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In this supplementary document, we derive the gradient of our objective function ∂E
∂g used in Section 4 in the main paper.

Recall that the object composition process is formulated as Ig = α · g(F ) + (1− α) ·B where F is the source object, B
is the background scene, and α ∈ [0, 1] is the alpha mask for the foreground object. We denote F p as the RGB color values
for each pixel p in the foreground object, αp as its alpha channel and Bp as the color values in the background image. We
denote Ipg as the RGB values for pixel p in the composite image.

The color adjustment model g(·) adjusts the visual properties of the foreground to be compatible with background image.
Our objective function for color adjustment is written as follows:

E(g, F ) = −f(Ig; θ) + w · Ereg(g), (1)

where f measures the visual realism of the composite and Ereg imposes a regularizer on the space of possible adjustments.
The weight w controls the relative importance between the two terms. We apply a very simple brightness and contrast model
to the source object F for each channel independently. For each pixel we map the foreground color values F p = (cp1, c
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where N is the number of foreground pixels in the image, and I0 = α · F + (1 − α) · B is the composite image without
recoloring, Ipg and Ip0 denotes the color values for pixel p in the composite image. The first term penalizes large change
between the original object and recolored object, and the second term discourages independent color channel variations
(roughly hue change). In practice, we normalize these two terms so that they have a similar magnitude.

We would like to optimize the color adjustment function g∗ = arg ming E(g, F ). Our objective (Equation 1) is differ-
entiable if the color adjustment function g is also differentiable. This allows us to optimize for the color adjustment using
gradient-descent.

To optimize the function, we decompose the gradient into the following two terms:
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3) can be computed through backpropagation of CNN model from the loss layer to the

image layer. Given this, we can now give the closed form of gradient for each parameter separately (λ1, λ2, λ3, β1, β2, β3).
For the first part:
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For the second part, we have:
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We optimize the cost function using L-BFGS-B [1]. We set the search range of color mapping parameters αi to [0.4, 2.0],
and βi to [−127, 127]. Since the objective is non-convex, we start from multiple random initializations. We initialize the
color bias terms βi to 0 and sample the color gain values λi from [0.6, 0.8, 1.0, 1.2, 1.4]. We output the solution with the
minimal cost.
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