
Learning to Synthesize and Manipulate Natural Images

By

Junyan Zhu

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

in

Engineering - Electrical Engineering and Computer Science

in the

Graduate Division

of the

University of California, Berkeley

Committee in charge:

Professor Alexei A. Efros, Chair
Professor Jitendra Malik

Professor Ren Ng
Professor Michael DeWeese

Fall 2017

Learning to Synthesize and Manipulate Natural Images

Copyright 2017
by

Junyan Zhu

1

Abstract

Learning to Synthesize and Manipulate Natural Images

by

Junyan Zhu

Doctor of Philosophy in Engineering - Electrical Engineering and Computer Science

University of California, Berkeley

Professor Alexei A. Efros, Chair

Humans are avid consumers of visual content. Every day, people watch videos, play
digital games and share photos on social media. However, there is an asymmetry –
while everybody is able to consume visual data, only a chosen few are talented enough
to effectively express themselves visually. For the rest of us, most attempts at creating
or manipulating realistic visual content end up quickly “falling off” the manifold of
natural images. In this thesis, we investigate a number of data-driven approaches
for preserving visual realism while creating and manipulating photographs. We use
these methods as training wheels for visual content creation. We first propose to
model visual realism directly from large-scale natural images. We then define a class
of image synthesis and manipulation operations, constraining their outputs to look
realistic according to the learned models. The presented methods not only help users
easily synthesize more visually appealing photos but also enable new visual effects
not possible before this work.

Part I describes discriminative methods for modeling visual realism and photo-
graph aesthetics. Directly training these models requires expensive human judgments.
To address this, we adopt active and unsupervised learning methods to reduce anno-
tation costs. We then apply the learned model to various graphics tasks, such as
automatically generating image composites and choosing the best-looking portraits
from a photo album.

Part II presents approaches that directly model the natural image manifold via
generative models and constrain the output of a photo editing tool to lie on this
manifold. We build real-time data-driven exploration and editing interfaces based
on both simpler image averaging models and more recent deep models.

2

Part III combines the discriminative learning and generative modeling into an
end-to-end image-to-image translation framework, where a network is trained to
map inputs (such as user sketches) directly to natural looking results. We present
a new algorithm that can learn the translation in the absence of paired training
data, as well as a method for producing diverse outputs given the same input image.
These methods enable many new applications, such as turning user sketches into
photos, season transfer, object transfiguration, photo style transfer, and generating
real photographs from painting and computer graphics renderings.

i

To my parents and fiancée for their love and support

ii

Contents

List of Figures vi

List of Tables ix

Acknowledgments x

1 Introduction 1
1.1 Visual Synthesis and Manipulation 3
1.2 Learning Visual Realism . 5
1.3 Dissertation Overview . 6

I Discriminative Learning of
Visual Realism and Aesthetics 7

2 Modeling Photo Aesthetics with Active Learning 8
2.1 Introduction . 9
2.2 Background . 10
2.3 Overview . 11
2.4 Collecting Portrait Data . 12

2.4.1 Collecting a Personal Portrait Dataset 13
2.4.2 Pre-Processing . 14
2.4.3 Crowdsourcing Pairwise comparisons 16

2.5 Portrait Evaluation . 16
2.5.1 Scoring Representative Expressions 17
2.5.2 Single-subject predictive model 20
2.5.3 Cross-subject predictive model 21
2.5.4 Active Learning . 23
2.5.5 Visualization details . 27

2.6 Expression Training App . 28

Contents iii

2.7 Data Analysis and Visualization . 30
2.7.1 Eyes open . 30
2.7.2 Subject Preferences and Poses 31
2.7.3 Improving Expressions . 31
2.7.4 Changing One Feature . 32

2.8 Results . 33
2.9 Discussion . 34

3 Learning Visual Realism without Human Supervision 37
3.1 Introduction . 37
3.2 Background . 40
3.3 Learning the Perception of Realism 41

3.3.1 Automatically Generating Composites 42
3.4 Improving Image Composites . 45
3.5 Implementation . 47
3.6 Experiments . 47

3.6.1 Optimizing Color Compatibility 50
3.6.2 Selecting Suitable Object . 53

3.7 Discussion . 55

II Generative Modeling for
Visual Exploration and Synthesis 56

4 Visual Exploration via Image Averaging 57
4.1 Introduction . 57
4.2 Background . 60
4.3 Approach . 62

4.3.1 User interface . 62
4.3.2 Generating the average image 63
4.3.3 Brush tools . 64
4.3.4 Interactive Clustering . 69
4.3.5 Image Alignment . 69

4.4 Results and Applications . 70
4.5 Discussion . 77

5 Visual Manipulation with Deep Generative Models 80
5.1 Introduction . 80
5.2 Background . 82
5.3 Learning the Natural Image Manifold 83

Contents iv

5.4 Approach . 85
5.4.1 Projecting an Image onto the Manifold 85
5.4.2 Manipulating the Latent Vector 87
5.4.3 Edit Transfer . 89

5.5 User Interface . 90
5.5.1 Editing constraints . 91

5.6 Implementation Details . 91
5.7 Results . 92

5.7.1 Image Manipulation . 92
5.7.2 Generative Image Transformation 92
5.7.3 Interactive Image Generation 93
5.7.4 Evaluation . 93

5.8 Discussion . 95

III Image-to-Image Translation 97

6 Unpaired Image-to-Image Translation 98
6.1 Introduction . 98
6.2 Background . 101
6.3 Paired Image-to-Image Translation 103
6.4 Unpaired Image-to-Image Translation 105

6.4.1 Adversarial Loss . 106
6.4.2 Cycle Consistency Loss . 106
6.4.3 Full Objective . 107

6.5 Implementation . 108
6.6 Results . 108

6.6.1 Evaluation . 110
6.6.2 Applications . 115

6.7 Discussion . 117

7 Multimodal Image-to-Image Translation 124
7.1 Introduction . 124
7.2 Background . 127
7.3 Multimodal Image-to-Image Translation 128

7.3.1 Baseline: pix2pix+noise . 129
7.3.2 Conditional Variational Autoencoder GAN: cVAE-GAN 130
7.3.3 Conditional Latent Regressor GAN: cLR-GAN 131
7.3.4 Our Hybrid Model: BicycleGAN 131

Contents v

7.4 Implementation Details . 132
7.5 Experiments . 133

7.5.1 Qualitative Evaluation . 133
7.5.2 Quantitative Evaluation . 135

7.6 Discussion . 138

8 Discussion 140

Bibliography 143

vi

List of Figures

1.1 The main goal of this thesis . 2
1.2 Early works and modern software . 4

2.1 System overview of MirrorMirror . 10
2.2 Portrait data collection . 13
2.3 Data pre-processing . 14
2.4 Visualizations of the most attractive expressions 15
2.5 MAP cost convergence . 18
2.6 Rank error convergence . 20
2.7 Attractive scores with and without open eyes and smiles 21
2.8 The performance of the cross-subject model 22
2.9 Active learning versus random sampling, measured by mean rank error . 25
2.10 Active learning versus random sampling, measured by colleration 25
2.11 Ablation study of individual priors . 27
2.12 Examples from expression training app 29
2.13 Attractive and unattractive portraits regarding different eye sizes 30
2.14 Improving expressions with our attractiveness model 32
2.15 Changing one feature with our attractiveness model 33
2.16 Selecting most attractive expressions from a video 34
2.17 Selecting most attractive expressions from personal photo collections . . 35

3.1 Classifying image composites versus natural images 38
3.2 Example composite images for CNN training 41
3.3 Generating a single composite . 42
3.4 Automatically generating image composites 43
3.5 Ranking of generated training composites in terms of realism scores . . . 45
3.6 Ranking of photos according to our model’s visual realism prediction . . 49
3.7 Example color adjustment results . 51
3.8 Hard negative mining can improve results 53

List of Figures vii

3.9 Example object selection results . 54

4.1 Overview of AverageExplorer . 58
4.2 Our user interface and brush tools . 63
4.3 Explorer brush . 66
4.4 Results with and without alignment . 68
4.5 Examples of interactively discovered modes in the data 68
4.6 Interactive exploration and alignment . 71
4.7 Interactive alignment and clustering of PASCAL horse images 72
4.8 Average images created by users given a text query 74
4.9 Qualitative keypoint annotation results 74
4.10 Interactive portraits . 78
4.11 Visual data-driven analytics . 78

5.1 System overview . 81
5.2 GAN as a manifold approximation . 84
5.3 Projecting real photos onto the image manifold using GAN 87
5.4 Updating latent vector given user edits 88
5.5 Edit transfer via Motion+Color Flow . 89
5.6 Image manipulation results . 93
5.7 Generative image transformation results 94
5.8 Interactive image generation results . 94

