62.06, which is slightly lower than using the absolute value of each PARAGRAM-PHRASE vector as its
multiplicative weight.

Tokens that did not appear in PPDB XL were assigned a frequency of 1.
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3.5 PARAGRAM: WORD EMBEDDINGS
3.5.1 Training Word Paraphrase Models

To train just word vectors on word paraphrase pairs (again from PPDB), we use an ob-
jective that bears some similarity to the skip-gram objective with negative sampling in
word2vec (Mikolov et al., 2013a). Both seek to maximize the dot products of certain word
pairs while minimizing the dot products of others. This objective function is:

o
n\/\l/lyl;lm<< Z max(O,é—Wx‘)‘WxZ)
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It is like Eq. 3.7.1 except with word vectors replacing the RNN composition function and
with the regularization terms on the W and b removed.

We further found we could improve this model by incorporating constraints. From our
training pairs, for a given word w, we assembled all other words that were paired with it
in PPDB and all of their lemmas. These were then used as constraints during the pairing

process: a word t could only be paired with w if it was not in its list of assembled words.

3.5.2 Experiments — Word Paraphrasing

We first present experiments on learning lexical paraphrasability. We train on word pairs
from PPDB and evaluate on the SimLex-999 dataset (Hill et al., 2015), achieving the best

results reported to date.

TRAINING PROCEDURE  To learn word vectors that reflect paraphrasability, we opti-
mized Eq. 3.5.1. There are many tunable hyperparameters with this objective, so to make
training tractable we fixed the initial learning rates for the word embeddings to 0.5 and the
margin & to 1. Then we did a coarse grid search over a parameter space for Ay, and the
mini-batch size. We considered Ay, values in {1072,1073,...,10~7,0} and mini-batch sizes
in {100, 250, 500, 1000}. We trained for 20 epochs for each set of hyperparameters using

AdaGrad (Duchi et al., 2011).
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For all experiments, we initialized our word vectors with skip-gram vectors trained using
word2vec (Mikolov et al., 2013a). The vectors were trained on English Wikipedia (tokenized
and lowercased, yielding 1.8B tokens).>> We used a window size of 5 and a minimum count
cut-off of 60, producing vectors for approximately 270K word types. We retained vectors for
only the 100K most frequent words, averaging the rest to obtain a single vector for unknown

words. We will refer to this set of the 100K most frequent words as our vocabulary.

EXTRACTING TRAINING DATA  For training, we extracted word pairs from the lexical
XL section of PPDB. We used XL instead of XXL because XL has better quality overall while
still being large enough so that we could be selective in choosing training pairs. There are a
total of 548,085 pairs. We removed 174,766 that either contained numerical digits or words
not in our vocabulary. We then removed 260,425 redundant pairs, leaving us with a final

training set of 112,894 word pairs.

3.5.3 Tuning and Evaluation

Hyperparameters were tuned using the wordsim-353 (WS353) dataset (Finkelstein et al.,
2001), specifically its similarity (WS-S) and relatedness (WS-R) partitions (Agirre et al.,
2009). In particular, we tuned to maximize 2xWS-S correlation minus the WS-R correla-
tion. The idea was to reward vectors with high similarity and relatively low relatedness, in

order to target the paraphrase relationship.

After tuning, we evaluated the best hyperparameters on the SimLex-999 (SLggg) dataset (Hill

et al.,, 2015). We chose SLggg as our primary test set as it most closely evaluates the para-
phrase relationship. Even though WS-S is a close approximation to this relationship, it does
not include pairs that are merely associated and assigned low scores, which SLggg does
(see discussion in Hill et al., 2014b).

Note that for all experiments we used cosine similarity as our similarity metric and
evaluated the statistical significance of dependent correlations using the one-tailed method

of (Steiger, 1980).
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Model n SLggg p
skip-gram 25 0.21
skip-gram 1000 0.38
PARAGRAM ws 25 0.56*
+ constraints 25 0.58"
Hill et al. (2015) 200 0.446
Hill et al. (2014b) - 0.52
inter-annotator agreement | N/A 0.67

Table 9: Results on the SimLex-999 (SL9g99) word similarity task obtained by performing hyperpa-
rameter tuning based on 2xWS-S —WS-R and treating SLggg as a held-out test set. n is
word vector dimensionality. A * indicates statistical significance (p < 0.05) over the 1000-
dimensional skip-gram vectors.

3.5.4 Results

Table 9 shows results on SLggg when improving the initial word vectors by training on
word pairs from PPDB, both with and without constraints. The “PARAGRAM ws” rows show
results when tuning to maximize 2xWS-S — WS-R. We also show results for strong skip-
gram baselines and the best results from the literature, including the state-of-the-art results
from Hill et al. (2014b) as well as the inter-annotator agreement from Hill et al. (2015).2

The table illustrates that, by training on PPDB, we can surpass the previous best cor-
relations on SLggg by 4-6% absolute, achieving the best results reported to date. We also
find that we can train low-dimensional word vectors that exceed the performance of much
larger vectors. This is very useful as using large vectors can increase both time and memory
consumption in NLP applications.

To generate word vectors to use for downstream applications, we chose hyperparame-
ters so as to maximize performance on SL999.>” These word vectors, which we refer to as
paragram vectors, had a p of 0.57 on SLggg. We use them as initial word vectors for the

remainder of the paper.

3.5.5 Sentiment Analysis

As an extrinsic evaluation of our PARAGRAM word vectors, we used them in a convolutional
neural network (CNN) for sentiment analysis. We used the simple CNN from Kim (2014)

and the binary sentence-level sentiment analysis task from Socher et al. (2013). We used

25 We used the December 2, 2013 snapshot.
26 Hill et al. (2014b) did not report the dimensionality of the vectors that led to their state-of-the-art results.
27 We did not use constraints during training.
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word vectors | n | accuracy (%)
skip-gram 25 77.0
skip-gram 50 79.6
PARAGRAM 25 80.9

Table 10: Test set accuracies when comparing embeddings in a static CNN on the binary sentiment
analysis task from Socher et al. (2013).

the standard data splits, removing examples with a neutral rating. We trained on all con-
stituents in the training set while only using full sentences from development and test,
giving us train/development/test sizes of 67,349/872/1,821.

The CNN uses m-gram filters, each of which is an m x n vector. The CNN computes
the inner product between an m-gram filter and each m-gram in an example, retaining the
maximum match (so-called “max-pooling”). The score of the match is a single dimension in
a feature vector for the example, which is then associated with a weight in a linear classifier
used to predict positive or negative sentiment.

While Kim (2014) used m-gram filters of several lengths, we only used unigram filters.
We also fixed the word vectors during learning (called “static” by Kim). After learning, the
unigram filters correspond to locations in the fixed word vector space. The learned classifier
weights represent how strongly each location corresponds to positive or negative sentiment.
We expect this static CNN to be more effective if the word vector space separates positive
and negative sentiment.

In our experiments, we compared baseline skip-gram embeddings to our PARAGRAM vec-
tors. We used AdaGrad learning rate of 0.1, mini-batches of size 10, and a dropout rate of
0.5. We used 200 unigram filters and rectified linear units as the activation (applied to the
filter output + filter bias). We trained for 30 epochs, predicting labels on the development
set after each set of 3,000 examples. We recorded the highest development accuracy and
used those parameters to predict labels on the test set.

Results are shown in Table 10. We see improvements over the baselines when using PARA-

GRAM vectors, even exceeding the performance of higher-dimensional skip-gram vectors.

3.5.6 Scaling Up

Increasing the dimension of word embeddings or training them on more data can have
a significant positive impact on many tasks—both at the word level and on downstream
tasks. We scaled up our original 25-dimensional PARAGRAM embeddings and modified our

training procedure slightly in order to produce two sets of 300-dimensional PARAGRAM
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Model n SLggg | WS353 | WS-S | WS-R
GloVe 300 0.376 | 0.579 | 0.630 | 0.571
PARAGRAM300,WS353 300 0.667 0.769 | 0.814 | 0.730
PARAGRAM300 SLggg 300 0.685 0.720 | 0.779 | 0.652
inter-annotator agreement® | N/A 0.67 0756 | N/A | N/A

Table 11: Evaluation of 300 dimensional PARAGRAM vectors on SLggg and WS353. Note that the inter-
annotator agreement p was calculated differently for WS353 and SLggg. For SLggg, the
agreement was computed as the average pairwise correlation between pairs of annotators,
while for WS353, agreement was computed as the average correlation between a single
annotator with the average over all other annotators. If one uses the alternative measure of
agreement for W5353, the agreement is 0.611, which is easily beaten by automatic methods
(Hill et al., 2015).

Model Mitchell and Lapata (2010) Bigrams ML-Paraphrase
word vectors n  comp. || JN NN VN Avg || N | NN | VN | Avg
GloVe 300 + 0.40 0.46 0.37 0.41 |/ 0.39 | 0.36 | 0.45 | 0.40
PARAGRAM300WS353 300  + 0.52 | 041 | 0.49 0.48 || 0.55|0.42|0.55 | 0.51
PARAGRAM300SLg99 300  + 051 | 036 | 0.51 0.46 || 0.57|0.39|0.59 | 0.52

Table 12: Evaluation of 300 dimensional PARAGRAM vectors on the bigram tasks.

vectors.?® The vectors outperform our original 25-dimensional PARAGRAM vectors on all
tasks and achieve human-level performance on SLggg and WS353. Moreover, when simply
using vector addition as a compositional model, they are both on par with the RNN models
we trained specifically for each task. These results can be seen in Tables 11, 12, and 13.

The main modification was to use higher-dimensional initial embeddings, in our case
the pretrained 300-dimensional GloVe embeddings.? Since PPDB only contains lowercased
words, we extracted only one GloVe vector per word type (regardless of case) by taking the
first occurrence of each word in the vocabulary. This is the vector for the most common
casing of the word, and was used as the word’s single initial vector in our experiments.
This reduced the vocabulary from the original 2.2 million types to 1.7 million.

Smaller changes included replacing dot product with cosine similarity in Equation 3.5.1
and a change to the negative sampling procedure. We experimented with three approaches:
MAX sampling discussed in Section 3.1.3.1, RAND sampling which is random sampling from
the batch, and a 50/50 mixture of MAX sampling and RAND sampling.

For training data, we selected all word pairs in the lexical portion of PPDB XL that were
in our vocabulary, removing redundancies. This resulted in 169,591 pairs for training. We

trained our models for 10 epochs and tuned hyperparameters (batch size, Aw,,, 5, and

Both PARAGRAM;40,WSs353 and PARAGRAM 3651999 Vectors can be found on the authors” websites.
We used the GloVe vectors trained on 840 billion tokens of Common Crawl data, available at http://nlp.
stanford.edu/projects/glove/
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Model
word vectors n  comp. || Annotated-PPDB
GloVe 300 + 0.27
PARAGRAM300WS353 300  + 0.43
PARAGRAM3005L999 300  + 0.41

Table 13: Evaluation of 300 dimensional PARAGRAM vectors on Annotated-PPDB.

sampling method) in two ways: maximum correlation on WS353 (PARAGRAM;40,ws353) and
maximum correlation on SL999 (PARAGRAM;00,51999)-3° We report results for both sets of
embeddings in Tables 11, 12, and 13. Table 11 shows performance on SLg9gg9, WS353, WS-
S, and WS-R, Table 12 shows performance on the bigram similarity tasks from (Mitchell
and Lapata, 2010) and the re-annotated version of (Wieting et al., 2015) to better reflect
paraphrastic similarity, and Table 13 shows performance on Annotated-PPDB, a dataset of
human labelled text snippets from PPDB introduced in (Wieting et al., 2015). Composition
for computing bigram and phrase similarity is done by vector addition. We make both sets
of embeddings available to the community in the hope that they may be useful for other

downstream tasks.

3.6 CHARAGRAM

Representing textual sequences such as words and sentences is a fundamental component
of natural language understanding systems. Many functional architectures have been pro-
posed to model compositionality in word sequences, ranging from simple averaging (Mitchell
and Lapata, 2010; Iyyer et al., 2015) to functions with rich recursive structure (Socher et al.,
2011; Tai et al., 2015, Bowman et al., 2016). Most work uses words as the smallest units in
the compositional architecture, often using pretrained word embeddings or learning them
specifically for the task of interest (Tai et al., 2015; He et al., 2015).

Some prior work has found benefit from using character-based compositional models
that encode arbitrary character sequences into vectors. Examples include recurrent neu-
ral networks (RNNs) and convolutional neural networks (CNNs) on character sequences,
showing improvements for several NLP tasks (Ling et al., 2015a; Kim et al., 2015; Balles-
teros et al., 2015; dos Santos and Guimaraes, 2015). By sharing subword information across
words, character models have the potential to better represent rare words and morphologi-

cal variants.

30 Note that if we use the approach in Section 3.5.3 in which we tune to maximize 2xWS-S correlation minus the
WS-R correlation, the SLggg p is 0.640, still higher than any other reported result to the best of our knowledge.



3.6 CHARAGRAM

Our approach, CHARAGRAM, uses a much simpler functional architecture. We represent a
character sequence by a vector containing counts of character n-grams, inspired by Huang
et al. (2013). This vector is embedded into a low-dimensional space using a single nonlin-
ear transformation. This can be interpreted as learning embeddings of character n-grams,
which are learned so as to produce effective sequence embeddings when a summation is
performed over the character n-grams in the sequence.

We consider three evaluations: word similarity, sentence similarity, and part-of-speech
tagging. On multiple word similarity datasets, CHARAGRAM outperforms RNNs and CNNs,
achieving state-of-the-art performance on SimLex-999 (Hill et al., 2015). When evaluated on
a large suite of sentence-level semantic textual similarity tasks, CHARAGRAM embeddings
again outperform the RNN and CNN architectures as well as the PARAGRAM-PHRASE em-
beddings of Wieting et al. (2016b). We also consider English part-of-speech (POS) tagging
using the bidirectional long short-term memory tagger of Ling et al. (2015a). The three
architectures reach similar performance, though cHARAGRAM converges fastest to high ac-
curacy.

We perform extensive analysis of our CHARAGRAM embeddings. We find large gains in
performance on rare words, showing the empirical benefit of subword modeling. We also
compare performance across different character n-gram vocabulary sizes, finding that the
semantic tasks benefit far more from large vocabularies than the syntactic task. However,
even for challenging semantic similarity tasks, we still see strong performance with only a
few thousand character n-grams.

Nearest neighbors show that CHARAGRAM embeddings simultaneously address differ-
ences due to spelling variation, morphology, and word choice. Inspection of embeddings of
particular character n-grams reveals etymological links; e.g., die is close to mort. We release
our resources to the community in the hope that CHARAGRAM can provide a strong baseline

for subword-aware text representation.

3.6.1 Related Work

We first review work on using subword information in word embedding models. The
simplest approaches append subword features to word embeddings, letting the model
learn how to use the subword information for particular tasks. Some added knowledge-
based morphological features to word representations (Alexandrescu and Kirchhoff, 2006;

El-Desoky Mousa et al., 2013). Others learned embeddings jointly for subword units and
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words, defining simple compositional architectures (often based on addition) to create word
embeddings from subword embeddings (Lazaridou et al., 2013; Botha and Blunsom, 2014;
Qiu et al., 2014; Chen et al., 2015¢).

A recent trend is to use richer functional architectures to convert character sequences
into word embeddings. Luong et al. (2013) used recursive models to compose morphs into
word embeddings, using unsupervised morphological analysis. Ling et al. (2015a) used a
bidirectional long short-term memory (LSTM) RNN on characters to embed arbitrary word
types, showing strong performance for language modeling and POS tagging. Ballesteros
et al. (2015) used this model to represent words for dependency parsing. Several have used
character-level RNN architectures for machine translation, whether for representing source
or target words (Ling et al., 2015b; Luong and Manning, 2016), or for generating entire
translations character-by-character (Chung et al., 2016).

Sutskever et al. (2011) and Graves (2013) used character-level RNNs for language mod-
eling. Others trained character-level RNN language models to provide features for NLP
tasks, including tokenization and segmentation (Chrupata, 2013; Evang et al., 2013), and
text normalization (Chrupatla, 2014).

CNNs with character n-gram filters have been used to embed arbitrary word types for
several tasks, including language modeling (Kim et al., 2015), part-of-speech tagging (dos
Santos and Zadrozny, 2014), named entity recognition (dos Santos and Guimaraes, 2015),
text classification (Zhang et al., 2015), and machine translation (Costa-Jussa and Fonollosa,
2016). Combinations of CNNs and RNNs on characters have also been explored (J6zefowicz
et al., 2016).

Most closely-related to our approach is the DSSM (instantiated variously as “deep se-
mantic similarity model” or “deep structured semantic model”) developed by Huang et al.
(2013). For an information retrieval task, they represented words using feature vectors con-
taining counts of character n-grams. Sperr et al. (2013) used a very similar technique to
represent words in neural language models for machine translation. Our CHARAGRAM em-
beddings are based on this same idea. We show this strategy to be extremely effective when
applied to both words and sentences, outperforming character LSTMs like those used by

Ling et al. (2015a) and character CNNs like those from Kim et al. (2015).
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3.6.2  Models

We now describe models that embed textual sequences using their characters, including
our CHARAGRAM model and the baselines that we compare to. We denote a character-based
textual sequence by x = (x1,X2, ..., Xm), which includes space characters between words as
well as special start-of-sequence and end-of-sequence characters. We use x{ to denote the
subsequence of characters from position i to position j inclusive, i.e., xJ:l = (Xi, Xit1, - Xj),
and we define x} = Xi.

Our cHARAGRAM model embeds a character sequence x by adding the vectors of its

character n-grams followed by an elementwise nonlinearity:

m+1 i

Jenar(X) = b+ Z Z X GV

i=1 j=1+i—k

where h is a nonlinear function, b € R9 is a bias vector, k is the maximum length of any
character n-gram, I[p] is an indicator function that returns 1 if p is true and o otherwise,
V is the set of character n-grams included in the model, and WY € RY is the vector for
character n-gram x;.

The set V is used to restrict the model to a predetermined set (vocabulary) of character
n-grams. Below, we compare several choices for defining this set. The number of parame-
ters in the model is d + d|V/|. This model is based on the letter n-gram hashing technique
developed by Huang et al. (2013) for their DSSM approach. One can also view Eq. equa-
tion 3.6.2 (as they did) as first populating a vector of length [V| with counts of character
n-grams followed by a nonlinear transformation.

We compare the cHARAGRAM model to two other models. First we consider LSTM ar-
chitectures (Hochreiter and Schmidhuber, 1997) over the character sequence x, using the
version from Gers et al. (2003). We use a forward LSTM over the characters in x, then take
the final LSTM hidden vector as the representation of x. Below we refer to this model as
“charLSTM.”

We also compare to convolutional neural network (CNN) architectures, which we refer to
below as “charCNN.” We use the architecture from Kim (2014) with a single convolutional
layer followed by an optional fully-connected layer. We use filters of varying lengths of
character n-grams, using two primary configurations of filter sets, one of which is identical
to that used by Kim et al. (2015). Each filter operates over the entire sequence of character

n-grams in x and we use max pooling for each filter. We tune over the choice of nonlinearity
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for both the convolutional filters and for the optional fully-connected layer. We give more
details below about filter sets, n-gram lengths, and nonlinearities.

We note that using character n-gram convolutional filters is similar to our use of char-
acter n-grams in the cHARAGRAM model. The difference is that, in the cHARAGRAM model,
the n-gram must match exactly for its vector to affect the representation, while in the CNN
each filter will affect the representation of all sequences (depending on the nonlinearity be-
ing used). So the cHARAGRAM model is able to learn precise vectors for particular character
n-grams with specific meanings, while there is pressure for the CNN filters to capture mul-
tiple similar patterns that recur in the data. Our qualitative analysis shows the specificity

of the learned character n-gram vectors learned by the cHARAGRAM model.

3.7 CHARAGRAM: EXPERIMENTS

We perform three sets of experiments. The goal of the first two (Section 3.7.1) is to produce
embeddings for textual sequences such that the embeddings for paraphrases have high
cosine similarity. Our third evaluation (Section 3.7.3) is a classification task, and follows the

setup of the English part-of-speech tagging experiment from Ling et al. (2015a).

3.7.1  Word and Sentence Similarity

We compare the ability of our models to capture semantic similarity for both words and
sentences. We train on noisy paraphrase pairs from the Paraphrase Database (PPDB; Gan-
itkevitch et al., 2013) with an L, regularized contrastive loss objective function, following
the training procedure of Wieting et al. (2015) and Wieting et al. (2016b) described below.
For part-of-speech tagging, we follow the English Penn Treebank training procedure of
Ling et al. (2015a).

For the similarity tasks, the training data consists of a set X of phrase pairs (x1,x2) from
the Paraphrase Database (PPDB; Ganitkevitch et al., 2013), where x; and x, are assumed

to be paraphrases. We optimize a margin-based loss:

47



3.7 CHARAGRAM: EXPERIMENTS

min]< Z max(0,5 —cos(g(x1), g(x2))

0 |X‘ <X1/XZ>€X

+cos(g(x1),9(t1))) + max(0,5 —cos(g(x1),g(x2))

+cos(g(xz),9(t2)))> NE

where g is the embedding function in use,  is the margin, the full set of parameters is
contained in 6 (e.g., for the CHARAGRAM model, 6 = (W, b)), A is the L, regularization
coefficient, and t; and t; are carefully selected negative examples taken from a mini-batch
during optimization (discussed below). Intuitively, we want the two phrases to be more
similar to each other (cos(g(x1), g(x2))) than either is to their respective negative examples

t7 and t;, by a margin of at least 5.

3.7.2  Selecting Negative Examples

To select t; and t; in Eq. 2, we tune the choice between two approaches. The first, MAX,
simply chooses the most similar phrase in some set of phrases (other than those in the
given phrase pair). For simplicity and to reduce the number of tunable parameters, we use
the mini-batch for this set, but it could be a separate set. Formally, MAX corresponds to

choosing t; for a given (x1,x2) as follows:

t = argmax cos(g(x1),g(t))
() EXp\{({x1,x2)}

where Xy, C X is the current mini-batch. That is, we want to choose a negative example
t; that is similar to x; according to the current model parameters. The downside of this
approach is that we may occasionally choose a phrase t; that is actually a true paraphrase
of xj.

The second strategy selects negative examples using MAX with probability o.5 and selects
them randomly from the mini-batch otherwise. We call this sampling strategy MIX. We tune

over the choice of strategy in our experiments.
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3.7.2.1 Datasets

For word similarity, we focus on two of the most commonly used datasets for evaluating
semantic similarity of word embeddings: WordSim-353 (WS353) (Finkelstein et al., 2001)
and SimLex-999 (SLggg) (Hill et al., 2015). We also evaluate our best model on the Stanford
Rare Word Similarity Dataset (Luong et al., 2013).

For sentence similarity, we evaluate on a diverse set of 22 textual similarity datasets,
including all datasets from every SemEval semantic textual similarity (STS) task from 2012
to 2015. We also evaluate on the SemEval 2015 Twitter task (Xu et al., 2015b) and the
SemEval 2014 SICK Semantic Relatedness task (Marelli et al., 2014). Given two sentences,
the aim of the STS tasks is to predict their similarity on a o-5 scale, where o indicates the
sentences are on different topics and 5 indicates that they are completely equivalent.

Each STS task consists of 4-6 datasets covering a wide variety of domains, including
newswire, tweets, glosses, machine translation outputs, web forums, news headlines, image
and video captions, among others. Most submissions for these tasks use supervised models
that are trained and tuned on provided training data or similar datasets from older tasks.
Further details are provided in the official task descriptions (Agirre et al., 2012, 2013, 2014,

2015).

3.7.2.2  Preliminaries

For training data, we use pairs from PPDB. For word similarity experiments, we train on
word pairs and for sentence similarity, we train on phrase pairs. PPDB comes in different
sizes (S, M, L, XL, XXL, and XXXL), where each larger size subsumes all smaller ones. The
pairs in PPDB are sorted by a confidence measure and so the smaller sets contain higher
precision paraphrases.

Before training the CHARAGRAM model, we need to populate V, the vocabulary of char-
acter n-grams included in the model. We obtain these from the training data used for the
final models in each setting, which is either the lexical or phrasal section of PPDB XXL. We
tune over whether to include the full sets of character n-grams in these datasets or only
those that appear more than once.

When extracting n-grams, we include spaces and add an extra space before and after
each word or phrase in the training and evaluation data to ensure that the beginning and

end of each word is represented. We note that strong performance can be obtained using
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far fewer character n-grams; we explore the effects of varying the number of n-grams and
the n-gram orders in Section 3.7.5.
We used Adam (Kingma and Ba, 2014) with a learning rate of 0.001 to learn the parame-

ters in the following experiments.

3.7.2.3 Word Embedding Experiments

TRAINING AND TUNING  For hyperparameter tuning, we used one epoch on the lexical
section of PPDB XXL, which consists of 770,007 word pairs. We used either WS353 or
SLggg for model selection (reported below). We then took the selected hyperparameters
and trained for 50 epochs to ensure that all models had a chance to converge.

We tuned all models thoroughly, tuning the activation functions for cHARAGRAM and
charCNN, as well as the regularization strength, mini-batch size, and sampling type for all
models. For all architectures, we tuned over the mini-batch size (25 or 50) and the type of
sampling used (MIX or MAX). 6 was set to 0.4 and the dimensionality d of each model was
set to 300.

For the cHARAGRAM model, we tuned the activation function h (tanh or linear) and reg-
ularization coefficient A (over {10=4,107°,107°}). The n-gram vocabulary V contained all
100,283 character n-grams (n € {2, 3,4}) in the lexical section of PPDB XXL.

For charCNN and charL.STM, we randomly initialized 300 dimensional character embed-
dings for all unique characters in the training data and we tuned A over {10~%,107>,107°}.
For charLSTM, we tuned over whether to include an output gate. For charCNN, we tuned
the filter activation function (rectified linear or tanh) and tuned the activation for the fully-
connected layer (tanh or linear).

For charCNN, we experimented with two filter sets: one uses 175 filters for each n-gram
size € {2,3,4}, and the other uses the set of filters from Kim et al. (2015), consisting of 25
filters of size 1, 50 of size 2, 75 of size 3, 100 of size 4, 125 of size 5, and 150 of size 6. We also
experimented with using dropout (Srivastava et al., 2014) on the inputs of the last layer of
the charCNN model in place of L, regularization, as well as removing the last feedforward
layer. Neither of these variations significantly improved performance on our suite of tasks
for word or sentence similarity. However, using more filters does improve performance,

seemingly linearly with the square of the number of filters.
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Model Tuned on H WS353 ‘ SL9g9g ‘

charCNN SL999 2631 | 30.64
WS353 3319 16.73

charLSTM SL9gg 4827 | 54.54

WS353 51.43 48.83
SL9gg 53.87 | 63.33
WS353 58.35 60.00

CHARAGRAM

inter-annotator agreement - 75.6 78

Table 14: Word similarity results (Spearman’s p x 100) on WS353 and SLggg. The inter-annotator
agreement is the average Spearman’s p between a single annotator with the average over
all other annotators.

ARCHITECTURE COMPARISON The results are shown in Table 14. The CHARAGRAM
model outperforms both the charLSTM and charCNN models, and also outperforms recent
strong results on SLggg.

We also found that the charCNN and charLSTM models take far more epochs to converge
than the cHARAGRAM model. We noted this trend across experiments and explore it further

in Section 3.7.4.

Model SLggg
Hill et al. (2014a) 52
Schwartz et al. (2015) 56
Faruqui and Dyer (2015) | 58
Wieting et al. (2015) 66.7
CHARAGRAM (large) 70.6

Table 15: Spearman’s p x 100 on SLgg9. CHARAGRAM (large) refers to the CHARAGRAM model de-
scribed in Section 3.7.5. This model contains 173,881 character embeddings, more than the
100,283 in the CHARAGRAM model used to obtain the results in Table 14.

COMPARISON TO PRIOR WORK  We found that performance of CHARAGRAM on word
similarity tasks can be improved by using more character n-grams. This is explored in
Section 3.7.5. Our best result from these experiments was obtained with the largest model
we considered, which contains 173,881 n-gram embeddings. When using WS353 for model
selection and training for 25 epochs, this model achieves 70.6 on SLgg99. To our knowledge,
this is the best result reported on SL9gg in this setting; Table 15 shows comparable recent
results. Note that a higher SLggg number is reported in (Mrksic¢ et al., 2016), but the setting
is not comparable to ours as they started with embeddings tuned on SLgg9.

Lastly, we evaluated our model on the Stanford Rare Word Similarity Dataset (Luong
et al.,, 2013), using SLggg for model selection. We obtained a Spearman’s p of 47.1, which
outperforms the 41.8 result from Soricut and Och (2015) and is competitive with the 47.8

reported in Pennington et al. (2014), despite only using PPDB for training.
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Dataset 50% | 75% | Max charCNN charLSTM PARAGRAM- | CHARAGRAM-
PHRASE PHRASE
STS 2012 Average || 54.5 | 59.5 | 70.3 56.5 40.1 58.5 66.1
STS 2013 Average || 45.3 | 51.4 | 65.3 47.7 30.7 57.7 57.2
STS 2014 Average || 64.7 | 71.4 | 76.7 64.7 46.8 71.5 74.7
STS 2015 Average || 70.2 | 75.8 | 80.2 66.0 45.5 75.7 76.1
2014 SICK 71.4 | 79.9 | 82.8 62.9 50.3 72.0 70.0
2015 Twitter 49.9 | 52.5 | 61.9 48.6 39.9 52.7 53.6
Average 59.7 | 65.6 | 73.6 59.2 41.9 66.2 68.7

Table 16: Results on SemkEval textual similarity datasets (Pearson’s v x 100). The highest score in
each row is in boldface (omitting the official task score columns).

3.7.2.4 Sentence Embedding Experiments

TRAINING AND TUNING  We did initial training of our models using one pass through
PPDB XL, which consists of 3,033,753 unique phrase pairs. Following Wieting et al. (2016b),
we use the annotated phrase pairs developed by Pavlick et al. (2015) as our validation set,
using Spearman’s p to rank the models. We then take the highest performing models and
train on the 9,123,575 unique phrase pairs in the phrasal section of PPDB XXL for 10 epochs.

For all experiments, we fix the mini-batch size to 100, the margin & to 0.4, and use
MAX sampling. For the cHARAGRAM model, V contains all 122,610 character n-grams
(n € {2,3,4}) in the PPDB XXL phrasal section. The other tuning settings are the same
as in Section 3.7.2.3.

For another baseline, we train the PARAGRAM-PHRASE model of Wieting et al. (2016b), tun-
ing its regularization strength over {107>,107°,10~7, 10 8}. The PARAGRAM-PHRASE model
simply uses word averaging as its composition function, but outperforms many more com-
plex models.

In this section, we refer to our model as CHARAGRAM-PHRASE because the input is a charac-
ter sequence containing multiple words rather than only a single word as in Section 3.7.2.3.
Since the vocabulary V is defined by the training data sequences, the CHARAGRAM-PHRASE
model includes character n-grams that span multiple words, permitting it to capture some
aspects of word order and word co-occurrence, which the PARAGRAM-PHRASE model is un-
able to do.

