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Abstract

Many tasks in Natural Language Processing
involve recognizing lexical entailment. Two
different approaches to this problem have been
proposed recently that are quite different from
each other. The first is an asymmetric similar-
ity measure designed to give high scores when
the contexts of the narrower term in the entail-
ment are a subset of those of the broader term.
The second is a supervised approach where a
classifier is learned to predict entailment given
a concatenated latent vector representation of
the word. Both of these approaches are vec-
tor space models that use a single context vec-
tor as a representation of the word. In this
work, I study the effects of clustering words
into senses and using these multiple context
vectors to infer entailment using extensions of
these two algorithms. I find that this approach
offers some improvement to these entailment
algorithms.

1 Introduction

An important task in Natural Language Processing
research is Recognizing Textual Entailment (RTE).
This is because this task is very relevant for the
problems of text summarization, information re-
trieval, information extraction, question answering,
and many others. An RTE problem involves a pair of
sentences, the first of which is known as the text and
the second is known as the hypothesis. The goal of
the task is to determine whether the text entails the
hypothesis, or in other words to determine whether
the meaning of the hypothesis can be inferred from

the text. An example, from (Turney and Moham-
mad, 2013) would be:

T: George was bitten by a dog.
H: George was attacked by an animal

Clearly in this example, H can be inferred from
T. However, notice that the converse is not true as
we would have no way to know that the manner in
which George was attacked was by being bitten or
that the animal who attacked him was a dog. Thus
the RTE task involves an asymmetric relation be-
tween sentences.

It also important to note that in order for a sys-
tem to obtain the correct answer for this problem
it would likely have to determine that bitten entails
attacked and dog entails animal. Thus entailment
must function well at the word level. This task is
known as lexical entailment.

Recently, in (Turney and Mohammad, 2013) three
different approaches to lexical entailment were ana-
lyzed. Two of them had been recently proposed and
the third is one of the contributions of that paper.
The first, known as balAPinc (balanced average pre-
cision for distributional inclusion) (Kotlerman et al.,
2010), is an asymmetric similarity measure and the
second, ConVecs (concatenated vectors) (Baroni et
al., 2012) uses a supervised approach. Both of these
algorithms are vector space models in that they both
rely on a context vector representation of the words
as an input.

Recent progress has been made in word similar-
ity, another task that uses vector space models, by
clustering together word senses and using these clus-



ters to determine their similarity score (Reisinger
and Mooney, 2010b) and (Reisinger and Mooney,
2010a). The reason for separating out these senses is
that many words are homonymous (contain multiple
unrelated meaning) or polysemous (contain multi-
ple related meanings). By representing all of these
meanings in one single vector we are creating a
noisy signal for that word and the signal may per-
form badly when one of the lesser used meanings of
the word is to be scored.

Naturally, this idea should also carry over to lex-
ical entailment, which to the best of my knowledge
has not yet happened. Thus in this paper, I mod-
ify the lexical entailment algorithms above to take
into account word sense clusters. I also investigate
two approaches in order to accomplish the cluster-
ing. The first follows that in (Reisinger and Mooney,
2010a), in a technique known as tiered clustering.
This is a Dirichlet Process clustering model that is
equivalent to the nested Chinese Restaurant Proc-
cess (Blei et al., 2004) with a fixed depth of two.
One potential weakness of this model is that it only
uses word counts to form clusters. Thus I use a vari-
ation of correlaton clustering (Bansal et al., 2002)
which is useful for cases when one wants to clus-
ter solely using a distance metric. An alternative
could have been k-medioids, however the advan-
tage of correlation clustering is that it is much faster
which is very important as clustering must be done
for each word in the vocabulary. Additionally, the
number of clusters does not need to be specified a
priori with correlation clustering.

Using these models, improvement was made in
these state of the art entailment algorithms. The im-
provement, not surprisingly, is dependent on how
the word senses are used to make a classification
decision. Interestingly, just choosing the maximum
score over all word senses is not the best approach
and instead some type of averaging over the scores
or representations tends to give better results.

