
Generalization Ability of Online Strongly Convex Learning

Algorithms

John Wieting

December 21, 2013

1 Introduction

Online learning, in contrast to batch learning, occurs in a sequence of rounds. At the beginning of
a round, an example is presented to the learning algorithm, the learning algorithm uses its current
hypothesis to label the example, and then the learning algorithm is presented with the correct label
and the hypothesis is updated. It is a different learning paradigm than batch learning where we
are given all of our data at once, and we aim to construct a single optimal hypothesis using the
entire data set. We hope that the resulting hypothesis will generalize well to unseen data. In online
learning, our goal is to minimize the total loss along the entire sequence of training examples and
we generate a new hypothesis with nearly every training example.

Online learning can be motivated from situations where it is not feasible or desirable to utilize a
batch learning approach. Examples could be situations where there is a huge amount of data where
storing and learning from all of it is computationally unfeasible, or perhaps when the distribution
generating the data is changing i.e. during the sequence more than one hypothesis is generating
the data.

Recently, statistical learning machinery has been used to analyze this paradigm. In [1] the
generalization ability of convex functions was analyzed and [2] extends this work by investigating
online algorithms with strongly convex loss functions. This analysis can be motivated due to the
fact that there exists a large number of optimization problems in machine learning that are strongly
convex. For instance all problems that use a log-loss or square-loss loss function or those who use a
convex loss function, that is not necessarily strongly convex, and use L2 regularization or another
strongly convex regularizer. The latter case describes the SVM problem which uses a convex loss
function (hinge loss) with L2 regularization.

This paper will discuss [2] and examine the paper through the lens of our CS 598 course. It
will also discuss the main application of this paper, which is bounding the convergence rate of the
Pegasos algorithm [4], with high probability.

2 Background

A major theme of our course has been bounding the generalization error of the output functions
of binary classification algorithms. Ideally, we want the output of our learning algorithm f̂n from
a function class F to have similar generalization error to that of the optimal function, f∗ ∈ F .
More simply, we want:

P (f̂n(X) 6= Y ) ≈ P (f∗(X) 6= Y )

1



We started exploring bounds to quantify this relationship by trying to construct an algorithm
that is PAC - which informally means that the probability of generating a bad enough sample
that the deviation between L(f) and L(f∗) exceeds ε ∀ε > 0 goes to 0 as the number of examples
approaches∞. L refers to the expected 0, 1 loss. A good starting place was the ERM algorithm, an
algorithm that finds the function f̂n that has minimal error on our training set of examples. While
intuitively appealing, we needed to specify the conditions under which ERM would be PAC. We
were able to show that if some property, known as the Uniform Convergence of Empirical Means,
holds than ERM is PAC. The UCEM states that ∀ε > 0:

limn→∞supP∈PP (Zn ∈ Z n : supf∈F‖L(f̂)− L(f)‖ ≥ ε) = 0

The desire to determine when the ERM is PAC without having to directly check the UCEM
property led us to explore the Rademacher average. We were able to show that much of the time we
can bound this deviation (known as the standard deviation) by the expectation of the Rademacher.
This in turn can often be bounded by

C

√
V (F )√
n

Where V (F ) is the VC dimension and C is a universal constant. Thus if F is a VC class (VC
dimension less than ∞) then the UCEM property will hold. This analysis also led to a powerful
result that holds for functions f : Z → [0, 1] and any distribution from P:

L(f̂n) ≤ L(f∗) + 4ERn(F (Zn)) +

√
2 log(1

δ )
n

Here ERn is the expected Rademacher average of the function class.
One issue with the above analysis is that we do not have much hope of finding the ERM solution

for many interesting function classes (unless P = NP ). Thus we learned we could replace the 0, 1
loss with another loss function - one that could make finding the ERM more tractable. Generally,
we lose then the ability to compare the minimum risk with the generalization error, but it gives us
the ability to be clever with our surrogate loss functions to make finding the ERM tractable. We
also can still bound the generalization error if the loss function is Lipschitz and bounded.

Further analysis into the properties of surrogate loss functions led us to wonder what can happen
if we choose a convex loss function. It turns out that with such a loss function we can show that the
unique minimizer of the surrogate loss over all real valued functions on the domain of X, has the
property that its sign is equal to the the Bayes classifier - the optimal choice for binary classification.
We also were able to bound L(f̂n) − L∗, where f̂n is the empirical surrogate loss minimizer, if we
can relate the minimum surrogate loss to the Bayes rate. In practice this can often be done for
commonly used loss functions [5].