We encountered difficulties training the charLSTM and charCNN models for this task. We
tried several strategies to improve their chance at convergence, including clipping gradients,
increasing training data, and experimenting with different optimizers and learning rates.
We found success by using the original (confidence-based) ordering of the PPDB phrase

pairs for the initial epoch of learning, then shuffling them for subsequent epochs. This
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Dataset 50% | 75% | Max charCNN charLSTM PARAGRAM- | CHARAGRAM-
PHRASE PHRASE
MSRpar 51.5 | 57.6 | 73.4 50.6 23.6 42.9 59.7
MSRvid 75.5 | 80.3 | 88.0 72.2 47.2 76.1 79.6
SMT-eur 444 | 48.1 | 56.7 50.9 38.5 45.5 57.2
OnWN 60.8 | 65.9 | 72.7 61.8 53.0 70.7 68.7
SMT-news 40.1 | 45.4 | 60.9 46.8 38.3 57.2 65.2
STS 2012 Average || 54.5 | 59.5 | 70.3 56.5 40.1 58.5 66.1
headline 64.0 | 68.3 | 78.4 68.1 544 72.3 75.0
OnWN 52.8 | 64.8 | 84.3 54.4 33.5 70.5 67.8
FNWN 32.7 | 38.1 | 58.2 26.4 10.6 47.5 42.3
SMT 31.8 | 34.6 | 40.4 42.0 24.2 40.3 43.6
STS 2013 Average || 45.3 | 51.4 | 65.3 47.7 30.7 57.7 57.2
deft forum 36.6 | 46.8 | 53.1 45.6 19.4 50.2 62.7
deft news 66.2 | 74.0 | 78.5 73.5 54.6 73.2 77.0
headline 67.1 | 75.4 | 78.4 67.4 53.7 69.1 74.3
images 75.6 | 79.0 | 83.4 68.7 53.6 80.0 77.6
OnWN 78.0 | 81.1 | 87.5 66.8 46.1 79.9 77.0
tweet news 64.7 | 72.2 | 79.2 66.2 53.6 76.8 79.1
STS 2014 Average || 64.7 | 71.4 | 76.7 64.7 46.8 71.5 74.7
answers-forums 61.3 | 68.2 | 73.9 47.2 27.3 67.4 61.5
answers-students || 67.6 | 73.6 | 78.8 75.0 63.1 78.3 78.5
belief 67.7 | 72.2 | 77.2 65.7 22.6 76.0 77.2
headline 74.2 | 80.8 | 84.2 72.2 61.7 74.5 78.7
images 80.4 | 84.3 | 87.1 70.0 52.8 82.2 84.4
STS 2015 Average || 70.2 | 75.8 | 80.2 66.0 45.5 75.7 76.1
2014 SICK 71.4 | 79.9 | 82.8 62.9 50.3 72.0 70.0
2015 Twitter 49.9 | 52.5 | 61.9 48.6 39.9 52.7 53.6
Average 59.7 | 65.6 | 73.6 59.2 41.9 66.2 68.7

Results on SemEval textual similarity datasets (Pearson’s r x 100). The highest score in

each row is in boldface (omitting the official task score columns).
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Model Accuracy (%)
charCNN 97.02
charLSTM 96.90
CHARAGRAM 96.99
CHARAGRAM (2-layer) 97.10

Table 18: Results on part-of-speech tagging.

is similar to curriculum learning (Bengio et al., 2009). The higher-confidence phrase pairs
tend to be shorter and have many overlapping words, possibly making them easier to learn

from.

RESULTS  An abbreviated version of the sentence similarity results is shown in Table 16;
Full results are shown in Table 17. For comparison, we report performance for the median
(50%), third quartile (75%), and top-performing (Max) systems from the shared tasks. We
observe strong performance for the CHARAGRAM-PHRASE model. It always does better than
the charCNN and charLSTM models, and outperforms the PARAGRAM-PHRASE model on 15
of the 22 tasks. Furthermore, CHARAGRAM-PHRASE matches or exceeds the top-performing
task-tuned systems on 5 tasks, and is within 0.003 on 2 more. The charLSTM and charCNN
models are significantly worse, with the charCNN being the better of the two and beating
PARAGRAM-PHRASE on 4 of the tasks.

We emphasize that there are many other models that could be compared to, such as an
LSTM over word embeddings. This and many other models were explored by Wieting et al.
(2016b). Their PARAGRAM-PHRASE model, which simply learns word embeddings within an
averaging composition function, was among their best-performing models. We used this
model in our experiments as a strongly-performing representative of their results.

Lastly, we note other recent work that considers a similar transfer learning setting. The
FastSent model (Hill et al., 2016) uses the 2014 STS task as part of its evaluation and reports
an average Pearson’s r of 61.3, much lower than the 74.7 achieved by CHARAGRAM-PHRASE

on the same datasets.

3.7.3 POS Tagging Experiments

We now consider part-of-speech (POS) tagging, since it has been used as a testbed for eval-
uating architectures for character-level word representations. It also differs from semantic
similarity, allowing us to evaluate our architectures on a syntactic task. We replicate the

POS tagging experimental setup of Ling et al. (2015a). Their model uses a bidirectional
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LSTM over character embeddings to represent words. They then use the resulting word
representations in another bidirectional LSTM that predicts the tag for each word. We re-
place their character bidirectional LSTM with our three architectures: charCNN, charLSTM,
and CHARAGRAM.

We use the Wall Street Journal portion of the Penn Treebank, using Sections 1-18 for
training, 19-21 for tuning, and 22-24 for testing. We set the dimensionality of the character
embeddings to 50 and that of the (induced) word representations to 150. For optimization,
we use stochastic gradient descent with a mini-batch size of 100 sentences. The learning
rate and momentum are set to 0.2 and 0.95 respectively. We train the models for 50 epochs,
again to ensure that all models have an opportunity to converge.

The other settings for our models are mostly the same as for the word and sentence
experiments (Section 3.7.1). We again use character n-grams with n € {2, 3,4}, tuning over
whether to include all 54,893 in the training data or only those that occur more than once.
However, there are two minor differences from the previous sections. First, we add a single
binary feature to indicate if the token contains a capital letter. Second, our tuning considers
rectified linear units as the activation function for the cHARAGRAM and charCNN architec-
tures.3!

The results are shown in Table 18. Performance is similar across models. We found that
adding a second fully-connected 150 dimensional layer to the CHARAGRAM model improved

results slightly.3*

3.7.4 Convergence

One observation we made during our experiments was that different models converged
at significantly different rates. Figure 2 plots the performance of the word similarity and
tagging tasks as a function of the number of examples processed during training. For word
similarity, we plot the oracle Spearman’s p on SLggg, while for tagging we plot tagging ac-
curacy on the validation set. We evaluate performance every quarter epoch (approximately
every 194,252 word pairs) for word similarity and every epoch for tagging. We only show

the first 10 epochs of training in the tagging plot.

We did not consider ReLU for the similarity experiments because the final embeddings are used directly
to compute cosine similarities, which led to poor performance when restricting the embeddings to be non-
negative.

We also tried adding a second (300 dimensional) layer for the word and sentence embedding models and found
that it hurt performance.
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Figure 2: Plots of performance versus training epoch for word similarity and POS tagging.

The plots show that the cHARAGRAM model converges quickly to high performance. The
charCNN and charLSTM models take many more epochs to converge. Even with tagging,
which uses a very high learning rate, CHARAGRAM converges significantly faster than the
others. For word similarity, it appears that charCNN and charLSTM are still slowly im-
proving at the end of 50 epochs. This suggests that if training was done for a much longer
period, and possibly on more data, the charLSTM or charCNN models could match and sur-
pass the cHARAGRAM model. However, due to the large training sets available from PPDB
and the computational requirements of these architectures, we were unable to explore the
regime of training for many epochs. We conjecture that slow convergence could be the rea-
son for the inferior performance of LSTMs for similarity tasks as reported by Wieting et al.

(2016Db).

3.7.5 Model Size Experiments

The default setting for our CHARAGRAM and CHARAGRAM-PHRASE models is to use all char-
acter bigram, trigrams, and 4-grams that occur in the training data at least C times, tuning
C over the set {1, 2}. This results in a large number of parameters, which could be seen as an
unfair advantage over the comparatively smaller charCNN and charLSTM models, which
have up to 881,025 and 763,200 parameters respectively in the similarity experiments.33

On the other hand, for a given training example, very few parameters in the CHARAGRAM

model are actually used. For the charCNN and charLSTM models, by contrast, all param-

33 This includes 134 character embeddings.
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Task # n-grams 2 2,3 2,3,4 2,3,4,5 2,3,4,5,6
POS 100 95.52 96.09 96.15 96.13 96.16
Tagging 1,000 96.72 96.86 96.97 97.02 97.03

50,000 96.81 97.00 97.02 97.04 97.09
Word 100 6.2 7.0 7.7 9.1 8.8
Similarity 1,000 15.2 33.0 38.7 43.2 43.9

50,000 14.4 52.4 67.8 69.2 69.5
Sentence 100 40.2 33.8 32.5 31.2 29.8
Similarity 1,000 50.1 60.3 58.6 56.6 55.6

50,000 45.7 64.7 66.6 63.0 61.3

Table 19: Results of using different numbers and different combinations of character n-grams.

eters are used except the character embeddings for those characters that are not present
in the example. For a sentence with 100 characters, and when using the 300-dimensional
CHARAGRAM model with bigrams, trigrams, and 4-grams, there are approximately 9o,000
parameters in use for this sentence, far fewer than those used by the charCNN and char-
LSTM for the same sentence.

We performed a series of experiments to investigate how the CHARAGRAM and CHARAGRAM-
PHRASE models perform with different numbers and lengths of character n-grams. For a
given k, we took the top k most frequent character n-grams for each value of n in use. We
experimented with k values in {100, 1000, 50000}. If there were fewer than k unique charac-
ter n-grams for a given n, we used all of them. For these experiments, we did very little
tuning, setting the regularization strength to o and only tuning over the activation function.
We repeated this experiment for all three of our tasks. For word similarity, we report perfor-
mance on SLggg after training for 5 epochs on the lexical section of PPDB XXL. For sentence
similarity, we report the average Pearson’s r over all 22 datasets after training for 5 epochs
on the phrasal section of PPDB XL. For tagging, we report accuracy on the validation set
after training for 50 epochs. The results are shown in Table 19.

When using extremely small models with only 100 n-grams of each order, we still see rel-
atively strong performance on POS tagging. However, the semantic similarity tasks require
far more n-grams to yield strong performance. Using 1000 n-grams clearly outperforms

100, and 50,000 n-grams performs best.

3.8 CHARAGRAM: ANALYSIS

3.8.1  Quantitative Analysis

One of our primary motivations for character-based models is to address the issue of out-of-

vocabulary (OOV) words, which were found to be one of the main sources of error for the
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PARAGRAM-PHRASE model from Wieting et al. (2016b). They reported a negative correlation
(Pearson’s 1 of -0.45) between OOV rate and performance. We took the 12,108 sentence
pairs in all 20 SemEval STS tasks and binned them by the total number of unknown words

in the pairs.3* We computed Pearson’s r over each bin. The results are shown in Table 2o0.

Number of N PARAGRAM- CHARAGRAM-
Unknown PHRASE PHRASE
Words
o 11,292 71.4 73.8
1 534 68.8 78.8
2 194 66.4 72.8
> 1 816 68.6 77.9
>0 12,108 71.0 74.0

Table 20: Performance (Pearson’s r x 100) as a function of the number of unknown words in the
sentence pairs over all 20 SemEval STS datasets. N is the number of sentence pairs.

The cHARAGRAM-PHRASE model has better performance for each number of unknown
words. The PARAGRAM-PHRASE model degrades when more unknown words are present,
presumably because it is forced to use the same unknown word embedding for all unknown
words. The CHARAGRAM-PHRASE model has no notion of unknown words, as it can embed
any character sequence.

We next investigated the sensitivity of the two models to length, as measured by the
maximum of the lengths of the two sentences in a pair. We binned all of the 12,108 sentence
pairs in the 20 SemEval STS tasks by length and then again found the Pearson’s r for both

the PARAGRAM-PHRASE and CHARAGRAM-PHRASE models. The results are shown in Table 21.

PARAGRAM- CHARAGRAM-
Max Length N PHRASE PHRASE
<4 71 67.9 72.9
5 216 71.1 71.9
6 572 67.0 69.7
7 1,097 71.5 74-0
8 1,356 74.2 74-5
9 1,266 71.7 72.7
10 1,010 70.7 74.2
11-15 3,143 71.8 737
16-20 1,559 73.0 75.1
2> 21 1,818 74-5 754

Table 21: Performance (Pearson’s r x 100) as a function of the maximum number of tokens in the
sentence pairs over all 20 SemEval STS datasets. N is the number of sentence pairs.

34 Unknown words were defined as those not present in the 1.7 million unique (case-insensitive) tokens that

comprise the vocabulary for the GloVe embeddings available at http://nlp.stanford.edu/projects/glove/.
The PARAGRAM-SL999 embeddings, used to initialize the PARAGRAM-PHRASE model, use this same vocabulary.
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We find that both models are robust to sentence length, achieving the highest correlations
on the longest sentences. We also find that CHARAGRAM-PHRASE outperforms PARAGRAM-

PHRASE at all sentence lengths.

3.8.2  Qualitative Analysis

bigram CHARAGRAM-PHRASE PARAGRAM-PHRASE
not capable incapable, unable, incapacity not, capable, stalled
not able unable, incapable, incapacity not, able, stalled

not possible | impossible impracticable unable | not, stalled, possible
not sufficient | insufficient, sufficient, inadequate | not, sufficient, stalled

not easy easy, difficult, tough not, stalled, easy

Table 22: Nearest neighboring words of selected bigrams under CHARAGRAM-PHRASE and
PARAGRAM-PHRASE embeddings.

Word CHARAGRAM-PHRASE

vehicals vehical, vehicles, vehicels, vehicular, cars, vehicle, automobiles, car
serious-looking serious, grave, acute, serious-minded, seriousness, gravity, serious-faced

near-impossible | impossible, hard/impossible, audacious-impossible, impractical, unable

growths growth, grow, growing, increases, grows, increase, rise, growls, rising
litered liter, litering, lited, liters, literate, literature, literary, literal, lite, obliterated
journeying journey, journeys, voyage, trip, roadtrip, travel, tourney, voyages, road-trip
babyyyyyy babyyyyyyy, baby, babys, babe, baby.i, babydoll, babycake, darling

adirty dirty, dirtyyyyyy, filthy, down-and-dirty, dirtying, dirties, ugly, dirty-blonde
refunding refunds, refunded, refund, repayment, reimbursement, rebate, repay

reimbursements, reimburse, repaying, repayments, rebates, rebating, reimburses

professors professor, professorships, professorship, teachers, professorial, teacher

prof., teaches, lecturers, teachings, instructors, headteachers, teacher-student

huge enormous, tremendous, large, big, vast, overwhelming, immense, giant

formidable, considerable, massive, huger, large-scale, great, daunting

Table 23: Nearest neighbors of CHARAGRAM-PHRASE embeddings. Above the double horizontal line
are nearest neighbors of words that were not in our training data, and below it are nearest
neighbors of words that were in our training data.

Aside from OOVs, the PARAGRAM-PHRASE model lacks the ability to model word order
or cooccurrence, since it simply averages the words in the sequence. We were interested
to see whether CHARAGRAM-PHRASE could handle negation, since it does model limited
information about word order (via character n-grams that span multiple words in the se-
quence). We made a list of “not” bigrams that could be represented by a single word, then
embedded each bigram using both models and did a nearest-neighbor search over a work-

ing vocabulary.3> The results, in Table 22, show how the CHARAGRAM-PHRASE embeddings

35 This contained all words in PPDB-XXL, our evaluations, and in two other datasets: the Stanford Sentiment
task (Socher et al., 2013) and the SNLI dataset (Bowman et al., 2015), resulting in 93,217 unique (up-to-casing)
tokens.
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model negation. In all cases but one, the nearest neighbor is a paraphrase for the bigram
and the next neighbors are mostly paraphrases as well. The PARAGRAM-PHRASE model, un-
surprisingly, is incapable of modeling negation. In all cases, the nearest neighbor is not,
as this word carries much more weight than the word it modifies. The remaining nearest

neighbors are either the modified word or stalled.

We did two additional nearest neighbor explorations with our CHARAGRAM-PHRASE model.

In the first, we collected the nearest neighbors for words that were not in the training data
(i.e. PPDB XXL), but were in our working vocabulary. This consisted of 59,660 words. In
the second, we collected nearest neighbors of words that were in our training data which
consisted of 37,765 tokens.

A sample of the nearest neighbors is shown in Table 23. Several kinds of similarity are
being captured simultaneously by the model. One kind is similarity in terms of spelling
variation, including misspellings (vehicals, vehicels, and vehicles) and repetition for emphasis
(baby and babyyyyyyy). Another kind is similarity in terms of morphological variants of a
shared root (e.g., journeying and journey). We also see that the model has learned many
strong synonym relationships without significant amounts of overlapping n-grams (e.g.,
vehicles, cars, and automobiles). We find these characteristics for words both in and out of
the training data. Words in the training data, which tend to be more commonly used, do
tend to have higher precision in their nearest neighbors (e.g., see neighbors for huge). We
noted occasional mistakes for words that share a large number of n-grams but are not

paraphrases (see nearest neighbors for litered which is likely a misspelling of littered).

n-gram | n-gram Embedding

die _dy, _die, dead,_dyi, rlif, mort, ecea, rpse, d_aw
foo _foo,_eat, meal, alim, trit, feed, grai,_din, nutr, toe
pee peed, hast, spee, fast, mpo_, pace, _vel, loci, ccel
aiv waiv, aive, boli, epea, ncel, abol, lift, bort, bol

ngu ngue, uist, ongu, tong, abic, gual, fren, ocab, ingu
2 2_,_02,_o2_, tw, dua,_xx,_ii_, xx, 0_14,d_.2

Table 24: Nearest neighbors of character n-gram embeddings from our trained CHARAGRAM-PHRASE
model. The underscore indicates a space, which signals the beginning or end of a word.

Lastly, since our model learns embeddings for character n-grams, we include an analysis
of character n-gram nearest neighbors in Table 24. These n-grams appear to be grouped
into themes, such as death (first row), food (second row), and speed (third row), but have
different granularities. The n-grams in the last row appear in paraphrases of 2, whereas the
second-to-last row shows n-grams in words like french and vocabulary, which can broadly

be classified as having to do with language.
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3.0 CONCLUSION

In this chapter, we first introduced an approach to create universal sentence embeddings
and propose our model as the new baseline for embedding sentences, as it is simple, ef-
ficient, and performs strongly across a broad range of tasks and domains. Moreover, our
representations do not require the use of any neural network architecture. The embeddings
can be simply averaged for a given sentence in an NLP application to create its sentence
embedding. We also find that our representations can improve general text similarity and
entailment models when used as a prior and can achieve strong performance even when
used as fixed representations in a classifier.

We then performed a careful empirical comparison of character-based compositional ar-
chitectures on three NLP tasks. While most prior work has considered machine transla-
tion, language modeling, and syntactic analysis, we showed how character-level modeling
can improve semantic similarity tasks, both quantitatively and with extensive qualitative
analysis. We found a consistent trend: the simplest architecture converges fastest to high
performance. These results, coupled with those from Wieting et al. (2016b), suggest that
practitioners should begin with simple architectures rather than moving immediately to
RNNs and CNNs. We release our code and trained models so they can be used by the NLP
community for general-purpose, character-based text representation.

In the next chapter, we move away from using PPDB as training data and explore other

data sources that will allow us to train deeper models.
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PARANMT: A PARAPHRASE CORPUS

In this chapter, our focus is on finding strategies to improve our paraphrsatic sentence
embeddings. We do this by moving away from PPDB and also by incorporating deeper
and more expressive architectures. This chapter focuses on PARANMT-50M (Wieting and
Gimpel, 2018), a large corpus of paraphrases that we created to use as training data. But
there were some steps we took before this paper that led us to create this resource.

The first step was realizing how important training on sentences, instead of text snip-
pets, was to performance. In (Wieting and Gimpel, 2017), we found that a small parallel
corpus (Coster and Kauchak, 2011) led to large gains when used as training data relative
to similar amounts of data from PPDB. We also found that the gap between the simpler
averaging models and LSTMs was lessened just by training on sentences. This then led to
explorations into strategies to improve performance of RNNs in tins setting as well as the
proposition of the Gated Recurrent Averaging Network (GRAN).

We then focuses on creating a larger set of sentential paraphrases. In (Wieting et al.,
2017), we found back-translation to be effective, and so this chapter is largely about scaling
up to create a corpus of 50 million sentence paraphrases through back-translation and the
subsequent performance gains with our embeddings. More specifically, we took a en-cs
parallel corpus, Czeng1.6!(Bojar et al., 2016) and translated the cs side to English. We then
created training data by filtering examples that were both non-trivial paraphrases and were
unlikely to be paraphrases. We found that using PARANMT-50M, we could outperform all
competing systems in the SemEval STS competitions held from 2012-2016 despite not using

the training data for these tasks.

4.1 INTRODUCTION

While many approaches have been developed for generating or finding paraphrases (Barzi-
lay and McKeown, 2001; Lin and Pantel, 2001; Dolan et al., 2004), there do not exist any
freely-available datasets with millions of sentential paraphrase pairs. The closest such re-

source is the Paraphrase Database (PPDB; Ganitkevitch et al., 2013), which was created
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automatically from bilingual text by pivoting over the non-English language (Bannard
and Callison-Burch, 2005). PPDB has been used to improve word embeddings (Faruqui
et al., 2015; Mrksic¢ et al., 2016). However, PPDB is less useful for learning sentence embed-
dings (Wieting and Gimpel, 2017).

In this paper, we describe the creation of a dataset containing more than 50 million sen-
tential paraphrase pairs. We create it automatically by scaling up the approach of Wieting
et al. (2017). We use neural machine translation (NMT) to translate the Czech side of a
large Czech-English parallel corpus. We pair the English translations with the English ref-
erences to form paraphrase pairs. We call this dataset PARANMT-50M. It contains examples
illustrating a broad range of paraphrase phenomena; we show examples in Section 6.2.
PARANMT-50Mhas the potential to be useful for many tasks, from linguistically controlled
paraphrase generation, style transfer, and sentence simplification to core NLP problems like
machine translation.

We show the utility of PARANMT-50Mby using it to train paraphrastic sentence embed-
dings using the learning framework of Wieting et al. (2016b). We primarily evaluate our
sentence embeddings on the SemEval semantic textual similarity (STS) competitions from
2012-2016. Since so many domains are covered in these datasets, they form a demanding
evaluation for a general purpose sentence embedding model.

Our sentence embeddings learned from PARANMT-50Moutperform all systems in every
STS competition from 2012 to 2016. These tasks have drawn substantial participation; in
2016, for example, the competition attracted 43 teams and had 119 submissions. Most STS
systems use curated lexical resources, the provided supervised training data with manually-
annotated similarities, and joint modeling of the sentence pair. We use none of these, simply
encoding each sentence independently using our models and computing cosine similarity
between their embeddings.

We experiment with several compositional architectures and find them all to work well.
We find benefit from making a simple change to learning (“mega-batching”) to better lever-
age the large training set, namely, increasing the search space of negative examples. In the
supplementary, we evaluate on general-purpose sentence embedding tasks used in past
work (Kiros et al., 2015; Conneau et al., 2017), finding our embeddings to perform compet-
itively.

Finally, in Section 4.6, we briefly report results showing how PARANMT-50Mcan be
used for paraphrase generation. A standard encoder-decoder model trained on PARANMT-

50Mcan generate paraphrases that show effects of “canonicalizing” the input sentence. In
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other work, fully described by Iyyer et al. (2018), we used PARANMT-50Mto generate para-
phrases that have a specific syntactic structure (represented as the top two levels of a lin-
earized parse tree).

We release the PARANMT-50Mdataset, our trained sentence embeddings, and our code.
PARANMT-50Mis the largest collection of sentential paraphrases released to date. We hope
it can motivate new research directions and be used to create powerful NLP models, while
adding a robustness to existing ones by incorporating paraphrase knowledge. Our para-
phrastic sentence embeddings are state-of-the-art by a significant margin, and we hope
they can be useful for many applications both as a sentence representation function and as

a general similarity metric.

4.2 RELATED WORK

We discuss work in automatically building paraphrase corpora, learning general-purpose
sentence embeddings, and using parallel text for learning embeddings and similarity func-

tions.

PARAPHRASE DISCOVERY AND GENERATION.  Many methods have been developed
for generating or finding paraphrases, including using multiple translations of the same
source material (Barzilay and McKeown, 2001), using distributional similarity to find simi-
lar dependency paths (Lin and Pantel, 2001), using comparable articles from multiple news
sources (Dolan et al., 2004; Dolan and Brockett, 2005; Quirk et al., 2004), aligning sentences
between standard and Simple English Wikipedia (Coster and Kauchak, 2011), crowdsourc-
ing (Xu et al., 2014, 2015b; Jiang et al., 2017), using diverse MT systems to translate a single
source sentence (Suzuki et al., 2017), and using tweets with matching URLs (Lan et al,,
2017a).

The most relevant prior work uses bilingual corpora. Bannard and Callison-Burch (2005)
used methods from statistical machine translation to find lexical and phrasal paraphrases
in parallel text. Ganitkevitch et al. (2013) scaled up these techniques to produce the Para-
phrase Database (PPDB). Our goals are similar to those of PPDB, which has likewise been
generated for many languages (Ganitkevitch and Callison-Burch, 2014) since it only needs
parallel text. In particular, we follow the approach of Wieting et al. (2017), who used NMT

to translate the non-English side of parallel text to get English-English paraphrase pairs.
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4.3 THE PARANMT-50MDATASET

Dataset Avg. Length | Avg. IDF | Avg. Para. Score | Vocab. Entropy | Parse Entropy | Total Size
Common Crawl 24.0+347 7. 7411 0.83+0.16 7.2 3.5 0.16M
CzEng 1.6 13.3+193 7.4+1.2 0.84+0.16 6.8 4.1 51.4M
Europarl 26.1+154 7.1+406 0.95+0.05 6.4 3.0 0.65M
News Commentary 25.2:+4139 7.541.1 0.92+0.12 7.0 3.4 0.19M

Table 25: Statistics of 100K-samples of Czech-English parallel corpora; standard deviations are
shown for averages.

We scale up the method to a larger dataset, produce state-of-the-art paraphrastic sentence
embeddings, and release all of our resources.

SENTENCE EMBEDDINGS.  Our learning and evaluation setting is the same as that of
our recent work that seeks to learn paraphrastic sentence embeddings that can be used for
downstream tasks (Wieting et al., 2016b,a; Wieting and Gimpel, 2017; Wieting et al., 2017).
We trained models on noisy paraphrase pairs and evaluated them primarily on semantic
textual similarity (STS) tasks. Prior work in learning general sentence embeddings has used
autoencoders (Socher et al., 2011; Hill et al., 2016), encoder-decoder architectures (Kiros
et al.,, 2015; Gan et al., 2017), and other sources of supervision and learning frameworks (Le
and Mikolov, 2014; Pham et al., 2015; Arora et al., 2017; Pagliardini et al., 2017; Conneau
et al., 2017).

PARALLEL TEXT FOR LEARNING EMBEDDINGS.  Prior work has shown that parallel
text, and resources built from parallel text like NMT systems and PPDB, can be used for
learning embeddings for words and sentences. Several have used PPDB as a knowledge
resource for training or improving embeddings (Faruqui et al., 2015; Wieting et al., 2015;
Mrksi¢ et al., 2016). NMT architectures and training settings have been used to obtain
better embeddings for words (Hill et al., 2014a,b) and words-in-context (McCann et al,,
2017). Hill et al. (2016) evaluated the encoders of English-to-X NMT systems as sentence
representations. Mallinson et al. (2017) adapted trained NMT models to produce sentence

similarity scores in semantic evaluations.

4.3 THE PARANMT-50MDATASET

To create our dataset, we used back-translation of bitext (Wieting et al., 2017). We used a

Czech-English NMT system to translate Czech sentences from the training data into English.
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4.3 THE PARANMT-50MDATASET

Reference Translation Machine Translation

s0, what’s half an hour? half an hour won't kill you.

well, don’t worry. i've taken out tons and tons of guys. lots of guys. | don’t worry, i've done it to dozens of men.

it’s gonna be ...... classic. yeah, sure. it’s gonna be great.

greetings, all! hello everyone!

but she doesn’t have much of a case. but as far as the case goes, she doesn’t have much.
it was good in spite of the taste. despite the flavor, it felt good.

Table 26: Example paraphrase pairs from PARANMT-50M, where each consists of an English refer-
ence translation and the machine translation of the Czech source sentence (not shown).

We paired the translations with the English references to form English-English paraphrase
pairs.

We used the pretrained Czech-English model from the NMT system of Sennrich et al.
(2017). Its training data includes four sources: Common Crawl, CzEng 1.6 (Bojar et al,,
2016), Europarl, and News Commentary. We did not choose Czech due to any particular
linguistic properties. Wieting et al. (2017) found little difference among Czech, German, and
French as source languages for back-translation. There were much larger differences due to
data domain, so we focus on the question of domain in this section. We leave the question

of investigating properties of back-translation of different languages to future work.

4.3.1  Choosing a Data Source

To assess characteristics that yield useful data, we randomly sampled 100K English refer-
ence translations from each data source and computed statistics. Table 25 shows the average
sentence length, the average inverse document frequency (IDF) where IDFs are computed
using Wikipedia sentences, and the average paraphrase score for the two sentences. The
paraphrase score is calculated by averaging PARAGRAM-PHRASE embeddings (Wieting et al.,
2016b) for the two sentences in each pair and then computing their cosine similarity. The
table also shows the entropies of the vocabularies and constituent parses obtained using
the Stanford Parser (Manning et al., 2014)."

Europarl exhibits the least diversity in terms of rare word usage, vocabulary entropy,
and parse entropy. This is unsurprising given its formulaic and repetitive nature. CzEng has
shorter sentences than the other corpora and more diverse sentence structures, as shown by
its high parse entropy. In terms of vocabulary use, CzEng is not particularly more diverse
than Common Crawl and News Commentary, though this could be due to the prevalence

of named entities in the latter two.

1 To mitigate sparsity in the parse entropy, we used only the top two levels of each parse tree.
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4.3 THE PARANMT-50MDATASET

Para. Score | # | Avg. Tri. | Paraphrase | Fluency
Range M) |Overlap| 1 2 3 |1 2 3

(-0.1,0.2] | 40| 000400 |92 6 2 | 1 5 o4
(0.2, 0.4] 3.8| 0.024+01 |53 32 15| 1 12 87

6.9| 0.07+01 |22 45 33| 2 9 89

(0.4, 0.6]
(0.6,0.8] |14.4| 017402 | 1 43 56 |11 0 89
]

(0.8, 1.0 18.0| 035+02 | 1 13 86| 3 o0 97

Table 27: Manual evaluation of PARANMT-50M. 100-pair samples were drawn from five ranges
of the automatic paraphrase score (first column). Paraphrase strength and fluency were
judged on a 1-3 scale and counts of each rating are shown.