The remainder of this paper is organized as fol-
lows: Section 2 provides background information on
the entailment and clustering algorithms used in this
paper, Section 3 illustrates the extensions that were
done to the entailment algorithms to incorporate the
word sense clusters into the classification decision,
Section 4 details the experimental setup, Section 5
discusses the results, and Section 6 concludes.

2 Background

2.1 Defining Lexical Entailment

Given two sentences, whether or not there exists
an entailment relation between them is more of a
matter of common sense than logic. Thus it is not
easy to define lexical entailment in a useful way.
(Zhitomirsky-Geffet and Dagan, 2009) defined en-
tailment in terms of substitution. Essentially they
say word a entails word b if a can substitute for b
in a sentence and this new sentence entails the orig-
inal. This approach leads to high inter-annotater ag-
greement in the entailment task, however it is argued
that this definition does not cover all cases of entail-
ment. For instance, Turney et. al. argue that in the
sentences Jane dropped the glass and Jane dropped
something fragile, the word glass should entail frag-
ile. They then go on to define entailment through the
semantic relations in (Bejar et al., 1991). They claim
that some of these relations define an entailment re-
lationship between all pairs of words having that re-
lation. Thus if one solves semantic relation identifi-
cation, they also solve lexical entailment. These two
definitions have motivated algorithms as well as data
sets for the entailment task. In this paper, we inves-
tigate an algorithm motivated by the first definition
(balAPincs) and one by the second (ConVecs). Also
we evaluate these models on data sets that were also
motivated by these definitions. The first, known as
BBDS (Baroni et al., 2012) is motivated by the first
definition and is largely a collection of hyponym-
hypernym pairs. The second, known as JMTH (Tur-
ney and Mohammad, 2013) is motivated by the sec-
ond definition and is a very difficult data set due to
the more expressive definition of entailment.

2.2 Approaches for Lexical Entailment
2.2.1 balAPinc

This approach, first described in (Kotlerman et al.,
2010), aims to reward those situations when the first
context vector argument is a subset of the second. In
other words, the features of the first context vectors
should be included in the second. This idea naturally
comes from the distributional inclusion hypothesis
(Geffet, 2005), which states that if word a occurs in
a subset of the context of word b then a often entails
b. The formula for calculating balAPinc is below. F;
denotes the context vector where all nonzero entries



have been removed. In practice, this feature vector
includes only the top 1000 or so features to prevent
lots of low occurring features to influence the score.
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2.2.2 ConVecs

ConVecs (Baroni et al., 2012) operates under the
hypothsis that the entailment of words a and b is a
learnable function of the concatenation of their con-
text vectors. The authors propose using Singular
Value Decomposition to reduce the dimensionality
of the context vectors and then use a kernal SVM to
learn this function. In order to obtain a score from
this model, probability estimate can be used and the
probability for the positive class can be used as the
score.

2.3 Clustering Occurrences

The idea of clustering word senses has been used
before in the task of determining word similarity. In
(Reisinger and Mooney, 2010b), the authors use the
mixture of von Mises-Fisher distributions (movMF)
clustering method (Banerjee et al., 2005). One dis-
advantage of this approach is that the number of
clusters must be specified in advance. To remove
this restriction, (Reisinger and Mooney, 2010a) in-
troduces tiered clustering, a nonparametric model,
that does not require this parameter to be specified.
In this paper, I also explore the effectiveness of an-
other type of clustering algorithm, correlation clus-
tering, which also has the advantage of not needing

this parameter to be specified. The advantage this
algorithm would have over tiered clustering is that it
takes into account the relatedness of the words them-
selves when clustering and not just their counts.

2.3.1 Tiered Clustering
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Figure 1: Plate diagram for tiered clustering (Reisinger
and Mooney, 2010a).