6.1 Example results from CycleGAN . 99
6.2 Paired training data versus unpaired training data 100
6.3 Paired image-to-image translation results 103
6.4 Conditional GANs . 104
6.5 Algorithm overview . 105
6.6 Generated images and reconstructed images 106
6.7 Different methods for mapping labels↔photos trained on Cityscapes images109
6.8 Different methods for mapping aerial photos↔maps on Google Maps . . 109
6.9 Different variants of our method for mapping labels↔photos trained on

cityscapes . 113
6.10 Example results of CycleGAN on paired datasets 114
6.11 The effect of the identity mapping loss 116
6.12 Collection style transfer results I . 118
6.13 Collection style transfer results II . 119
6.14 Relatively successful results on mapping Monet’s paintings to photographs120
6.15 CycleGAN’s results on multiple translation problems 121
6.16 Photo enhancement results . 122

List of Figures viii

6.17 CyclceGAN versus neural style transfer on photo stylization 122
6.18 CyclceGAN versus neural style transfer on other applications 123
6.19 Typical failure cases of our method . 123

7.1 Multimodal image-to-image translation using our proposed method . . . 125
7.2 Our formulation . 126
7.3 Alternatives for injecting z into generator 132
7.4 Example results of BicycleGAN . 134
7.5 Qualitative method comparison . 135
7.6 Realism vs diversity . 135
7.7 Realism vs diversity on a 2D plot . 136
7.8 Different label → facades results trained with varying length of the latent

code . 138

8.1 Image search with mental picture . 141
8.2 Unpaired Image-to-Image translation results on GTA5 ↔ Cityscapes . . 141

ix

List of Tables

2.1 Accuracy of the single-subject regression model, reported as correlation
and mean absolute error, for two regression methods. 19

3.1 Area under ROC curve comparing our method against previous methods 48
3.2 Area under ROC curve comparing different dataset generation procedures 50
3.3 Comparison of methods for improving composites by average human ratings. 55

4.1 Human selection accuracy and timing results with M representative images 73
4.2 Keypoint annotation statistics . 75
4.3 Keypoint annotation mean pixel error rates 75

5.1 Average per-dataset image reconstruction error 95

6.1 AMT “real vs fake" test on maps↔aerial photos 112
6.2 FCN-scores for different methods, evaluated on Cityscapes labels→photo. 112
6.3 Classification performance of photo→labels for different methods on

cityscapes. 112
6.4 Ablation study: FCN-scores for different variants of our method, evaluated

on Cityscapes labels→photo. 113
6.5 Ablation study: classification performance of photo→labels for different

losses, evaluated on Cityscapes. 114

7.1 The roles of different encoders and methods of injecting z 138

x

Acknowledgments

Alyosha sometimes says, “if you wait until the last minute, it will only take a
minute.” I think he might have gotten it wrong this time. It actually took me more
than one minute to write this acknowledgment.

Nevertheless, I would like to thank Alyosha Efros for his guidance, inspiration,
enthusiasm, and support throughout my years at CMU and Berkeley. If a student is
a generator and an advisor a discriminator, he is probably the best discriminator a
student could have. First, he uses all the researchers, mentors, and students whom
he has interacted with as valuable training data. Second, during each optimization
step, he not only tells me the difference between those scholars and myself, but
also provides helpful suggestions on how to close the gap. Third, his guidance is
always encouraging and constructive, preventing me from crashing due to gradient
explosion. Perhaps this adversarial mentorship sounds a bit complicated. In the
end, it is probably just some nearest neighbor mumbo jumbo. I hope I have become
closer to one of his training points throughout the years.

As we all know, initialization matters in learning a non-convex function. For
that, I would like to thank Zhuowen Tu and Shi-Min Hu for bringing a sophomore
to the wonderful world of computer vision and computer graphics. Without their
fantastic work, I would not have been attracted to these fields in the first place.

I have had the privilege of conducting and discussing my research with many
Berkeley and CMU faculty members, including my thesis members – Jitendra Malik,
Ren Ng, Mike DeWeese – as well as Ravi Ramamoorthi, Trevor Darrell, Dawn
Song, Bruno Olshausen, John Canny, Abhinav Gupta, Yaser Sheikh, and Kayvon
Fatahalian.

Over the summers, I have had the fortune to intern with many researchers, includ-
ing Aseem Agarwala, Jue Wang, Oliver Wang, Eli Shechtman, Michael Rubinstein,
Ce Liu, and Bill Freeman. I would like to especially thank Eli Shechtman, who
has shared not only his view of vision and graphics, but also invaluable practical
knowledge. His daily support helped push me through the ups and downs during my
Ph.D., especially when experiments were not working out. I was extremely fortunate
to be able to treat him as a second advisor.

Acknowledgments xi

Special thanks to my close collaborators who actually made this thesis possible. I
would like to thank Phillip Isola for his philosophical discussions and grand vision. I
am amazed that he can always find the positive side of ideas. I also appreciate Philipp
Krähenbühl’s many useful suggestions over the years, ranging from mathematics
and optimization to marriage and bodybuilding. Perhaps the latter two will turn
out more helpful. I would like to thank Yong Jae Lee for helping me publish my
first paper in graduate school. His valuable guidance and encouragement made the
transition from CMU to Berkeley a much easier process.

I would like to thank Tinghui Zhou for his inspiration on cycle-consistency. More
importantly, for a very long time, Tinghui was the only reason that my cat and I
were not homeless. Tinghui rented his lovely condo to me at a labmate-only discount.
If I am lucky enough, I may have a chance to be the last roommate in Tinghui’s life.
I am looking forward to that.

I would like to thank Richard Zhang for saving me many times from “disaster
mode”, from projects to teaching to dissertation writing. I enjoyed the pleasant
summer we spent next to Lake Sammamish, as well as “playing the nice game.”
Richard and I once wrote a paper in the first week of our internship, starting during
the 800 mile drive from Berkeley to Seattle. We even had to sleep at the company
in the last day. Our paper was accepted, but we had to spend another few months
polishing the project. I would not recommend this submission procedure in the
future.

Special thanks to Taesung Park for fixing many of my bugs in our code base. Our
projects would not have been possible without his extraordinary talent and hard
work. I enjoyed our Venice trip: the spectacular sunrise, the colorful Burano, the
horse2zebra live demo, and the last-minute poster printing. I believe CycleGAN is
just the beginning, and I am expecting many more amazing works from his Ph.D.

I would like to acknowledge Ting-Chun Wang for his knowledge on light fields
and cameras. I enjoyed numerous lunches and dinners in the food corner, along
with the nice discussion about manga, games, and life. We also managed to break a
camera, right before a SIGGRAPH deadline.

I would like to thank Shiry Ginosar for valuable discussions, her artistic taste,
and paper writing help. She is the best labmate one can have, as she always brought
gifts from her trips, including the adorable statue of Ganesha and her recent little
dog gift. I was also extremely happy that she loved our Monet paintings to photos
results.

I always enjoyed late night discussions with Deepak Pathak. I thought I could
do some work at midnight, as nobody would be in the lab. However, Deepak had
the same thought. Instead, we would often just chat until 6 am, without doing any
work. Nevertheless, I appreciated Deepak’s wisdom and creativity, and I predict that

Acknowledgments xii

he will become a star scholar soon. We have many unfinished ideas to write, and I
hope we can finish some of them before we get too old.

I would also thank all the students and postdocs at Berkeley who provided
tremendous support for my study and research. For me, they are the biggest reason
why Berkeley is such a great place for doing a Ph.D. I would like to thank many BAIR
folks including Andrew Owens, Mathieu Aubry, Olivier Duchenne, Dinesh Jayaraman,
Judy Hoffman, Allan Jabri, Bharath Hariharan, Georgia Gkioxari, Shubham Tulsiani,
Pulkit Agrawal, Saurabh Gupta, Abhishek Kar, Eric Kuo, Ke Li, Christian Häne,
Amir Zamir, Kate Rakelly, Angjoo Kanazawa, Zhe Cao, Shizhan Zhu, Yangqing
Jia, Ross Girshick, Jeff Donahue, Evan Shelhamer, Jonathan Long, Eric Tzeng, Lisa
Anne Hendricks, Marcus Rohrbach, Anna Rohrbach, Yang Gao, Samaneh Azadi,
Ronghang Hu, Huazhe Xu, Dequan Wang, Fisher Yu, Chi Jin, Yi Wu, Qifan Pu,
Hezheng Yin, Chang Lan, Sergey Karayev, Daniel Seita, Hyun Oh Song, Jiashi Feng,
Biye Jiang, as well as graphics folks including Ling-Qi Yan, Weilun Sun, Rachel
Albert, Alex Hall, Pratul Srinivasan, Luxin Yang, Xuaner (Cecilia) Zhang, Fu-Chung
Huang, Sean Arietta, Eric Yao, Woojong Koh, Michael Tao, Jiamin Bai, among
others. Thanks Zhuang for helping out our GANs project. Thanks David Fouhey
for creating many cats memes and the “submission” meme. Thanks Ning Zhang for
all the advice, from graduate school application to thesis writing. I am so glad we
were born in the same town in Shanghai, and later attended the same high school,
college, and graduate school. Berkeley always has impressive undergrads. For that, I
would like to thank Hemang Jangle for our stylization project, Tongzhou Wang for
our image-to-image project, and Xinyang Geng, Angela Lin and Tianhe Yu for our
colorization project.