In Section 4.5.3, we empirically compare these data sources as training data for sen-
tence embeddings. The CzEng corpus yields the strongest performance when controlling
for training data size. Since its sentences are short, we suspect this helps ensure high-quality
back-translations. A large portion of it is movie subtitles which tend to use a wide vocab-
ulary and have a diversity of sentence structures; however, other domains are included as
well. It is also the largest corpus, containing over 51 million sentence pairs. In addition to
providing a large number of training examples for downstream tasks, this means that the
NMT system should be able to produce quality translations for this subset of its training
data.

For all of these reasons, we chose the CzEng corpus to create PARANMT-50M. When
doing so, we used beam search with a beam size of 12 and selected the highest scoring
translation from the beam. It took over 10,000 GPU hours to back-translate the CzEng

corpus. We show illustrative examples in Table 26.

4.3.2  Manual Evaluation

We conducted a manual analysis of our dataset in order to quantify its noise level and assess
how the noise can be ameliorated with filtering. Two native English speakers annotated a
sample of 100 examples from each of five ranges of the Paraphrase Score.? We obtained
annotations for both the strength of the paraphrase relationship and the fluency of the
translations.

To annotate paraphrase strength, we adopted the annotation guidelines used by Agirre
et al. (2012). The original guidelines specify six classes, which we reduced to three for

simplicity. We combined the top two into one category, left the next, and combined the

Even though the similarity score lies in [—1, 1], most observed scores were positive, so we chose the five ranges
shown in Table 27.

67



4.4 LEARNING SENTENCE EMBEDDINGS

bottom three into the lowest category. Therefore, for a sentence pair to have a rating of 3,
the sentences must have the same meaning, but some unimportant details can differ. To
have a rating of 2, the sentences are roughly equivalent, with some important information
missing or that differs slightly. For a rating of 1, the sentences are not equivalent, even if
they share minor details.

For fluency of the back-translation, we use the following: A rating of 3 means it has no
grammatical errors, 2 means it has one to two errors, and 1 means it has more than two
grammatical errors or is not a natural English sentence.

Table 27 summarizes the annotations. For each score range, we report the number of
pairs, the mean trigram overlap score, and the number of times each paraphrase/fluency
label was present in the sample of 100 pairs. There is noise but it is largely confined to the
bottom two ranges which together comprise only 16% of the entire dataset. In the highest
paraphrase score range, 86% of the pairs possess a strong paraphrase relationship. The an-
notations suggest that PARANMT-50Mcontains approximately 30 million strong paraphrase
pairs, and that the paraphrase score is a good indicator of quality. At the low ranges, we
inspected the data and found there to be many errors in the sentence alignment in the
original bitext. With regards to fluency, approximately 9o% of the back-translations are
fluent, even at the low end of the paraphrase score range. We do see an outlier at the
second-highest range of the paraphrase score, but this may be due to the small number of

annotated examples.

4.4 LEARNING SENTENCE EMBEDDINGS

To show the usefulness of the PARANMT-50Mdataset, we will use it to train sentence em-
beddings. We adopt the learning framework from Wieting et al. (2016b), which was devel-
oped to train sentence embeddings from pairs in PPDB. We first describe the compositional
sentence embedding models we will experiment with, then discuss training and our modi-

fication (“mega-batching”).

MODELs.  We want to embed a word sequence s into a fixed-length vector. We denote
the tth word in s as s, and we denote its word embedding by x.. We focus on three model
families, though we also experiment with combining them in various ways. The first, which
we call Worbp, simply averages the embeddings x of all words in s. This model was found

by Wieting et al. (2016b) to perform strongly for semantic similarity tasks.
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4.4 LEARNING SENTENCE EMBEDDINGS

The second is similar to WorD, but instead of word embeddings, we average character
trigram embeddings (Huang et al., 2013). We call this TRIGRAM. Wieting et al. (2016a) found
this to work well for sentence embeddings compared to other n-gram orders and to word
averaging.

The third family includes long short-term memory (LSTM) networks (Hochreiter and
Schmidhuber, 1997). We average the hidden states to produce the final sentence embedding.
For regularization during training, we scramble words with a small probability (Wieting
and Gimpel, 2017). We also experiment with bidirectional LSTMs (BLSTM), averaging the

forward and backward hidden states with no concatenation.3

TRAINING.  The training data is a set S of paraphrase pairs (s,s’) and we minimize a

margin-based loss (s, s’) =

max(0, 5 — cos(g(s),g(s’)) + cos(g(s), g(t)))

where g is the model (Worp, TRIGRAM, etc.), b is the margin, and t is a “negative example”
taken from a mini-batch during optimization. The intuition is that we want the two texts
to be more similar to each other than to their negative examples. To select t we choose the

most similar sentence in some set. For simplicity we use the mini-batch for this set, i.e.,

t= argmax  cos(g(s),g(t"))
t/:(t/,-)€Sp\{(s,s")}

where Sy, C S is the current mini-batch.

MODIFICATION: MEGA-BATCHING. By using the mini-batch to select negative exam-
ples, we may be limiting the learning procedure. That is, if all potential negative examples in
the mini-batch are highly dissimilar from s, the loss will be too easy to minimize. Stronger
negative examples can be obtained by using larger mini-batches, but large mini-batches are
sub-optimal for optimization.

Therefore, we propose a procedure we call “mega-batching.” We aggregate M mini-
batches to create one mega-batch and select negative examples from the mega-batch. Once
each pair in the mega-batch has a negative example, the mega-batch is split back up into

M mini-batches and training proceeds. We found that this provides more challenging nega-

Unlike Conneau et al. (2017), we found this to outperform max-pooling for both semantic similarity and general
sentence embedding tasks.
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tive examples during learning as shown in Section 4.5.5. Table 30 shows results for different

values of M, showing consistently higher correlations with larger M values.

4.5 EXPERIMENTS

We now investigate how best to use our generated paraphrase data for training paraphrastic

sentence embeddings.

4.5.1  Evaluation

We evaluate sentence embeddings using the SemEval semantic textual similarity (STS) tasks
from 2012 to 2016 (Agirre et al., 2012, 2013, 2014, 2015, 2016) and the STS Benchmark (Cer
et al., 2017). Given two sentences, the aim of the STS tasks is to predict their similarity
on a o-5 scale, where o indicates the sentences are on different topics and 5 means they
are completely equivalent. As our test set, we report the average Pearson’s v over each
year of the STS tasks from 2012-2016. We use the small (250-example) English dataset from
SemEval 2017 (Cer et al., 2017) as a development set, which we call STS2017 below.

The supplementary material contains a description of a method to obtain a paraphrase
lexicon from PARANMT-50Mthat is on par with that provided by PPDB 2.0. We also evaluate
our sentence embeddings on a range of additional tasks that have previously been used for

evaluating sentence representations (Kiros et al., 2015).

4.5.2  Experimental Setup

For training sentence embeddings on PARANMT-50M, we follow the experimental proce-
dure of Wieting et al. (2016b). We use PARAGRAM-SL999 embeddings (Wieting et al., 2015)
to initialize the word embedding matrix for all models that use word embeddings. We fix
the mini-batch size to 100 and the margin 6 to 0.4. We train all models for 5 epochs. For
optimization we use Adam (Kingma and Ba, 2014) with a learning rate of 0.001. For the

LSTM and BLSTM, we fixed the scrambling rate to 0.3.4

As in our prior work (Wieting and Gimpel, 2017), we found that scrambling significantly improves results,
even with our much larger training set. But while we previously used a scrambling rate of 0.5, we found that a
smaller rate of 0.3 worked better when training on PARANMT-50M, presumably due to the larger training set.



4.5 EXPERIMENTS

Training Corpus Worp | TrRiGRAM | LSTMAvVG
Common Crawl 80.9 80.2 79.1
CzEng 1.6 83.6 81.5 82.5
Europarl 78.9 78.0 80.4
News Commentary || 8o.2 78.2 80.5

Table 28: Pearson’s v x 100 on STS2017 when training on 100k pairs from each back-translated
parallel corpus. CzEng works best for all models.

4.5.3 Dataset Comparison

We first compare parallel data sources. We evaluate the quality of a data source by using
its back-translations paired with its English references as training data for paraphrastic
sentence embeddings. We compare the four data sources described in Section 6.2. We use
100K samples from each corpus and trained 3 different models on each: Worp, TRIGRAM,
and LSTMAva. Table 28 shows that CzEng provides the best training data for all models, so
we used it to create PARANMT-50Mand for all remaining experiments.

CzEng is diverse in terms of both vocabulary and sentence structure. It has significantly
shorter sentences than the other corpora, and has much more training data, so its transla-
tions are expected to be better than those in the other corpora. Wieting et al. (2017) found
that sentence length was the most important factor in filtering quality training data, pre-
sumably due to how NMT quality deteriorates with longer sentences. We suspect that better

translations yield better data for training sentence embeddings.

4.5.4 Data Filtering

Since the PARANMT-50Mdataset is so large, it is computationally demanding to train sen-
tence embeddings on it in its entirety. So, we filter the data to create a training set for
sentence embeddings.

We experiment with three simple methods: (1) the length-normalized translation score
from decoding, (2) trigram overlap (Wieting et al., 2017), and (3) the paraphrase score from
Section 6.2. Trigram overlap is calculated by counting trigrams in the reference and transla-
tion, then dividing the number of shared trigrams by the total number in the reference or
translation, whichever has fewer.

We filtered the back-translated CzEng data using these three strategies. We ranked all

51M+ paraphrase pairs in the dataset by the filtering measure under consideration and
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Filtering Method | Model Avg.

Translation Score 83.2

Trigram Overlap 83.1

Paraphrase Score 83.3

Table 29: Pearson’s v x 100 on STS2017 for the best training fold across the average of WorD, Tri-
GrRaM, and LSTMavG models for each filtering method.

M || Worp | TRIGRAM | LSTMAvVG
1] 823 81.5 81.5

20| 84.0 83.1 84.6

40 || 84.1 83.4 85.0

Table 30: Pearson’s r x 100 on STS2017 with different mega-batch sizes M.

then split the data into tenths (so the first tenth contains the bottom 10% under the filtering
criterion, the second contains those in the bottom 10-20%, etc.).

We trained Worp, TrRiGRaM, and LSTMavG models for a single epoch on 1M examples
sampled from each of the ten folds for each filtering criterion. We averaged the correlation
on the STS2017 data across models for each fold. Table 29 shows the results of the filter-
ing methods. Filtering based on the paraphrase score produces the best data for training
sentence embeddings.

We randomly selected 5M examples from the top two scoring folds using paraphrase
score filtering, ensuring that we only selected examples in which both sentences have a
maximum length of 30 tokens.> These resulting 5M examples form the training data for
the rest of our experiments. Note that many more than 5M pairs from the dataset are
useful, as suggested by our human evaluations in Section 4.3.2. We have experimented with
doubling the training data when training our best sentence similarity model and found the

correlation increased by more than half a percentage point on average across all datasets.

4.5.5 Effect of Mega-Batching

Table 30 shows the impact of varying the mega-batch size M when training for 5 epochs
on our 5M-example training set. For all models, larger mega-batches improve performance.
There is a smaller gain when moving from 20 to 40, but all models show clear gains over

M=1.

5 Wieting et al. (2017) found that sentence length cutoffs were effective for filtering back-translated parallel text.
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original sir, i'm just trying to protect.

negative examples:

M=1 i mean, colonel...

M=20 1ionly ask that the baby be safe.
M=40 just trying to survive. on instinct.

original i'm looking at him, you know?

M=1
M=20 i'm keeping him.
M =40 1ilooked at him with wonder.

they know that i've been looking for her.

original il let it go a couple of rounds.

M=1

sometimes the ball doesn’t go down.
M=20 1l take two.
M =40

i want you to sit out a couple of rounds, all right?

Table 31: Negative examples for various mega-batch sizes M with the BLSTM model.

4.5 EXPERIMENTS

Training Data | Model Dim. || 2012 | 2013 | 2014 | 2015 | 2016
Worp 300 || 66.2 | 61.8 | 76.2 | 79.3 | 77.5
TRIGRAM 300 || 67.2 | 60.3 | 76.1 | 79.7 | 78.3
LSTMavc 300 || 67.0 | 62.3 | 76.3 | 78.5 | 76.0
LSTMavc 900 || 68.0 | 60.4 | 76.3 | 78.8 | 75.9
Our | PARANMT BLSTM 900 || 67.4 | 60.2 | 76.1 | 79.5 | 76.5
Work WoRrbp + TRIGRAM (addition) 300 || 67.3 | 62.8 | 77.5 | 80.1 | 78.2
WoRrbD + TRIGRAM + LSTMAvG (addition) 300 || 67.1 | 62.8 | 76.8 | 79.2 | 77.0
Word, Trigram (concatenation) 600 || 67.8 | 62.7 | 77.4 | 80.3 | 78.1
Worbp, TRIGRAM, LSTMAVG (concatenation) | goo || 67.7 | 62.8 | 76.9 | 79.8 | 76.8
SimpWiki Worbp, TRIGRAM (concatenation) 600 || 61.8 | 58.4 | 74.4 | 77.0 | 74.0
15t Place System - 64.8 | 62.0 | 74.3 | 79.0 | 77.7
STS Competitions 2" Place System - 63.4 | 59.1 | 74.2 | 78.0 | 75.7
3" Place System - 64.1 | 58.3 | 74.3 | 77.8 | 75.7
InferSent (AIISNLI) (Conneau et al., 2017) | 4096 || 58.6 | 51.5 | 67.8 | 68.3 | 67.2
InferSent (SNLI) (Conneau et al., 2017) 4096 || 57.1 | 50.4 | 66.2 | 65.2 | 63.5
FastSent (Hill et al., 2016) 100 - - 63 - -
DictRep (Hill et al., 2016) 500 - - 67 - -
Related Work SkipThought (Kiros et al., 2015) 4800 - - 29 - -
CPHRASE (Pham et al., 2015) - - - 65 - -
CBOW (from Hill et al., 2016) 500 - - 64 - -
BLEU (Papineni et al., 2002) - 39.2 | 29.5 | 42.8 | 49.8 | 47.4
METEOR (Denkowski and Lavie, 2014) - 53.4 | 47.6 | 63.7 | 68.8 | 61.8

Table 32: Pearson’s v x 100 on the STS tasks of our models and those from related work. We compare
to the top performing systems from each SemEval STS competition. Note that we are
reporting the mean correlations over domains for each year rather than weighted means
as used in the competitions. Our best performing overall model (WorD, TRIGRAM) is in

Table 31 shows negative examples with different mega-batch sizes M. We use the BLSTM

model and show the negative examples (nearest neighbors from the mega-batch excluding

bold.
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Dim. Corr.

Our Work (Unsupervised)

Worp 300 79.2
TRIGRAM 300 79.1
LSTMava 300 784
WOoRrD + TRIGRAM (addition) 300  79.9

Worp + TrRiGRAM + LSTMAVG (addition) 300 79.6
Word, Trigram (concatenation) 600 79.9
Worp, TrRiGRAM, LSTMAVG (concatenation) 9oo  79.2
Related Work (Unsupervised)

InferSent (AIISNLI) (Conneau et al., 2017) 4096 70.6

C-PHRASE (Pham et al., 2015) 63.9
GloVe (Pennington et al., 2014) 300 40.6
word2avec (Mikolov et al., 2013b) 300 56.5
sent2vec (Pagliardini et al., 2017) 700  75.5
Related Work (Supervised)

Dep. Tree LSTM (Tai et al., 2015) 71.2
Const. Tree LSTM (Tai et al., 2015) 71.9
CNN (Shao, 2017) 78.4

Table 33: Results on STS Benchmark test set.

Models Mean Pearson Abs. Diff.
WORD / TRIGRAM 2.75
WoRrp / LSTMAvG 2.17
TriGrRAM / LSTMAvG 2.89

Table 34: The means (over all 25 STS competition datasets) of the absolute differences in Pearson’s
T between each pair of models.

the current training example) for three sentences. Using larger mega-batches improves per-
formance, presumably by producing more compelling negative examples for the learning
procedure. This is likely more important when training on sentences than prior work on

learning from text snippets (Wieting et al., 2015, 2016b; Pham et al., 2015).

4.5.6  Model Comparison

Table 32 shows results on the 2012-2016 STS tasks and Table 33 shows results on the STS
Benchmark.® Our best models outperform all STS competition systems and all related work

of which we are aware on the 2012-2016 STS datasets. Note that the large improvement over

Baseline results are from http://ixa2.si.ehu.es/stswiki/index.php/STSbenchmark, except for the unsuper-
vised InferSent result which we computed.
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Target Syntax Paraphrase

original with the help of captain picard, the borg will be prepared for
everything.

(SBARQ(ADVP) (,)(S)(,)(SQ)) now, the borg will be prepared by picard, will it?

(S(NP) (ADVP) (VP)) the borg here will be prepared for everything.

original you seem to be an excellent burglar when the time comes.

(S(SBAR) (,) (NP) (VP)) when the time comes, you'll be a great thief.

(S(“) (UCP) (") (NP) (VP)) “you seem to be a great burglar, when the time comes.” you said.

Table 35: Syntactically controlled paraphrases generated by the SCPN trained on PARANMT-50M.

BLEU and METEOR suggests that our embeddings could be useful for evaluating machine
translation output.

Overall, our individual models (WorD, TRIGRAM, LSTMAVG) perform similarly. Using 300
dimensions appears to be sufficient; increasing dimensionality does not necessarily improve
correlation. When examining particular STS tasks, we found that our individual models
showed marked differences on certain tasks. Table 34 shows the mean absolute difference
in Pearson’s 1 over all 25 datasets. The TRiIGRAM model shows the largest differences from
the other two, both of which use word embeddings. This suggests that TRIGRAM may be
able to complement the other two by providing information about words that are unknown
to models that rely on word embeddings.

We experiment with two ways of combining models. The first is to define additive ar-
chitectures that form the embedding for a sentence by adding the embeddings computed
by two (or more) individual models. All parameters are trained jointly just like when we
train individual models; that is, we do not first train two simple models and add their
embeddings. The second way is to define concatenative architectures that form a sentence
embedding by concatenating the embeddings computed by individual models, and again
to train all parameters jointly.

In Table 32 and Table 33, these combinations show consistent improvement over the
individual models as well as the larger LSTMavG and BLSTM. Concatenating Worp and
TRIGRAM results in the best performance on average across STS tasks, outperforming the
best supervised systems from each year. We have released the pretrained model for these
“Worp, TRIGRAM” embeddings. In addition to providing a strong baseline for future STS
tasks, these embeddings offer the advantages of being extremely efficient to compute and
being robust to unknown words.

We show the usefulness of PARANMT by also reporting the results of training the “Worb,
TrIGRAM” model on SimpWiki, a dataset of aligned sentences from Simple English and stan-

dard English Wikipedia (Coster and Kauchak, 2011). It has been shown useful for training
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original overall, i that it’s a decent buy, and am
happy that i own it.

paraphrase it’s a good buy, and i’'m happy to own
it.

original oh, that’s a handsome women, that is.

paraphrase  that’s a beautiful woman.

Table 36: Examples from our paraphrase generation model that show the ability to canonicalize text
and correct grammatical errors.

sentence embeddings in past work (Wieting and Gimpel, 2017). However, Table 32 shows
that training on PARANMT leads to gains in correlation of 3 to 6 points compared to Simp-

Wiki.

46 PARAPHRASE GENERATION

In addition to powering state-of-the-art paraphrastic sentence embeddings, our dataset is
useful for paraphrase generation. We briefly describe two efforts in paraphrase generation
here.

We have found that training an encoder-decoder model on PARANMT-50Mcan produce
a paraphrase generation model that canonicalizes text. For this experiment, we used a
bidirectional LSTM encoder and a two-layer LSTM decoder with soft attention over the
encoded states (Bahdanau et al., 2015). The attention computation consists of a bilinear
product with a learned parameter matrix. Table 36 shows examples of output generated by
this model, showing how the model is able to standardize the text and correct grammatical
errors. This model would be interesting to evaluate for automatic grammar correction as it
does so without any direct supervision. Future work could also use this canonicalization to
improve performance of models by standardizing inputs and removing noise from data.

PARANMT-50Mhas also been used for syntactically-controlled paraphrase generation;
this work is described in detail by Iyyer et al. (2018). A syntactically controlled paraphrase
network (SCPN) is trained to generate a paraphrase of a sentence whose constituent struc-
ture follows a provided parse template. A parse template contains the top two levels of a
linearized parse tree. Table 26 shows example outputs using the SCPN. The paraphrases
mostly preserve the semantics of the input sentences while changing their syntax to fit the
target syntactic templates. The SCPN was used for augmenting training data and finding

adversarial examples.
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4.7 DISCUSSION

We believe that PARANMT-50Mand future datasets like it can be used to generate rich
paraphrases that improve the performance and robustness of models on a multitude of

NLP tasks.

4.7 DISCUSSION

One way to view PARANMT-50Mis as a way to represent the learned translation model in
a monolingual generated dataset. This raises the question of whether we could learn an
effective sentence embedding model from the original parallel text used to train the NMT
system, rather than requiring the intermediate step of generating a paraphrase training set.

However, while Hill et al. (2016) and Mallinson et al. (2017) used trained NMT models
to produce sentence similarity scores, their correlations are considerably lower than ours
(by 10% to 35% absolute in terms of Pearson). It appears that NMT encoders form repre-
sentations that do not necessarily encode the semantics of the sentence in a way conducive
to STS evaluations. They must instead create representations suitable for a decoder to gen-
erate a translation. These two goals of representing sentential semantics and producing a
translation, while likely correlated, evidently have some significant differences.

Our use of an intermediate dataset leads to the best results, but this may be due to our
efforts in optimizing learning for this setting (Wieting et al., 2016b; Wieting and Gimpel,
2017). Future work will be needed to develop learning frameworks that can leverage parallel

text directly to reach the same or improved correlations on STS tasks.

4.8 CONCLUSION

We described the creation of PARANMT-50M, a dataset of more than 50M English sentential
paraphrase pairs. We showed how to use PARANMT-50Mto train paraphrastic sentence
embeddings that outperform supervised systems on STS tasks, as well as how it can be
used for generating paraphrases for purposes of data augmentation, robustness, and even
grammar correction.

The key advantage of our approach is that it only requires parallel text. There are hun-
dreds of millions of parallel sentence pairs, and more are being generated continually. Our
procedure is immediately applicable to the wide range of languages for which we have

parallel text.
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PPDB giggled, smiled, funny, used, grew, bust, ri, did
laughed PARANMT-20M chortled, guffawed, pealed, laughin, laughingstock, cackled, chuckled, snick-
5 ered, mirthless, chuckling, jeered, laughs, laughing, taunted, burst, cackling,
scoffed,...
PPDB respect, respected, courteous, disrespectful, friendly, respecting, respectable,
humble, environmentally-friendly, child-friendly, dignified, respects, compli-
respectful ant, sensitive,...

reverent, deferential, revered, respectfully, awed, respect, respected, respects,
respectable, politely, considerate, treat, civil, reverence, polite, keeping, behave,
proper, dignified,...

PARANMT-50M

Table 37: Example lexical paraphrases from PPDB ranked using the PPDB 2.0 scoring function and
from the paraphrase lexicon we induced from PARANMT-50Mranked using adjusted PMI.

We release PARANMT-50M, our code, and pretrained sentence embeddings, which also
exhibit strong performance as general-purpose representations for a multitude of tasks. We
hope that PARANMT-50M, along with our embeddings, can impart a notion of meaning
equivalence to improve NLP systems for a variety of tasks. We are actively investigating
ways to apply these two new resources to downstream applications, including machine

translation, question answering, and additional paraphrase generation tasks.

4.9 APPENDIX
4.9.1 Paraphrase Lexicon

While PARANMT-50Mconsists of sentence pairs, we demonstrate how a paraphrase lexicon
can be extracted from it. One simple approach is to extract and rank word pairs (u,v) using

the cross-sentence pointwise mutual information (PMI):

#lu, VI#(-, )

PMleross (u,v) = log =g ve =

where joint counts #(u,v) are incremented when u appears in a sentence and v appears
in its paraphrase. The marginal counts (e.g., #(u)) are computed based on single-sentence
counts, as in ordinary PMI. This works reasonably well but is not able to differentiate words
that frequently occur in paraphrase pairs from words that simply occur frequently together
in the same sentence. For example, “Hong” and “Kong” have high cross-sentence PMI. We
can improve the score by subtracting the ordinary PMI that computes joint counts based

on single-sentence co-occurrences. We call the result the adjusted PMI:

PMIadj (u/ V) = PNHcross (u/ V) - PMI(u/ V)
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Dataset Score p x 100
PPDB L PPDB 2.0 37.97
PPDB XL PPDB 2.0 52.32
PPDB XXL PPDB 2.0 60.44
PPDB XXXL PPDB 2.0 61.47
PARANMT-50M  cross-sentence PMI | 52.12
PARANMT-50M  adjusted PMI 61.59

Table 38: Spearman’s p x 100 on SimLex-999 for scored paraphrase lexicons.

Before computing these PMIs from PARANMT-50M, we removed sentence pairs with a
paraphrase score less than 0.35 and where either sentence is longer than 30 tokens. When
computing the ordinary PMI with single-sentence context, we actually compute separate
versions of this PMI score for translations and references in each PARANMT-50Mpair, then
we average them together. We did this because the two sentences in each pair have highly
correlated information, so computing PMI on each half of the data would correspond to
capturing natural corpus statistics in a standard application of PMI.

Table 38 shows an evaluation of the resulting score functions on the SimLex-999 word
similarity dataset (Hill et al., 2015). As a baseline, we use the lexical portion of PPDB
2.0 (Pavlick et al., 2015), evaluating its ranking score as a similarity score and assigning a
similarity of o to unseen word pairs.” Our adjusted PMI computed from PARANMT-50Mis

on par with the best PPDB lexicon.

Table 37 shows examples from PPDB and our paraphrase lexicon computed from PARANMT-

50M. Paraphrases from PPDB are ordered by the PPDB 2.0 scoring function. Paraphrases
from our lexicon are ordered using our adjusted PMI scoring function; we only show para-

phrases that appeared at least 10 times in PARANMT-50M.

4.9.2  General-Purpose Sentence Embedding Evaluations

We evaluate our sentence embeddings on a range of tasks that have previously been used
for evaluating sentence representations (Kiros et al., 2015). These include sentiment analysis
(MR, Pang and Lee, 2005; CR, Hu and Liu, 2004; SST, Socher et al., 2013), subjectivity
classification (SUBJ; Pang and Lee, 2004), opinion polarity (MPQA; Wiebe et al., 2005),
question classification (TREC; Li and Roth, 2002), paraphrase detection (MRPC; Dolan et al.,

2004), semantic relatedness (SICK-R; Marelli et al., 2014), and textual entailment (SICK-E).

If both orderings for a SimLex word pair appear in PPDB, we average their PPDB 2.0 scores. If multiple lexical
entries are found with different POS tags, we take the first instance.
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Model Dim. | MR CR SUBJ MPQA SST TREC MRPC SICK-R SICK-E

‘ Unsupervised (Unordered Sentences) ‘
Unigram-TFIDF (Hill et al., 2016) 73.7 79.2  90.3 8.4 - 850 73.6/817 - -
SDAE (Hill et al., 2016) 2400 | 74.6 78.0 90.8 869 - 784 73.7/80.7 - -

‘ Unsupervised (Ordered Sentences) ‘
FastSent (Hill et al., 2016) 100 | 70.8 784 887 80.6 - 768 72.2/80.3 - -
FastSent+AE (Hill et al., 2016) 71.8 76.7 888 81.5 - 804 71.2/79.1 - -
SkipThought (Kiros et al., 2015) 4800 | 76.5 80.1 93.6 87.1 82,0 922 73.0/82.0 85.8 82.3

‘ Unsupervised (Structured Resources)

DictRep (Hill et al., 2016) 500 | 76.7 78.7 90.7 87.2 - 810 68.4/76.8 - -
NMT En-to-Fr (Hill et al., 2016) 2400 | 64.7 70.1 84.9 81.5 - 828 -
BYTE mLSTM (Radford et al., 2017) 4096 | 86.9 91.4 94.6 88.5 - - 75.0/82.8 79.2 -

‘ Individual Models (Our Work) ‘
WoRrp 300 | 758 8o.5 89.2 87.1 80.0 80.1 68.6/80.9 83.6 80.6
TRIGRAM 300 | 688 755 83.6 82.3 73.6 730 71.4/82.0 79-3 78.0
LSTMavc 300 |73.8 784 885 86.5 80.6 76.8 73.6/82.3 83.9 81.9
LSTMavc 900 | 75.8 817 905 87.4 81.6 844 74.7/83.0 86.0 83.0
BLSTM 900 | 75.6 824 90.6 87.7 813 874 75.0/829 85.8 84.4
Mixed Models (Our Work)

WoRrD + TrRIGRAM (addition) 300 | 748 788 885 87.4 787 79.0 71.4/81.4 83.2 80.6
WOoRD + TRIGRAM + LSTMAvc (addition) 300 | 750 807 88.6 86.6 77.9 786 72.7/80.8 83.6 81.8
WorD, TRIGRAM (concatenation) 600 | 758 805 89.9 878 79.7 824 70.7/81.7 84.6 82.0
Worp, TRIGRAM, LSTMAVG (concatenation) 9oo | 77.6 814 914 882 82.0 854 74.0/815 85.4 83.8
BLSTM (Avg., concatenation) 4096 | 77.5 82.6 91.0 89.3 828 86.8 75.8/82.6 85.9 83.8
BLSTM (Max, concatenation) 4096 | 76.6 83.4 90.9 88.5 82.0 872 76.6/83.5 85.3 82.5

‘ Supervised (Transfer)

InferSent (SST) (Conneau et al., 2017) 4096 - 837 902 89.5 - 860 72.7/80.9 86.3 83.1
InferSent (SNLI) (Conneau et al., 2017) 4096 | 79.9 84.6 92.1 89.8 833 887 75.1/823 88.5 86.3
InferSent (AIINLI) (Conneau et al., 2017) 4096 | 81.1 86.3 924 90.2 84.6 882 76.2/83.1 88.4 86.3
Supervised (Direct)

Naive Bayes - SVM 79.4 81.8 93.2 86.3 831 - - - -
AdaSent (Zhao et al., 2015) 83.1 86.3 955 933 - 924 - - -
BLSTM-2DCNN (Zhou et al., 2016) 823 - 94.0 - 8955 96.1 - - -
TF-KLD (Ji and Eisenstein, 2013) - - - - - - 80.4/85.9 - -
Illinois-LH (Lai and Hockenmaier, 2014) - - - - - - - - 84.5
Dependency Tree-LSTM (Tai et al., 2015) - - - - - - - 86.8 -

Table 39: General-purpose sentence embedding tasks, divided into

requirements.