The plate diagram for this Bayesian clustering
model is in Figure 1 above. Inference for tiered
clustering is done using a collapsed Gibbs sampler.
As this model is a special case of the nested Chi-
nese Restaurant Process (Blei et al., 2004) where the
depth is fixed at 2. There are two advantages this ap-
proach has over other clustering methods. The first,
which has already been mentioned, is that there is no
need to specify a priori the number of clusters. The
second is that there is a root node which can capture
those features which have context-independent vari-
ance, preventing these features from dominating the
clustering process.

The sampling algorithm is similar to that of the
NCRP. Essentially, in one iteration of the Gibbs
sampling method, we first sample a cluster for the
current word occurrence (or document in the termi-
nology of NCRP). This sampling could result in the
creation of a new cluster. Then for each feature (or
word in the terminology of NCRP) we sample the
node to which it belong. There are only two choices
here since the path is only two nodes long. Either
it lies in the root or in the cluster to which its doc-
ument belongs. The structure with the lowest log-
likelihood when the maximum number of iterations
is reached is the output of the algorithm.

2.3.2 Correlation Clustering

In order to incorporate the relatedness of words
into the clustering. I used a variation of correlation
clustering (Bansal et al., 2002). The algorithm is
very straightforward and all that is needed is a single



parameter o, and a similarity metric. Basically a sin-
gle point is drawn from the set of points that have not
yet been assigned a cluster. Then every other point is
compared to this one using the similarity metric, and
if the score of this pair is greater than o then these
points are placed into the same cluster. The pro-
cess is repeated until all points have been assigned
a cluster. However due to the large amount of time
this can take if there are numerous outlier points and
also to limit the number of clusters, I added a ter-
mination condition. The algorithm would terminate
after it had at least two clusters each containing at
least 2.5% of the points and if the last five clusters
that had been formed contained less than 2.5% of the
points. The idea here is that the algorithm will likely
generate the largest clusters first and then when most
of the remaining points are outliers, it will terminate
as it will be unable to create any other large clusters.
This saves a lot of computation time. The disadvan-
tage of this algorithm is that it is a greedy algorithm
and it could miss out on some nice clusters. Also in-
teresting, the same point can contribute to multiple
clusters.

The distance function used was the LLM measure
used in (Do et al., 2009). The equation is below
where Ss refers to the smaller of the two context
vectors. To compute the distance between words,
the Wu Palmer algorithm was used (Wu and Palmer,
1994). This metric returns a score for the words
based on their similarity in WordNet.

Y ves, MaXyes, sim(u, v)

LLM(S}, S) = 5

(6)

3 Algorithm Extensions

Both balApincs and ConVecs were designed to ac-
comodate a single context vector representative for
each word. In order to accomodate the multiple
senses a word can have the algorithms must be ex-
tended for this more general case.

balAPincs can be extended in two obvious ways.
In the first way, we can compute the score of all pos-
sible pairs of word senses between the two words
and use the maximum score for these words. Sup-
port for this idea lies in (Turney and Mohammad,
2013) where the author claims that two words en-
tail each other if any pair of their senses entail

each other. It is also mentioned in (Reisinger and
Mooney, 2010b). Another idea is to use the average
of these scores. This approach is used in (Reisinger
and Mooney, 2010a) and (Reisinger and Mooney,
2010b). Despite recombining the senses, this ap-
proach tends to work well because it is more ro-
bust to noise. Reisinger argures that this approach is
still better than using single prototypes because now
less often used senses have more influence. Both of
these approaches can also be extended by weighting
the clusters by their probability or in other words in-
corporating a prior based on how many word occu-
rances are in that cluster compared to all word occu-
rances encountered. These extensions are mentioned
and used in (Reisinger and Mooney, 2010b) but are
not used in the tiered clustering paper (Reisinger and
Mooney, 2010a). One issue with this weighting is
that it would seem that there would be little differ-
ence between this approach and not clustering at all.
In this paper, both the averaging and maximum ap-
proaches are explored.