I would like to thank my old friends at the CMU vision and graphics labs, including
Xinlei Chen, Jacob Walker, Hanbyul Joo, Gunhee Kim, Kris Kitani, Yuxiong Wang,
Yong He, Yan Gu, Ersin Yumer, Natasha Banerjee, among others. Special thanks to
Carl Doersch and Abhinav Shrivastava for many helpful comments and feedback.

I would like to thank my coauthors from other groups and institutions: Jiajun
Wu, Yan Xu and Eric Chang for collaboration in multiple instance learning projects,
Chaowei Xiao, Warren He, and Bo Li for many helps in adversarial example projects,
Ming-Yu Liu for the support in the pix2pixHD project, and Nima Kalantari and
Manmohan Chandraker for the guidance in light field projects.

I would like to thank Ian Goodfellow for his encouragement and support for my
image generation-related research. I personally learned a lot from him, both through
his incredible works and his insightful book. I would like to thank the researchers
who made Caffe (Yangqing Jia, Evan Shelhamer, etc.), Torch (NYU/Facebook), and
PyTorch (Soumith Chintala, etc.) available. Nothing in this thesis could be built
without these wonderful tools. I also thank the many GitHub users who contributed

Acknowledgments xiii

to our research repositories (e.g., iGAN, CycleGAN, pix2pix, and ideepcolor), which
improved the quality of our research codebase.

I would like to thank all my friends (e.g., Biye Jiang, Ling-Qi Yan, Luxin Yang,
Angjoo Kanazawa, among others) who helped take care of my cat Aquarius as I was
traveling. As Richard noticed, I travelled a lot. But my cat could not have been
happier.

Finally, I am grateful to my parents and my fiancée Yijia (and our lovely dog
Arya) for their love and support during this wonderful journey. The unbroken bonds
between us made me the person who I am today.

1

Chapter 1

Introduction

Every day, people consume astounding amounts of visual content, as they watch
videos, play digital games, and share photos on social media. For example, Facebook
alone reports 3 million photo uploads per day, and YouTube sees 300 hours of video
uploaded every single minute. As of this writing, an estimated 4.7 trillion photos
have been taken since the invention of photography, of which around 20% are from
the past 12 months.

The availability of this big visual data has enabled researchers to develop powerful
visual understanding methods, which aim at compressing visual data, such as images
or videos, into abstract representations. For example in Figure 1.1 (top), an image
is converted into a single word “street” via scene classification [242], into multiple
words “pedestrians”, “motorcycles”, and “buildings” via object detection [63], or even
into a human-like sentence such as “A group of people riding motorcycles on a busy
city street” via image captioning [43,226]. However, there is another side of visual
intelligence: visual synthesis. It operates in the opposite direction, from compact
concepts back into visual data. In this thesis, I would like to teach machines to
imagine the realistic visual world from both low-level visual concepts (e.g., texture,
lighting, and shape) as well as high-level semantic concepts (e.g. objects and scenes).

But why would visual synthesis be useful? Indeed, it can help address the one-
sided nature of communication between humans and vast amounts of visual data.
While we all perceive information in the visual form (through photographs, paintings,
sculpture, videos, etc.), only a chosen few are talented enough to effectively express
themselves visually. This imbalance manifests itself even in the most mundane
tasks. Consider an online shopping scenario, as shown in the bottom of Figure 1.1.
A user looking for shoes has found a pair that mostly suits her, but perhaps she
would like them to be a little taller, or wider, or in a different color. How can she
communicate her preference to the shopping website? How can we recreate the

2

Image caption: A group of
people riding motorcycles
on a busy city street.

Visual	
Understanding

Visual	
Synthesis

Black shoes!
Hmm... How about
a	little	taller

Figure 1.1: Due to vast amounts of visual data and the recent advance of deep
neural networks [66], computer vision algorithms have remarkably excelled at visual
understanding tasks such as generating a human-like sentence from a natural photo.
In this thesis, we focus on the opposite direction, visual synthesis, with the goal of
creating and manipulating natural photographs.

vivid visual world representing the user’s mental picture? If the user is an artist,
then a few minutes with an image editing program will allow her to transform the
shoe into the desired one, and then use image-based search to find it. However, for
most of us, even a simple image manipulation in Photoshop presents insurmountable
difficulties. One reason is the lack of “safety wheels” in visual synthesis and editing:
any less-than-perfect edit immediately makes the image look completely unrealistic,
as shown in Figure 1.2(c). To put another way, the classic visual synthesis and
manipulation paradigm does not prevent the user from “falling off” the manifold of
natural images.

In this dissertation, we investigate a number of data-driven visual synthesis
approaches for preserving visual realism while creating and manipulating photographs.
Most prior works rely on low-level visual cues such as color and texture for modeling
visual realism [88] or hand-crafted engineering to reduce artifacts for individual
applications [8, 156]. Unlike these methods, we propose to model visual realism

1.1. VISUAL SYNTHESIS AND MANIPULATION 3

directly from large-scale collections of natural images. We then use the learned
models as training wheels for visual content creation. We define a class of image
synthesis and manipulation operations, constraining their outputs to look realistic
according to the learned visual realism models.

We first build our methods on two classic machine learning paradigms: discrim-
inative learning and generative modeling. For discriminative learning, we train a
classifier to predict photo realism and aesthetics. The classifier can then be used
for choosing the best-looking photos as well as computing the optimal parameters
of a graphics program. For generative modeling, we directly enforce the synthesis
results to lie on the manifold characterized by the learned image generation models,
while still satisfying user constraints. We explore several variants of this idea, from a
19th-century-old image averaging model [59] to a state-of-the-art deep generative
model [67,162]. We present real-time applications such as visual data exploration
and image editing.

In the above methods, visual realism modeling and image synthesis algorithms
serve as two independent system components which are designed and optimized
separately. To take advantage of end-to-end learning [66], we combine the realism
classifier and image synthesis program into a single image-to-image translation
pipeline. Inspired by a recently proposed method known as generative adversarial
networks [67], we train a graphics program to translate inputs (such as user sketches)
directly to output results, while simultaneously learning a realism classifier to
distinguish the synthesized results from natural photographs.

Through many qualitative results and human perceptual studies, we demonstrate
that our proposed methods help users easily synthesize more visually appealing
photos, compared to the previous state-of-the-art. We also show that our methods
enable many new visual effects not possible before, such as turning a running horse
video into a zebra video, generating real photographs from Impressionist paintings,
and converting an image captured at night into day images with different types of
lighting, sky and clouds.

Below we first review previous works on visual synthesis and manipulation
(Section 1.1) and visual realism modeling (Section 1.2). We then give a overview of
this dissertation in Section 1.3.

1.1 Visual Synthesis and Manipulation
Our goal is to build machines capable of helping humans create and manipulate

natural photographs, a field with a rich history. Figure 1.2(a) shows a cartoon from
influential work, “The Computer as a Communication Device” [131, 132], written

1.1. VISUAL SYNTHESIS AND MANIPULATION 4

(a) Communication Device [132] (b) Sketchpad [198] (c) Photoshop tools

Figure 1.2: Early works and modern tools for visual synthesis and manipulation.
Decades of research since seminal works such as (a) “The Computer as a Communi-
cation Device” [132] and (b) Sketchpad project [198] were proposed, it is still hard
for novice users to synthesize and manipulate natural images even with the most
advanced tools like Photoshop. Without artistic skills and extensive training, a user
often produces noticeable artifacts such as the unnatural deformation of the handbag
shown in (c).

by the visionary psychologist and computer science pioneer J.C.R. Licklider at
MIT. Already in 1960th, he imagined that we could build a machine to help us
communicate our ideas and emotions in pictures, even though we are not good at
creating visual objects. Along the same line, the Sketchpad project [198], proposed
by Ivan Sutherland, presented a human-machine interface, where a computer can
turn a user’s intent into simple drawings of objects.

Since then, image synthesis and manipulation have become well-established
areas in computer graphics, where an image is created or manipulated to achieve
a certain goal specified by a user. Examples of basic editing and synthesis include
changing the color properties of an image either globally [166] or locally [127], or
synthesizing texture regions [48, 49] and even larger coherent image content [75].
More advanced editing methods also exist such as image warping [90], content-aware
image resizing [8], or structured image editing [12] that intelligently reshuffle the
pixels in an image following a user’s edits. While achieving impressive results in the
hands of an expert, when these types of methods fail, they produce results that look
nothing like a real image. This is because they rely on low-level principles (e.g., the
similarity of color, gradients or patches) and do not capture higher-level information
about natural images.