We use the SentEval package from Conneau et al. (2017) to

sentence embeddings for each task.?

categories based on resource

train models on our fixed

Table 39 shows results on the general sentence embedding tasks. Each of our individual

models produces 300-dimensional sentence embeddings, which is far fewer than the several

thousands (often 2400-4800) of dimensions used in most prior work. While using higher

dimensionality does not improve correlation on the STS tasks, it does help on the general

sentence embedding tasks. Using higher dimensionality leads to more trainable parameters

in the subsequent classifiers, increasing their ability to linearly separate the data. For a

8 github.com/facebookresearch/SentEval

8o
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further discussion on the effect of dimensionality and issues with the reported performance
of some of these models, see (Wieting and Kiela, 2019).

To enlarge the dimensionality, we concatenate the forward and backward states prior to
averaging. This is similar to Conneau et al. (2017), though they used max pooling. We exper-
imented with both averaging (“BLSTM (Avg., concatenation)”) and max pooling (“BLSTM
(Max, concatenation)”) using recurrent networks with 2048-dimensional hidden states, so
concatenating them yields a 4096-dimension embedding. These high-dimensional models
outperform SkipThought (Kiros et al., 2015) on all tasks except SUBJ] and TREC. Nonethe-
less, the InferSent (Conneau et al., 2017) embeddings trained on AIINLI still outperform
our embeddings on nearly all of these general-purpose tasks.

We also note that on five tasks (SUBJ, MPQA, SST, TREC, and MRPC), all sentence em-
bedding methods are outperformed by supervised baselines. These baselines use the same
amount of supervision as the general sentence embedding methods; the latter actually use
far more data overall than the supervised baselines. This suggests that the pretrained sen-
tence representations are not capturing the features learned by the models engineered for
those tasks.

We take a closer look of how our embeddings compare to InferSent (Conneau et al., 2017).
InferSent is a supervised model trained on a large textual entailment dataset (the SNLI and
MultiNLI corpora (Bowman et al., 2015; Williams et al., 2017), which consist of nearly 1
million human-labeled examples).

While InferSent has strong performance across all downstream tasks, our model obtains
better results on semantic similarity tasks. It consistently reach correlations approximately
10 points higher than those of InferSent.

Regarding the general-purpose tasks, we note that some result trends appear to be in-
fluenced by the domain of the data. InferSent is trained on a dataset of mostly captions,
especially the model trained on just SNLI. Therefore, the datasets for the SICK relatedness
and entailment evaluations are similar in domain to the training data of InferSent. Further,
the training task of natural language inference is aligned to the SICK entailment task. Our
results on MRPC and entailment are significantly better than SkipThought, and on a para-
phrase task that does not consist of caption data (MRPC), our embeddings are competitive
with InferSent. To quantify these domain effects, we performed additional experiments that
are described in Section 4.9.3.

There are many ways to train sentence embeddings, each with its own strengths. In-

ferSent, our models, and the BYTE mLSTM of Radford et al. (2017) each excel in particular
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Data AIINLI | SNLI
Overall mean diff. 10.5 12.5
MSRvid (2012) diff. 5.2 4.6
Images (2014) diff. 6.4 4.8

Images (2015) diff. 3.6 3.0

Table 40: Difference in correlation (Pearson’s r x 100) between “WoRD, TRIGRAM” and InferSent
models trained on two different datasets: AIINLI and SNLI. The first row is the mean
difference across all 25 datasets, then the following rows show differences on three indi-
vidual datasets that are comprised of captions. The InferSent models are much closer to
our model on the caption datasets than overall.

Model H All ‘ Cap. ‘ No Cap.
Unsupervised

InferSent (AIINLI) || 70.6 | 83.0 56.6
InferSent (SNLI) 67.3 | 83.4 51.7
Worbp, TRIGRAM 79.9 | 87.1 71.7

Supervised
InferSent (AIINLI) || 75.9 | 85.4 64.8
InferSent (SNLI) 75.9 | 86.4 63.1

Table 41: STS Benchmark results (Pearson’s r x 100) comparing our WorD, TRIGRAM model to In-
ferSent trained on AIINLI and SNLI. We report results using all of the data (All), only the
caption portion of the data (Cap.), and all of the data except for the captions (No Cap.).

classes of downstream tasks. Ours are specialized for semantic similarity. BYTE mLSTM is
trained on review data and therefore is best at the MR and CR tasks. Since the InferSent
models are trained using entailment supervision and on caption data, they excel on the
SICK tasks. Future work will be needed to combine multiple supervision signals to gener-

ate embeddings that perform well across all tasks.

4.9.3 Effect of Training Domain on InferSent

We performed additional experiments to investigate the impact of training domain on
downstream tasks. We first compare the performance of our “Worp, TRIGRAM (concate-
nation)” model to the InferSent SNLI and AIINLI models on all STS tasks from 2012-2016.
We then compare the overall mean with that of the three caption STS datasets within the
collection. The results are shown in Table 40. The InferSent models are much closer to
our Worp, TRIGRAM model on the caption datasets than overall, and InferSent trained on
SNLI shows the largest difference between its overall performance and its performance on

caption data.
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We also compare the performance of these models on the STS Benchmark under several
conditions (Table 41). Unsupervised results were obtained by simply using cosine similarity
of the pretrained embeddings on the test set with no training or tuning. Supervised results
were obtained by training and tuning using the training and development data of the STS
Benchmark.

We first compare unsupervised results on the entire test set, the subset consisting of cap-
tions (3,250 of the 8,628 examples in the test set), and the remainder. We include analogous
results in the supervised setting, where we filter the respective training and development
sets in addition to the test sets. Compared to our model, InferSent shows a much larger
gap between captions and non-captions, providing evidence of a bias. Note that this bias is

smaller for the model trained on AIINLI, as its training data includes other domains.
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LEARNING MULTILINGUAL REPRESENTATIONS

In this chapter we extend our paraphrastic sentence embeddings to the cross-lingual and
multilingual settings. We start with (Wieting et al., 2019b) where we show: 1) Using bilin-
gual text can rival performance of using PARANMT-50M, simplifying the procedure if our
focus is exclusively on sentence embeddings, since back-translation is no longer required. 2)
Using sub-word embeddings in this setting is more effective than using character n-grams
or words for cross-lingual similarity.

In the next section of this chapter, we discuss an iteration of this setting where we aim
to use deeper neural architectures proposed in (Wieting et al., 2019c). We first find that rep-
resentations learned from neural machine translation can be significantly more effective by
incorporating early gradients. Further gains are realized by using Transformers (Vaswani
et al., 2017) over the conventional LSTMs (Hochreiter and Schmidhuber, 1997). Finally, we
propose learning paraphrastic sentence embeddings as a source separation problem, lead-
ing to s significant boost in representation quality. We treat parallel data as two views of
the same semantic information, but with different surface forms. We then propose a deep
latent variable model that attempts to perform source separation, isolating what the paral-
lel sentences have in common in a latent semantic vector, and explaining what is left over
with language-specific latent vectors. We find that the model is effective, pushing more se-
mantic information into the semantic representation, relative to strong baselines, leading to
improvement in all of our evaluations. Language-specific which we find to include sentence
length, punctuation, and gender is more accurately encoded by language-specific encoders.

Finally, we conclude this section by extending our model to the multilingual setting. We
extend the BGT from the bilingual scenario to the multilingual setting. Since it is not feasible
to have a separate encoder and decoder for each language, we consolidated the approach
to have a single encoder and a single decoder. To do so, we use embeddings to indicate
what languages are being considered and when the encoder should be encoding language-
specific information or semantic information. The results show that this model significantly
outperforms the current state-of-the-art, which is based on a maximum-likelihood transla-

tion objective, on several tasks including cross-lingual and monolingual semantic similarity,
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bitext mining (including zero-shot bitext mining), and a multilingual natural language in-

ference task.

5.1 SIMPLE AND EFFECTIVE MODELS FOR PARAPHRASTIC SENTENCE EMBEDDINGS

Measuring sentence similarity is a core task in semantics (Cer et al., 2017), and prior
work has achieved strong results by training similarity models on datasets of paraphrase
pairs (Dolan et al., 2004). However, such datasets are not produced naturally at scale and
therefore must be created either through costly manual annotation or by leveraging natural
annotation in specific domains, like Simple English Wikipedia (Coster and Kauchak, 2011)
or Twitter (Lan et al., 2017b).

One of the most promising approaches for inducing paraphrase datasets is via manipula-
tion of large bilingual corpora. Examples include bilingual pivoting over phrases (Callison-
Burch et al., 2006; Ganitkevitch et al., 2013), and automatic translation of one side of the
bitext (Wieting et al., 2017, Wieting and Gimpel, 2018; Hu et al., 2019). However, this is
costly — Wieting and Gimpel (2018) report their large-scale database of sentential para-
phrases required 10,000 GPU hours to generate.

In this paper, we propose a method that trains highly performant sentence embeddings (Pham
et al., 2015; Hill et al., 2016; Pagliardini et al., 2017; McCann et al., 2017; Conneau et al.,
2017) directly on bitext, obviating these intermediate steps and avoiding the noise and er-
ror propagation from automatic dataset preparation methods. This approach eases data
collection, since bitext occurs naturally more often than paraphrase data and, further, has
the additional benefit of creating cross-lingual representations that are useful for tasks such
as mining or filtering parallel data and cross-lingual retrieval.

Most previous work for cross-lingual representations has focused on models based on
encoders from neural machine translation (Espana-Bonet et al., 2017; Schwenk and Douze,
2017; Schwenk, 2018) or deep architectures using a contrastive loss (Grégoire and Langlais,
2018; Guo et al., 2018; Chidambaram et al., 2018). However, the paraphrastic sentence em-
bedding literature has observed that simple models such as pooling word embeddings
generalize significantly better than complex architectures (Wieting et al., 2016b). Here, we
find a similar effect in the bilingual setting. We propose a simple model that not only pro-
duces state-of-the-art monolingual and bilingual sentence representations, but also encode
sentences hundreds of times faster — an important factor when applying these represen-

tations for mining or filtering large amounts of bitext. Our approach forms the simplest
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method to date that is able to achieve state-of-the-art results on multiple monolingual and
cross-lingual semantic textual similarity (STS) and parallel corpora mining tasks."

Lastly, since bitext is available for so many language pairs, we analyze how the choice of
language pair affects the performance of English paraphrastic representations, finding that

using related languages yields the best results.

5.1.1  Models

We first describe our objective function and then describe our encoder, in addition to several
baseline encoders. The methodology proposed here borrows much from past work (Wieting
and Gimpel, 2018; Guo et al., 2018; Grégoire and Langlais, 2018; Singla et al., 2018), but this
specific setting has not been explored and, as we show in our experiments, is surprisingly

effective.

TRAINING.  The training data consists of a sequence of parallel sentence pairs (s, t;)
in source and target languages respectively. For each sentence pair, we randomly choose a
negative target sentence t{ during training that is not a translation of s;. Our objective is to
have source and target sentences be more similar than source and negative target examples
by a margin o:

: 5—fo(si, ti) + folsi, t! }
efff,ler}gt : [ o(si, ti) +folsi, ti)) .

The similarity function is defined as:
fG (S, t) = COs (9(5; esrc)/ g(t; etgt))

where g is the sentence encoder with parameters for each language 6 = (O, etgt). To
select t{ we choose the most similar sentence in some set according to the current model

parameters, i.e., the one with the highest cosine similarity.

NEGATIVE SAMPLING. The described objective can also be applied to monolingual

paraphrase data, which we explore in our experiments. The choice of negative examples

differs whether we are using a monolingual parallel corpus or a bilingual parallel corpus.

In fact, we show that for monolingual similarity, we can devise random encoders that outperform some of this
work.
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In the monolingual case, we select from all examples in the batch except the current pair.
However, in the bilingual case, negative examples are only selected from the sentences in
the batch from the opposing language. To select difficult negative examples that aid train-
ing, we use the mega-batching procedure of Wieting and Gimpel (2018), which aggregates
M mini-batches to create one mega-batch and selects negative examples therefrom. Once
each pair in the mega-batch has a negative example, the mega-batch is split back up into

M mini-batches for training.

ENCODERS.  Our primary sentence encoder simply averages the embeddings of sub-
word units generated by sentencepiece (Kudo and Richardson, 2018); we refer to it as SP.
This means that the sentence piece embeddings themselves are the only learned parame-
ters of this model. As baselines we explore averaging character trigrams (TRIGRAM) (Wieting
et al.,, 2016a) and words (WorD). SP provides a compromise between averaging words and
character trigrams, combining the more distinct semantic units of words with the coverage
of character trigrams.

We also use a bidirectional long short-term memory LSTM encoder (Hochreiter and
Schmidhuber, 1997), with LSTM parameters fully shared between languages , as well as
BLSTM-SP, which uses sentence pieces instead of words as the input tokens. For all en-
coders, when the vocabularies of the source and target languages overlap, the correspond-
ing encoder embedding parameters are shared. As a result, language pairs with more lexical
overlap share more parameters.

We utilize several regularization methods (Wieting and Gimpel, 2017) including dropout (Sri-
vastava et al., 2014) and shuffling the words in the sentence when training BLSTM-SP. Addi-
tionally, we find that annealing the mega-batch size by slowly increasing it during training

improved performance by a significant margin for all models, but especially for BLSTM-SP.

5.2 SIMPLE AND EFFECTIVE: EXPERIMENTS

Our experiments are split into two groups. First, we compare training on parallel data
to training on back-translated parallel data. We evaluate these models on the 2012-2016
SemEval Semantic Textual Similarity (STS) shared tasks (Agirre et al., 2012, 2013, 2014, 2015,
2016), which predict the degree to which sentences have the same meaning as measured by
human judges. The evaluation metric is Pearson’s r with the gold labels. We use the small

STS English-English dataset from Cer et al. (2017) for model selection. Second, we compare
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Model en-en|en-cs(1M) |en-cs(2M)
BLSTM-SP (20k) | 66.5 66.4 66.2
SP (20k) 69.7 70.0 71.0
WorD 66.7 65.2 66.8
TRIGRAM 70.0 70.0 70.6

Table 42: Comparison between training on 1 million examples from a backtranslated English-
English corpus (en-en) and the original bitext corpus (en-cs) sampling 1 million and 2
million sentence pairs (the latter equalizes the amount of English text with the en-en set-
ting). Performance is the average Pearson’s r over the 2012-2016 STS datasets.

our best model, SP, on two semantic cross-lingual tasks: the 2017 SemEval STS task (Cer
et al., 2017) which consists of monolingual and cross-lingual datasets and the 2018 Building

and Using Parallel Corpora (BUCC) shared bitext mining task (Zweigenbaum et al., 2018).

5.2.1 Hyperparameters and Optimization

Unless otherwise specified, we fix the hyperparameters in our model to the following:
mega-batch size to 60, margin § to 0.4, annealing rate to 150, dropout to 0.3, shuffling rate
for BLSTM-SP to 0.3, and the size of the sentencepiece vocabulary to 20,000. For WorD
and TrRiGrAM, we limited the vocabulary to the 200,000 most frequent types in the training
data. We optimize our models using Adam (Kingma and Ba, 2014) with a learning rate of

0.001 and trained the models for 10 epochs.

5.2.2  Back-Translated Text vs. Parallel Text

We first compare sentence encoders and sentence embedding quality between models
trained on backtranslated text and those trained on bitext directly. As our bitext, we use
the Czeng1.6 English-Czech parallel corpus (Bojar et al., 2016). We compare it to training
on ParaNMT (Wieting and Gimpel, 2018), a corpus of 50 million paraphrases obtained
from automatically translating the Czech side of Czeng1.6 into English. We sample 1 mil-
lion examples from ParaNMT and Czeng1.6 and evaluate on all 25 datasets from the STS
tasks from 2012-2016. Since the models see two full English sentences for every example
when training on ParaNMT, but only one when training on bitext, we also experiment with
sampling twice the amount of bitext data to keep fixed the number of English training

sentences.

2 Annealing rate is the number of minibatches that are processed before the megabatch size is increased by 1.
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Results in Table 42 show two observations. First, models trained on en-en, in contrast to
those trained on en-cs, have higher correlation for all encoders except SP. However, when
the same number of English sentences is used, models trained on bitext have greater than
or equal performance across all encoders. Second, SP has the best overall performance in
the en-cs setting. It also has fewer parameters and is faster to train than BLSTM-SP and

TrIGRAM. Further, it is faster at encoding new sentences at test time.

5.2.3 Monolingual and Cross-Lingual Similarity

We evaluate on the cross-lingual STS tasks from SemEval 2017. This evaluation contains
Arabic-Arabic, Arabic-English, Spanish-Spanish, Spanish-English, and Turkish-English STS
datsets. These datasets were created by translating one or both pairs of an English STS pair

into Arabic (ar), Spanish (es), or Turkish (tr).3

BASELINES.  We compare to several models from prior work (Guo et al., 2018; Chi-
dambaram et al., 2018). A fair comparison to other models is difficult due to different
training setups. Therefore, we perform a variety of experiments at different scales to demon-
strate that even with much less data, our method has the best performance.* In the case of
Schwenk (2018), we replicate their setting in order to do a fair comparison. >

As another baseline, we analyze the performance of averaging randomly initialized em-
beddings. We experiment with SP having sentencepiece vocabulary sizes of 20,000 and
40,000 tokens as well as TRIGRAM with a maximum vocabulary size of 200,000. The embed-
dings have 300 dimensions and are initialized from a normal distribution with mean o and

variance 1.

RESULTS. The results are shown in Table 43. We make several observations. The first
is that the 1024 dimension SP model trained on 2016 OpenSubtitles Corpus® (Lison and

Tiedemann, 2016) outperforms prior work on 4 of the 6 STS datasets. This result outper-

3 Note that for experiments with 1M OS examples, we trained for 20 epochs.

4 We do not directly compare to recent work in learning contextualized word embeddings (Peters et al., 2018;
Devlin et al., 2018). While these have been very successful in many NLP tasks, they do not perform well on
STS tasks without fine tuning.

5 Two follow-up papers (Artetxe and Schwenk, 2018a,b) use essentially the same underlying model, but we
compare to Schwenk (2018) because it was the only one of these papers where the model has been made
available when this paper was written.

6 http://opus.nlpl.eu/OpenSubtitles.php
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Model Data N Dim. | ar-ar | ar-en | es-es | es-en | en-en | tr-en
Random TRIGRAM (OF] M 300 | 67.9 1.8 77.3 2.8 73.7 | 19.4
Random SP (20k) (OR8] M 300 | 619 | 17.5 | 68.8 6.5 67.0 | 23.1
Random SP (40k) oS M 300 | 583 | 16.1 | 68.2 | 104 | 66.6 | 22.2
SP (20k) (OF] M 300 | 75.6 | 747 | 854 | 76.4 | 845 | 77.2
TRIGRAM oS M 300 | 756 | 75.2 | 84.1 | 73.2 | 835 | 74.8
SP (8ok) oS 10M 1024 | 76.2 | 750 | 86.2 | 78.3 | 84.5 | 775
SP (20k) EP 2M 300 - - 78.6 | 54.9 | 79.1 -
SP (20k) EP 2M 1024 - - 81.0 | 56.4 | 80.4 -
Schwenk (2018) EP 18M 1024 - - 64.4 | 408 | 66.0 -
Espana-Bonet et al. (2017) | MIX 32.8M 2048 | 59 44 78 49 76 -
Chidambaram et al. (2018) | MIX | 470M/500M | 512 - - 64.2 | 58.7 - -
2017 STS 1st Place - - - 75.4 | 74.9 | 85.6 | 83.0 | 855 | 77.1
2017 STS 2nd Place - - - 75.4 | 713 | 850 | 81.3 | 854 | 74.2
2017 STS 3rd Place - - - 74.6 | 70.0 | 849 | 79.1 | 854 | 73.6

Table 43: Comparison of our models with those in the literature and random encoder baselines.
Performance is measured in Pearson’s r (%). N refers to the number of examples in the
training data. OS stands for OpenSubtitles, EP for Europarl, and MIX for a variety of
domains.

forms the baselines from the literature as well, all of which use deep architectures.” Our
SP model trained on Europarl® (EP) also surpasses the model from Schwenk (2018) which
is trained on the same corpus. Since that model is based on many-to-many translation,
Schwenk (2018) trains on nine (related) languages in Europarl. We only train on the splits
of interest (en-es for STS and en-de/en-fr for the BUCC tasks) in our experiments.

Secondly, we find that SP outperforms TrRIGRAM overall. This seems to be especially true
when the languages have more sentencepiece tokens in common.

Lastly, we find that random encoders, especially random TrRIGRAM, perform strongly
in the monolingual setting. In fact, the random encoders are competitive or outperform
all three models from the literature in these cases. For cross-lingual similarity, however,
random encoders lag behind because they are essentially measuring the lexical overlap in
the two sentences and there is little lexical overlap in the cross-lingual setting, especially

for distantly related languages like Arabic and English.

7 Including a 3-layer transformer trained on a constructed parallel corpus (Chidambaram et al., 2018), a bidirec-
tional gated recurrent unit (GRU) network trained on a collection of parallel corpora using en-es, en-ar, and
ar-es bitext (Espana-Bonet et al., 2017), and a 3 layer bidirectional LSTM trained on 9 languages in Europarl
(Schwenk, 2018).

8 http://opus.nlpl.eu/Europarl.php
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Model en-de | en-fr
Schwenk (2018) | 76.1 74.9
SP (20k) 77.0 76.3
SP (40k) 77.5 76.8

Table 44: F1 scores for bitext mining on BUCC.

5.2.4 Mining Bitext

Lastly, we evaluate on the BUCC shared task on mining bitext. This task consists of finding
the gold aligned parallel sentences given two large corpora in two distinct languages. Typi-
cally, only about 2.5% of the sentences are aligned. Following Schwenk (2018), we train our
models on Europarl and evaluate on the publicly available BUCC data.

Results in Table 44 on the French and German mining tasks demonstrate the proposed
model outperforms Schwenk (2018), although the gap is substantially smaller than on the
STS tasks. The reason for this is likely the domain mismatch between the STS data (image
captions) and the training data (Europarl). We suspect that the deep NMT encoders of
Schwenk (2018) overfit to the domain more than the simpler SP model, and the BUCC task

uses news data which is closer to Europarl than image captions.

5.3 SIMPLE AND EFFECTIVE: ANALYSIS

We next conduct experiments on encoding speed and analyze the effect of language choice.

5.3.1 Encoding Speed

Model Dim | Sentences/Sec.
Schwenk (2018) 1024 2,601
Chidambaram et al. (2018) | 512 3,049

SP (20k) 300 855,571

SP (20k) 1024 683,204

Table 45: A comparison of encoding times for our model compared to two models from prior work.

In addition to outperforming more complex models (Schwenk, 2018; Chidambaram et al.,
2018), the simple SP models are much faster at encoding sentences. Since implementations
to encode sentences are publicly available for several baselines, we are able to test their

encoding speed and compare to SP. To do so, we randomly select 128,000 English sentences
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Figure 3: Plot of average performance on the 2012-2016 STS tasks compared to SP overlap and lan-
guage distance as defined by Littell et al. (2017).

from the English-Spanish Europarl corpus. We then encode these sentences in batches of
128 on an Nvidia Quadro GP1oo GPU. The number of sentences encoded per second is

shown in Table 45, showing that SP is hundreds of times faster.

5.3.2 Does Language Choice Matter?

We next investigate the impact of the non-English language in the bitext when training
English paraphrastic sentence embeddings. We took all 46 languages with at least 100k
parallel sentence pairs in the 2016 OpenSubtitles Corpus (Lison and Tiedemann, 2016) and
made a plot of their average STS performance on the 2012-2016 English datasets compared
to their SP overlap? and language distance.’® We segmented the languages separately and

trained the models for 10 epochs using the 2017 en-en task for model selection.

We define SP overlap as the percentage of SPs in the English corpus that also appear in the non-English corpus.
We used the feature distance in URIEL (Littell et al., 2017) which accounts for a number of factors when
calculating distance like phylogeny, geography, syntax, and phonology.
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Model SP Ovl. | Lang. Distance
All Lang. 71.5 -22.8
Lang. (SP Ovl. < 0.3) 23.6 -63.8
Lang. (SP Ovl. > 0.3) 18.5 -34.2

Table 46: Spearman’s p x 100 between average performance on the 2012-2016 STS tasks compared to
SP overlap (SP Ovl.) and language distance as defined by Littell et al. (2017). We included
correlations for all languages as well as those with low and high SP overlap with English.

The plot, shown in Figure 3, shows that sentencepiece (SP) overlap is highly correlated
with STS score. There are also two clusters in the plot, languages that have a similar alpha-
bet to English and those that do not. In each cluster we find that performance is negatively
correlated with language distance. Therefore, languages similar to English yield better per-
formance. The Spearman’s correlations (multiplied by 100) for all languages and these two
clusters are shown in Table 46. When choosing a language to pair up with English for learn-
ing paraphrastic embeddings, ideally there will be a lot of SP overlap. However, beyond or
below a certain threshold (approximately 0.3 judging by the plot), the linguistic distance
to English is more predictive of performance. Of the factors in URIEL, syntactic distance
was the feature most correlated with STS performance in the two clusters with correlations
of -56.1 and -29.0 for the low and high overlap clusters respectively. This indicates that
languages with similar syntax to English helped performance. One hypothesis to explain
this relationship is that translation quality is higher for related languages, especially if the
languages have the same syntax, resulting in a cleaner training signal.

We also hypothesize that having high SP overlap is correlated with improved perfor-
mance because the English SP embeddings are being updated more frequently during train-
ing. To investigate the effect, we again learned segmentations separately for both languages
then prefixed all tokens in the non-English text with a marker to ensure that there would
be no shared parameters between the two languages. Results showed that SP overlap was
still correlated (correlation of 24.9) and language distance was still negatively correlated
with performance albeit significantly less so at -10.1. Of all the linguistic features, again the

syntactic distance was the highest correlated at -37.5.

5.4 BILINGUAL GENERATIVE TRANSFORMER

Learning useful representations of language has been a source of recent success in natural
language processing (NLP). Much work has been done on learning representations for

words (Mikolov et al., 2013b; Pennington et al., 2014) and sentences (Kiros et al., 2015;
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Conneau et al., 2017). More recently, deep neural architectures have been used to learn
contextualized word embeddings (Peters et al., 2018; Devlin et al., 2018) which have enabled
state-of-the-art results on many tasks. We focus on learning semantic sentence embeddings
in this paper, which play an important role in many downstream applications. Since they
do not require any labelled data for fine-tuning, sentence embeddings are useful for a
variety of problems right out of the box. These include Semantic Textual Similarity (STS;
Agirre et al. (2012)), mining bitext (Zweigenbaum et al., 2018), and paraphrase identification
(Dolan et al., 2004). Semantic similarity measures also have downstream uses such as fine-
tuning machine translation systems (Wieting et al., 2019a).

There are three main ingredients when designing a sentence embedding model: the
architecture, the training data, and the objective function. Many architectures including
LSTMs (Hill et al., 2016; Conneau et al., 2017, Schwenk and Douze, 2017; Subramanian
et al., 2018), Transformers (Cer et al., 2018; Reimers and Gurevych, 2019), and averaging
models (Wieting et al., 2016b; Arora et al., 2017) have found success for learning sentence
embeddings. The choice of training data and objective are intimately intertwined, and there
are a wide variety of options including next-sentence prediction (Kiros et al., 2015), machine
translation (Espana-Bonet et al., 2017; Schwenk and Douze, 2017; Schwenk, 2018; Artetxe
and Schwenk, 2018b), natural language inference (NLI) (Conneau et al., 2017), and multi-
task objectives which include some of the previously mentioned objectives (Cer et al., 2018)
as well as additional tasks like constituency parsing (Subramanian et al., 2018).

Surprisingly, despite ample testing of more powerful architectures, the best perform-
ing models for many sentence embedding tasks related to semantic similarity often use
simple architectures that are mostly agnostic to the interactions between words. For in-
stance, some of the top performing techniques use word embedding averaging (Wieting
et al., 2016b), character n-grams (Wieting et al., 2016a), and subword embedding averag-
ing (Wieting et al., 2019b) to create representations. These simple approaches are competi-
tive with much more complicated architectures on in-domain data and generalize well to
unseen domains, but are fundamentally limited by their inability to capture word order.
Training these approaches generally relies on discriminative objectives defined on para-
phrase data (Ganitkevitch et al., 2013; Wieting and Gimpel, 2018) or bilingual data (Wieting
et al., 2019b). The inclusion of latent variables in these models has also been explored (Chen
et al., 2019).

Intuitively, bilingual data in particular is promising because it potentially offers a useful

signal for learning the underlying semantics of sentences. Within a translation pair, prop-
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erties shared by both sentences are more likely semantic, while those that are divergent
are more likely stylistic or language-specific. While previous work learning from bilingual
data perhaps takes advantage of this fact implicitly, the focus of this paper is modelling
this intuition explicitly, and to the best of our knowledge, this has not not been explored in
prior work. Specifically, we propose a deep generative model that is encouraged to perform
source separation on parallel sentences, isolating what they have in common in a latent se-
mantic embedding and explaining what is left over with language-specific latent vectors. At test
time, we use inference networks (Kingma and Welling, 2013) for approximating the model’s
posterior on the semantic and source-separated latent variables to encode monolingual sen-
tences. Finally, since our model and training objective are generative, our approach does
not require knowledge of the distance metrics to be used during evaluation,” and it has
the additional property of being able to generate text.

In experiments, we evaluate our probabilistic source-separation approach on a standard
suite of STS evaluations. We demonstrate that the proposed approach is effective, most
notably allowing the learning of high-capacity deep transformer architectures (Vaswani
et al., 2017) while still generalizing to new domains, significantly outperforming a variety
of state-of-the-art baselines. Further, we conduct a thorough analysis by identifying subsets
of the STS evaluation where simple word overlap is not able to accurately assess semantic
similarity. On these most difficult instances, we find that our approach yields the largest
gains, indicating that our system is modeling interactions between words to good effect.
We also find that our model better handles cross-lingual semantic similarity than multi-
lingual translation baseline approaches, indicating that stripping away language-specific
information allows for better comparisons between sentences from different languages.

Finally, we analyze our model to uncover what information was captured by the source
separation into the semantic and language-specific variables and the relationship between
this encoded information and language distance to English. We find that the language-
specific variables tend to explain more superficial or language-specific properties such as
overall sentence length, amount and location of punctuation, and the gender of articles (if
gender is present in the language), but semantic and syntactic information is more concen-
trated in the shared semantic variables, matching our intuition. Language distance has an
effect as well, where languages that share common structures with English put more in-

formation into the semantic variables, while more distant languages put more information

11 In other words, we don’t assume cosine similarity as a metric, though it does work well in our experiments.
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Figure 4: The generative process of our model. Latent variables modeling the linguistic variation
in French and English, z¢; and zen, as well as a latent variable modeling the common
semantics, zsem, are drawn from a multivariate Gaussian prior. The observed text in each
language is then conditioned on its language-specific variable and zsem.

into the language-specific variables. Lastly, we show outputs generated from our model

that exhibit its ability to do a type of style transfer.