Convecs can be extended as well in a number
of ways to account for multiple context vectors per
word. One issue for ConVecs is that since it is a
supervised method, how do we define positive and
negative examples when dealing with word senses?
There are several ways this can be done as well. The
first is to find the word sense pairs for each word
that overlap the most using balAPincs. Then if the
example is a positive example, this pair would repre-
sent that example as is it is most likely to exhibit the
entailment relation. Similarly, if the example is sup-
posed to be negative, this pair should also represent
the example as we want our negative examples to lie
as close to the margin as possible in order to learn
a model with good generalization properties. An-
other approach would be to simply average the vec-
tors of all word senses and use that as the example.
For evaluation, again we have several choices. As
in balAPinc, we could average the scores or choose
the maximum score for each example. Another ap-
proach would be to average the feature vectors and
then use the result of applying the classifier to this
vector. All three of these approaches are explored in
this paper.



4 Experiments

For evaluation, 10 fold cross validation was per-
formed on two of the three data sets used in (Turney
and Mohammad, 2013). These data sets were cho-
sen because they both were created with different
definintions of lexical entailment in mind, giving us
an opportunity to evaluate this approach in light of
two different philosophies on entailment. The first,
dubbed BBDS and was also used in (Baroni et al.,
2012), consists of 1228 examples. This dataset was
balanced exactly to contain equal numbers of pos-
itive and negative examples and was created using
the substitution definition of entailment. The sec-
ond data set with 720 examples, JMTH, was cre-
ated from the SemEval-2012 Task 2 following the
instruction in (Turney and Mohammad, 2013). This
is a difficult data set containing such positive exam-
ples as crack entails glass. It was created using the
semantic relation definition of entailment.

Data for the experiment in the form of tagged
frames around word occurrences was used in (Tur-
ney and Pantel, 2010) and was given to us by re-
quest from the author. A window size of four on
both sides of the occurrence was used. The context
matrices created from this data were created in the
same fashion as the one used in that paper. Each
row corresponds to a term and the columns repre-
sent the context of the word occurrences in the form
of unigrams. There are 139,246 columns, each a un-
igram indicating if that context had appeared to the
left or right of the target word in the occurrence. The
context matrix in that paper also had 114,501 terms
which is far too expensive to compute when we are
also taking word senses into account. Thus the 2,385
terms included in the evaluation data sets were used
to create the matrices.

There were at most 10,000 occurrences for each
term. Out of these 10,000 (or less) occurrences,
1000 were sampled to create the context matrices.
These were chosen by taking those sentences which
contained the most context words as these would
provide more interesting and informative clusters.
An effort was made to pick unique sentences as after
initial experiments it became clear that some sen-
tences were included in these occurrences multiple
(sometimes more than a thousand) times. This prun-
ing of sentences was done so that the clustering al-

gorithms would have less data to cluster and would
not take as long. It also eliminated one sentence be-
ing repeated many times and influencing the context
vectors disproportionally.

After 1000 occurrences had been chosen, the left
and right contexts for each word were merged in or-
der to reduce sparsity. Additionally, these features
were also pruned as per (Reisinger and Mooney,
2010a) to only the most frequent 500 terms. This
was deemed sufficient as the only features allowed
were those that were columns in our matrix. Hence
stop words and other high frequency artifacts were
removed.

Correlation clustering was accomplished using
a o value of 0.85. This parameter was lightly
tuned until it produced attractive clusters on a few
homonyms. The parameters used in Tiered cluster-
ing were =1.0, $=0.1, and 1=0.01 in an attempt to
keep the number of clusters per word to a minimum.
Gibbs sampling was done for 12,000 iterations for
each word.

After clustering, only those clusters which con-
tained at least 2.5% of the occurrences were kept.
The instances in the vectors were then mapped to
their original vectors so all features would be present
for classification. Then all the occurrences in the
clusters were combined by adding together their
context vectors, and this combination was a pro-
totype for a particular sense of the word. These
prototypes were used to create the context matrix.
It is important to note that the context matrices
that resulted did not just contain counts. The oc-
occurrence frequencies were transformed to positive
pointwise mutual information values (PPMI) (Tur-
ney and Pantel, 2010) in order to better represent the
importance of a context feature for a given word.

balAPincs was trained by picking the optimal
threshold on the training data. Both average and
maximum approaches were used in order to attempt
to determine which was better. ConVecs used 100
latent features for each word and was trained with
a quadratic kernel using LibSVM. Both the average
and maximum were used in evaluation as well where
the positive and negative examples were determined
by balAPincs. Additionally a new approach where
the feature vectors were averaged was also done with
ConVecs giving the best results.