For example, in Figure 1.2(c), a user intends to modify the shape of the handbag
to realize a particular design idea, using an advanced commercially available image
warping tool. However, a few misplaced control points and sub-optimal user controls
produce a less than satisfactory result, both appearing unnatural and far from the
user’s original objective. Two things are possibly going wrong here. First, the
algorithm does not realize that it is currently editing a handbag, rather than a shoe

1.2. LEARNING VISUAL REALISM 5

or a cat. Indeed, many other users have used the same algorithm for editing different
object instances from different object categories. Second, more importantly, the
algorithm has no clue about what makes a real handbag look like a real handbag.
These failures motivate us to propose new methods that can understand both the
semantics and the visual realism of the image.

1.2 Learning Visual Realism
The human ability to very quickly decide whether a given image is “realistic”, i.e.

a likely sample from our visual world, is impressive. Indeed, this is what makes good
computer graphics and photographic editing so difficult. So many things must be
“just right” for a human to perceive an image as realistic, while a single thing going
wrong will likely hurtle the image down into the Uncanny Valley [144]. Computers,
on the other hand, find distinguishing between “realistic” and “artificial” images
incredibly hard.

So what makes an image appear realistic? This is one of the most longstanding
problems in computer vision. Back in 1999, Huang and Mumford [88] studied the
local statistics of images, ranging from a simple histogram of intensity values to
the joint distribution of texture features such as wavelets. Since then, much of the
early works were based on generative models [52, 160, 251]. Learning a generative
model for full images was challenging at the time due to their high dimensionality.
Therefore, these works focused on modeling local properties via filter responses and
small patch-based representations. These local patch models work well for low-level
imaging tasks such as denoising and deblurring, but are inadequate for capturing
the higher-level visual information required for assessing photorealism.

Computer graphics researchers look at the same problem from a different angle.
They ask the question “what makes an image look fake?”. Researchers investigate
common artifacts such as unrealistic colors, exaggerated stretching, obvious repeti-
tions, and over-smoothing. To fix individual artifacts, researchers study low-level
visual cues like boundary, color, and texture, and manually design specific algorithms
to suppress the artifacts appearing in previous algorithms. However, each new fix
may introduce additional artifacts, which require further fixes. As a result, new
systems have become more and more complicated and brittle to use in practice. This
is because the spectrum of unrealistic images is much larger than the spectrum of
natural ones. Any heuristic that works for one aspect may fail in another aspect.
Rather than relying on the hand-crafted engineering, in this thesis we aim to learn
visual realism directly from large-scale databases of natural images based on the
recent advances of highly accurate discriminative classifiers [116] and generative

1.3. DISSERTATION OVERVIEW 6

models [67] that can generate full images.

1.3 Dissertation Overview
In this dissertation, we explore three kinds of approaches: discriminative learn-

ing [245, 246], generative modeling [247, 248], and an end-to-end image-to-image
translation framework [249,250] combining the previous two.

Part I. Discriminative Learning of Visual Realism and Aesthetics Chap-
ters 2 and 3 describe discriminative methods for modeling visual realism and photo-
graph aesthetics. Directly training these models requires expensive human judgments.
To address this, we adopt active and unsupervised learning methods to reduce anno-
tation costs. We then apply the learned model to various graphics tasks, such as
automatically generating image composites and choosing the best-looking portraits
from a photo album.

Part II. Generative Modeling for Visual Exploration and Synthesis Chap-
ters 4 and 5 present approaches that directly model the natural image manifold via
generative models and constrain the output of a photo editing tool to lie on this
manifold. We build real-time data-driven exploration and editing interfaces based
on both simpler image averaging models and more recent deep models.

Part III. Image-to-Image Translation Chapters 6 and 7 combine the dis-
criminative learning and generative modeling into an end-to-end image-to-image
translation framework, where a network is trained to map inputs (such as user
sketches) directly to natural looking results. We present a new algorithm that can
learn the translation in the absence of paired training data, as well as a method for
producing diverse outputs given the same input image. These methods enable many
new applications, such as turning user sketches into photos, season transfer, object
transfiguration, photo style transfer, and generating real photographs from painting
and computer graphics renderings.

Discussion In Chapter 8, we summarize the contributions of this dissertation and
discuss several future directions in deep image synthesis and manipulation.

7

Part I

Discriminative Learning of
Visual Realism and Aesthetics

8

Chapter 2

Modeling Photo Aesthetics with
Active Learning

In this chapter, we aim to learn a discriminative model of photo aesthetics and
use the model to choose and produce the best-looking photos. As a case study, we
investigate the human perception of portraits regarding different facial expressions, as
portraits are among the most popular subjects in photography. Directly training these
discriminative models incurs expensive annotations, as we have to collect human
subjective ratings across facial expressions and individual subjects. To address
this challenge, we introduce an active learning method to reduce the annotation
efforts dramatically. We then use the learned model for selecting the most attractive
expressions from large video/photo collections. We capture video of a subject’s face
while engaged in a task designed to elicit a range of positive emotions. We then
use crowdsourcing to score the captured expressions for their attractiveness. We
use these scores to train a model to automatically predict attractiveness of different
expressions of a given person. We also train a cross-subject model that evaluates
portrait attractiveness of held-out test subjects and show how it can be used to
automatically mine attractive photos from personal photo collections. Furthermore,
we show how, with a little bit of extra crowdsourcing, we can substantially improve
the cross-subject model by “fine-tuning” it to a new individual, using active learning.
Finally, we demonstrate a training app that helps people learn how to mimic their
best expressions.

2.1. INTRODUCTION 9

2.1 Introduction
Human faces are one of the most common subjects of photographs. Unfortunately,

many of us feel anxiety when a camera is pointed in our direction. What should I do
to look good? Will my smile look attractive or awkward? We have all experienced
the disappointment of not looking our best in other people’s photos. While models
and actors are taught how to look good when a camera is pointed at them, the rest
of us suffer from a lack of feedback; we simply don’t know which of our expressions
look good to other people. Self-perception in a mirror can be misleading; the image
is horizontally flipped, but more importantly, our perception of ourselves is often
very different than that of others [195] since our perception is influenced by our
self-image and internal emotions.

There are a number of approaches to editing and improving faces in photographs
as a post-process [101,128,230]; however, we often do not have control of photographs
taken by others and posted publicly, and many people are not comfortable with the
idea of manipulating expressions in photographs. Instead, our goal is to help people
look better in photographs at the time they are taken. Specifically, our method offers
users feedback on how their range of facial expressions are perceived by others, so
that they can be better prepared when a camera is pointed at them. Our method can
also be used to select the most flattering pictures of people from a photo collection
or video.

Our approach begins by capturing a user’s range of facial expressions that are
appropriate for portraits. We capture a video of the user while they are shown
a twelve minute compendium of videos selected to elicit a range of neutral and
positive emotions [70]. We then use a novel data-driven computer vision model that
automatically predicts the scores of the expressions along two axes: attractiveness
and seriousness. (We include the serious attribute so that users can see their best
expressions across a range of scenarios, from big smiles in social settings to more
neutral expressions for professional portraits.) While this method provides a reason-
able approximation of the scores of a user’s expressions, it cannot capture all the
subtle differences between expressions and variation among users. We therefore also
describe a novel crowdsourced, active learning scheme to both customize our model
to the user’s data and select the user’s top expressions across a range of seriousness
levels. This active learning scheme reduces the cost of data collection by an order of
magnitude over random sampling, to about $5.

We provide a number of interfaces and visualizations to inform the user of the
results of our models. The first visualization simply shows the user their most
attractive expressions across twenty five levels of seriousness (Figures 2.1,2.4). Next,
we offer a number of tools to explore and visualize the data more deeply. For example,

2.2. BACKGROUND 10

Crowdsourcing &
Machine Learning

Thousands of
Portraits

Most Attractive Expressions

Figure 2.1: We collect thousands of portraits by capturing video of a subject while
they watch movie clips designed to elicit a range of positive emotions. We use
crowdsourcing and machine learning to train models that can predict attractiveness
scores of different expressions. These models can be used to select a subject’s best
expressions across a range of emotions, from more serious professional portraits to
big smiles.

the user can select an expression and suggest a change, e.g., opening the eyes more
widely, and see a similar expression with more open eyes and the corresponding
change in attractiveness score. The user can also visualize the differences between
slices of the data, e.g., the difference between the most and least attractive expressions
that contain open eyes. Finally, we also provide an expression training application,
called “Mirror Mirror”, for practicing expressions in front of a webcam. The user
can see their attractiveness and seriousness scores in real-time, and can practice
mimicking their best expressions by selecting one and using a visualization that
cross-fades between aligned versions of the current and selected expressions.

We test our method on input videos of eleven subjects, and numerically evaluate
our methods on hold-out data. We also include a demonstration of the training app
to show that subjects can use it to mimic selected expressions. Finally, we apply our
method to select the most attractive expressions of a subject from videos downloaded
from the internet, as well as personal photo collections.