5.4.1 Model

Our proposed training objective leverages a generative model of parallel text in two lan-
guages (e.g. English (en) and French (fr)) that form a pair consisting of an English sentence
Xen and a French sentence x¢r. Importantly, this generative process utilizes three under-
lying latent vectors: language-specific variation variables (language variables) z¢ and zen
respectively for each side of the translation, as well as a shared semantic variation variable
(semantic variable) zgem. In this section we will first describe the generative model for the
text and latent variables. In the following section we will describe the inference procedure
of zgem given an input sentence, which corresponds to our core task of obtaining sentence
embeddings useful for downstream tasks such as semantic similarity.

Further, by encouraging the model to perform this source separation, the learned seman-
tic encoders will more crisply represent the underlying semantics, increasing performance

on downstream semantic tasks.
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The generative process of our model, the Bilingual Generative Transformer (BGT), is
depicted in Figure 4 and its computation graph is shown in Figure 5. First, we sample latent
variables (z¢r, Zen, Zsem ), Where z; € R¥, from a multivariate Gaussian prior N(0, Ix). These
variables are then fed into a decoder that samples sentences; xer, is sampled conditioned on
Zsem and zen, while x¢, is sampled conditioned on zgem and z¢,. Because sentences in both
languages will use zsem in generation, we expect that in a well-trained model this variable
will encode semantic, syntactic, or stylistic information shared across both sentences, while
z¢r and zen will handle any language-specific peculiarities or specific stylistic decisions
that are less central to the sentence meaning and thus do not translate across sentences. In
the following section, we further discuss how this is explicitly encouraged by the learning

process.

DECODER ARCHITECTURE.  Many latent variable models for text use LSTMs (Hochre-
iter and Schmidhuber, 1997) as their decoders (Yang et al., 2017; Ziegler and Rush, 2019;
Ma et al., 2019). However, state-of-the-art models in neural machine translation have seen
increased performance and speed using deep Transformer architectures. We also found in
our experiments (see Appendix 5.9.4 for details) that Transformers led to increased perfor-
mance in our setting, so they are used in our main model.

We use two decoders in our model, one for modelling p(X¢r|zsem, z¢r; 6) and one for mod-
eling p(Xenlzsem,Zen; 0). These decoders are depicted on the right side of Figure 5. Each
decoder takes in two latent variables, a language variable and a semantic variable. These
variables are concatenated together prior to being used by the decoder for reconstruction.
We explore four ways of using this latent vector: (1) Concatenate it to the word embeddings
(Word) (2) Use it as the initial hidden state (Hidden, LSTM only) (3) Use it as you would the
attention context vector in the traditional sequence-to-sequence framework (Attention) and
(4) Concatenate it to the hidden state immediately prior to computing the logits (Logit).
Unlike Attention, there is no additional feedforward layer in this setting. We experimented
with these four approaches, as well as combinations thereof, and report this analysis in
Appendix 5.9.1. From these experiments, we see that the closer the sentence embedding
is to the softmax, the better the performance on downstream tasks evaluating its semantic
content. We hypothesise that this is due to better gradient propagation because the sentence
embedding is now closer to the error signal. Since Attention and Logit performed best, we

use these in our Transformer experiments.
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Figure 5: The computation graph for the variational lower bound used during training. The English
and French text are fed into their respective inference networks and the semantic inference
network to ultimately produce the language variables z¢, and zn and semantic variable
Zsem- Each language-specific variable is then concatenated to zsem and used by the de-
coder to reconstruct the input sentence pair.

5.5 LEARNING AND INFERENCE

Our model is trained on a training set X of parallel text consisting of N exam-
ples, X = {(x},x}.), ..., (xN,xN)}, and Z is our collection of latent variables Z =

(zdn zh zhem), oo, (2N, 2N, 2N 1)) We wish to maximize the likelihood of the param-
eters of the two decoders 0 with respect to the observed X, marginalizing over the latent

variables Z.

p(X;0) =Lp(x,z;e)dz

Unfortunately, this integral is intractable due to the complex relationship between X and
Z. However, related latent variable models like variational autoencoders (VAEs (Kingma
and Welling, 2013)) learn by optimizing a variational lower bound on the log marginal like-
lihood. This surrogate objective is called the evidence lower bound (ELBO) and introduces
a variational approximation, q to the true posterior of the model p. The q distribution is
parameterized by a neural network with parameters ¢. ELBO can be written for our model

as follows:

ELBO =Eq(z)x;¢)log p(X|Z; 0)]—

KL(q(Z[X; )lip(Z;0))
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This lower bound on the marginal can be optimized by gradient ascent by using the
reparameterization trick (Kingma and Welling, 2013). This trick allows for the expectation
under q to be approximated through sampling in a way that preserves backpropagation.

We make several independence assumptions for q(zsem, Zen, Z¢r|Xen, X¢r; ¢). Specifically,
to match our goal of source separation, we factor q as q(zsem,Zen,Zfr[Xen, X¢r; §) =
q(zsemlXen, X¢r; ®)q(zen|Xen)q(z¢r[Xer; §), with ¢ being the parameters of the encoders that
make up the inference networks, defined in the next paragraph.

Lastly, we note that the KL term in our ELBO equation encourages explaining variation
that is shared by translations with the shared semantic variable and explaining language-
specific variation with the corresponding language-specific variables. Information shared
by the two sentences will result in a lower KL loss if it is encoded in the shared variable,

otherwise that information will be replicated and the overall cost of encoding will increase.

ENCODER ARCHITECTURE.  We use three inference networks as shown on the left side
of Figure 5: an English inference network to produce the English language variable, a
French inference network to produce the French language variable, and a semantic infer-
ence network to produce the semantic variable. Just as in the decoder architecture, we use
a Transformer for the encoders.

The semantic inference network is a bilingual encoder that encodes each language. For
each translation pair, we alternate which of the two parallel sentences is fed into the se-
mantic encoder within a batch. Since the semantic encoder is meant to capture language
agnostic semantic information, its outputs for a translation pair should be similar regard-
less of the language of the input sentence. We note that other operations are possible for
combining the views each parallel sentence offers. For instance, we could feed both sen-
tences into the semantic encoder and pool their representations. However, in practice we

find that alternating works well and leave further study of this to future work.

5.6 BILINGUAL GENERATIVE TRANSFORMER: EXPERIMENTS
5.6.1 Baseline Models
We experiment with twelve baseline models, covering both the most effective approaches

for learning sentence embeddings from the literature and ablations of our own BGT model.

These baselines can be split into three groups as detailed below.
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MODELS FROM THE LITERATURE (TRAINED ON DIFFERENT DATA)  We compare to
well known sentence embedding models Infersent (Conneau et al., 2017), GenSen (Subra-
manian et al., 2018), the Universal Sentence Encoder (USE) (Cer et al., 2018), as well as
BERT (Devlin et al., 2018)."™> We used the pretrained BERT model in two ways to create a
sentence embedding. The first way is to concatenate the hidden states for the CLS token
in the last four layers. The second way is to concatenate the hidden states of all word to-
kens in the last four layers and mean pool these representations. Both methods result in
a 4096 dimension embedding. Finally, we compare to the newly released model, Sentence-
Bert (Reimers and Gurevych, 2019). This model is similar to Infersent (Conneau et al., 2017)
in that it is trained on natural language inference data, SNLI (Bowman et al., 2015). How-
ever, instead of using pretrained word embeddings, they fine-tune BERT in a way to induce

sentence embeddings."3

MODELS FROM THE LITERATURE (TRAINED ON OUR DATA)  These models are
amenable to being trained in the exact same setting as our own models as they only re-
quire parallel text. These include the sentence piece averaging model, SP, from (Wieting
et al., 2019b), which is among the best of the averaging models (i.e. compared to averaging
only words or character n-grams) as well the LSTM model, LSTMAvg, from (Wieting and
Gimpel, 2017). These models use a contrastive loss with a margin. Following their settings,
we fix the margin to 0.4 and tune the number of batches to pool for selecting negative ex-
amples from {40, 60, 80, 100}. For both models, we set the dimension of the embeddings to
1024. For LSTMAVG, we train a single layer bidirectional LSTM with hidden states of 512
dimensions. To create the sentence embedding, the forward and backward hidden states
are concatenated and mean-pooled. Following (Wieting and Gimpel, 2017), we shuffle the
inputs with probability p, tuning p from {0.3,0.5}.

We also implicitly compare to previous machine translation approaches like (Espana-
Bonet et al., 2017; Schwenk and Douze, 2017; Artetxe and Schwenk, 2018b) in Ap-
pendix 5.9.1 where we explore different variations of training LSTM sequence-to-sequence
models. We find that our translation baselines reported in the tables below (both LSTM and

Transformer) outperform the architectures from these works due to using the Attention and

Note that in all experiments using BERT, including Sentence-BERT, the large, uncased version is used.

Most work evaluating accuracy on STS tasks has averaged the Pearson’s r over each individual dataset for each
year of the STS competition. However, Reimers and Gurevych (2019) computed Spearman’s p over concatenated
datasets for each year of the STS competition. To be consistent with previous work, we re-ran their model and
calculated results using the standard method, and thus our results are not the same as those reported Reimers
and Gurevych (2019).
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Logit methods mentioned in Section 5.4.1 , demonstrating that our baselines represent, or

even over-represent, the state-of-the-art for machine translation approaches.

BGT ABLATIONS  Lastly, we compare to ablations of our model to better understand the
benefits of language-specific variables, benefits of the KL loss term, and how much we gain

from the more conventional translation baselines.
¢ ENG. TrRANS.: Translation from en to fr.

* MULTILING. TRANS.: Translation from both en to fr and fr to en where the encoding

parameters are shared but each language has its own decoder.

* VAR. MULTILING. TRANS.: A model similar to MULTILING. TRANS., but it includes a prior
over the embedding space and therefore a KL loss term. This model differs from BGT

since it does not have any language-specific variables.

* BGT w/o0 Prior: Follows the same architecture as BGT, but without the priors and KL

loss term.

5.6.2 Experimental Settings

The training data for our models is a mixture of OpenSubtitles 2018'# en-fr data and en-fr
Gigaword'> data. To create our dataset, we combined the complete corpora of each dataset
and then randomly selected 1,000,000 sentence pairs to be used for training with 10,000
used for validation. We use sentencepiece (Kudo and Richardson, 2018) with a vocabulary
size of 20,000 to segment the sentences, and we chose sentence pairs whose sentences are
between 5 and 100 tokens each.

In designing the model architectures for the encoders and decoders, we experimented
with Transformers and LSTMs. Due to better performance, we use a 5 layer Transformer
for each of the encoders and a single layer decoder for each of the decoders. This design
decision was empirically motivated as we found using a larger decoder was slower and
worsened performance, but conversely, adding more encoder layers improved performance.
More discussion of these trade-offs along with ablations and comparisons to LSTMs are
included in Appendix 5.9.4.

For all of our models, we set the dimension of the embeddings and hidden states for

the encoders and decoders to 1024. Since we experiment with two different architectures,*®

14 http://opus.nlpl.eu/OpenSubtitles.php
15 https://www.statmt.org/wmtl0/training-giga-fren.tar
16 We use LSTMs in our ablations.
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we follow two different optimization strategies. For training models with Transformers, we
use Adam (Kingma and Ba, 2014) with 31 = 0.9, 2 = 0.98, and € = 10—8. We use the same
learning rate schedule as (Vaswani et al., 2017), i.e., the learning rate increases linearly for
4,000 steps to 5 x 10~*, after which it is decayed proportionally to the inverse square root
of the number of steps. For training the LSTM models, we use Adam with a fixed learning
rate of 0.001. We train our models for 20 epochs.

For models incorporating a translation loss, we used label smoothed cross en-
tropy (Szegedy et al., 2016; Pereyra et al., 2017) with € = 0.1. For BGT and MULTILING.
TrANS., we anneal the KL term so that it increased linearly for 2'® updates, which robustly
gave good results in preliminary experiments. We also found that in training BGT, combin-
ing its loss with the MULTILING. TRANS. objective during training of both models increased
performance, and so this loss was summed with the BGT loss in all of our experiments. We
note that this doesn’t affect our claim of BGT being a generative model, as this loss is only
used in a multi-task objective at training time, and we calculate the generation probabilities
according to standard BGT at test time.

Lastly, in Appendix 5.9.3, we illustrate that it is crucial to train the Transformers with
large batch sizes. Without this, the model can learn the goal task (such as translation) with
reasonable accuracy, but the learned semantic embeddings are of poor quality until batch
sizes approximately reach 25,000 tokens. Therefore, we use a maximum batch size of 50,000
tokens in our ENG. TRANS., MULTILING. TRANS., and BGT w/o PRIOR, experiments and

25,000 tokens in our VAR. MULTILING. TRANS. and BGT experiments.

5.6.3 Evaluation

Our primary evaluation are the 2012-2016 SemEval Semantic Textual Similarity (STS)
shared tasks (Agirre et al., 2012, 2013, 2014, 2015, 2016), where the goal is to accurately
predict the degree to which two sentences have the same meaning as measured by human
judges. The evaluation metric is Pearson’s r with the gold labels.

Secondly, we evaluate on Hard STS, where we combine and filter the STS datasets in
order to make a more difficult evaluation. We hypothesize that these datasets contain many
examples where their gold scores are easy to predict by either having similar structure

and word choice and a high score or dissimilar structure and word choice and a low score.
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Data Sentence 1 Sentence 2 Gold Score
Hard+ Other ways are needed. It is necessary to find other 4.5
means.
Hard- | How long can you keep | How long can I keep bread 1.0
chocolate in the freezer? dough in the refrigerator?
Negation | It’s not a good idea. It's a good idea to do both. 1.0

Table 47: Examples from our Hard STS dataset and our negation split. The sentence pair in the first
row has dissimilar structure and vocabulary yet a high gold score. The second sentence
pair has similar structure and vocabulary and a low gold score. The last sentence pair con-
tains negation, where there is a not in Sentence 1 that causes otherwise similar sentences
to have low semantic similarity.

Therefore, we split the data using symmetric word error rate (SWER),"” finding sentence
pairs with low SWER and low gold scores as well as sentence pairs with high SWER and
high gold scores. This results in two datasets, Hard+ which have SWERs in the bottom 20%
of all STS pairs and whose gold label is between o and 1,'® and Hard- where the SWERs
are in the top 20% of the gold scores are between 4 and 5. We also evaluate on a split where
negation was likely present in the example.” Examples are shown in Table 47.

Lastly, we evaluate on STS in es and ar as well as cross-lingual evaluations for en-es,
en-ar, and en-tr. We use the datasets from SemEval 2017 (Cer et al., 2017). For this setting,
we train MULTILING. TRANS. and BGT on 1 million examples from en-es, en-ar, and en-tr

OpenSubtitles 2018 data.

5.6.4 Results

The results on the STS and Hard STS are shown in Table 48.>° From the results, we see that
BGT has the highest overall performance. It does especially well compared to prior work
on the two Hard STS datasets.

We show further difficult splits in Table 49, including a negation split, beyond those used
in Hard STS and compare the top two performing models in the STS task from Table 48. We
also show easier splits in the bottom of the table.

From these results, we see that both positive examples that have little shared vocabu-
lary and structure and negative examples with significant shared vocabulary and structure

benefit significantly from using a deeper architecture. Similarly, examples where negation

We define symmetric word error rate for sentences s; and s, as %WER(S],Sz) + %WER(Sz,Sz), since word
error rate (WER) is an asymmetric measure.

STS scores are between o and 5.

We selected examples for the negation split where one sentence contained not or 't and the other did not.

We obtained values for STS 2012-2016 from prior works using SentEval (Conneau and Kiela, 2018). Note that
we include all datasets for the 2013 competition, including SMT, which is not included in SentEval.
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Model Semantic Textual Similarity (STS)

2012 (2013|2014 | 2015|2016 | Avg. || Hard+ | Hard- | Avg.
BERT (CLS) 33.229.6 [34.3]45.1[484(38.1] 7.8 12.5 | 10.2
BERT (Mean) 48.8 | 46.5|54.0|59.2|63.4|54.4| 3.1 24.1 | 13.6
Infersent 61.1 | 51.4 | 68.1 | 70.9 | 70.7 | 64.4 4.2 20.6 | 16.9
GenSen 60.7 | 50.8 | 64.1 | 73.3 | 66.0 | 63.0 || 24.2 6.3 | 15.3
USE 61.4 | 59.0 | 70.6 | 74.3 | 73.9 | 67.8 || 16.4 | 28.1 | 22.3
Sentence-BERT 66.9 | 63.2 | 74.2 | 77.3 | 72.8 | 70.9 || 23.9 3.6 |13.8
SpP 68.4 | 60.3 | 75.1|78.7|76.8 | 719 || 19.1 | 29.8 | 24.5
LSTMava 67.9 | 56.4 | 74.5 | 78.2| 75.9 | 70.6 || 18.5 | 23.2 |20.9
ENnG. TRANS. 66.5 | 60.7 | 72.9 | 78.1 | 78.3 | 71.3 || 18.0 | 47.2 | 32.6
MuULTILING. TRANS. 67.1 | 61.0 | 73.3|78.0|77.8 | 71.4|| 200 | 48.2 | 34.1
VAR. MULTILING. TRANS. | 68.3 | 61.3 | 74.5 | 79.0 | 78.5 | 72.3 || 24.1 | 46.8 | 35.5
BGT w/o Prior 67.6 | 59.8 | 74.1 | 78.4 | 77.9|71.6 || 17.9 | 455 |31.7
BGT 68.9 | 62.2|75.9 |79.4 | 79.3 | 73.1 || 22.5 | 46.6 | 34.6

Table 48: Results of our models and models from prior work. The first six rows are pretrained
models from the literature, the next two rows are strong baselines trained on the same
data as our models, and the last 5 rows include model ablations and BGT, our final model.
We show results, measured in Pearson’s r x 100, for each year of the STS tasks 2012-2016
and our two Hard STS datasets.

occurs also benefit from our deeper model. These examples are difficult because more than
just the identity of the words is needed to determine the relationship of the two sentences,
and this is something that SP is not equipped for since it is unable to model word order.
The bottom two rows show easier examples where positive examples have high overlap and
low SWER and vice versa for negative examples. Both models perform similarly on this
data, with the BGT model having a small edge consistent with the overall gap between
these two models.

Lastly, in Table 50, we show the results of STS evaluations in es and ar and cross-lingual
evaluations for en-es, en-ar, and en-tr. From these results, we see that BGT has the best
performance across all datasets, however the performance is significantly stronger than the
MuLtiLING. TRANS. and BGT w/0 PrIor baselines in the cross-lingual setting. Since VAR.
MuttiLING. TRANS. also has significantly better performance on these tasks, most of this
gain seems to be due to the prior have a regularizing effect. However, BGT outperforms
VAR. MULTILING. TRANS. overall, and we hypothesize that the gap in performance between
these two models is due to BGT being able to strip away the language-specific information
in the representations with its language-specific variables, allowing for the semantics of the

sentences to be more directly compared.

104



5.7 BILINGUAL GENERATIVE TRANSFORMER: ANALYSIS

Data Split n BGT | SP
All 13,023 | 75.3 | 74.1
Negation 705 73.1 | 68.7

Bottom 20% SWER, label ¢
Bottom 10% SWER, label €
Top 20% SWER, label € [3,
Top 10% SWER, label € [4, 159 18.1 | 10.8
Top 20% WER, label € [0,2 1380 | 51.5 | 49.9
Bottom 20% WER, label € [3, 5] 2079 | 43.0 | 42.2

,2] | 404 | 63.6 | 54.9
1] 72 47.1 | 22.5
937 | 20.0 | 14.4

= |

Table 49: Performance, measured in Pearson’s v x 100, for different data splits of the STS data. The
first row shows performance across all unique examples, the next row shows the negation
split, and the last four rows show difficult examples filtered symmetric word error rate
(SWER). The last two rows show relatively easy examples according to SWER.

Model es-es | ar-ar || en-es | en-ar | en-tr
MULTILING. TRANS. 83.4 72.6 64.1 37.6 59.1
VAR. MULTILING. TRANS. | 81.7 72.8 72.6 73.4 74.8
BGT w/o Prior 84.5 73.2 68.0 66.5 70.9
BGT 8.7 | 749 || 756 | 735 | 749

Table 50: Performance measured in Pearson’s r x 100, on the SemEval 2017 STS task on the es-es,
ar-ar, en-es, en-ar, and en-tr datasets.

5.7 BILINGUAL GENERATIVE TRANSFORMER: ANALYSIS

We next analyze our BGT model by examining what elements of syntax and semantics the
language and semantic variables capture relative both to each-other and to the sentence
embeddings from the MULTILING. TRANS. models. We also analyze how the choice of lan-
guage and its lexical and syntactic distance from English affects the semantic and syntactic
information captured by the semantic and language-specific encoders. Finally, we also show
that our model is capable of sentence generation in a type of style transfer, demonstrating

its capabilities as a generative model.

5.7.1  STS

We first show that the language variables are capturing little semantic information by eval-
uating the learned English language-specific variable from our BGT model on our suite of

semantic tasks. The results in Table 51 show that these encoders perform closer to a ran-
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dom encoder than the semantic encoder from BGT. This is consistent with what we would

expect to see if they are capturing extraneous language-specific information.

Model Semantic Textual Similarity (STS)

2012 | 2013 | 2014 | 2015 | 2016 | Hard+ | Hard-

Random Encoder 51.4 | 34.6 | 52.7 | 52.3 | 49.7 4.8 17.9
English Language Encoder | 44.4 | 417 | 53.8 | 62.4 | 61.7 15.3 26.5
Semantic Encoder 68.9 | 62.2 | 75.9 | 79.4 | 79.3 22.5 46.6

Table 51: STS performance on the 2012-2016 datasets and our STS Hard datasets for a randomly
initialized Transformer, the trained English language-specific encoder from BGT, and the
trained semantic encoder from BGT. Performance is measured in Pearson’s r x 100.

5.7.2 Probing

Lang. |Model STS |S. Num. |O. Num. | Depth | Top Con. |Word | Len. | P. Num. | P. First|Gend.
MurtiLiNG. TRANS.  |71.2| 78.0 76.5 28.2 65.9 80.2 |74.0| 56.9 88.3 | 53.0

r Semantic Encoder 72.4| 84.6 80.9 29.7 70.5 77.4 |73.0| 60.7 87.9 | 52.6

en Language Encoder|56.8| 75.2 72.0 28.0 63.6 65.4 |80.2| 65.3 92.2 -
fr Language Encoder| - - - - - - - - - 56.5

MurtiLING. TRANS.  |70.5| 84.5 82.1 20.7 68.5 79.2 | 77.7| 63.4 90.1 | 54.3
os Semantic Encoder 72.1| 85.7 83.6 32.5 71.0 77.3 |76.7| 63.1 89.9 | 52.6
en Language Encoder|55.8| 75.7 73.7 20.1 63.9 63.3 |80.2| 64.2 92.7 -

es Language Encoder| - - - - - : - - N 54-7

MutLtiLING. TRANS.  |70.2| 77.6 74.5 28.1 67.0 77.5 |72.3| 57.5 89.0 -
ar Semantic Encoder 70.8| 81.9 80.8 32.1 71.7 71.9 |73.3| 618 88.5 -
en Language Encoder|58.9| 76.2 73.1 28.4 60.7 71.2 |79.8| 63.4 92.4 -

MutLtiLING. TRANS.  |70.7| 78.5 74.9 28.1 60.2 78.4 |72.1| 54.8 87.3 -
tr Semantic Encoder 72.3| 817 80.2 30.6 66.0 75.2 |72.4| 59.3 86.7 -
en Language Encoder|57.8| 77.3 74.4 28.3 63.1 67.1 |79.7| 67.0 92.5 -

MuLTiLING. TRANS.  |71.0| 66.4 64.6 25.4 54.1 76.0 |67.6| 53.8 87.8 -
ja Semantic Encoder 71.9| 68.0 66.8 27.5 58.9 70.1 |68.7| 52.9 86.6 -

en Language Encoder|60.6| 77.6 76.4 28.0 64.6 70.0 |80.4| 62.8 92.0 -

Table 52: Average STS performance for the 2012-2016 datasets, measured in Pearson’s r x 100, fol-
lowed by probing results on predicting number of subjects, number of objects, constituent
tree depth, top constituent, word content, length, number of punctuation marks, the first
punctuation mark, and whether the articles in the sentence are the correct gender. All
probing results are measured in accuracy x100.

We probe our BGT semantic and language-specific encoders, along with our MULTILING.

TrANS. encoders as a baseline, to compare and contrast what aspects of syntax and seman-

tics they are learning relative to each other across five languages with various degrees of

similarity with English. All models are trained on the OpenSubtitles 2018 corpus. We use

the datasets from (Conneau et al., 2018a) for semantic tasks like number of subjects and
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number of objects, and syntactic tasks like tree depth, and top constituent. Additionally,
we include predicting the word content and sentence length. We also add our own tasks
to validate our intuitions about punctuation and language-specific information. In the first
of these, punctuation number, we train a classifier to predict the number of punctuation
marks®" in a sentence. To make the task more challenging, we limit each label to have at
most 20,000 examples split among training, validation, and testing data.>* In the second
task, punctuation first, we train a classifier to predict the identity of the first punctuation
mark in the sentence. In our last task, gender, we detect examples where the gender of the
articles in the sentence is incorrect in French of Spanish. To create an incorrect example, we
switch articles from {le, la, un, une} for French and {el, la, los, las} for Spanish, with their
(indefinite or definite for French and singular or plural for Spanish) counterpart with the
opposite gender. This dataset was balanced so random chances gives 50% on the testing
data. All tasks use 100,000 examples for training and 10,000 examples for validation and
testing. The results of these experiments are shown in Table 52.

These results show that the source separation is effective - stylistic and language-specific
information like length, punctuation and language-specific gender information are more
concentrated in the language variables, while word content, semantic and syntactic infor-
mation are more concentrated in the semantic encoder. The choice of language is also seen
to be influential on what these encoders are capturing. When the languages are closely
related to English, like in French and Spanish, the performance difference between the se-
mantic and English language encoder is larger for word content, subject number, object
number than for more distantly related languages like Arabic and Turkish. In fact, word
content performance is directly tied to how well the alphabets of the two languages over-
lap. This relationship matches our intuition, because lexical information will be cheaper to
encode in the semantic variable when it is shared between the languages. Similarly for the
tasks of length, punctuation first, and punctuation number, the gap in performance between
the two encoders also grows as the languages become more distant from English. Lastly,
the gap on STS performance between the two encoders shrinks as the languages become
more distant, which again is what we would expect, as the language-specific encoders are
forced to capture more information.

Japanese is an interesting case in these experiments, where the English language-specific

encoder outperforms the semantic encoder on the semantic and syntactic probing tasks.

Punctuation were taken from theset { " !"#$% & \" () x+,—./:;<=>?2@[].“{|}7.}.
The labels are from 1 punctuation mark up to 10 marks with an additional label consolidating 11 or more
marks.
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Japanese is a very distant language to English both in its writing system and in its sentence
structure (it is an SOV language, where English is an SVO language). However, despite
these difference, the semantic encoder strongly outperforms the English language-specific
encoder, suggesting that the underlying meaning of the sentence is much better captured

by the semantic encoder.

5.7.3 Generation and Style Transfer

Source | you know what i've seen?

Style he said, "since when is going fishing" had anything to do
with fish?"

Output | he said, "what is going to do with me since i saw you?"

Source | guys, that was the tech unit.
Style is well, "capicci" ...
Output | is that what, "technician"?

Source | the pay is no good, but it’s money.
Style do we know cause of death?
Output | do we have any money?

Source | we're always doing stupid things.
Style all right listen, i like being exactly where i am,

Output | all right, i like being stupid, but i am always here.

Table 53: Style transfer generations from our learned BGT model. Source refers to the sentence fed
into the semantic encoder, Style refers to the sentence fed into the English language-specific
encoder, and Output refers to the text generated by our model.

In this section, we qualitatively demonstrate the ability of our model to generate sen-
tences. We focus on a style-transfer task where we have original seed sentences from which
we calculate our semantic vector zsem and language specific vector zer,. Specifically, we feed
in a Source sentence into the semantic encoder to obtain zsem, and another Style sentence
into the English language-specific encoder to obtain z,,. We then generate a new sentence
using these two latent variables. This can be seen as a type of style transfer where we expect
the model to generate a sentence that has the semantics of the Source sentence and the style
of the Style sentence. We use our en-fr BGT model from Table 52 and show some examples
in Table 53. All input sentences are from held-out en- fr OpenSubtitles data. From these ex-
amples, we see further evidence of the role of the semantic and language-specific encoders,
where most of the semantics (e.g. topical word such as seen and tech in the Source sentence)
are reflected in the output, but length and structure are more strongly influenced by the

language-specific encoder.
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5.8 CONCLUSION

In this chapter, we have shown that using automatic dataset preparation methods such
as pivoting or back-translation are not needed to create higher performing sentence em-
beddings. Moreover by using the bitext directly, our approach also produces strong para-
phrastic cross-lingual representations as a byproduct. Our approach is much faster than
comparable methods and yields stronger performance on cross-lingual and monolingual
semantic similarity and cross-lingual bitext mining tasks.

We have also proposed the Bilingual Generative Transformers, a model that uses parallel
data to learn to perform source separation of common semantic information between two lan-
guages from language-specific information. We show that the model is able to accomplish
this source separation through probing tasks and text generation in a style-transfer setting.
We find that our model bests all baselines on semantic similarity tasks, with the largest
gains coming from a new challenge we propose as Hard STS, designed to foil methods ap-
proximating semantic similarity as word overlap. We also find our model to be especially
effective on cross-lingual semantic similarity, due to its stripping away of language-specific
information allowing for the underlying semantics to be more directly compared. In future
work, we will explore generalizing this approach to the multilingual setting.

Finally, we concluded this chapter with our proposed work. We proposed to extend the
BGT from the bilingual scenario to the multilingual setting. Our hypothesis is that extend-
ing the model to more languages will increase the semantic information in the sentence

embeddings, leading to a more powerful model.

5.0 APPENDIX

5.9.1 Location of Sentence Embedding in Decoder for Learning Representations

As mentioned in Section 5.4.1, we experimented with 4 ways to incorporate the sentence
embedding into the decoder: Word, Hidden, Attention, and Logit. We also experimented
with combinations of these 4 approaches. We evaluate these embeddings on the STS tasks
and show the results, along with the time to train the models 1 epoch in Table 54.

For these experiments, we train a single layer bidirectional LSTM (BiLSTM) ENG. TRANS.
model with embedding size set to 1024 and hidden states set to 512 dimensions (in order to

be roughly equivalent to our Transformer models). To form the sentence embedding in this
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variant, we mean pool the hidden states for each time step. The cell states of the decoder

are initialized to the zero vector.