The common thread through all of this analysis on binary classification, is that we are aiming
to achieve generalization bounds by finding the hypothesis that minimizes the loss of some random
training set. In online learning, as mentioned previously, our goals are slightly different. We want
to minimize the loss along the entire sequence of examples that we are given. More specifically
we want the total accumulated loss at the end of the sequence to be close to that of the optimal
function in our function class F . This is known as the regret:

T∑
t=1

lt(ft)−minf∈F

T∑
t=1

lt(f)

2



Interestingly, it turns out that we can use the regret to achieve bounds on the excess risk
R(f̂)− R(f∗) = E[l(f̂ , Z)]− E(l(f∗, Z)] in what is known as an online-to-batch conversion. Thus
achieving low regret can be seen as obtaining better generalization - an intuitively appealing notion
that illustrates the relationship between online and batch learning paradigms. In these conversions,
we must choose a single hypothesis from all of the hypotheses that were generated along the
sequence. A common approach in the literature it to average the hypotheses and that is what
is done in this paper. An analysis on alternative approaches - like picking the last one or using
validation can be found in [3]. One last thing that is important to note about this discussion is that
L has been referring to the expectation of the 0, 1 loss which also is equivalent to P (f(X) 6= Y ). In
this paper the loss function in the risk is not the 0, 1 loss and so R(f) will be as large or larger than
L(f) - assuming the expectations are taken with respect to the same distributions. Thus we are
not bounding the uniform deviation as we did for most of the bounds for binary classification. We
did study though one bound that related the 0, 1 loss to that of the risk with respect to a certain
class of loss functions - which fall under those that are studied in this paper. For the analysis done
in this paper, bounding the excess risk is appropriate as it allows one to determine the convergence
rate of the algorithm. By that I mean, how many examples must we see until we can, with high
probability, output a hypothesis whose risk is within ε of the optimal f∗.

3 Results

The main result of this paper is a single theorem that relates the excess risk to the regret. It relies
on several corollaries and a few assumptions. I will start by introducing some notation and then
present the main results with some commentary.

Let f : S × Z → [0.B] where Z is a random variable and S is a convex set with a norm ‖ · ‖.
Furthermore, let F (w) = E[f(w, Z)] and {w∗ = argminw∈SF (w). Also let Z1, ..., ZT be a sequence
of independent random variables, then F (w = E[f(w, Z)] = Et−1[f(w, Zt)] where Et−1 refers to
the conditioal expectation of the first t− 1 random variables in the sequence.

The assumptions, known as LIST, have two components. The first is that f(w, z) is convex in
w and has a Lipschitz constant L with respect to ‖ · ‖. Thus by definition, ∀w,w′ ∈ S, ‖f(w, Z)−
f(w′, Z)‖ ≤ L‖w−w′‖. The second assumption is that f(w, z) is strongly convex with respect to
‖ · ‖.

Lastly to make the following discussion less verbose we need to define two equations and a
martingale difference sequence:

RegT =
T∑
i=1

f(wt, Zt)−minw∈S

T∑
t=1

f(w, Zt)

DiffT =
T∑
i=1

(F (wt)− F (w∗)

ζt = F (w)− F (w∗)− (f(wt, Zt)− f(w∗, Zt))

Note that this is clearly a martingale difference sequence because due to the relationship between
f and F , ζt vanishes when Et−1 is applied.

We are now ready to derive the main result. The first step to achieving the main result of this
paper is that we need to bound the ζ.

3



Lemma 3.1 Suppose the LIST assumptions hold and let ζt be the martingale sequence previously
defined. Then we have

Vart−1ζt = Et−1[ζ2
T ] ≤ 4L2

v
(F (wt)− F (w∗))

where v refers to the strong convexity parameter and L refers to the Lipschitz constant.