2.2 Background
The perception of facial expressions is a well-studied topic [24]. The diversity of

facial expressions are organized by the Facial Action Coding System (FACS) proposed
by Ekman and Friesen [51]; each action unit describes a specific facial motion (e.g.,
“cheek raiser”) and its underlying muscular basis. More recent work [46] suggests that

2.3. OVERVIEW 11

there are an even larger range of facial expressions than those encoded by FACS. Of
particular interest to our application is the difference between an insincere, voluntary
smile and a spontaneous smile, which adds a slight narrowing of the eyes. Studies
show that a small percentage of people are able to fake spontaneous smiles (also
known as “Duchenne smiles”) [72, 117], which should yield better portraits. The
muscular differences in other subtle smile variations (e.g., amused, polite, nervous)
have also been observed [5].

Another area of related research is the differences in social judgments elicited by
different faces. Oosterhof and Todorov [152] algorithmically generate different face
shapes and measure their perceived traits (attractive, trustworthy, etc.) as scored by
humans. They find that most traits approximately lie in a two-dimensional space
that can be modeled as a linear combination of two principal components: valence
and dominance. We instead model differences of traits between expressions of a single
person, and we choose axes that are more relevant to our application (attractive and
serious). However, our experiments also show that other traits that may be desirable
in a portrait (e.g., trustworthy, confident) are strongly correlated to our chosen axes.
Predicting, ranking, and improving the attractiveness or memorability of the faces
of different people is a common research topic [4, 68,102,110,128,230]. We instead
focus on the attractiveness of different expressions of the same person.

There is significant work in the computer vision literature on the automatic
recognition of facial expressions [153]; most of this work focuses on FACS recognition.
In contrast, Dibeklioglu et al. [38] predict whether a portrait contains a genuine
Duchenne smile. Both Shah and Kwatra [183] and Albuquerque et al. [3] identify smiles
from multiple portraits for the purposes of selecting or generating better photographs.
None of these techniques can provide a continuous rating of attractiveness of the
various facial expressions of an individual. Fiss et al. [54] select facial expressions
from a video stream that best serve as candid portraits. However, they optimize
for portraits that convey the moment, and many of the selected expressions are not
attractive. Also, their method requires temporal features such as optical flow, and
cannot be used on photo collections, which we demonstrate in Section 2.8. Finally, our
approach to using crowdsourcing to collect ranking and scoring data for subjective
attributes of images is inspired by Parikh and Grauman [154], and similar to recent
work on font attributes [148] and fashion style [111].

2.3 Overview
Our system has a number of components that can be organized into two main

2.4. COLLECTING PORTRAIT DATA 12

steps: training and testing.
Training: We begin by collecting a large set of aligned and white-balanced

images of unique facial expressions for 11 subjects (Section 2.4). The first step is
to score each image along two attributes: attractiveness and seriousness. We use
crowdsourcing to collect randomly-sampled pairwise comparisons for each subject and
attribute (Section 2.4.3), and then perform MAP estimation to compute attribute
scores for each image of each subject (Section 2.5.1). Since we are particularly
interested in accurate ranking of the most attractive expressions across different
levels of seriousness, we collect additional crowdsourced pairwise comparisons for the
highest scoring expressions and re-estimate scores to obtain an even more accurate
ranking (Section 2.5.1). These scores for a single subject are used to train a single-
subject regression model (Section 2.5.2) that can estimate attribute scores for an
image of the same subject. The model takes as input features of a single image
(computed in Section 2.4.2), and can operate on previously unseen images of the
subject. Finally, we take the scores for all 11 subjects and train a cross-subject
regressive model that can operate on images of any subject (Section 2.5.3). This
model is more general since it can score a new person’s expressions without any
additional crowdsourcing; however, it is less accurate than the single-subject model.

Testing: Our system offers a number of applications, such as expression training
(Section 2.6) and visualization (Section 2.7), for subjects that are not in our training
data. For some applications (e.g., Figure 2.17), we can simply use the cross-subject
model to compute attributes. In situations requiring higher accuracy, we first collect
images of the new subject’s expressions, and use the cross-subject model to compute
baseline attribute scores. We use the seriousness scores as-is, since the cross-subject
model is accurate enough for this attribute. For attractiveness we use an active
learning scheme (Section 2.5.4) to collect a small number of crowdsourced pairwise
comparisons. During this step we re-estimate attractiveness scores for each of the
subject’s images using both the pairwise comparisons and the cross-subject model
as a rough prior. Finally, we train an improved single-subject model from the new
scores.

2.4 Collecting Portrait Data
Our first goal is to collect a set of portrait expressions of a subject and rate

them along attributes that provide useful feedback for portrait posing. However,
we first need to determine the range of expressions we wish to capture, and select
criteria for good portraits. Clearly, attractiveness is a common goal in most casual
portraiture. Also, while most work on facial expression analysis [51, 152] include
negative attributes like anger and sadness, these attributes are generally not desired

2.4. COLLECTING PORTRAIT DATA 13

Figure 2.2: Left: our video capture set-up. Subjects watch videos (played by an iPad
on top of a camera) while we record them. Right: example subject expressions.

in contemporary portraits. We therefore restrict our focus to positive attributes.
Along with attractiveness there are a number of positive attributes for portraits; for
example, we may wish a professional portrait to appear confident, or a sales person
may wish to appear trustworthy.

In initial experiments, we collected measurements on portraits for attractive,
confident, and trustworthy attributes. However, like previous work [152], we found
these attributes to be highly correlated, and therefore redundant. Oosterhof and
Todorov show that most attributes can be represented as linear combination of two
attributes: valence and dominance. Valence is roughly parallel to attractiveness, while
dominance is roughly parallel to aggressiveness. We therefore kept the attractive
attribute, and chose to add a second attribute that is parallel to aggressiveness but
also useful for our portrait application. We found that the highest rated portraits for
attractiveness consistently had large smiles; however, it is also useful to be able to
pose well for more neutral expressions without large smiles. We therefore added the
“serious” attribute, since it is both a useful control for smile strength, and is nearly
parallel to aggressiveness.

In the rest of this section, we first describe how we capture portraits that span
a range of positive expressions. Next, we pre-process the portraits to normalize
their position and color, extract image features used for predicting attribute scores,
and eliminate data redundancy. Finally, we use crowdsourcing to collect pairwise
comparisons of portraits along the attractive and serious attributes.

2.4.1 Collecting a Personal Portrait Dataset

We start by collecting a large range of positive facial expressions that may be
appropriate for portraits for each subject. We hand-edited together a 12-minute

2.4. COLLECTING PORTRAIT DATA 14

(a) Input video (b) Facial tracking (c) White balance

(d) 3D alignment (f) Selected representative frames(e) Feature

Figure 2.3: We pre-process the input video to align the faces, compute features, and
reduce data redundancy.

compendium of short videos that ranged across several categories, including funny,
scientific, and inspirational topics. The video is shown on an iPad mounted directly
above a SLR camera capturing video, so that it appears the subject is looking at the
camera (Figure 2.2). We also asked the subject to make their best portrait expression
in several posed categories, such as confident, big open-mouthed smile, etc. Video is
often used to elicit emotions for facial analysis [70, 142]. An alternative is to engage
in a conversation with the subject [54]; however, mouth motions can make stills
unsuitable for portraits. In total, we collected the data of 11 subjects including both
male and female subjects ranging in age from 23 to 50.

2.4.2 Pre-Processing

We perform several pre-processing steps (Figure 2.3) for each captured video to
align the facial data, compute facial features and reduce data redundancy.

Facial tracking and pose normalization: We first perform tracking and pose
alignment to place the face in a common reference frame. We use a recently developed
face tracker [225] that accurately estimates nine facial feature points and localizes
different facial parts such as eyes, mouth and nose (Figure 2.3b). We apply a median
filter with a window size of 5 frames to smooth the estimated points and suppress
tracking temporal jitter. Then we align the tracked face to a 3D template model
released by [236]. In particular, we estimate a 3D-to-2D transformation matrix

2.4. COLLECTING PORTRAIT DATA 15

Figure 2.4: Visualizations of the most attractive expressions for three subjects across
a range of seriousness (the upper-left is the most serious, the lower-right the least,
and seriousness decreases in reading order; attractiveness scores are shown in red).
The frames are automatically selected from 12 minutes of video using a combination
of crowdsourcing and machine learning.

between the pre-annotated 3D points in the 3D model and the detected 2D facial
points using least squares. Finally, we warp the 2D face into a frontal view (174×224)
using the computed transformation matrix. We exclude frames for which the tracker
reports tracking failures.

Feature extraction: We extract HOG (Histogram of Oriented Gradients) [32]
features to capture visual properties of facial expressions in different parts of the face
at different scales. Figure 2.3e shows five bounding boxes we use for HOG extraction,
which capture two eyes (4× 6 cells), eyebrows and wrinkles (2× 6 cells), the mouth
(2 × 6 cells) and the whole face (8 × 6 cells). The cell size for HOG is 8 pixels.
Combining features of different parts results in a 3720-dimensional feature vector.