Architecture STS | Time (s)
BiLSTM (Hidden) 54.3 1226
BiLSTM (Word) 67.2 1341
BiLSTM (Attention) 68.8 1481
BiLSTM (Logit) 69.4 1603
BiLSTM (Word + Hidden) 67.3 1377
BiLSTM (Word + Hidden + Attention) 68.3 1669
BiLSTM (Word + Hidden + Logit) 69.1 1655
BiLSTM (Word + Hidden + Attention + Logit) | 68.9 1856

Table 54: Results for different ways of incorporating the sentence embedding in the decoder for a
BiLSTM on the Semantic Textual Similarity (STS) datasets, along with the time taken to
train the model for 1 epoch. Performance is measured in Pearson’s 1 x 100.

From this analysis, we see that the best performance is achieved with Logit, when the
sentence embedding is place just prior to the softmax. The performance is much better than
Hidden or Hidden+Word used in prior work. For instance, recently (Artetxe and Schwenk,

2018b) used the Hidden+Word strategy in learning multilingual sentence embeddings.

5.9.2 VAE Training

We also found that incorporating the latent code of a VAE into the decoder using the Logit
strategy increases the mutual information while having little effect on the log likelihood.
We trained two LSTM VAE models following the settings and aggressive training strategy
in (He et al., 2019), where one LSTM model used the Hidden strategy and the other used the
Hidden + Logit strategy. We trained the models on the en side of our en-fr data. We found
that the mutual information increased form 0.89 to 2.46, while the approximate negative log
likelihood, estimated by importance weighting, increased slightly from 53.3 to 54.0 when

using Logit.

5.9.3 Relationship Between Batch Size and Performance for Transformer and LSTM

It has been observed previously that the performance of Transformer models is sensitive
to batch size (Popel and Bojar, 2018). We found this to be especially true when training

sequence-to-sequence models to learn sentence embeddings. Figure 6 shows plots of the
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Performace Vs. Batch Size
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Figure 6: The relationship between average performance for each year of the STS tasks 2012-2016
(Pearson’s 1 x 100) and batch size (maximum number of words per batch).

Architecture STS | Time (s)
Transformer (sL/1L) | 70.3 1767
Transformer (3L/1L) | 70.1 1548
Transformer (1L/1L) | 70.0 1244
Transformer (5L/5L) | 69.8 2799

Table 55: Results on the Semantic Textual Similarity (STS) datasets for different configurations of
Enc. TrANS., along with the time taken to train the model for 1 epoch. (XL/YL) means X
layers were used in the encoder and Y layers in the decoder. Performance is measured in
Pearson’s 1 x 100.

average 2012-2016 STS performance of the learned sentence embedding as batch size in-
creases for both the BiLSTM and Transformer. Initially, at a batch size of 2500 tokens, sen-
tence embeddings learned are worse than random, even though validation perplexity does
decrease during this time. Performance rises as batch size increases up to around 100,000
tokens. In contrast, the BILSTM is more robust to batch size, peaking much earlier around

25,000 tokens, and even degrading at higher batch sizes.

5.9.4 Model Ablations

In this section, we vary the number of layers in the encoder and decoder in BGT w/o0 PrIOR.

We see that performance increases as the number of encoder layers increases, and also that
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a large decoder hurts performance, allowing us to save training time by using a single layer.
These results can be compared to those in Table 55 showing that Transformers outperform

BiLSTMS in these experiments.

5.10 THE MULTILINGUAL GENERATIVE TRANSFORMER

In natural language processing (NLP), pre-trained models on large corpora have been re-
sponsible for large gains in performance across many tasks (Peters et al., 2018; Devlin et al.,
2018). The models that have achieved the strongest performance are Transformer (Vaswani
et al., 2017) masked language models (MLMs), such as BERT (Devlin et al., 2018), which
require fine-tuning on the task of interest for the best performance.

While extremely effective on many NLP tasks, these powerful models have downsides
when compared to the older paradigms of learning sentence embeddings (Le and Mikolov,
2014; Kiros et al., 2015; Wieting et al., 2016b). For instance, on the task of large-scale para-
phrase detection or bitext mining, MLMs have two main negatives due to their need to
be fine-tuned. First, fine-tuning biases the models to the artifacts and domain of the data,
while sentence embedding methods do not require fine-tuning and are free of these arti-
facts. Secondly, comparisons for fine-tuned models must be done using sentence pairs, and
therefore detecting semantically similar pairs in a large collection of sentences has quadratic
complexity — sentence embedding methods can do this in linear time.

Another example where MLMs have a disadvantage when compared to sentence embed-
ding models is multilingual transfer learning. In this setting, training data only exists in
one language, but we desire a model that is effective for arbitrary languages on the target
task. One strategy for solving this problem is to first pre-train a model on large amounts of
data, covering lots of languages. Then we train a task-specific model for the language where
there is training data, but freeze lower layers to prevent the model from over-specialising go
the training data language. However, for sentence embedding models, we freeze the entire
network. Therefore we can train these models over a whole suite of tasks by just having a
different linear classifier for each one, using our sentence embeddings as features. MLMs
require deeper layers to be frozen for optimal performance, which adds to the complexity
of fine-tuning these models*> and also requires larger memory for storing these models

which can add up when models for many problems are needed.

23 For instance, which layers do we freeze?



5.10 THE MULTILINGUAL GENERATIVE TRANSFORMER

Recent work on multilingual sentence representations has focused on translation mod-
els (Espana-Bonet et al., 2017; Schwenk and Douze, 2017; Artetxe and Schwenk, 2018b),
where a neural sequence-to-sequence model is altered so that the information the decoder
receives from the encoder is a single sentence embedding. Therefore the encoder is encour-
aged to include as much information as possible in the sentence embedding, which have
found use in downstream tasks. One disadvantage of these models however is that less
information can be encoded into a single fixed length vector than in an entire network
that can be fine-tuned. We hypothesize that not all of the information encoded through
the translation process is helpful for downstream tasks and should be either removed or
replaced with something more useful. Therefore, we propose the Multilingual Generative
Transformer (MGT), a model that seeks to incorporate more useful, semantic information
into the embedding while displacing information that is less helpful for downstream tasks.

We hypothesize that properties shared by sentences in a translation pair are more likely
semantic, while those that are divergent are more likely stylistic or language-specific, and
that the former are more useful than the latter for many downstream tasks in NLP. Specif-
ically, the MGT is a generative model that is encouraged to perform source separation on
parallel sentences, isolating what they have in common in a latent semantic embedding and
explaining what is left over with language-specific latent vectors.

In experiments, we evaluate the MGT on a suite of semantic evaluations. These in-
clude semantic similarity, both cross-lingual and monolingual, bitext mining including
zero-shot bitext mining, and transfer learning using the XNLI natural language inference
dataset (Conneau et al., 2018b). MGT significantly exceeds the performance of our strong
translation baseline on all of these tasks. Moreover, our model exceeds or is competitive
with LASER (Artetxe and Schwenk, 2018b), a multilingual sentence embeddings trained on
an order of magnitude more data for a much longer period of time. We cannot replicate the
exact setting of LASER since complete code for the model is not released and training on
that large amount of data over 8o GPU-days is too costly.

Finally, we analyze our model to uncover what information was captured by the source
separation into the semantic and language-specific variables. We find that the language-
specific variables tend to explain more superficial or language-specific properties such as
overall sentence length and amount and location of punctuation. We also find that semantic
and syntactic information is more concentrated in the shared semantic variables, even more

so than in our translation baseline, matching our intuition.
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Figure 7: The generative process of our model. Latent variables modeling the linguistic variation for
each language 1, zy,, as well as a latent variable modeling the common semantics, zsem,
are drawn from a multivariate Gaussian prior. The observed text in each language is then
conditioned on its language-specific variable and zsem.

5.11 THE MULTILINGUAL GENERATIVE TRANSFORMER: MODEL

5.11.1  Model
Our proposed training objective leverages a generative model of parallel text in multiple
languages. Ideally, we would have N-way parallel text, but in practice we often have par-
allel corpora for a set of language pairs. However, we can approximate an N-way parallel
corpora by sampling translation pairs from this set of parallel corpora for each mini-batch.

Our generative process utilizes two types of underlying latent vectors: language-specific
variation variables (language variables) z;, for each language and a shared semantic varia-
tion variable (semantic variable) zsem. In this section we will first describe the generative
model for the text and latent variables. In the following section we will describe the infer-
ence procedure of zgem given an input sentence, which corresponds to our core task of
obtaining sentence embeddings useful for downstream tasks.

The generative process of MGT is depicted in Figure 7 and its computation graph is
shown in Figure 8. First, we sample latent variables for two languages, 1; and 1;, and

a latent semantic variable: <zli,zlj,zsem>, where z, € R™, from a multivariate Gaussian
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prior N(0, I,,). These variables are then fed into a decoder that samples sentences; x;, is
sampled conditioned on zgem and zi,, while xy; is sampled conditioned on zgem and zy,.
Because sentences in both languages will use zsem in generation, we expect that in a well-
trained model this variable will encode semantic, syntactic, or stylistic information shared
across both sentences, while z;, and z;; will handle any language-specific peculiarities or
specific stylistic decisions that are less central to the sentence meaning and thus do not
translate across sentences. In the following section, we further discuss how this is explicitly

encouraged by the learning process.

DECODER ARCHITECTURE. In contrast to our work on BGT 5.4, we use a single Trans-
former decoder to model p(xy,|zsem,z1,; 0) for all languages i. The decoder is depicted on
the right side of Figure 8. The decoder takes in two latent variables, a language variable
and a semantic variable. These variables are concatenated together to form a single embed-
ding prior to being used by the decoder for reconstruction. Following our work on BGT,
we concatenate this embeddings to the hidden state immediately prior to computing the
logits as we found this yielded the best performance. Since we are using a single decoder,
we encode the desired output language by using a language-specific embedding as the first

input to the decoder as depicted in the right side of Figure 8.

5.12 LEARNING AND INFERENCE

Our model is trained on a training set X of parallel text consisting of N;j parallel examples
. . . _ ‘l ] N N .

of languages i and j for a set of language pairs, X = {(xh,xlj>, e, <X1uX1j )}, and Z is our

collection of latent variables Z = ((z{i,z{j,zl em)ses <lei,zll\j',z];‘em>). We wish to maximize

the likelihood of the parameters of the two decoders 6 with respect to the observed X,

marginalizing over the latent variables Z.

P(X;0) = sz(x, 2,0)dz

This integral is intractable due to the complex relationship between X and Z. However,
related latent variable models like variational autoencoders (VAEs (Kingma and Welling,
2013)) learn by optimizing a variational lower bound on the log marginal likelihood. This

surrogate objective is called the evidence lower bound (ELBO) and introduces a variational
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Figure 8: The computation graph for the variational lower bound used during training. Parallel text
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the decoder to reconstruct the input sentence pair.

approximation, q to the true posterior of the model p. The q distribution is parameterized

by a neural network with parameters ¢. ELBO can be written for our model as follows:

ELBO =EE (7 /x.¢[log p(X|Z; 8)]

KL(q(ZX; d)lip(Z;0))

This lower bound on the marginal can be optimized by gradient ascent by using the
reparameterization trick (Kingma and Welling, 2013). This trick allows for the expectation
under q to be approximated through sampling in a way that preserves backpropagation.

We make several independence assumptions for q(zsem, 1, 2y |X1UX1,»;(|>)- Specifically,
to match our goal of source separation, we factor q as ((zsem, Z1,, 2y |X1UX1J- ;0) =
q(Zsem|Xli/le;¢)q(zli|xli)q(zlj|xlj;d))/ with ¢ being the parameters of the encoder that
make up the inference networks, defined in the next paragraph.

Lastly, we note that the KL term in our ELBO equation encourages explaining variation
that is shared by translations with the shared semantic variable and explaining language-
specific variation with the corresponding language-specific variables. Information shared
by the two sentences will result in a lower KL loss if it is encoded in the shared variable,

otherwise that information will be replicated and the overall cost of encoding will increase.
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ENCODER ARCHITECTURE. Again in contrast to the BGT, we use a single Transformer
encoder as shown on the left side of Figure 5, however we modify the architecture and
use embeddings to have this single encoder play the role of N + 1 inference networks, one
each for each of the N in our training data and another for our semantic network. To
distinguish between the encoder acting as a language inference network for language 1;
and as a semantic inference network. We do this by appending an embedding to the input
sequence indicating the desired network. For a language-specific inference network, we
append a lang embedding along with an embedding to indicate the language of interest.
For the semantic inference network, we append a sem embedding. We also switch out the
top layer of the encoder depending if we are using a language-specific or semantic inference
network. We assume that the language specific and semantic information can be mostly
shared in the lower layers of the network, but switching out the top layer helps guide the
appropriate information into the resulting sentence embedding.

For each translation pair, we alternate which of the two parallel sentences is fed into
the semantic inference network within a batch. We sample the pairs so that each language
will be fed into the inference network the same amount of times.?* Since the semantic
inference network is meant to capture language agnostic semantic information, its outputs
for a translation pair should be similar regardless of the language of the input sentence.
We note that other operations are possible for combining the views each parallel sentence
offers. For instance, we could feed both sentences into the semantic encoder and pool their
representations. However, in practice we find that alternating works well and leave further

study of this to future work.

5.13 THE MULTILINGUAL GENERATIVE TRANSFORMER: EXPERIMENTS

5.13.1 Experimental Settings

DATA  We perform two experiments, one using four languages for ablations Arabic (ar,
English en, Spanish es, and Turkishtr), and another more large-scale experiment using
eight languages: (ar, en, es, tr, French fr, German de, Russian ru, and Chinese zh). In both

cases, we use the data used by LASER for the appropriate languages with the exception

24 Since often most parallel data is aligned to a high resource language like English, we then decrease the proba-
bility of selecting English to be in line with the other languages.
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5.13 THE MULTILINGUAL GENERATIVE TRANSFORMER: EXPERIMENTS

of the Tatoeba corpus, since we use it for evaluation.?52°. Therefore, for all languages we
use examples from the Open Subtitles 2018%7 (Lison and Tiedemann, 2016). We use the
Tanzil corpus 28 (Tiedemann, 2012) for Arabic, Spanish, Russian, Turkish, and Chinese. We
additionally use Europarl* for German, French, and Spanish. Lastly, we additionally use

the MultiUN corpus3® for Arabic, Russian, and Chinese.

BASELINE MODELS  We compare to LASER (Artetxe and Schwenk, 2018b), a massively
multilingual model trained on hundreds of millions of translations covering more than 100
languages. We note however, that this model was trained on 16 Vioo GPUs for 5 days and
trained on a superset of the data we used that is about an order of magnitude larger times

larger. Therefore a fair comparison of the models between models is not possible, however

we compare to both LASER and a similar translation ablation to give context to our results.

We experiment with 3 ablations of our model listed below:

* MuLTILING. TRANS.: Translation from both en to X and X to en where the weight of the

loss terms is Nﬁ] for language X and N% for en so that all languages are reflected equally.

* VAR. MULTILING. TRANS.: A model similar to MuULTILING. TRANS., but it includes a prior
over the embedding space and therefore a KL loss term. This model differs from MGT

since it does not have any language-specific variables.

* MGT w/o Prior: Follows the same architecture as MGT, but without the priors and KL

loss term — it just contains the language variables.

HYPERPARAMETERS AND OPTIMIZATION  We set the dimension of the embeddings
and hidden states for the encoders and decoders to 1024. The feedforward layer for the
Transformers have dimension 2048 and we use 16 attention heads. For training models
with Transformers, we use Adam (Kingma and Ba, 2014) with 37 = 0.9, B2 = 0.98, and
e = 10~8. We use the same learning rate schedule as (Vaswani et al., 2017), i.e., the learning
rate increases linearly for 4,000 steps to 5 x 10~4, after which it is decayed proportionally

to the inverse square root of the number of steps. We train our models for 10 epochs.

LASER was trained on a portion of Tatoeba that was outside the evaluation set of the bitext mining task
introduced in (Artetxe and Schwenk, 2018b)

We also note that LASER followed a fundamentally different training paradigm than we did where they used
X-en and x-es data for language X. We only use X-en, so we doubled the data used for OpenSubititles to try to
more closely approximate the data used. However, for some corpora, this cannot be done like Europarl.
http://opus.nlpl.eu/OpenSubtitles.php

http://opus.nlpl.eu/Tanzil.php.

http://opus.nlpl.eu/Europarl.php

http://opus.nlpl.eu/MultiUN.php
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5.13 THE MULTILINGUAL GENERATIVE TRANSFORMER: EXPERIMENTS

For models incorporating a translation loss, we used label smoothed cross en-
tropy (Szegedy et al., 2016; Pereyra et al., 2017) with € = 0.1. For MGT and VAR. MULTILING.
TrANs., we anneal the KL term so that it increased linearly for the first 8 of 10 epochs.
We also found that in training MGT, as with BGT, combining its loss with the MULTILING.
TrANS. objective during training of both models increased performance and led to faster
traning, and so this loss was summed with the MGT loss in all of our experiments. We
note that this doesn’t affect our claim of MGT being a generative model, as this loss is only
used in a multi-task objective at training time, and we calculate the generation probabilities

according to standard MGT at test time.

5.13.2 Evaluation

We evaluate no a host of semantic language tasks detailed below:

¢ English STS: Our primary evaluation are the 2012-2016 SemEval Semantic Textual Sim-
ilarity (STS) shared tasks (Agirre et al., 2012, 2013, 2014, 2015, 2016), where the goal
is to accurately predict the degree to which two sentences have the same meaning as

measured by human judges. The evaluation metric is Pearson’s r with the gold labels.

¢ Cross-Lingual STS: We evaluate on cross-lingual STS for en-es, en-ar, and en-tr using
the datasets from SemEval 2017 (Cer et al., 2017). We average the Pearson’s 1 for all three

datasets.

¢ non-English STS: We evaluate on the es-es and ar-ar non-English STS datasets from

SemEval 2017 (Cer et al., 2017). We average the Pearson’s r for these two datasets.

¢ Tatoeba: This is a bitext mining task introduced in (Artetxe and Schwenk, 2018b) based
on the Tatoeba corpus. 3'. These datasets are small, about 1000 examples, and cosine
similarity is used to re-align the bitext. We evaluate on the Arabic, Spanish, and Turkish

languages and average performance (accuracy) for both the en->xx and xx->en directions.

¢ Zero-Shot Tatoeba: We evaluate on low resource languages similar to Spanish and Turk-
ish (Galician and Azerbaijani respectively). We call this zero-shot since data from these
languages was not included during training.

e XNLI: We evaluate on the transfer learning task XNLI from (Conneau et al., 2018b).

In this task, a classifier is trained on the Stanford Natural Language Inference dataset

(SNLI) (Bowman et al., 2015), which is in English, and then tested on translations of the

31 https://tatoeba.org/eng/
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test set in multiple languages. We evaluate on English as well as the average performance

on Arabic, Spanish, and Turkish. Performance is measured on accurately the correct label

for each sentence pair.

¢ BUCC: We evaluate on the BUCC bitext mining task from (Zweigenbaum et al., 2018) for

en-de, en-fr, and en-ru. Performance is measured using F1.

5.13.3 Results

Model En. STS | CL STS | non-En. STS | Tat. | ZS Tat. | En. XNLI | Tr. XNLI
LASER 64.9 65.8 74.5 95.8| 80.8 73.9 71.3
MULTILING. TRANS. 71.4 68.7 77.7 88.2| 377 69.9 55.0
VAR. MULTILING. TRANS. | 72.8 72.3 79.9 91.1| 41.1 69.0 54.7
MGT w/o Prior 70.5 69.6 75.9 90.2| 36.5 69.4 56.9
MGT 73.5 75.8 80.5 95.4| 53.8 70.8 63.7

Table 56: Results of LASER, our model, and ablations of our model, including a translation baseline.
We show results, measured in Pearson’s v x 100, for each year of the STS tasks 2012-2016,
the cross-lingual and non-English semantic textual similarity on the SemEval 2017 task.
Tatoeba bitext mining and zero-shot bitext mining, English XNLI and XNLI for ar, es, and

tr all measured in accuracy x100.

Model en-fr|en-de|en-ru
LASER 87.60 | 91.24 | 90.03
MULTILING. TRANS. | 74.15 | 71.97 | 70.28
MGT 86.95 | 90.30 | 89.00

Table 57: Results of LASER,

MGT, and our translation baseline on the BUCC task. Performance is

measured in F1 x100.

The results of our 4 language experiments, including ablations, are shown in Table 56 and
BUCC results for our 8 language model are shown in Table 57. The results show that across
tasks, the MGT has the strongest performance over its ablations, far exceeding the MuLTI-
LING. TRANS. baseline. This is especially true for cross-lingual tasks like cross-lingual STS
and bitext mining. The ablations also show that all components, the KL term and the recon-
struction term, contribute significantly to performance. Comparisons to LASER are difficult
due to the difference in training time, training data size, and the number of languages, but
it seems that our model has better performance on semantic similarity tasks and similar

performance on bitext mining. However, for the XNLI transfer tasks, our performance lags

behind.
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5.14 ANALYSIS

We perform the same probing experiments for our 8 languages model that we did for the
BGT model in Section 5.7. The results show that even though our model is more condensed
than the BGT and trained on more languages, the source separation is effective as stylistic
and language-specific information like length and punctuation are more concentrated in
the language variables, while semantic and syntactic information are more concentrated
in the semantic encoder. Note that across all metrics, more information is included in the

semantic encoder than in the MULTILING. TRANS. model.

Model S. Num. |O. Num. | Depth | Top Con.|Word |Len. |P. Num. |P. First.
MurriLiNG. TRANS. 76.0 76.5 25.8 60.6 59.9 |68.1| 50.7 87.6
Semantic Encoder 87.0 84.3 32.4 73.1 73.5 |72.3| 61.3 92.4
texttten Language Encoder |83.8 83.8 33.0 70.3 81.7 |78.4| 69.2 95.9

Table 58: Probing results on predicting number of subjects, number of objects, constituent tree
depth, top constituent, word content, length, number of punctuation marks, the first punc-
tuation mark, and whether the articles in the sentence are the correct gender. All probing
results are measured in accuracy x100.

5.15 CONCLUSION

We have demonstrated how the BGT model can be extended to the multilingual setting with
our MGT model. The results are much stronger than our translation baseline for a variety
of semantic multilingual tasks including semantic similarity, bitext mining, and transfer
learning. Through ablations and analysis, we also show that all components of our model
are necessary for optimal performance and that the MGT is also able to separate language-
specific from semantic information despite using only a single encoder and decoder. Future

work will include scaling up this model to cover many of the world’s languages.
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APPLICATION: CONTROLLED PARAPHRASE GENERATION

This is the first of two chapters on applications of our work in representation learning. In
this chapter, we apply our PARANMT-50Mcorpus and sentence embedding models towards
learning controllable paraphrase generation. Specifically we focus on controlling the syntax
of the generated sentences. We find that we can learn a model where by just supplying
a parse template, i.e. the top production of a constituent parse, we can generate a sentence
with that syntax. We show that when these syntactic paraphrases are added to training,
models become more robust to adversarial examples. The sentence embeddings are used
to help filter the generated the paraphrases, removing those that semantically diverge too

much from the source sentence.

6.1 INTRODUCTION

Natural language processing datasets often suffer from a dearth of linguistic variation,
which can hurt the generalization of models trained on them. Recent work has shown
it is possible to easily “break” many learned models by evaluating them on adversarial
examples (Goodfellow et al., 2015), which are generated by manually introducing lexical,
pragmatic, and syntactic variation not seen in the training set (Ettinger et al., 2017). Robust-
ness to such adversarial examples can potentially be improved by augmenting the train-
ing data, as shown by prior work that introduces rule-based lexical substitutions (Jia and
Liang, 2017; Liang et al., 2017). However, more complex transformations, such as generat-
ing syntactically adversarial examples, remain an open challenge, as input semantics must
be preserved in the face of potentially substantial structural modifications. In this paper,
we introduce a new approach for learning to do syntactically controlled paraphrase generation:
given a sentence and a target syntactic form (e.g., a constituency parse), a system must
produce a paraphrase of the sentence whose syntax conforms to the target.

General purpose syntactically controlled paraphrase generation is a challenging task. Ap-

proaches that rely on handcrafted rules and grammars, such as the question generation sys-

% Authors contributed equally.
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Figure 9: Adversarial examples for sentiment analysis (left) and textual entailment (right) generated
by our syntactically controlled paraphrase network (scrN) according to provided parse
templates. In both cases, a pretrained classifier correctly predicts the label of the original
sentence but not the corresponding paraphrase.

tem of McKeown (1983), support only a limited number of syntactic targets. We introduce
the first learning approach for this problem, building on the generality of neural encoder-
decoder models to support a wide range of transformations. In doing so, we face two new
challenges: (1) obtaining a large amount of paraphrase pairs for training, and (2) defining
syntactic transformations with which to label these pairs.

Since no large-scale dataset of sentential paraphrases exists publicly, we follow Wieting
et al. (2017) and automatically generate millions of paraphrase pairs using neural backtrans-
lation. Backtranslation naturally injects linguistic variation between the original sentence
and its backtranslated counterpart. By running the process at a very large scale and testing
for the specific variations we want to produce, we can gather ample input-output pairs for
a wide range of phenomena. Our focus is on syntactic transformations, which we define us-
ing templates derived from linearized constituency parses (§6.2). Given such parallel data,
we can easily train an encoder-decoder model that takes a sentence and target syntactic
template as input, and produces the desired paraphrase.*

A combination of automated and human evaluations show that the generated para-
phrases almost always follow their target specifications, while paraphrase quality does not
significantly deteriorate compared to vanilla neural backtranslation (§6.4). Our model, the
syntactically controlled paraphrase network (scpN), is capable of generating adversarial ex-
amples for sentiment analysis and textual entailment datasets that significantly impact the
performance of pretrained models (Figure 9). We also show that augmenting training sets

with such examples improves robustness without harming accuracy on the original test

1 Code, labeled data, and pretrained models available at https://github.com/miyyer/scpn.
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sets (§6.5). Together these results not only establish the first general purpose syntactically
controlled paraphrase approach, but also suggest that this general paradigm could be used

for controlling many other aspects of the target text.

6.2 COLLECTING LABELED PARAPHRASE PAIRS

In this section, we describe a general purpose process for gathering and labeling training

data for controlled paraphrase generation.

6.2.1 Paraphrase data via backtranslation

Inducing paraphrases from bilingual data has long been an effective method to overcome
data limitations. In particular, bilingual pivoting (Bannard and Callison-Burch, 2005) finds
quality paraphrases by pivoting through a different language. Mallinson et al. (2017) show
that neural machine translation (NMT) systems outperform phrase-based MT on several
paraphrase evaluation metrics.

In this paper, we use the PARANMT-50M corpus from Wieting and Gimpel (2018). This
corpus consists of over 50 million paraphrases obtained by backtranslating the Czech side
of the CzEng (Bojar et al., 2016) parallel corpus. The pretrained Czech-English model used
for translation came from the Nematus NMT system (Sennrich et al., 2017). The training
data of this system includes four sources: Common Crawl, CzEng 1.6, Europarl, and News
Commentary. The CzEng corpus is the largest of these four and was found to have signifi-

cantly more syntactic diversity than the other data sources (Wieting and Gimpel, 2018).

6.2.2 Automatically labeling paraphrases with syntactic transformations

We need labeled transformations in addition to paraphrase pairs to train a controlled para-
phrase model. Manually annotating each of the millions of paraphrase pairs is clearly in-
feasible. Our key insight is that target transformations can be detected (with some noise)

simply by parsing these pairs.3

Syntactic diversity was measured by the entropy of the top two levels of parse trees in the corpora.

Similar automated filtering could be used to produce data for many other transformations, such as tense
changes, point-of-view shifts, and even stylometric pattern differences (Feng et al., 2012). This is an interesting
area for future work.
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Specifically, we parse the backtranslated paraphrases using the Stanford parser (Man-
ning et al., 2014),* which yields a pair of constituency parses (p1,p2) for each sentence
pair (s1,s2), where s; is the reference English sentence in the CzEng corpus and s; is its
backtranslated counterpart. For syntactically controlled paraphrasing, we assume s; and
p2 are inputs, and the model is trained to produce s,. To overcome learned biases of the

NMT system, we also include reversed pairs (s, s1) during training.

6.2.2.1 Syntactic templates

To provide syntactic control, we linearize the bracketed parse structure without leaf nodes
(i.e., tokens). For example, the corresponding linearized parse tree for the sentence “She
drove home.” is (S(NP(PRP)) (VP(VBD) (NP(NN))) (.)). A system that requires a complete lin-
earized target parse at test-time is unwieldy; how do we go about choosing the target parse?
To simplify test-time usage, we relax the target syntactic form to a parse template, which we
define as the top two levels of the linearized parse tree (the level immediately below the
root along with the root); the prior example’s template is S— NP VP. In the next section, we
design models such that users can feed in either parse templates or full parses depending

on their desired level of control.

63 SYNTACTICALLY CONTROLLED PARAPHRASE NETWORKS

The scPN encoder-decoder architecture is built from standard neural modules, as we de-

scribe in this section.

6.3.1  Neural controlled paraphrase generation

Given a sentential paraphrase pair (s1,s2) and a corresponding target syntax tree p, for
s2, we encode s7 using a bidirectional LSTM (Hochreiter and Schmidhuber, 1997), and our
decoder is a two-layer LSTM augmented with soft attention over the encoded states (Bah-
danau et al., 2015) as well as a copy mechanism (See et al., 2017). Following existing work
in NMT (Sennrich et al., 2016b), we preprocess s7 and s; into subword units using byte pair
encoding, and we perform decoding using beam search. For all attention computations, we
use a bilinear product with a learned parameter matrix W: given vectors u and v, we score

them by u'Ww.

4 Because of the large dataset size, we use the faster but less accurate shift-reduce parser written by John Bauer.
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‘paraphrase generator
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Figure 10: SCPN implements parse generation from templates as well as paraphrase generation from
full parses as encoder-decoder architectures (attention depicted with dotted lines, copy
mechanism with double stroked lines). While both components are trained separately, at
test-time they form a pipelined approach to produce a controlled paraphrase from an
input sentence s1, its corresponding parse p1, and a target template t;.

We incorporate the target syntax p, into the generation process by modifying the in-
puts to the decoder. In particular, a standard decoder LSTM receives two inputs at every
time step: (1) the embedding w7 of the ground-truth previous word in s, and (2) an
attention-weighted average a; of the encoder’s hidden states. We additionally provide a

representation z; of the target p», so at every time step the decoder computes

hi = LSTM([wi—1; at; z¢]).

Since we preserve bracketed parse structure, our linearized parses can have hundreds
of tokens. Forcing all of the relevant information contained by the parse tree into a single
fixed representation (i.e., the last hidden state of an LSTM) is difficult with such large
sequences. Intuitively, we want the decoder to focus on portions of the target parse tree
that correspond with the current time step. As such, we encode p, using a (unidirectional)
LSTM and compute z; with an attention-weighted average of the LSTM’s encoded states at
every time step. This attention mechanism is conditioned on the decoder’s previous hidden

state hy_1.
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6.3.2 From parse templates to full parses

As mentioned in Section 6.2.2.1, user-friendly systems should be able to accept high-level
parse templates as input rather than full parses. Preliminary experiments show that scen
struggles to maintain the semantics of the input sentence when we replace the full target
parse with templates, and frequently generates short, formulaic sentences. The paraphrase
generation model seems to rely heavily on the full syntactic parse to determine output
length and clausal ordering, making it difficult to see how to modify the scrN architecture
for template-only target specification.