In order to check whether clustering these word



occurrences improved performance, a baseline ap-
proach was used where a single prototype for each
word was constructed from the 1000 occurrences.
The results of the experiments are shown in Tables 1
and 2 below. Accuracy was used to compare the dif-
ferent approaches because the data sets were com-
pletely balanced.

5 Discussion

86: archbishop 46, philadelphia 39, anthony 36, wa 23, catholic 18, church 12

67: catholic 17, church 11, archbishop 11, news 8, bishop 8, made 7
54: john 43, archbishop 21, paul 20, york 18, pope 16, ii 9

47 law 23, wa 21, boston 19, bernard 14, archbishop 14, bishop 11
47: ha 14, catholic 13, church 6, time 5, school 5, game 5

45: catholic 16, church 7, bishop 6, state 5, sin 5, school 5

44: large 42, axiom 40, set 14, theory 13, mathematics 9, research 5
43: varican 12, state 11, secretary 11, sin 9, catholic 7, roman 6

43: cathaolic 23, wa 18, church 13, roman 10, student 6, philadelphia 6
34: prefect 19, joseph 19, congregation 17, conference 7, catholic 7, wa 4
29: paul 31, john 26, pope 23, ii 12, secretary 4, ha 4, wa 3

26: state 18, vatican 17, secretary 17, holy 10, wa 5, roman 3

26: stanford 9, game 6, wa 5, page 5, team 4, life 4

Figure 2: Clusters for the word cardinal from a modified
correlation clustering algorithm. The first number is the
number of documents (occurrences) in that cluster.

Root (1000): wa 138, john 82, archbishop 81, catholic 73, ha 70, church

178: large 102, axiom 76, set 31, theory 25, doe 16, numbers 15

154: paul 35, state 31, prefect 31, pope 30, congregation 29, vatican 29 I
132: stanford 38, game 26, baseball 20, team 20, season 16, college 14

1086: de 49, law 44, boston 31, bernard 30, le 29, la 23,

76: philadelphia 58, anthony 54, archbishop 39, mass 8, death 6, S‘[udené

50: gibbon 15, james 13, faith 12, father 8, christian 7, cushing 4
31: current 28, red 17, years 11, january 7, blue 5, purple 5
27 : page 7, winning 6, survey 6, thomas 6, research 6, back 5

Figure 3: Clusters for the word cardinal from the tiered
clustering algorithm. The Root refers the the root node
in the model that is meant to capture the background fea-
tures in the occurrences. Notice how it contains words
like wa which are likely artifacts from tokenization.

5.1 Results

The results from the experiments are mixed. One
thing that is clear from the results is the importance
of how the senses are combined in order to make
a classification decision. Suprisiningly, just taking
the maximum score is not always the best option.

It gives very inconsistent results that likely has to
do with the clustering as well as the noise in the
data. This is best illustrated with ConVecs as this
approach was able to find a cluster that gave a pos-
itive signal in every example in the data set, hence
the 50.0% accuracy. Thus some averaging tends to
reduce the effects of this noise while giving senses
that appear less often in the data to have more influ-
ence and affect the decision more than they would in
a single prototype approach.

From the experiments, though it seems that clus-
tering does do better than the baseline if the appro-
priate algorithm is chosen. For instance, with Con-
Vecs, tiered clustering with averaging the vectors
beats the baseline in both data sets. Similarly, with
balAPinc, tiered clustering using the average score
is also better than the baseline as well, although not
significantly for the BBDS data set. It is also inter-
esting to see that clustering has a bigger effect on
performance on the more difficult data set, JIMTH.