Select representative expressions: Each video typically contains around
16, 000 frames with highly redundant sampling of common expressions; collecting
ratings for each frame is impractical. Therefore, we implement a simple greedy
algorithm to select unique expressions from the input video. The algorithm starts
by randomly selecting a frame Ii from the video, and then removes any other frame
Ij which is very similar to the current frame (i.e., D(Ii, Ij) > T where D(·, ·) is
an appearance similarity function between two expressions and T is a threshold).
After the first iteration, we repeatedly select another random frame and remove
duplicates until all frames have been processed. The similarity function D(Ii, Ij) is
a weighted dot product between the HOG vectors of frames Ii and Ij (after first
centering and whitening the HOG vectors [73]). As in previous work [107], we weigh
the mouth regions four times as strongly as the other features. We set the threshold

2.5. PORTRAIT EVALUATION 16

T by binary search with the goal of extracting 200 to 250 unique expressions, which
we observe empirically to be a good range for avoiding duplicates while avoiding the
elimination of subtle but significant facial expression differences. Figure 2.3f shows
several examples of the remaining frames.

White Balance: Some of our videos are not properly white balanced. To reduce
the distortion in color space, we white-balance the selected representative frames
using Adobe Lightroom before we collect the annotation data.

2.4.3 Crowdsourcing Pairwise comparisons

We next collect human response data that allows us to score the unique expressions
along the attractive and serious axes for each portrait subject. We use Amazon
Mechanical Turk to collect pairwise comparisons (e.g., “Is expression A more attractive
than B?”). Pairwise comparisons are a common approach [205] to collecting subjective
scoring data since it is much harder for people to provide absolute scores.

We use separate MTurk HITs (Human Intelligence Task) for attractive and
serious attributes, and each HIT only includes portraits from one subject. We provide
instructions with two examples of labeled pairwise comparisons from a subject not
used in our experiments. Each HIT includes two control questions with obvious
answers, along with fourteen unknown comparisons. We discard HITs with incorrect
obvious answers, and ban users who fail more than 25% of these tests. No single
worker is allowed to complete more than 20 HITs. We pay $0.06 per HIT. Our system
always uses this structure for generating HITs; however, we sample expressions to
form pairwise comparisons in different ways (random and active) and at different
scales in different parts of our system. We discuss this sampling in the next section.

2.5 Portrait Evaluation
One of the main goals of our system is to output a visualization of the subject’s

best portrait expressions from a very large input collection of portraits, such as
the frames of a video. Our visualization (Figure 2.4) shows the most attractive
expressions across 25 discretized seriousness levels; seriousness scores decrease from
the upper left to the lower right in reading order (left-to-right, top-to-bottom), and
the most attractive image within each seriousness level is shown. These images can
be used directly, or the user can select one and use our training app to learn how to
mimic its expression.

Supporting these goals requires two types of portrait evaluation. First, we need a
function that can score a portrait for both its attractiveness and seriousness. This

2.5. PORTRAIT EVALUATION 17

score is shown to the user in our expression training app, and could be used to
identify the best moment to trigger the shutter on a camera. Second, we need a
method to select the most attractive portraits from a large set, i.e., rank them by
attractiveness. This ranking is used to visualize a subject’s best expressions, and
could be used to select the best stills from a video. A ranking can trivially be derived
from a scoring function; however, for our application there is a difference in accuracy
requirements. For our ranking, the relative ordering of two non-attractive expressions
is not important; instead, we want high confidence in our ranking of the top few
expressions. At the same time, the scoring function should be reasonably accurate
for any portrait.

To accomplish these goals, our method begins by first computing scores for
the representative expressions chosen in Section 2.4.2 using crowdsourced pairwise
comparisons. We then use these scored images to compute both single-subject
(Section 2.5.2) and cross-subject (Section 2.5.3) predictive models. Finally, using the
cross-subject model as a rough prior, we learn a more accurate single-subject model
with an active learning scheme that selects a small number of pairwise comparisons
that most increase ranking accuracy (Section 2.5.4).

2.5.1 Scoring Representative Expressions

We estimate attractiveness scores A = {a1, ..., an} and seriousness scores S =
{s1, ..., sn} for each of n representative expressions. We denote the pairwise compari-
son annotations as a count matrix C = {ci,j}, where ci,j indicates expression Ii is
preferred over expression Ij by ci,j times. We use the Bradley-Terry model [18], which
models the probability of choosing Ii over Ij as a sigmoid function of the score differ-
ence between two expressions, i.e., P (Ii > Ij) = f(ai − aj) where f(u) = 1

1+exp(−u/σ) .
The scores can be estimated by solving a maximum a-posteriori (MAP) prob-

lem [205]

A∗ = arg min
A

(− log Pr(C|A)− log(Pr(A))) , (2.1)

where − log Pr(C|A) is the negative log likelihood of the pairwise comparison data
given the model,

and − log(Pr(A)) is a model prior term. For now we assume A is a uniform
distribution; we improve this prior in Section 2.5.4. We can therefore rewrite Equation
(2.1) as

A∗ = arg min
A
−
∑

i,j

ci,j log(f(ai − aj)). (2.2)

2.5. PORTRAIT EVALUATION 18

0

0.2

0.4

0.6

0.8

1

1.2

1.4

2 3 4 5 6 7 8 9 10 11 12 13 14 15

M
A

P
 c

o
st

Number of pairs

Serious train

Serious test

Attractive train

Attractive test

(a) MAP cost

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

2 3 4 5 6 7 8 9 10 11 12 13 14 15

C
la

ss
if

ic
at

io
n

 r
at

e

Number of pairs

Serious train

Serious test

Attractive train

Attractive test

(b) Classification rate

Figure 2.5: Convergence of (a) (MAP minimization in Equation 2.2 and (b) classifi-
cation rate with varying numbers of training pairs per image, for both training and
testing data, and serious and attractive attributes.

We solve this equation using gradient descent (with σ in f(u) set to 1), and then
normalize scores to [0, 1] for each subject. The same method is used to estimate
seriousness scores S.

Convergence

We need to collect enough pairwise comparisons per subject so that the minimiza-
tion of the MAP energy in Equation 2.2 converges to its minimum. As in previous
work [148], we find that convergence occurs in a linear rather than quadratic number
of pairwise comparisons. To determine the actual number required, we reserve 5
pairwise comparisons per expression as hold-out test data, and vary the number of
randomly sampled training pairs per expression from 2 to 15. (Note that one pair
compares two expressions, so 15 pairs means that we sample 15× 2× n expressions
in total, i.e., each expression is seen 30 times.) We evaluate this convergence test
on three subjects and report the average MAP cost and the classification rate (per-
centage of pairwise comparisons correctly predicted) as a function of the number
of training pairs (2 to 15). The MAP cost is reported for both testing data (the 5
pairs held-out) and the portion of training data used. As shown in Figure 2.5, both
metrics converge after about 10 pairs per expression.

Ranking

We can use the scores to rank and select the most attractive expressions across
a range of serious levels, as in Figure 2.4. However, MAP convergence does not
necessarily mean that the scores are accurate enough to select the best expressions.
To explore this question, we first define a rank error metric that measures the success

2.5. PORTRAIT EVALUATION 19

attractive corr attractive error serious corr serious error

SVR 0.88 0.064 0.90 0.060
GBR 0.88 0.064 0.89 0.063

Table 2.1: Accuracy of the single-subject regression model, reported as correlation
and mean absolute error, for two regression methods.

of a selection algorithm. We assume the seriousness score of each expression is known,
and there are K serious levels (each level is a range of serious values, as computed
in Section 2.5.5). Given a “correct” attractiveness ranking within each serious level
we can compute the deviation from this ranking as 1

K

∑K
k=0(πk − 1), where πk is the

rank of the chosen expression in the k’th serious level in the “correct” ranking. This
equation takes the mean of the difference of the rank of the chosen expression (which
is 1) and its correct rank πk. This metric is only concerned with the highest-rated
expression in each serious level, since this is the only image shown in our target
visualization.

Unfortunately, it is impossible to know whether we have collected enough pairwise
comparisons from the crowd to know the “correct” ranking. We therefore generate a
baseline ranking as follows. First, we randomly sample 20 pairs per expression for
both attractiveness scores and seriousness scores. With this sampling, the MAP error
has converged, but the rank error may not have. We therefore generate additional
samples that can fine-tune the ranking. We fix the seriousness scores, since these
are only used to place expressions into 25 levels, and discard all but the top 10
expressions in each bin. For each pair of these 10 expressions in each bin, we collect
an additional 20 pairwise comparisons. That is, we collect 20 redundant opinions for
each possible pair. We then re-rank the expressions using this data and our MAP
minimization (Equation 2.2). We show rank error relative to this correct ranking
in Figure 2.6, both for the initial random-sampled comparisons, and the ranking
refinement. We can see while 20 random samples is enough to minimize MAP, it does
not minimize rank error. Rank error is reduced to around 0.1 after 10 refinement
samples, which means that 9 out of 10 visualization expressions are correct.

This method of generating a “correct” ranking is expensive: $87.8 per subject.
We therefore collect this data for only three subjects, as a reference for comparing
more efficient methods. In Section 2.5.4, we show how an active learning scheme can
reduce this cost to about $5.