Instead, we train another model with exactly the same architecture as scrPN to generate
complete parses from parse templates. This allows us to do the prediction in two steps: first
predict the full syntactic tree and then use that tree to produce the paraphrase. Concretely,
for the first step, assume t; is the parse template formed from the top two levels of the target
parse py. The input to this parse generator is the input parse p; and t;, and it is trained to
produce p,. We train the parse generator separately from scrN (i.e., no joint optimization)
for efficiency purposes. At test time, a user only has to specify an input sentence and target
template; the template is fed through the parse generator, and its predicted target parse is

in turn sent to scrN for paraphrase generation (see Figure 10).

6.3.3 Template selection and post-processing

By switching from full parses to templates, we have reduced but not completely removed
the burden of coming up with a target syntactic form. Certain templates may be not be ap-
propriate for particular input sentences (e.g., turning a long sentence with multiple clauses
into a noun phrase). However, others may be too similar to the input syntax, resulting in
very little change. Since template selection is not a major focus of this paper, we use a rela-
tively simple procedure, selecting the twenty most frequent templates in PARANMT-50M.5
Since we cannot generate a valid paraphrase for every template, we postprocess to re-
move nonsensical outputs. In particular, we filter generated paraphrases using n-gram
overlap and paraphrastic similarity, the latter of which is computed using the pretrained

WORD,TRIAVG sentence embedding model from Wieting and Gimpel (2018).® These para-

However, we do provide some qualitative examples of rare and medium-frequency templates in Table 61.
After qualitatively analyzing the impact of different filtering choices, we set minimum n-gram overlap to 0.5
and minimum paraphrastic similarity to o.7.
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Model 2 1 0

scPN w/ full parses 63.7 14.0 22.3
sCPN w/ templates 62.3 19.3 18.3
NMT-BT 65.0 17.3 17.7

Table 59: A crowdsourced paraphrase evaluation on a three-point scale (0 = no paraphrase, 1 =
ungrammatical paraphrase, 2 = grammatical paraphrase) shows both that NmMT-BT and
SCPN produce mostly grammatical paraphrases. Feeding parse templates to scPN instead
of full parses does not impact its quality.

phrastic sentence embeddings significantly outperform prior work due to the PARANMT-

50M data.

64 INTRINSIC EXPERIMENTS

Before using scPN to generate adversarial examples on downstream datasets, we need to
make sure that its output paraphrases are valid and grammatical and that its outputs follow
the specified target syntax. In this section, we compare scPN to a neural backtranslation
baseline (NMT-BT) on the development set of our PARANMT-50M split using both human
and automated experiments. NMT-BT is the same pretrained Czech-English model used to
create PARANMT-50M; however, here we use it to generate in both directions (i.e., English-

Czech and Czech-English).

6.4.1 Paraphrase quality & grammaticality

To measure paraphrase quality and grammaticality, we perform a crowdsourced experi-
ment in which workers are asked to rate a paraphrase pair (s, g) on the three-point scale
of Kok and Brockett (2010), where s is the source sentence and g is the generated sen-
tence. A o on this scale indicates no paraphrase relationship, while 1 means that g is an
ungrammatical paraphrase of s and 2 means that g is a grammatical paraphrase of s. We
select 100 paraphrase pairs from the development set of our PARANMT-50M split (after
the postprocessing steps detailed in Section 6.3.3) and have three workers rate each pair.”
To focus the evaluation on the effect of syntactic manipulation on quality, we only select
sentences whose top-level parse templates differ (i.e., ts # tg), ensuring that the output of

both systems varies syntactically from the source sentences.

7 We use the Crowdflower platform for our experiments.
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The results (Table 59) show that the uncontrolled NMT-BT model’s outputs are comparable
in quality and grammaticality to those of scPN; neither system has a significant edge. More
interestingly, we observe no quality drop when feeding templates to scpN (via the parse
generator as described in Section 6.3.2) instead of complete parse trees, which suggests
that the parse generator is doing a good job of generating plausible parse trees; thus, for all

of the adversarial evaluations that follow, we only use the templated variant of scpn.

6.4.2 Do the paraphrases follow the target specification?

We next determine how often scPN’s generated paraphrases conform to the target syntax:
if g is a generated paraphrase and pg4 is its parse, how often does py match the ground-
truth target parse p,? We evaluate on our development set using exact template match: g is
deemed a syntactic match to s only if the top two levels of its parse py matches those of
p2. We evaluate two scPN configurations, where one is given the full target parse p, and
the other is given the result of running our parse generator on the target template t,. As a
sanity check, we also evaluate our parse generator using the same metric.

The results (Table 60) show that sceN does indeed achieve syntactic control over the
majority of its inputs. Our parse generator produces full parses that almost always match
the target template; however, paraphrases generated using these parses are less syntactically
accurate.® A qualitative inspection of the generated parses reveals that they can differ from
the ground-truth target parse in terms of ordering or existence of lower-level constituents
(Table 64); we theorize that these differences may throw off scrN’s decoder.

The NMT-BT system produces paraphrases that tend to be syntactically very similar to the
input sentences: 28.7% of these paraphrases have the same template as that of the input
sentence s1, while only 11.1% have the same template as the ground-truth target s,. Even
though we train scrN on data generated by NMT backtranslation, we avoid this issue by

incorporating syntax into our learning process.

65 ADVERSARIAL EXAMPLE GENERATION

The intrinsic evaluations show that scPN produces paraphrases of comparable quality to

the uncontrolled NmMT-BT system while also adhering to the specified target specifications.

With that said, exact match is a harsh metric; these paraphrases are more accurate than the table suggests, as
often they differ by only a single constituent.
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Model Parse Acc.
scPN w/ gold parse 64.5
sCPN w/ generated parse 51.6
Parse generator 99.9

Table 60: The majority of paraphrases generated by scPN conform to the target syntax, but the level

of syntactic control decreases when using generated target parses instead of gold parses.

Accuracy is measured by exact template match (i.e., how often do the top two levels of the

parses match).

template

paraphrase

original

(SBARQ(ADVP) (,) (S) (,)(SQ))
(S(NP) (ADVP) (VP))
(S(S) (,)(CC)(S) (:)(FRAG))

(FRAG(INTJ) (,)(S)(,)(NP))

with the help of captain picard , the borg will be prepared for every-
thing .

now , the borg will be prepared by picard , will it ?

the borg here will be prepared for everything .

with the help of captain picard , the borg will be prepared , and the
borg will be prepared for everything ... for everything .

oh , come on captain picard , the borg line for everything .

original

(S(SBAR) (,) (NP) (VP))
(S() (UCP) (") (NP) (VP))
(SQ(MD) (SBARQ) )

(S(NP) (IN) (NP) (NP) (VP)

you seem to be an excellent burglar when the time comes .

when the time comes , you 'll be a great thief .

“ you seem to be a great burglar , when the time comes . ” you said .
can i get a good burglar when the time comes ?

look at the time the thief comes .

Table 61: Syntactically controlled paraphrases generated by scpn for two examples from the
PARANMT-50M development set. For each input sentence, we show the outputs of four
different templates; the fourth template is a failure case (highlighted in green) exhibiting
semantic divergence and/or ungrammaticality, which occurs when the target template is
unsuited for the input.

Next, we examine the utility of controlled paraphrases for adversarial example generation.
To formalize the problem, assume a pretrained model for some downstream task produces
prediction yx given test-time instance x. An adversarial example x” can be formed by making
label-preserving modifications to x such that yx # y. Our results demonstrate that con-
trolled paraphrase generation with appropriate template selection produces far more valid

adversarial examples than backtranslation on sentiment analysis and entailment tasks.

6.5.1 Experimental setup

We evaluate our syntactically adversarial paraphrases on the Stanford Sentiment Tree-
bank (Socher et al., 2013, SST) and SICK entailment detection (Marelli et al., 2014). While
both are relatively small datasets, we select them because they offer different experimental
conditions: SST contains complicated sentences with high syntactic variance, while SICK al-

most exclusively consists of short, simple sentences. As a baseline, we compare the ten most
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No augmentation With augmentation

Model Task Validity Test Acc Dev Broken Test Acc Dev Broken

SCPN SST 77.1 83.1 41.8 83.0 31.4
NMT-BT  SST 68.1 83.1 20.2 82.3 20.0
scen  SICK 77.7 82.1 33.8 82.7 19.8
NMT-BT  SICK 81.0 82.1 20.4 82.0 11.2

Table 62: sCPN generates more legitimate adversarial examples than NMT-BT, shown by the results
of a crowdsourced validity experiment and the percentage of held-out examples that are
broken through paraphrasing. Furthermore, we show that by augmenting the training
dataset with syntactically-diverse paraphrases, we can improve the robustness of down-
stream models to syntactic adversaries (see “Dev Broken” before and after augmentation)
without harming accuracy on the original test set.

probable beams from NMT-BT to controlled paraphrases generated by scpN using ten tem-
plates randomly sampled from the template set described in Section 6.3.3.2 We also need
pretrained models for which to generate adversarial examples; we use the bidirectional
LSTM baseline for both SST and SICK outlined in Tai et al. (2015) since it is a relatively
simple architecture that has proven to work well for a variety of problems.'® Since the SICK
task involves characterizing the relationship between two sentences, for simplicity we only
generate adversarial examples for the first sentence and keep the second sentence fixed to

the ground truth.

6.5.2 Breaking pretrained models

For each dataset, we generate paraphrases for held-out examples and then run a pretrained
model over them."™ We consider a development example x broken if the original predic-
tion yy is correct, but the prediction y, for at least one paraphrase x’ is incorrect. For
SST, we evaluate on the binary sentiment classification task and ignore all phrase-level la-
bels (because our paraphrase models are trained on only sentences). Table 62 shows that
for both datasets, scPN breaks many more examples than NMT-BT. Moreover, as shown in
Table 63, NMT-BT’s paraphrases differ from the original example mainly by lexical substitu-

tions, while scPN often produces dramatically different syntactic structures.

9 We also experimented with the diverse beam search modification proposed by Li et al. (2016b) for NMT-BT
but found that it dramatically warped the semantics of many beams; crowdsourced workers rated 49% of its
outputs as o on the three-point scale.

10 We initialize both models using pretrained GloVe embeddings (Pennington et al., 2014) and set the LSTM
hidden dimensionality to 300.
11 Since the SICK development dataset is tiny, we additionally generate adversarial examples on its test set.
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6.5.3 Are the adversarial examples valid?

We have shown that we can break pretrained models with controlled paraphrases, but are
these paraphrases actually valid adversarial examples? After all, it is possible that the syn-
tactic modifications cause informative clauses or words (e.g., negations) to go missing. To
measure the validity of our adversarial examples, we turn again to crowdsourced exper-
iments. We ask workers to choose the appropriate label for a given sentence or sentence
pair (e.g., positive or negative for SST), and then we compare the worker’s judgment to the
original development example’s label. For both models, we randomly select 100 adversarial
examples and have three workers annotate each one. The results (Table 62) show that on
the more complex SST data, a higher percentage of scrN’s paraphrases are valid adversar-
ial examples than those of NMT-BT, which is especially encouraging given our model also

generates significantly more adversarial examples.

6.5.4 Increasing robustness to adversarial examples

If we additionally augment the training data of both tasks with controlled paraphrases, we
can increase a downstream model’s robustness to adversarial examples in the development
set. To quantify this effect, we generate controlled paraphrases for the training sets of SST
and SICK using the same templates as in the previous experiments. Then, we include these
paraphrases as additional training examples and retrain our biLSTM task models.”> As
shown by Table 62, training on scPN’s paraphrases significantly improves robustness to
syntactic adversaries without affecting accuracy on the original test sets. One important
caveat is that this experiment only shows robustness to the set of templates used by scrn;
in real-world applications, careful template selection based on the downstream task, along
with using a larger set of templates, is likely to increase robustness to less constrained
syntactic adversaries. Augmentation with NMT-BI’s paraphrases increases robustness on
SICK, but on SST, it degrades test accuracy without any significant gain in robustness; this

is likely due to its lack of syntactic variation compared to scpn.
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template

original

6.6 QUALITATIVE ANALYSIS

paraphrase

(S(ADVP) (NP) (VP))

(S(PP) (,) (NP) (VP))

(s(s)(,)(ccy(s))

moody , heartbreaking , and filmed
in a natural , unforced style that
makes its characters seem entirely
convincing even when its script is
not .

there is no pleasure in watching a
child suffer .

the characters are interesting and
often very creatively constructed
from figure to backstory .

so he ’s filmed in a natural , un-
forced style that makes his char-
acters seem convincing when his
script is not .

in watching the child suffer , there
is no pleasure .

the characters are interesting , and
they are often built from memory to
backstory .

every nanosecond of the the new
guy reminds you that you could be
doing something else far more plea-
surable .

harris commands the screen , using

his frailty to suggest the ravages of
a life of corruption and ruthlessness

each nanosecond from the new guy
reminds you that you could do
something else much more enjoy-
able .

harris commands the screen , using
his weakness to suggest the ravages
of life of corruption and reckless-

133

ness .

Table 63: Adversarial sentiment examples generated by scrN (top) and NMT-BT (bottom). The pre-
dictions of a pretrained model on the original sentences are correct (red is negative, blue
is positive), while the predictions on the paraphrases are incorrect. The syntactically con-
trolled paraphrases of scpN feature more syntactic modification and less lexical substitu-
tion than NMT-BT’s backtranslated outputs.

6.6 QUALITATIVE ANALYSIS

In the previous section, we quantitatively evaluated the scrN’s ability to produce valid
paraphrases and adversarial examples. Here, we take a look at actual sentences generated
by the model. In addition to analyzing scrN’s strengths and weaknesses compared to NMT-
BT, we examine the differences between paraphrases generated by various configurations
of the model to determine the impact of each major design decision (e.g., templates instead
of full parses).

SYNTACTIC MANIPULATION:  Table 61 demonstrates scPN’s ability to perform syntac-
tic manipulation, showing paraphrases for two sentences generated using different tem-
plates. Many of the examples exhibit complex transformations while preserving both the
input semantics and grammaticality, even when the target syntax is very different from that
of the source (e.g., when converting a declarative to question). However, the failure cases

demonstrate that not every template results in a valid paraphrase, as nonsensical outputs

12 We did not experiment with more complex augmentation methods (e.g., downweighting the contribution of
paraphrased training examples to the loss).
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are sometimes generated when trying to squeeze the input semantics into an unsuitable

target form.

ADVERSARIAL EXAMPLES:  Table 63 shows that scPN and NmT-BT differ fundamentally
in the type of adversaries they generate. While sceN mostly avoids lexical substitution in
favor of making syntactic changes, NMT-BT does the opposite. These examples reinforce the
results of the experiment in Section 6.4.2, which demonstrates NMT-BT’s tendency to stick
to the input syntax. While scpN is able to break more validation examples than NMT-BT, it
is alarming that even simple lexical substitution can break such a high percentage of both
datasets we tested.

Ebrahimi et al. (2017) observe a similar phenomenon with HotFlip, their gradient-based
substitution method for generating adversarial examples. While NMT-BT does not receive
signal from the downstream task like HotFlip, it also does not require external constraints
to maintain grammaticality and limit semantic divergence. As future work, it would be in-
teresting to provide this downstream signal to both NmMT-BT and scrN; for the latter, perhaps
this signal could guide the template selection process, which is currently fixed to a small,

finite set.

TEMPLATES VS. GOLD PARSES:  Why does the level of syntactic control decrease when
we feed scPN parses generated from templates instead of gold parses (Table 60)? The first
two examples in Table 64 demonstrate issues with the templated approach. In the first
example, the template is not expressive enough for the parse generator to produce slots for
the highlighted clause. A potential way to combat this type of issue is to dynamically define
templates based on factors such as the length of the input sentence. In the second example,
a parsing error results in an inaccurate template which in turn causes scrN to generate
a semantically-divergent paraphrase. The final two examples show instances where the
templated model performs equally as well as the model with gold parses, displaying the

capabilities of our parse generator.

REMOVING SYNTACTIC CONTROL:  To examine the differences between syntactically
controlled and uncontrolled paraphrase generation systems, we train an sceN without in-
cluding z, the attention-weighted average of the encoded parse, in the decoder input. This
uncontrolled configuration produces outputs that are very similar to its inputs, often identi-

cal syntactically with minor lexical substitution. Concretely, the uncontrolled scrN produces
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template (S(CC) (S) (,) (NP) (ADVP) (VP))
original damian encouraged me , criticized , he ... he always made me go a little deeper .
scpn parse but damian , he supported me , he told me, he always made me go a little deeper .

scpn template

but damian supported me , he always made me go a little deeper .

template (S(S) (,) (NP)(VP))

original zacharias did n’t deserve to die , grishanov thought , and he was aware of the huge irony of his
situation

scpn parse zacharias did not deserve to die , grishanov told himself , realizing the greatest irony of all .

scpn template

zacharias did not deserve to die , he was aware of the great irony of his situation .

template S(S)(,)(S))
original give me some water , my lips are dry , and i shall try to tell you .
scpn parse give me some water , i have just a dry mouth .

scpn template

give me some water , my lips are dry .

template (S(NP) (,) (ADVP) (,) (VP))
original in the meantime , the house is weakened , and all its old alliances and deals are thrown into doubt .
scpn parse the house , meanwhile , is weakening , which will be all of its old alliances and business .

scpn template

the house , meanwhile , is weakened , and its old alliances and deals are thrown into doubt .

Table 64: Examples from PARANMT-50M comparing the output of two scPN configurations, one with
gold target parses (SCPN parse) and one with parses generated from templates (SCPN tem-
plate), where templates are the top two levels of the gold parses. The first two examples

demonstrate issues with missing information caused by inexpressive templates and pars-

ing errors, respectively. The remaining examples, in which both configurations produce
syntactically similar paraphrases, showcase the ability of the parse generator to produce
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viable full parses.

a paraphrase with the same template as its input 38.6% of the time, compared to NMT-BT’s

28.7% (Section 6.4.2).13

6.7 RELATED WORK

Paraphrase generation (Androutsopoulos and Malakasiotis, 2010; Madnani and Dorr, 2010)
has been tackled using many different methods, including those based on hand-crafted
rules (McKeown, 1983), synonym substitution (Bolshakov and Gelbukh, 2004), machine
translation (Quirk et al.,, 2004), and, most recently, deep learning (Prakash et al., 2016;
Mallinson et al., 2017; Dong et al., 2017). Our syntactically controlled setting also relates
to controlled language generation tasks in which one desires to generate or rewrite a sen-
tence with particular characteristics. We review related work in both paraphrase generation

and controlled language generation below.

13 A configuration without the copy mechanism copies input syntax even more, with a 47.7% exact template
match.
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6.7.1  Data-driven paraphrase generation

Madnani and Dorr (2010) review data-driven methods for paraphrase generation, noting
two primary families: template-based and translation-based. The first family includes ap-
proaches that use hand-crafted rules (McKeown, 1983), thesaurus-based substitution (Bol-
shakov and Gelbukh, 2004; Zhang and LeCun, 2015), lattice matching (Barzilay and Lee,
2003), and template-based “shake & bake” paraphrasing (Carl et al., 2005). These methods
often yield grammatical outputs but they can be limited in diversity.

The second family includes methods that rewrite the input using methods based on
parallel text (Bannard and Callison-Burch, 2005), machine translation (Quirk et al., 2004;
Napoles et al., 2016; Suzuki et al., 2017), or related statistical techniques (Zhao et al., 2009).
Of particular relevance to our work are methods that incorporate syntax to improve fluency
of paraphrase output. Callison-Burch (2008) constrains paraphrases to be the same syntactic
type as the input, though he was focused on phrase-level, not sentential, paraphrasing.
Pang et al. (2003) learn finite-state automata from translation pairs that generate syntactic
paraphrases, though this requires multiple translations into the same language and cannot
be used to generate paraphrases outside this dataset. Shen et al. (2006) extend this to deeper
syntactic analysis. All of these approaches use syntax to improve grammaticality, which is
handled by our decoder language model.

Recent efforts involve neural methods. Iyyer et al. (2014) generate paraphrases with de-
pendency tree recursive autoencoders by randomly selecting parse trees at test time. Li
et al. (2017) generate paraphrases using deep reinforcement learning. Gupta et al. (2017)
use variational autoencoders to generate multiple paraphrases. These methods differ from
our approach in that none offer fine-grained control over the syntactic form of the para-

phrase.

6.7.2  Controlled language generation

There is growing interest in generating language with the ability to influence the topic,
style, or other properties of the output.

Most related to our methods are those based on syntactic transformations, like the tree-
to-tree sentence simplification method of Woodsend and Lapata (2011) based on quasi-
synchronous grammar (Smith and Eisner, 2006b). Our method is more general since we do

not require a grammar and there are only soft constraints. Perhaps the closest to the pro-
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posed method is the conditioned recurrent language model of Ficler and Goldberg (2017),
which produces language with user-selected properties such as sentence length and formal-
ity but is incapable of generating paraphrases.

For machine translation output, Niu et al. (2017) control the level of formality while
Sennrich et al. (2016a) control the level of politeness. For dialogue, Li et al. (2016a) affect
the output using speaker identity, while Wang et al. (2017) develop models to influence
topic and style of the output. Shen et al. (2017) perform style transfer on non-parallel texts,
while Guu et al. (2017) generate novel sentences from prototypes; again, these methods are
not necessarily seeking to generate meaning-preserving paraphrases, merely transformed

sentences that have an altered style.

6.8 CONCLUSION

We propose scPN, an encoder-decoder model for syntactically controlled paraphrase genera-
tion, and show that it is an effective way of generating adversarial examples. Using a parser,
we label syntactic variation in large backtranslated data, which provides training data for
scpN. The model exhibits far less lexical variation than existing uncontrolled paraphrase
generation systems, instead preferring purely syntactic modifications. It is capable of gen-
erating adversarial examples that fool pretrained NLP models. Furthermore, by training on

such examples, we increase the robustness of these models to syntactic variation.
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APPLICATION: NEURAL MACHINE TRANSLATION

This is our second chapter on applications of our work in representation learning. In this
chapter, we use our paraphrastic representations, along with a proposed length penalty, for
fine-tuning neural machine translation systems using minimum risk training. The conven-
tional approach is to use BLEU (Papineni et al., 2002), since that is what is commonly used
for evaluation. However, we found that using an embedding model to evaluate similarity
allows the range of possible scores to be continuous and, as a result, introduces fine-grained
distinctions between similar translations. This allows for partial credit, reduces the penalties
on semantically correct but lexically different translations. and provides more informative
gradients during the optimization process. The result is better performance on both human
evaluations and BLEU score, along with faster convergence during training. This is the first
work on fine-tuning neural machine translation models with a semantic similarity reward

based on embeddings, and we see this as becoming a trend in the future.

7.1 INTRODUCTION

In neural machine translation (NMT) and other natural language generation tasks, it is com-
mon practice to improve likelihood-trained models by further tuning their parameters to
explicitly maximize an automatic metric of system accuracy — for example, BLEU (Papineni
et al., 2002) or METEOR (Denkowski and Lavie, 2014). Directly optimizing accuracy met-
rics involves backpropagating through discrete decoding decisions, and thus is typically
accomplished with structured prediction techniques like reinforcement learning (Ranzato
et al., 2016), minimum risk training (Shen et al., 2016), and other specialized methods (Wise-
man and Rush, 2016). Generally, these methods work by repeatedly generating a translation
under the current parameters (via decoding, sampling, or loss-augmented decoding), com-
paring the generated translation to the reference, receiving some reward based on their
similarity, and finally updating model parameters to increase future rewards.

In the vast majority of work, discriminative training has focused on optimizing BLEU

(or its sentence-factored approximation). This is not surprising given that BLEU is the stan-
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dard metric for system comparison at test time. However, BLEU is not without problems
when used as a training criterion. Specifically, since BLEU is based on n-gram precision,
it aggressively penalizes lexical differences even when candidates might be synonymous
with or similar to the reference: if an n-gram does not exactly match a sub-sequence of the
reference, it receives no credit. While the pessimistic nature of BLEU differs from human
judgments and is therefore problematic, it may, in practice, pose a more substantial prob-
lem for a different reason: BLEU is difficult to optimize because it does not assign partial
credit. As a result, learning cannot hill-climb through intermediate hypotheses with high
synonymy or semantic similarity, but low n-gram overlap. Furthermore, where BLEU does
assign credit, the objective is often flat: a wide variety of candidate translations can have
the same degree of overlap with the reference and therefore receive the same score. This,
again, makes optimization difficult because gradients in this region give poor guidance.

In this chapter we propose SIMILE, a simple alternative to matching-based metrics like
BLEU for use in discriminative NMT training. As a new reward, we introduce a measure
of semantic similarity between the generated hypotheses and the reference translations evaluated
by an embedding model trained on a large external corpus of paraphrase data. Using an
embedding model to evaluate similarity allows the range of possible scores to be continu-
ous and, as a result, introduces fine-grained distinctions between similar translations. This
allows for partial credit and reduces the penalties on semantically correct but lexically dif-
ferent translations. Moreover, since the output of SIMILE is continuous, it provides more
informative gradients during the optimization process by distinguishing between candi-
dates that would be similarly scored under matching-based metrics like BLEU. Lastly, we
show in our analysis that SIMILE has an additional benefit over BLEU by translating words
with heavier semantic content more accurately.

To define an exact metric, we reference the burgeoning field of research aimed at measur-
ing semantic textual similarity (STS) between two sentences (Le and Mikolov, 2014; Pham
et al., 2015; Wieting et al., 2016b; Hill et al., 2016; Conneau et al., 2017; Pagliardini et al.,
2017). Specifically, we start with the method of Wieting and Gimpel (2018), which learns
paraphrastic sentence representations using a contrastive loss and a parallel corpus induced
by backtranslating bitext. Wieting and Gimpel showed that simple models that average
word or character trigram embeddings can be highly effective for semantic similarity. The
strong performance, domain robustness, and computationally efficiency of these models
make them good candidates for experimenting with incorporating semantic similarity into

neural machine translation. For the purpose of discriminative NMT training, we augment
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these basic models with two modifications: we add a length penalty to avoid short transla-
tions, and calculate similarity by composing the embeddings of subword units, rather than
words or character trigrams. We find that using subword units also yields better perfor-
mance on the STS evaluations and is more efficient than character trigrams.

We conduct experiments with our new metric on the 2018 WMT (Bojar et al., 2018) test
sets, translating four languages, Czech, German, Russian, and Turkish, into English. Results
demonstrate that optimizing SIMILE during training results in not only improvements in
the same metric during test, but also in consistent improvements in BLEU. Further, we
conduct a human study to evaluate system outputs and find significant improvements in
human-judged translation quality for all but one language. Finally, we provide an analysis
of our results in order to give insight into the observed gains in performance. Tuning for
metrics other than BLEU has not (to our knowledge) been extensively examined for NMT,
and we hope this paper provides a first step towards broader consideration of training

metrics for NMT.

7.2 SIMILE REWARD FUNCTION

Since our goal is to develop a continuous metric of sentence similarity, we borrow from
a line of work focused on domain agnostic semantic similarity metrics. We motivate our
choice for applying this line of work to training translation models in Section 2.1. Then in
Section 2.2, we describe how we train our similarity metric (SIM), how we compute our

length penalty, and how we tie these two terms together to form SimiLE.

7.2.1  SIMILE

Our SIMILE metric is based on the sentence similarity metric of Wieting and Gimpel (2018),
which we choose as a starting point because it has state-of-the-art unsupervised perfor-
mance on a host of domains for semantic textual similarity." Being both unsupervised and
domain agnostic provide evidence that the model generalizes well to unseen examples. This
is in contrast to supervised methods which are often imbued with the bias of their training

data.

In semantic textual similarity the goal is to produce scores that correlate with human judgments on the degree
to which two sentences have the same semantics. In embedding based models, including the models used in
this paper, the score is produced by the cosine of the two sentence embeddings.
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7.2 SIMILE REWARD FUNCTION

Model 2012 | 2013 | 2014 | 2015 | 2016
SIM (300 dim.) 69.2 | 60.7 | 77.0 | 80.1 | 78.4
SiMILE 70.1 | 59.8 | 74.7 | 79.4 | 77.8
Wieting and Gimpel (2018) | 67.8 | 62.7 | 77.4 | 80.3 | 78.1
BLEU 58.4 | 37.8 | 55.1 | 67.4 | 61.0
BLEU (symmetric) 582 | 39.1 | 56.2 | 67.8 | 61.2
METEOR 53.4 | 47.6 | 63.7 | 68.8 | 61.8
METEOR (symmetric) 53.8 | 482 | 65.1 | 70.0 | 62.7
STS 1% Place 64.8 | 62.0 | 74.3 | 79.0 | 77.7
STS 2" Place 63.4 | 59.1 | 742 | 78.0 | 75.7
STS 3™ Place 64.1 | 583 | 743 | 77.8 | 75.7

Table 65: Comparison of the semantic similarity model used in this paper (SIM) with a number of
strong baselines including the model of (Wieting and Gimpel, 2018) and the top 3 perform-
ing STS systems for each year. Symmetric refers to taking the average score of the metric
with each sentence having a turn in the reference position.

MODEL.  Our sentence encoder g averages 300 dimensional subword unit* embeddings
to create a sentence representation. The similarity of two sentences, SIM, is obtained by

encoding both with g and then calculating their cosine similarity.

TRAINING.  We follow Wieting and Gimpel (2018) in learning the parameters of the
encoder g. The training data is a set S of paraphrase pairs3 (s,s’) and we use a margin-

based loss:

(s, s’) =max (0,8 —cos(g(s),g(s’))

+cos(g(s), g(t)))

where 0 is the margin, and t is a negative example. The intuition is that we want the two texts
to be more similar to each other than to their negative examples. To select t, we choose the
most similar sentence in a collection of mini-batches called a mega-batch.

Finally, we note that SIM is robust to domain, as shown by its strong performance on the
STS tasks which cover a broad range of domains. We note that SIM was trained primarily

on subtitles, while we use news data to train and evaluate our NMT models. Despite this

We use sentencepiece which is available at https://github.com/google/sentencepiece. We limited the vo-
cabulary to 30,000 tokens.

We use 16.77 million paraphrase pairs filtered from the ParaNMT corpus (Wieting and Gimpel, 2018). The
corpus is filtered by a sentence similarity score based on the PARAGRAM-PHRASE from Wieting et al. (2016b)
and word trigrams overlap, which is calculated by counting word trigrams in the reference and translation,
then dividing the number of shared trigrams by the total number in the reference or translation, whichever
has fewer. These form a balance between semantic similarity (similarity score) and diversity (trigram overlap).
We kept all sentences in ParaNMT with a similarity score > 0.5 and a trigram overlap score < 0.2. Recently,
in (Wieting et al., 2019b) it has been shown that strong performance on semantic similarity tasks can also be
achieved using bitext directly without the need for backtranslation.
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Model newstest2015 | newstest2016
SIM 58.2 53.1
SimILE 58.4 53.2
BLEU 53.6 50.0
METEOR 58.9 57.2

Table 66: Comparison of models on machine translation quality evaluation datasets. Scores are in
Spearman’s p.

domain switch, we are able to show improved performance over a baseline using BLEU,

providing more evidence of the robustness of this method.