I believe that this type of clustering is useful, even
though it comes with a large memory and perfor-
mance hit. However, the need to average to achieve
good results means more work would need to be
done if applying these techniques on a real-world
problem where there is some context available to
deduce the sense of the word with some accuracy.
think this would be an interesting problem to ex-
plore as just taking a single cluster would likely not
give the best performance and perhaps a distribution
f clusters would need to be used to make the scor-
ing decision.

5.2 Clusters

Clusters from correlation clustering and tiered clus-
tering are shown above in Figures 2 and 3 repec-
tively. These figures are interesting for a couple of
reasons. First of all, I was initially skeptical of the
root node in the tiered clustering algorithm as I fig-
ured that the features were already heavily filtered
prior to clustering and hence the root node would
only serve to eliminate useful features that can be
used to assign the occurrences to clusters. How-
ever, the root does seem to capture noisy features
like those that appear to be artifacts of tokenization.
Granted, these features could probably be pruned
out using some kind of tf-idf, but it seems that this
node does have a useful function.



Cluster H Accuracy
BalAPincs | Convecs

Baseline 68.1 75.6
Correlation Clusters AvgScore 67.3 71.5
Correlation Clusters MaxScore || 66.5 66.7
Correlation Clusters AvgVector || NA 74.8
Tiered Clusters AvgScore 68.2 71.5
Tiered Clusters MaxScore 65.0 51.2
Tiered Clusters AvgVector NA 76.4

Table 1: Comparison of Algorithms on BBDS

Cluster H Accuracy
BalAPincs | Convecs

Baseline 55.7 61.1
Correlation Clusters AvgScore 51.8 61.1
Correlation Clusters MaxScore || 55.8 50.0
Correlation Clusters AvgVector || NA 68.1
Tiered Clusters AvgScore 56.8 62.5
Tiered Clusters MaxScore 57.6 50.0
Tiered Clusters AvgVector NA 66.7

Table 2: Comparison of Algorithms on JIMTH

Another thing to point out is that there are larger
differences between clusters in the tiered clustering
approach versus the correlation clustering approach.
Hence it appears tiered clustering is producing better
clusters overall. However, tiered clustering produces
an average of 15.6 clusters per occurrence while cor-
related clustering does 7.5. Furthermore, tiered clus-
tering took an average of 7.5 minutes to cluster while
correlated clustering took an average of 1.5 minutes.
This is important because the memory used in this
model scales linearly with the average number of
clusters per word and the compexity of evaluating
entailment has a quadratic relationship with the av-
erage number of clusters.

Lastly, as a reflection of the word occurrence
quality, notice that an important sense of cardinal
as a bird is missing. This illustrates an important
point about context vectors in that the distribution
of contexts is based on what exists in the data (in
this case, the crawling was done on university web
pages). I think there is room for improvment by per-
haps crawling wikipedia instead which may give a
more natural distribution of word occurrences.

6 Conclusion

This paper applied two clustering techniques for
clustering word senses in an effort to improve two
state of the art lexical entailment techniques. The
results showed that clustering word senses does pro-
vide some improvement, but care must be taken in
combining the senses in order to make a classifica-
tion decision. The experiments conducted in this pa-
per show that tiered clustering, with an appropriate
algorithm for combining sense, consistantly can give
better results over the single prototype baseline.
There is a lot of room here for future work in
this arena. For one, the clustering could still be im-
proved. It would be interesting to see if there was a
way to incorporate word relatedness into the tiered
clustering model. By merging some of the similar
clusters, this approach would be more resilient as the
number of clusters would be more limited. Another
way to limit the clusters would be to have a higher
threshold of the amount of occurrences needed for
a cluster to be kept. Perhaps tuning this parame-
ter would have produced better results. There are
other avenues for improvement as well such as using
less noisy and more representative data, and finding
better ways of use these clusters to produce a score.



The latter is especially deserving of further study. In
conclusion, I think that this is a viable approach to
improving lexical entailment, but further work must
be done for the benefits of this approach to be worth
the large computational costs.
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