2.5. PORTRAIT EVALUATION 20

0

0.5

1

1.5

2

1 3 5 7 9 11 13 15 17 19

R
an

k
 e

rr
o
r

Number of pairs

(a) Rank error (random sampling)

0

0.5

1

1.5

2

1 3 5 7 9 11 13 15 17 19

R
an

k
 e

rr
o
r

Number of annotations per pair

(b) Rank error (refinement)

Figure 2.6: Rank error convergence from method in Section 2.5.1. (a) Mean rank
error after varying the number of randomly-sampled pairs per expression. (b) Mean
rank error with different numbers of additional pairwise comparisons per expression
within each serious level.

2.5.2 Single-subject predictive model

Now that we have scores for the representative expressions of a single subject,
the next step is to build a model that can predict attractiveness and seriousness
scores for new photos of the same subject.

We train a subject-specific regression model that predicts scores from facial
appearance. We use the HOG features described in section 2.4.3, and treat scores
estimated in Section 2.5.1 as ground-truth. We experimented with two popular
regression models — Support Vector Regression (SVR) [191] and Gradient Boosted
Regression Trees (GBR) [56] — and evaluate both methods on all the 11 subjects using
10-fold cross-validation where each fold has 20 to 25 test images. We report correlation
and mean absolute errors in Table 2.1. The two methods produce similar results,
and we use SVR since it is more efficient. We also tried adding tracking landmark
point coordinates (normalized by face size) to our feature vector, as suggested by
Khosla et al. [110], but found that it barely boosted prediction performance.

A natural criticism of our approach is that smile and open-eye detectors could
be adequate for predicting attractive expressions. To explore this question we use
an off-the-shelf smile detector [98], and build our own open-eye detector using the
facial tracker landmarks by taking the mean distance of the two points on top of
each eye from their corresponding points on the bottom. Larger distances correspond
to open eyes; we experimentally confirmed that this metric works well. We train
an SVR on our score data using only the 2-dimensional output of the smile and

2.5. PORTRAIT EVALUATION 21

0

5

10

15

20

25

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

F
ra

m
e

p
er

ce
n

ta
g

e

Attractiveness scores

W/o open eyes

or smiles

With open eyes

and smiles

Figure 2.7: Attractiveness scores for three subjects, discretized into 10 bins. Green
portions of the histogram indicate open eyes and smiles; the red are the rest.

open-eye detector, combined. Its correlation with the correct attractiveness scores is
only 0.47, indicating that our model (with correlation 0.88) is understanding much
more than smile size and blinks. The smile detector output has a −0.51 correlation
with seriousness, so it is somewhat effective at modeling that attribute.

Our smile and open-eye detectors may not be state-of-the-art; we simulate “ideal”
detectors by manually selecting expressions with open eyes and smiles. We show a
histogram of the expressions by attractiveness score in Figure 2.7. We can see that
while open-eye and smile detectors can filter out the worst images, they miss many
of the more attractive expressions.

2.5.3 Cross-subject predictive model

Our single-subject model can predict attractiveness and seriousness scores for one
subject given 10 pairs per expression for both attractive and serious attributes. This
crowdsourcing costs on average $21.6 for a single subject to achieve a good scoring
function, and $87.8 to accurately rank the top expressions, which is too expensive for
real-world applications. Given differences between humans and their facial expressions,
it is challenging to build a sufficiently accurate completely automatic model for new
subjects without any crowdsourcing. However, we should be able to share information
between the single-subject models to build a reasonably effective cross-subject model
that can at least serve as an initial condition. We therefore combine features and labels

2.5. PORTRAIT EVALUATION 22

0.7

0.75

0.8

0.85

0.9

1 2 3 4 5 6 7 8 9 10

C
o
rr

el
at

io
n

Number of subjects

Serious

Attractive

Figure 2.8: Correlation between the expression scores computed in Section 2.5.1 and
scores from cross-subject models trained with fewer numbers of subjects. Since there
are multiple ways to select x subjects (e.g., for x = 3, there are

(
11
3

)
combinations),

we randomly select at most 50 combinations and average them to produce plot values.

from different subjects, and train a cross-subject SVR model to predict attractive
and seriousness scores using the same method as in Section 2.5.2.

To evaluate the model we hold-out one subject and train on the others, and then
average the results of all 11 subjects. The correlation score between the single-subject
scores and cross-subject prediction is 0.84 for “attractive”, and 0.83 for “serious”. The
cross-subject model can also be evaluated by its rank error of 1.00; this is significantly
higher than the rank errors in Figure 2.6, and suggests that this model alone is not
sufficient to accurately select the most attractive expressions.

Adding data for more subjects may improve the cross-subject model. We plot
the correlation between the scores computed in Section 2.5.1 and versions of the
cross-subject model trained with fewer subjects (from 1 to 10) in Figure 2.8. We
can see that seriousness has converged. Attractiveness has mostly converged, but
adding a few more subjects will probably slightly improve the model. Also, while
our subjects do include a variety of races, genders, and ages, it is likely that there
are people for whom our current model will not perform well.

In the end, we use the cross-subject serious model to predict subject-specific
seriousness scores since high accuracy is usually not required for this attribute (in
our main visualization seriousness scores are only used to assign portraits to serious
levels). In the next section we improve the attractiveness score with a small amount
of crowdsourcing guided by active learning.

2.5. PORTRAIT EVALUATION 23

2.5.4 Active Learning

We wish to collect a small amount of crowdsourced data to improve the ranks and
scores for photos of new subjects that are first computed with the cross-subject model.
The problem of selecting the optimal data to collect during a learning procedure is
called active learning, and is well-studied. Though most of the literature addresses
collecting class labels for objects, several papers address pairwise comparisons while
learning to rank data [2,95,130]. Most of these techniques address learning a ranking
function that operates on data features, and thus can generalize to new data. In our
case, we only wish to rank existing representative expressions. Chen et al. [29] update
the Bradley-Terry model we use in Section 2.5.1 to better handle the crowdsourced
setting by taking worker quality into account. We could use their method to produce
rankings, but our situation is still unique for several reasons. For one, we are
most interested in accurate ranking of the most attractive expressions. Two, our
expressions are organized into serious levels, and relative ranking within a serious
level is most important; on the other hand, the scores of expressions in different
serious levels should still be comparable. Three, while there are subtle differences in
the attractiveness of expressions across different subjects, there are also significant
commonalities (e.g., open eyes and smiles are usually more attractive). We can
therefore use scores from the cross-subject model to predict scores that can serve as
a prior.

Nonetheless, our active learning scheme follows the same principles of most
previous work. We more frequently sample pairs with high uncertainty [2], which
corresponds to pairs with similar attractiveness scores. We add to this scheme a
preference for sampling more attractive expressions, and a preference for sampling
images of similar seriousness scores. (While only sampling pairs within the same
serious level would quickly optimizing ranking error, the scores of different levels
would drift from each other; we therefore use a soft preference.) Finally, we use scores
from the cross-subject model as a prior.

Our method is initialized by computing baseline seriousness and attractiveness
scores S0 = {s01, ..., s0n} and A0 = {a01, ..., a0n} from the cross-subject model. We fix
the seriousness scores and do not attempt to improve them, since they are already
reasonably accurate and only used to assign expressions to serious levels. We then
iterate through active learning rounds t = 1, ..., T . In each round we first select
n pairs to sample via crowdsourcing. These samples are selected by sampling a
probability distribution

Pr(Ii, Ij) ∼ e−||ai−aj ||
2/2σ2

a · e−||si−sj ||
2/2σ2

s · e−[(1−ãi)2+(1−ãj)2]/2σ2
h (2.3)

2.5. PORTRAIT EVALUATION 24

where

ãi ∝
ai
∑

j e
−||sj−si||2/2σ2

ã

∑
j aje

−||sj−si||2/2σ2
ã

(2.4)

and σã in Equation 2.4 is set to the std. deviation of the seriousness scores. The first
factor prefers to sample expressions with similar attractiveness scores, i.e., similar
ranks. The second factor prefers to sample similar seriousness scores. The third factor
prefers to sample more attractive expressions, according to the current estimate
of their scores. We use ãi because directly using ai leads to under-sampling the
more serious levels, since serious and attractiveness scores are negatively correlated.
Equation 2.4 normalizes each score ai by a local weighted average of attractiveness
scores, where scores with similar seriousness scores (i.e., close to si) are weighted
higher. As a result, attractiveness scores that are unusually high for the local range
of seriousness are more likely to be sampled. Note that we rescale ãi to [0, 1] after
we calculate Equation 2.4. We use σa, σs and σh to weight the relative importance
of each factor. (We describe how each parameter is set later.)