Proof: The proof is fairly straightforward. The first step is key and then everything else follows
from definitions. This step is to notice that

Et−1[ζ2
T ] ≤ Et−1[(f(wt, Zt)− f(w, Zt))

2]

This can be seen by expanding Et−1[ζ2
T , taking expectations and canceling terms leaving a

nonpositive term and the right side of the inequality. Then we have:

Et−1[(f(wt, Zt)− f(w, Zt))
2] ≤ Et−1[L2‖wt −w∗‖2] = L2‖wt −w∗‖2

Where the first inequality stems from the LIST assumption (and that E[X] ≥ E[Y ] if Y ≥ X),
and the last equality comes from the fact that we have eliminated the random variable. Now due
to the strong convexity assumption we have for any w and w′ ∈ S:

f(w, Z) + f(w′, Z)
2

≥ f(
w + w′

2
, Z) +

v

8
‖w −w′‖

This can be seen by taking θ = 1
2 since the strong convexity inequality holds for any θ ∈ [0, 1].

Then just take the expectations and substitute in wt and w∗:

F (wt) + F (w∗)
2

≥ F (
wt + w∗

2
) +

v

8
‖wt −w∗‖ ≥ F (w∗) +

v

8
‖wt −w∗‖

Where the last inequality stems from the w∗ being the minimizer of F . Finally rearranging
gives:

‖wt −w∗‖ ≤ 4(F (wt) + F (w∗))
v

The final inequality then comes from combining the results.

The next lemma is the longest proof in the paper. I will not detail the proof. The proof relies
on Freedman’s inequality - which interestingly is a Martingale extension to Bernstein’s inequality.
Essentially, the argument follows a similar structure to some of the arguments used in the course
where we can prove some bound by messaging terms and substituting variables so that a known
concentration bound can be used. This approach was used, for instance, in the last assignment
where we were able to use Bernstein’s inequality after a little thought. The massaging in this case
relies on a carefully chosen discretization.

Lemma 3.2 Suppose Xi is a martingale difference sequence with ‖Xi‖ ≤ b. Let

V artXt = V ar(Xt‖X1, ..., Xt−1)

Also let V =
∑T

i=1 V artXt. Also let σ =
√
V . Then for any δ < 1/e and T ≥ 3:

P (
T∑
t=1

Xt > max{2σ, 3b
√

log(1/δ)
√

log(1/δ}) ≤ 4 log(T )δ

4



The last lemma is also the simplest

Lemma 3.3 Suppose s, r, d, b,∆ ≥ 0 and

s− r ≤ max{4
√
ds, 6b∆}∆

Then
s ≤ r + 4

√
dr∆ + max{16d, 6b}∆2

Proof: This proof is very simple. We just show that if

s− r − 4
√
ds∆ ≤ 0

Then:

(
√
s)2 − r − 4

√
ds∆ ≤ 0

Therefore
√
s is less than the largest root of this equation (and should be bigger than the smallest

root since it is a parabola). Finding the root, simplifying, and putting the resulting inequalities
together gives the desired result.

Armed with these 3 lemmas we can now prove the main result and only theorem in the paper.

Theorem 3.4 Assume the LIST assumptions we have with probability at least 1− 4 log(T )δ:

1
T

T∑
t=1

F (wt)− F (w∗) ≤ RegT
T

+ 4

√
L2 log 1/δ

v

√
RegT
T

+ max{16L2

v
, 6B} log(1/δ)

T

Proof: We know that from the first lemma:

Vart−1ζt = Et−1[ζ2
T ] ≤ 4L2

v
(F (wt − F (w∗))

Thus: √√√√ T∑
t=1

Vartζt ≤
√

4L2

v
DiffT

We can then apply the third lemma as ‖ζt‖ ≤ 2B as f is bounded by B (an assumption we
made in the beginning that f maps to [0, B]) and the ζt forms a martingale difference sequence.
Thus we have with probability 1− δ:

T∑
t=1

ζt ≤ max{2σ, 6B
√

log(1/δ}
√

log(1/δ

Since by definition we have:

DiffT − RegT ≤
T∑
t=1

ζt

and also by Lemma 3.1 we have:

5



σ ≤
√

4L2

v
DiffT

gives us:

DiffT − RegT ≤ max{2
√

4L2

v
DiffT , 6B

√
log(1/δ}

√
log(1/δ

Lastly, we apply Lemma 3.3 to achieve the result.

I will close this section with three trivial corollaries that use this theorem. These stem from
instantiating the very general situation above. If we define our Zi to be pairs (Xi, Yi), our loss
function l : D × Y → [0, 1] for some space D and our hypothesis h : X × S → D or h(X,w).
Now instantiate f to be l and assume l satisfies the LIST assumptions. Lastly, set R(w) =
E[l(h(X,w), Y )] to be the risk. The last corollary deserves special mention as here we have bounded
the excess risk by the regret. This inequality will be used to obtain the convergence rate for Pegasos.