LENGTH PENALTY.  Our initial experiments showed that when using just the similarity
metric, SIM, there was nothing preventing the model from learning to generate long sen-
tences, often at the expense of repeating words. This is the opposite case from BLEU, where
the n-gram precision is not penalized for generating too few words. Therefore, in BLEU, a
brevity penalty (BP) was introduced to penalize sentences when they are shorter than the

reference. The penalty is:

]

BP(r,h) =¢' W

where 1 is the reference and h is the generated hypothesis, with |r| and |h| their respective
lengths. We experimented with modifying this penalty to only penalize generated sentences
that are longer than the target (so we switch r and h in the equation). However, we found
that this favored short sentences. We instead penalize a generated sentence if its length

differs at all from that of the target. Therefore, our length penalty is:

max(|r],[h])

LP(r,h) = ¢!~ min(r D)

SIMILE. Our final metric, which we refer to as SIMILE, is defined as follows:

SiMILE = LP(r, h)*SIM(r, h)

In initial experiments we found that performance could be improved slightly by lessening

the influence of LP, so we fix « to be 0.25.
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7.3 MACHINE TRANSLATION PRELIMINARIES

7.2.2 Motivation

There is a vast literature on metrics for evaluating machine translation outputs automatically
(For instance, WMT metrics task papers like Bojar et al. (2017)). In this paper we demon-
strate that training towards metrics other than BLEU has significant practical advantages in
the context of NMT. While this could be done with any number of metrics, in this paper we
experiment with a single semantic similarity metric, and due to resource constraints leave a
more extensive empirical comparison of other evaluation metrics to future work. That said,
we designed SIMILE as a semantic similarity model with high accuracy, domain robustness,
and computational efficiency to be used in minimum risk training for machine translation.

While semantic similarity is not an exact replacement for measuring machine translation
quality, we argue that it serves as a decent proxy at least as far as minimum risk training
is concerned. To test this, we compare the similarity metric term in StmiLE (SIM) to BLEU
and METEOR on two machine translation metric 5> and report their correlation with human
judgments in Table 66. Machine translation quality measures account for more than seman-
tics as they also capture other factors like fluency. A manual error analysis and the fact that
the machine translation correlations in Table 66 are close, but the semantic similarity corre-
lations® in Table 65 are not, suggest that the difference between METEOR and SIM largely
lies in fluency. However, not capturing fluency is something that can be ameliorated by
adding a down-weighted maximum-likelihood (MLE) loss to the minimum risk loss. This

was done by Edunov et al. (2018), and we use this in our experiments as well.

7.3 MACHINE TRANSLATION PRELIMINARIES

ARCHITECTURE.  Our model and optimization procedure are based on prior work on
structured prediction training for neural machine translation (Edunov et al., 2018) and are

implemented in Fairseq.” Our architecture follows the paradigm of an encoder-decoder

4 SMILE, including time to segment the sentence, is about 20 times faster than METEOR when code is executed
on a GPU (NVIDIA GeForce GTX 1080).

5 We used the segment level data, where English is the target language, from newstest2015 and newstest2016
available at http://statmt.org/wmt18/metrics-task.html. The former contains 6 language pairs and the latter
4.

6 Evaluation is on the SemEval Semantic Textual Similarity (STS) datasets from 2012-2016 (Agirre et al., 2012,
2013, 2014, 2015, 2016). In the SemEval STS competitions, teams create models that need to work well on
domains both represented in the training data and hidden domains revealed at test time. Our model and those
of Wieting and Gimpel (2018), in contrast to the best performing STS systems, do not use any manually-labeled
training examples nor any other linguistic resources beyond the ParaNMT corpus (Wieting and Gimpel, 2018).

7 https://github.com/pytorch/fairseq
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7.3 MACHINE TRANSLATION PRELIMINARIES

with soft attention (Bahdanau et al., 2015) and we use the same architecture for each lan-
guage pair in our experiments. We use gated convolutional encoders and decoders (Gehring
et al., 2017). We use 4 layers for the encoder and 3 for the decoder, setting the hidden state
size for all layers to 256, and the filter width of the kernels to 3. We use byte pair encod-
ing (Sennrich et al., 2016b), with a vocabulary size of 40,000 for the combined source and

target vocabulary. The dimension of the BPE embeddings is set to 256.

OBJECTIVE FUNCTIONS. Following (Edunov et al., 2018), we first train models with
maximume-likelihood with label-smoothing (L1okrs) (Szegedy et al., 2016; Pereyra et al.,,
2017). We set the confidence penalty of label smoothing to be 0.1. Next, we fine-tune the
model with a weighted average of minimum risk training (Lgisk) (Shen et al., 2016) and

(L1okLs), Where the expected risk is defined as:

p(ulx)
2 weup P/

LRisk = Z cost(t, u)
ucU(x)
where u is a candidate hypothesis, U(x) is a set of candidate hypotheses, and t is the

reference. Therefore, our fine-tuning objective becomes:

Lweighted = YLTokLs + (1 —v) Lrisk

We tune vy from the set {0.2,0.3,0.4} in our experiments. In minimum risk training, we aim
to minimize the expected cost. In our case that is 1 — BLEU(t, h) or 1 —SiMILE(t, h) where
t is the target and h is the generated hypothesis. As is commonly done, we use a smoothed
version of BLEU by adding 1 to all n-gram counts except unigram counts. This is to prevent
BLEU scores from being overly sparse (Lin and Och, 2004). We generate candidates for
minimum risk training from n-best lists with 8 hypotheses and do not include the reference

in the set of candidates.

OPTIMIZATION.  We optimize our models using Nesterov’s accelerated gradient
method (Sutskever et al., 2013) using a learning rate of 0.25 and momentum of 0.99. Gradi-
ents are renormalized to norm o.1 (Pascanu et al., 2012). We train the L1os objective for
200 epochs and the combined objective, Lweighted, for 10. Then for both objectives, we anneal
the learning rate by reducing it by a factor of 10 after each epoch until it falls below 10~4.

Model selection is done by selecting the model with the lowest validation loss on the valida-
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7.4 EXPERIMENTS

Lang. | Train | Valid | Test
cs-en | 218,384 | 6,004 | 2,983

de-en | 284,286 | 7,147 | 2,998

ru-en 235,159 7,231 3,000
tr-en | 207,678 | 7,008 | 3,000

Table 67: Number of sentence pairs in the training/validation/test sets for all four languages.

tion set. To select models across the different hyperparameter settings, we chose the model

with the highest performance on the validation set for the evaluation being considered.

7.4 EXPERIMENTS

7.4.1 Data

de-en cs-en ru-en tr-en
Model | BLEU SIM BLEU SIM BLEU SIM BLEU SIM
MLE 27.52 76.19 17.02 67.55 17.92 69.13 14.47 65.97
BLEU | 27.92% | 76.28% | 1738 | 67.87* 17.97 69.29% | 15.10" | 66.53
StmiLE | 28.561 | 775211 | 17.60™F | 68.89TF | 18.44T | 70.69't | 15.47TF | 67.76T*
Half 28.25MF | 76.921 | 17.521F | 68.26TF | 18.26TF | 70.321 | 15401 | 67.141F

Table 68: Results on translating four languages to English for MLE, BLEU, SimMILE and Half. { de-
notes statistical significance (p < 0.05) over BLEU and I denotes statistical significance over
MLE. Statistical significance was computed using paired bootstrap resampling (Koehn,
2004).

Training models with minimum risk is expensive, but we wanted to evaluate in a difficult,
realistic setting using a diverse set of languages. Therefore, we experiment on four language
pairs: Czech (cs-en), German (de-en), Russian (ru-en), and Turkish (tr-en) translating to
English (en). For training data, we use News Commentary v13® provided by WMT (Bojar
et al., 2018) for cs-en, de-en, and ru-en. For training the Turkish system, we used the WMT
2018 parallel data which consisted of the SETIMES2 corpus. The validation and develop-
ment sets for de-en, cs-en, and ru-en were the WMT 2016 and WMT 2017 validation sets.

For tr-en, the validation set was the WMT 2016 validation set and the WMT 2017 validation

and test sets. Test sets for each language were the official WMT 2018 test sets.

8 http://data.statmt.org/wmtl8/translation-task/training-parallel-nc-v13.tgz
9 http://opus.lingfil.uu.se/SETIMES2.php
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7.4.2 Automatic Evaluation

We first use corpus-level BLEU and the corpus average SIM score to evaluate the outputs
of the different experiments. It is important to note that in this case, SIM is not the same
as SIMILE. SIM is only the semantic similarity component of SiMILE and therefore lacks the
length penalization term. We used this metric to estimate the degree to which the semantic
content of a translation and its reference overlap. When evaluating semantic similarity, we
find that SIM outperforms SIMILE marginally as shown in Table 65.

We compare systems trained with 4 objectives:

* MLE: Maximum likelihood with label smoothing
¢ BLEU: Minimum risk training with 1-BLEU as the cost
¢ SiMiLE: Minimum risk training with 1-SIMILE as the cost

¢ Half: Minimum risk training with a new cost that is half BLEU and half StmMILE: 1 —
T (BLEU + SimiLE)

The results are shown in Table 68. From the table, we see that using SIMILE performs the
best when using BLEU and SIM as evaluation metrics for all four languages. It is interesting
that using SIMILE in the cost leads to larger BLEU improvements than using BLEU alone,
the reasons for which we examine further in the following sections. It is important to em-
phasize that increasing BLEU was not the goal of our proposed method, human evaluations
were our target, but this is a welcome surprise. Similarly, using BLEU as the cost function
leads to large gains in SIM, though these gains are not as large as when using SIMILE in

training.

7.4.3 Human Evaluation

We also perform human evaluation, comparing MLE training with minimum risk training
using SIMILE and BLEU as costs. We selected 200 sentences along with their translation
from the respective test sets of each language. The sentences were selected nearly randomly
with the only constraints that they be between 3 and 25 tokens long and also that the
outputs for SIMILE and BLEU were not identical. The translators then assigned a score
from o-5 based on how well the translation conveyed the information contained in the

reference.™®

10 Wording of the evaluation is available in Section 7.10.1.



7.5 QUANTITATIVE ANALYSIS

Avg. Score
Lang. | MLE | BLEU | SimiLE
cs-en | 0.98 0.90 1.02f

de-en | 0.93 0.85 1.001
ru-en | 1.22 1.21 1.3117

tr-en | 0.98" | 1.03* | 0.78

Table 69: Average human ratings on 200 sentences from the test set for each of the respective lan-
guages. 1 denotes statistical significance (p < 0.05) over BLEU, except for the case of
cs-en, where p = 0.06. { denotes statistical significance over MLE, and * denotes statisti-
cal significance over SIMILE. Statistical significance was computed using paired bootstrap
resampling.

From the table, we see that minimum risk training with SIMILE as the cost scores the
highest across all language pairs except Turkish. Turkish is also the language with the
lowest test BLEU (See Table 68). An examination of the human-annotated outputs shows
that in Turkish (unlike the other languages) repetition was a significant problem for the
SIMILE system in contrast to MLE or BLEU. We hypothesize that one weakness of SIMILE
may be that it needs to start with some minimum level of translation quality in order to be
most effective. The biggest improvement over BLEU is on de-en and ru-en, which have the

highest MLE BLEU scores in Table 68 which further lends credence to this hypothesis.

7.5 QUANTITATIVE ANALYSIS

We next analyze our model using the validation set of the de-en data unless stated other-
wise. We chose this dataset for the analysis since it had the highest MLE BLEU scores of

the languages studied.

7.5.1 Partial Credit

We analyzed the distribution of the cost function for both SiMILE and BLEU on the de-en
validation set before any fine-tuning. Again, using an n-best list size of 8, we computed the
cost for all generated translations and plotted their histogram in Figure 11. The plots show
that the distribution of scores for SIMILE and BLEU are quite different. Both distributions
are not symmetrical Gaussian, however the distribution of BLEU scores is significantly more
skewed with much higher costs. This tight clustering of costs provides less information

during training.

147



7.5 QUANTITATIVE ANALYSIS

Cost Distribution of SimiLe and BLEU
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Figure 11: Distribution of scores for SiMILE and BLEU.

Next, for all n-best lists, we computed all differences between scores of the hypotheses in
the beam. Therefore, for a beam size of 8, this results in 28 different scores. We found that
of the 86,268 scores, the difference between scores in an n-best list is > 0 99.0% of the time
for SIMILE, but 85.1% of the time for BLEU. The average difference is 4.3 for BLEU and 4.8

for StmiLE, showing that SIMILE makes finer grained distinctions among candidates.

7.5.2  Validation Loss

We next analyze the validation loss during training of the de-en model for both using
SimiLE and BLEU as costs. We use the hyperparameters of the model with the highest BLEU
on the validation set for model selection. Since the distributions of costs vary significantly
between SiMILE and BLEU, with BLEU having much higher costs on average, we compute
the validation loss with respect to both cost functions for each of the two models.

In Figure 12, we plot the risk objective for the first 10 epochs of training. In the top plot,
we see that the risk objective for both BLEU and SiMILE decreases much faster when using
SIMILE to train than BLEU. The expected BLEU also reaches a significantly lower value on
the validation set when training with SiMILE. The same trend occurs in the lower plot, this

time measuring the expected SIMILE cost on the validation set.
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Validation Loss Comparion Using SimiLe or BLEU Cost
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Figure 12: Validation loss comparison for SIMILE and BLEU. The top plot shows the expected BLEU
cost when training with BLEU and SmmiLE. The bottom plot shows the expected StmiLE
cost when training with BLEU and SimiLE.

From these plots, we see that optimizing with SIMILE results in much faster training. It
also reaches a lower validation loss, and from Table 68, we’ve already shown that the StmMILE
and BLEU on the test set are higher for models trained with SimiLE. To hammer home
the point at how much faster the models trained with SIMILE reach better performance,
we evaluated after just 1 epoch of training and found that the model trained with BLEU
had SIM/BLEU scores of 86.71/27.63 while the model trained with StmiLE had scores of
87.14/28.10. A similar trend was observed in the other language pairs as well, where the
validation curves show a much larger drop-off after a single epoch when training with

SimiLE than with BLEU.

7.5.3  Effect of n-best List Size

As mentioned in Section 7.3, we used an n-best list size of 8 in our minimum risk training
experiments. In this section, we train de-en translation models with various n-best list sizes
and investigate the relationship between beam size and test set performance when using
SmMiLE or BLEU as a cost. We hypothesize that since BLEU is not as fine-grained a metric as
SIMILE, expanding the number of candidates would close the gap between BLEU and Sim-

ILE as BLEU would have access to a more candidates with more diverse scores. The results
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The Effect of Beam Width on BLEU/SIM
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Figure 13: The relationship between n-best list size and performance as measured by average SIM
score or corpus-level BLEU when training using StmiLE or BLEU as a cost.

Lang./Bucket | cs-en A | de-en A | ru-en A| tr-en A | Avg.
1 0.1 0.8 0.2 0.1 0.30
2-5 1.2 0.6 0.0 0.2 0.50
6-10 0.4 0.7 1.4 -0.3 0.55
11-100 0.2 0.6 0.6 0.4 0.45
101-1000 -0.3 0.3 0.4 0.2 0.15
1001+ -0.2 0.5 0.4 -0.0 0.08
DET 0.1 -0.1 0.7 -0.5 0.03
PRON 0.6 -0.3 0.1 0.9 0.33
PREP 0.2 -0.3 0.5 0.5 0.24
CONJ 0.1 1.1 0.3 -0.5 0.27
PUNCT -0.4 1.3 0.8 -0.4 0.34
NUM 0.6 2.2 1.8 1.3 1.48
SYM 0.3 3.6 4.4 1.7 2.50
INT]J 3.2 -1.1 3.2 -2.6 0.66
VERB 0.2 0.3 0.0 0.0 0.13
AD]J 0.2 0.7 0.3 -0.2 0.25
ADV -0.2 0.1 0.8 0.7 0.34
NOUN 0.3 1.1 0.8 0.4 0.63
PRNOUN 0.5 1.2 0.6 0.4 0.65

Table 70: Difference in F1 score for various buckets of words. The values in the table are the differ-
ence between the F1 obtained when training using SIMILE and when training using BLEU
(positive values means SIMILE had a higher F1). The first part of the table shows F1 scores
across bins defined by word frequency on the test set. So words appearing only 1 time are
in the first row, between 2-5 times are in the second row, etc. The next part of the table
buckets words by coarse part-of-speech tags.
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Reference System Human  Translation
Score
. . BLEU 2 I will have a personal opinion on it.
I will tell you my personal . . .
opinion of him. SIMILE 4 I will tell my personal opinion about it.
MLE 2 I will have a personal view of it.
. ) BLEU 0 I was very different from me.
s 1t - . .
i? dmy case, 1t was Very Var giviLe 4 For me, it was very different.
MLE 1 In me, it was very different.
W " h | BLEU o We make the City of Life Life.
, ine the citv live-
abeiere fmaking the aly W giviLe 3 We make the city viable.
MLE 0 We make the City of Life.
The head of the White BLEU o The White House chairman, the White House chip called a
House said that the conver- ridiculous.
sation was ridiculous. SimILE 4 The White House’s head, he described the conversation as
ridiculous.
MLE 1 The White House chief, he called the White House, he called
a ridiculous.
Accordlmg g to the fform;: T BLEU 3 According to former party leaders, the debate has so far had
pz.irty ea ell:s, so far the to be "elevated to an expression of opinion without concrete
discussion “has been pre- "
. . arguments.
dominated by expressions )
of opinion based on emo- SimILE 5 In the view of former party leaders, the debate has been
tions, without concrete ar- based on emotions without specific arguments."
guments”. MLE 4 In the view of former party leaders, in the debate, has been
based on emotions without specific arguments."
. BLEU 4 We are talking about the 21st century: servants.
We are talking about the .
215t century: servants. SiMILE 1 In the 215t century, the 21st century is servants.
MLE 0 In the 215t century, the 21st century is servants.
BLEU 3 They also reminded them.
Prof. Dr. Caglar continued:  SrviLe 0 There are no Dr. Caglar.
MLE 3 They also reminded them.

Table 71: Translation examples for min-risk models trained with SimMILE and BLEU and our baseline
MLE model.

of our experiment on the are shown in Figure 13 and show that models trained with StmILE
actually improve in BLEU and SIM more significantly as n-best list size increases. This is
possibly due to small n-best sizes inherently upper-bounding performance regardless of
training metric, and SIMILE being a better measure overall when the n-best is sufficiently

large to learn.

7.5.4 Lexical F1

We next attempt to elucidate exactly which parts of the translations are improving due to
using SIMILE cost compared to using BLEU. We compute the F1 scores for target word
types based on their frequency and their coarse part-of-speech tag (as labeled by SpaCy*'*)

on the test sets for each language and show the results in Table 70.™

11 https://github.com/explosion/spaCy
12 We use compare-mt (Neubig et al., 2019) available at https://github.com/neulab/compare-mt.
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From the table, we see that training with SIMILE helps produce low frequency words
more accurately, a fact that is consistent with the part-of-speech tag analysis in the sec-
ond part of the table. Wieting and Gimpel (2017) noted that highly discriminative parts-of-
speech, such as nouns, proper nouns, and numbers, made the most contribution to the
sentence embeddings. Other works (Pham et al., 2015, Wieting et al., 2016b) have also
found that when training semantic embeddings using an averaging function, embeddings
that bear the most information regarding the meaning have larger norms. We also see that
these same parts-of-speech (nouns, proper nouns, numbers) have the largest difference in F1
scores between SimILE and BLEU. Other parts-of-speech like symbols and interjections have
high F1 scores as well, and words belonging to these classes are both relatively rare and
highly discriminative regarding the semantics of the sentence.’> In contrast, parts-of-speech
that in general convey little semantic information and are more common, like determiners,

show very little difference in F1 between the two approaches.

76 QUALITATIVE ANALYSIS

We show examples of the output of all three systems in Table 71 from the test sets, along
with their human scores which are on a o-5 scale. The first 5 examples show cases where
SMILE better captures the semantics than BLEU or MLE. In the first three, the StMILE model
adds a crucial word that the other two systems omit. This makes a significant difference in
preserving the semantics of the translation. These words include verbs (tells), prepositions
(For), adverbs (viable) and nouns (conversation). The fourth and fifth examples also show
how SiMILE can lead to more fluent outputs and is effective on longer sentences.

The last two examples are failure cases of using SIMILE. In the first, it repeats a phrase,
just as the MLE model does and is unable to smooth it out as the BLEU model is able to
do. In the last example, SIMILE again tries to include words (Dr. Caglar) significant to the
semantics of the sentence. However it misses on the rest of translation, despite being the

only system to include this noun phrase.

13 Note that in the data, interjections (INT]) often correspond to words like Yes and No which tend to be very
important regarding the semantics of the translation in these cases.



7.7 METRIC COMPARISON

System | Sentence BLEU | SIM | ABLEU | ASIM
Reference | Workers have begun to clean up in Roszke. - - - -

BLEU Workers are beginning to clean up work-| 29.15 | 69.12 - -
ers.

SimiILE In Roszke, workers are beginning to clean | 25.97 | 95.39 | -3.18 | 26.27

up.

Reference | All that stuff sure does take a toll. - - - -

BLEU None of this takes a toll. 25.98 | 54.52 - -

SiMILE All of this is certain to take its toll. 18.85 | 77.20 | -7.13 | 32.46

Reference | Another advantage is that they have fewer - - - -
enemies.

BLEU Another benefit : they have less enemies. 24.51 | 81.20 - -

SimiLE Another advantage: they have fewer ene-| 58.30 | 90.76 | 56.69 | 9.56
mies.

Reference | I don’t know how to explain - it’s really | - - - -
unique.

BLEU I do not know how to explain it - it is really | 39.13 | 97.42 - -
unique.

SimiLE I don’t know how to explain - it is really | 78.25 | 99.57 | 39.12 | 2.15
unique.

Table 72: Translation examples where the |ABLEU| —|ASIM]| statistic is among the highest and lowest
in the validation set. The top two rows show examples where the generated sentences have
similar sentence-level BLEU scores but quite different SIM scores. The bottom two rows
show the converse. Negative values indicate the SIMILE system had a higher score for that
sentence.

7.7 METRIC COMPARISON

We took all outputs of the validation set of the de-en data for our best StMILE and BLEU
models, as measured by BLEU validation scores, and we sorted the outputs by the following

statistic:

|ABLEU| — |ASIM]|

where BLEU in this case refers to sentence-level BLEU. Examples of some of the highest
and lowest scoring sentence pairs are shown in Table 72 along with the system they came
from (either trained with a BLEU cost or SIMILE cost).

The top half of the table shows examples where the difference in SIM scores is large, but
the difference in BLEU scores is small. From these examples, we see that when SIM scores
are very different, there is a difference in the meanings of the generated sentences. However,
when the BLEU scores are very close, this is not the case. In fact, in these examples, less

accurate translations have higher BLEU scores than more accurate ones. In the first sentence,
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an important clause is left out (in Roszke) and in the second, the generated sentence from
the BLEU system actually negates the reference, despite having a higher BLEU score than
the sentence from the SIMILE system.

Conversely, the bottom half of the table shows examples where the difference in BLEU
scores is large, but the difference in SIM scores is small. From these examples, we can see
that when BLEU scores are very different, the semantics of the sentence can still be pre-
served. However, the SIM score of these generated sentences with the references are close
to each other, as we would hope to see. These examples illustrate a well-known problem
with BLEU where synonyms, punctuation changes, and other small deviations from the
reference can have a large impact on the score. As can be seen from the examples, these are

less of a problem for the SIM metric.

7.8 RELATED WORK

The seminal work on training machine translation systems to optimize particular evalua-
tion measures was performed by Och (2003), who introduced minimum error rate training
(MERT) and used it to optimize several different metrics in statistical MT (SMT). This was
followed by a large number of alternative methods for optimizing machine translation sys-
tems based on minimum risk (Smith and Eisner, 2006a), maximum margin (Watanabe et al.,
2007), or ranking (Hopkins and May, 2011), among many others.

Within the context of SMT, there have also been studies on the stability of particular
metrics for optimization. Cer et al. (2010) compared several metrics to optimize for SMT,
finding BLEU to be robust as a training metric and finding that the most effective and most
stable metrics for training are not necessarily the same as the best metrics for automatic
evaluation. The WMT shared tasks included tunable metric tasks in 2011 (Callison-Burch
et al.,, 2011) and again in 2015 (Stanojevi¢ et al., 2015) and 2016 (Jawaid et al., 2016). In
these tasks, participants submitted metrics to optimize during training or combinations of
metrics and optimizers, given a fixed SMT system. The 2011 results showed that nearly
all metrics performed similarly to one another. The 2015 and 2016 results showed more
variation among metrics, but also found that BLEU was a strong choice overall, echoing the
results of Cer et al. (2010). We have shown that our metric stabilizes training for NMT more
than BLEU, which is a promising result given the limited success of the broad spectrum of

previous attempts to discover easily tunable metrics in the context of SMT.
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Some researchers have found success in terms of improved human judgments when train-
ing to maximize metrics other than BLEU for SMT. Lo et al. (2013) and Beloucif et al. (2014)
trained SMT systems to maximize variants of MEANT, a metric based on semantic roles.
Liu et al. (2011) trained systems using TESLA, a family of metrics based on softly matching
n-grams using lemmas, WordNet synsets, and part-of-speech tags. We have demonstrated
that our metric similarly leads to gains in performance as assessed by human annotators,
and our method has an auxiliary advantage of being much simpler than these previous
hand-engineered measures.

Shen et al. (2016) explored minimum risk training for NMT, finding that a sentence-level
BLEU score led to the best performance even when evaluated under other metrics. These
results differ from the usual results obtained for SMT systems, in which tuning to optimize
a metric leads to the best performance on that metric (Och, 2003). Edunov et al. (2018)
compared structured losses for NMT, also using sentence-level BLEU. They found risk to

be an effective and robust choice, so we use risk as well in this paper.

7.9 CONCLUSION

We have proposed SiMILE, an alternative to BLEU for use as a reward in minimum risk
training. We have found that StmILE not only outperforms BLEU on automatic evaluations,
it correlates better with human judgments as well. Our analysis also shows that using this
metric eases optimization and the translations tend to be richer in correct, semantically
important words.

This is the first time to our knowledge that a continuous metric of semantic similarity
has been proposed for NMT optimization and shown to outperform sentence-level BLEU,

and we hope that this can be the starting point for more research in this direction.

7.10 APPENDIX

7.10.1 Amnnotation Instructions

Below are the annotation instructions used by translators for evaluation.

¢ 0. The meaning is completely different or the output is meaningless

¢ 1. The topic is the same but the meaning is different
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2. Some key information is different
3. The key information is the same but the details differ
4. Meaning is essentially equal but some expressions are unnatural

5. Meaning is essentially equal and the two sentences are well-formed English
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This thesis describes our work in paraphrastic representations and their applications. We
have discussed multiple approaches for learning these embeddings, at the sub-word, word,
and sentence level. We also explored the cross-lingual setting, showing that our approaches
are effective for measuring similarity between sentences of different languages. We then
proposed our final models, the cross-lingual probabilistic source separation model BGT
and the multilingual probabilistic source separation model MGT. We show that the BGT is
the first deep architecture that generalizes better than simple methods. We then extended
this approach to the multilingual setting showing Lastly, we discussed applications of these
works including the first large (more than 50 millions examples) paraphrasing corpus, syn-
tactically controlled paraphrase generation, and semantic similarity rewards for fine-tuning
neural machine translation systems that outperform the prior convention (using BLEU).

There are many avenues for future work. For learning representations of sentences, none
of the models presented here made make use of large contextual models or incorporated
monolingual text in any way. Since monolingual text is more ubiquotous than parallel data
and is easier to obtain in more domains, this would be a fruitful avenue to explore. Lan-
guage model pretraining has shown to learn much about syntax, discourse, and semantics
— however since it only has a single view of the data, it likely has a weaker picture of para-
phrastic similarity than models trained with multiple views. This is similar to what has
occurred with word embeddings, where they were trained on monolingual task, but con-
flated relatedness and similarity, and could be greatly improved at paraphrastic similarity
using data with two views 3. There are many ways monolingual data could be incorpo-
rated, through simply using pretrained models to using objectives that account for both
monolingual and parallel data.

Another interesting avenue concerning sentence is new pretraining objectives for mono-
lingual text. In the previous paragraph we discussed incorporating language models as
pretrained models, but other objectives that focus more on the sentence level could lead to
even more significant gains in downstream tasks. One example of s possible route here is a

generative model for discourse where we aim to have latent variables that captures informa-
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tion for the next and previous sentences. Then the information shared between these views
could be seen as encoding the semantics of the central sentence — similar to the BGT, where
as the next-sentence and previous-sentence variable encode only the specific information
for generating the next and previous sentences.

Paraphrase generation is another area where there is a lot of potential for impactful fu-
ture work. In Section 6, we introduced controlled paraphrase generation via pre-specifying
the desired syntactic structure of the paraphrase. We found this to be effective for increas-
ing the robustness of NLP models and even lead to some small improvements through
data augmentation. Recently, we have shown through experiments that leveraging large
pre-trained language models such as GPT-2 (Radford et al.), can be trained on selected
diverse paraphrases to lead to a diverse paraphraser, generating paraphrases with vastly
different lexical choice and syntactic structure. While this is preliminary work, we think
models such as these hold huge promise for tasks like style transfer (since they can nor-
malize the text prior to generating in a desired style and data augmentation and robustness.
Open questions for this line of research include how to select the training data, what type of
pre-trained models should be used, and also what other strategies can be used to increase
paraphrase diversity (new diverse decoding techniques using paraphrase embeddings per-
haps?).

Lastly, in 7, we proposed using our paraphrase embeddings as a reward for fine-tuning
neural machine translation models, and found it to be highly effective in terms of improved
accuracy and convergence speed, even on state-of-the-art Transformer models. We view this
as just the start for this line of research as this was just a simple averaging model. While
some new evaluation metrics have been recently such as BertScore (Zhang et al., 2019)
which use a matching algorithm built on BERT, these have a weakness where they focus
on detecting sentences that deviate little from the reference and are not strong paraphrase
detection models. Perhaps the rich embedding approaches we propose above could lead
to even better rewards that can be tuned for more paraphrastic similarity (useful for style
transfer or paraphrase generation) versus more the more literal type of paraphrase detec-
tion used by BertScore and related approaches (useful for machine translation evaluation).
Evaluation metrics and reward functions are closely aligned and the NLP field is in need
of both. New distributional rewards could also bring progress to difficult generation tasks
like generating coherent multi-paragraph text and bringing generation output to be more

human-like.
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