Corollary 3.5 Assume the LIST assumptions we have with probability at least 1− 4 log(T )δ

F (
1
T

T∑
t=1

wt)− F (w∗) ≤ RegT
T

+ 4

√
L2 log 1/δ

v

√
RegT
T

+ max{16L2

v
, 6B} log(1/δ

T

Proof: Let ŵ =
∑T

t=1 wt. Note that since f is convex f(ŵ) ≤
∑T

t=1 f(wt) therefore F (ŵ) ≤∑T
t=1 F (wt).

Corollary 3.6 Suppose the LIST assumptions hold for l(h(x,w, y) then with probability at least
1− 4 log(T )δ:

R(ŵ)−R(w∗) ≤ RegT
T

+ 4

√
L2 log 1/δ

v

√
RegT
T

+ max{16L2

v
, 6B} log(1/δ

T

Proof: Follows from the last corollary by substituting R for F .

4 Applications

Pegasos [4] is an iterative algorithms for solving the SVM optimization problem. The run-time of
the algorithm does not depend on the size of the data-sets and can be used in an online fashion.
This has appeal in the machine learning community because this algorithm has the generalization
properties of the SVM, but doesn’t require expensive batch training. The original paper did not
characterize the convergence in terms of the excess risk. However with the tools that were built
up in the previous section, this is now possible. All that needs to be done is to ensure that the
objective function of Pegasos fits our assumptions and then substitute the correct variables. We
assume that ‖xi‖ < R ∀i and that in total we have m examples. The objective function is:

f(w) =
λ

2
‖w‖2 +

1
k

∑
(x,y)∈Zi

l(w, (x, y))

Taking expectations gives us:

6



F (w) =
λ

2
‖w‖2 +

1
m

m∑
i=1

l(w, (xi, yi))

To arrive at this, note that:

E[l(w, Zi)] =
1
m

m∑
i=1

l(w, (xi, yi))

Therefore:

E[f(w)] =
λ

2
‖w‖2 +

1
k

∑
(x,y)∈Zi

E[l(w, Zi)] =
λ

2
‖w‖2 + E[l(w, Zi)] = F (w)

We can also easily show that f is Lipschitz with L =
√
λ+R and strongly convex where v = λ.

Also f maps into [0, B] where B = 3
2 + R√

λ
. Thus all of the LIST assumptions are satisfied and

since [4] showed that:

RegT ≤
L2(1 + log T )

2v
We can plug this into Corollary 3.6 and obtain with probability at least 1− δ:

R(ŵ)−R(w∗) = O(
log T

δ

λT
)

Assuming R = 1 and for small enough λ.

5 Conclusion

Online learning algorithms are an important tool in the analysis of extremely large data sets - a
task that is becoming increasingly common. The analysis in this paper applies to a special case of
online algorithms - those that satisfy the LIST assumptions. However, in practice this is not overly
restrictive as many commonly used algorithms satisfy these conditions. The work showed how to
bound the excess risk of an online learning algorithm satisfying these assumptions and this bound
was used to characterize the convergence of these algorithms.

This paper is closely related to the material we learned in CS 598 as many of the techniques and
ideas that we learned during our study on binary classification carried over - even though online
learning and batch learning require a different analysis. This particular problem can be seen as
an extension of what we learned and it is also a clear of example of the applicability of statistical
learning

References

[1] Nicolo Cesa-Bianchi, Alex Conconi, and Claudio Gentile. On the generalization ability of on-line
learning algorithms. IEEE Transactions on Information Theory, 50:2050–2057, 2001.

[2] Sham M. Kakade and Ambuj Tewari. On the generalization ability of online strongly convex
programming algorithms.

7



[3] Shai Shalev Schwartz. Online Learning: Theory, Algorithms, and Applications. PhD thesis,
Hebrew University, 2007.

[4] Yoram Singer and Nathan Srebro. Pegasos: Primal estimated sub-gradient solver for svm. In
In ICML, pages 807–814, 2007.

[5] Tong Zhang. Statistical behavior and consistency of classification methods based on convex risk
minimization. Annals of Statistics, 32:56–134, 2003.

8