Once we have selected samples within a round t, we update the scoring model be-
fore iterating. First, new crowdsourced labels are added to the existing crowdsourced
annotation data: ci,j = ci,j + 1. Next, we minimize Equation 2.1 to compute scores.
However, in this case we can use the cross-subject model as a more suitable prior
than a uniform distribution. We assume a Gaussian distribution Pr(A) ∼ N(A0, σ2

cI)
as the prior model of A, where I is the identity matrix. That is, we encourage each
expression’s score to be similar to the cross-subject score. We can thus re-write the
MAP Equation 2.1 as

At = arg min
A
− log Pr(C|A)− log(Pr(A))

= arg min
A
−
∑

i,j

ci,j log(f(ai − aj)) +
1

2σ2
c

∑

i

||ai − a0i ||2
(2.5)

where parameter σc controls the emphasis of the cross-subject prior relative to
the data-fitting term, and σ in the sigmoid function f is set to the std. deviation
of the prior scores A0. We solve Equation 2.5 using gradient descent. Notice that
− log Pr(C|A) increases its influence as we sample more pairs; we start from the
cross-subject model and increasingly rely on personalized crowdsourced data as it
arrives. Many expressions with low attractiveness scores may never be sampled at
all, and simply be scored by the cross-subject model. On the other hand, highly
attractive pairs of expressions may be sampled multiple times with different workers.

2.5. PORTRAIT EVALUATION 25

0.3

0.8

1.3

1.8

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

M
ea

n
 r

an
k

 e
rr

o
r

Number of pairs

Simulated active

Real active

Simulated random

Real random

Figure 2.9: Mean rank error averaged across three subjects versus the number of
pairwise comparisons per expression for four conditions: active learning versus random
sampling, across both real (crowdsourced) and simulated data.

0.55

0.65

0.75

0.85

0.95

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

C
o

rr
el

at
io

n

Number of pairs

Simulated active

Real active

Simulated random

Real random

Figure 2.10: Correlation between the scores computed in Section 2.5.1 and scores
computed using either active learning or random sampling, across both real and
simulated data. Correlations are averaged across three subjects.

Simulated Pairwise Comparisons

Our method has four parameters; we set these to minimize the ranking error on
pairwise comparisons generated with a simulation, since online optimization with
crowdsourcing would be prohibitively expensive. We take the scores generated by
random-sampling pairs in Section 2.5.1, and assume they are ground-truth. We
then simulate a Mechanical Turk active learning experiment by generating pairwise
labels according to these scores, plus some noise. We label ci,j = 1 if a Gaussian
random number generator (with bias ai−aj and variance σiworker) produces a positive

2.5. PORTRAIT EVALUATION 26

number, as suggested by Thurstone’s Law [205]. We model each worker’s labeling
noise with a Gaussian kernel σiworker, where the noise std. deviation of the i’th worker
(σiworker) is sampled from another Gaussian distribution N(σworker, σ

2
worker). We fit the

overall variation in worker noise (σworker) to actual data from our random sampling
experiments by performing a grid search on σworker between [0.0, 0.8]. We can see in
Figure 2.9 that our simulation is fairly accurate compared to crowdsourced data. We
then set the parameters σ2

a, σ2
s , σ2

h and σ2
c to values that minimize the ranking error

by the end of round 20. The optimized parameters are σ2
a = 0.02, σ2

s = 0.5, σ2
h = 0.1,

and σ2
c = 0.5. Note that the simulation is only run once to set these parameters; it

does not need to be run again for new subjects.

Evaluation

We can now evaluate performance over a series of sampling rounds, where each
round samples n pairs. We consider four conditions: active learning versus random
sampling, across both simulation data and real Mechanical Turk data. Performance
can be measured with both mean rank error and the correlation with the attractiveness
scores computed in Section 2.5.1, averaged across three subjects. We show these
performance metrics in Figures 2.9 and 2.10.

We can see that active learning strongly outperforms random sampling, especially
in early rounds, for both simulated and real data. Our active learning scheme can
achieve a reasonable accuracy (0.52) with just 5 pairs per expression, while random
sampling still has rank error 0.73 after 20 pairs. Using 5 pairs within active learning
reduces the crowdsourcing cost to $5.6, on average, for a subject.

Also, after 5 pairs the active learning scheme gives accurate scores, with a
correlation over 0.9.

Our method for ranking portraits has a number of components. The active
learning probability for selecting pairwise comparisons in Equation 2.5 has three
different factors, and we also use our cross-subject model as a prior. How much do
each of these components contribute to the success of our method? We answer this
question by turning off individual components and comparing performance using
the simulated pairwise comparison data described in Section 2.5.4 (Figure 2.11). We
can see that each part of our method does contribute to reducing mean rank error
more quickly. The cross-subject prior has the most significant effect, while comparing
expressions with similar seriousness scores has the least significant effect.

2.5. PORTRAIT EVALUATION 27

0.45

0.55

0.65

0.75

0.85

0.95

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

M
ea

n
 r

an
k

 e
rr

o
r

Number of pairs

Full method
w/o prior model
w/o active learning
w/o the first factor
w/o the second factor
w/o the third factor

Figure 2.11: Performance achieved after removing individual components of our
active learning scheme, computed on simulated pairwise comparisons. We compare:
(1) the full active learning scheme, (2) active learning without a cross-subject prior,
(3) random sampling plus a cross-subject prior, and (4-6) active learning with a
cross-subject prior while removing one of the three factors in Equation 2.3.

.

2.5.5 Visualization details

Finally, we give some technical details on how the visualization in Figure 2.4 is
generated.

We first divide seriousness scores into K serious levels, and display the most
attractive expression for each serious level. We could simply evenly sample the range
of seriousness scores to create serious levels. However, the most attractive expressions
tend to be less serious, while there are larger numbers of serious expressions in
our input data. The most serious levels may not contain any expressions that are
attractive. We therefore divide the seriousness scores into levels based on the idea
that the sum of attractiveness scores in each serious level should be about the same.

To compute the number of expressions in each serious level, we first sort attrac-
tiveness scores so that their associated seriousness scores are in descending order. We
compute the sum of all attractiveness scores, and divide by K to get the target sum
of attractiveness for each serious level. Then, we iterate through the sorted attrac-
tiveness scores and sum them until we reach expression ai such that the sum exceeds
the target sum for a serious level; the number of expressions in this serious level is
set to either i or i + 1, depending on which minimizes the difference between the
current and target sum. The process is repeated until all expressions are assigned to

2.6. EXPRESSION TRAINING APP 28

serious levels. We also found it useful to increase the influence of the most attractive
expressions during this binning process by first exponentiating each attractiveness
score to a power p. We set k = 25 and p = 4 in all our experiments.

2.6 Expression Training App
We demonstrate a simple app, called “Mirror Mirror”, for training subjects to

mimic their best expressions. The app takes input from a webcam and displays the
current expression along with its attractiveness and seriousness scores, computed
in real-time (about 15fps). Seriousness scores are computed with the cross-subject
model after computing features for each input frame; attractiveness is computed
from the improved single-subject model computed after active learning. We place a
SeeEye2Eye1 device, which contains a pair of mirrors, on the monitor so that the
subject can simultaneously look into the camera and see the camera output.

In training mode the app shows the visualization in Figure 2.4, along with scores
of each portrait. The subject can select a target expression to mimic. The app then
shows three windows; the current expression, the target expression, and an aligned
and a blended cross-fade between the two. The cross-fade oscillates between the
target and current expression once per two seconds, so that the subject can examine
differences between the two expressions. The target expression is aligned to the
current expression and blended to remove visible seams and color differences that
might distract from perceiving expression differences. We also show a similarity score
between the current and target expression that the user can try to increase. The
system automatically saves frames when similarity scores reach new highs; the subject
can also pause the system to see fine-grained differences at a frozen moment of time.
We show examples in Figure 2.12 that demonstrate that subjects can accurately
mimic target expressions using our interface.

After alignment we blend the target expression into the current one by performing
color histogram transfer between the two images; we then blend with Laplacian
pyramids [22]. We compute the similarity score between the target and current
expression with a weighted sum of the difference in attractiveness scores, the difference
in seriousness scores, and the projection errors of face alignment landmarks.

1http://www.bodelin.com/se2e

http://www.bodelin.com/se2e

2.6. EXPRESSION TRAINING APP 29

Figure 2.12: Two examples from two subjects of using the cross-fade ability of the
expression training app to mimic target expressions; the subjects triggered the
capture themselves once they were happy with their expression. We show, from
left to right, the target expression aligned to the captured expression, the captured
expression, the target expression composited into the current expression, and a 50%
blend between the previous two images.

2.7. DATA ANALYSIS AND VISUALIZATION 30

Figure 2.13: We show a comparison of average images of unattractive (left) and
attractive (right) portraits organized into 10 bins by eye size (top to bottom, we
show 6 of 10 bins). Eyes of equivalent size look different between the two sides.

2.7 Data Analysis and Visualization
In this section we use our collected and rated portraits to provide users with

useful visualizations, glean insights on the properties of attractive portraits, and
explore differences between crowd and subject perception of attractiveness.

2.7.1 Eyes open

In previous work [3,216] it is common to assume that open eyes yield good images,
and closed eyes do not. Our analysis shows that the situation is more nuanced. In
Section 2.5.2 we created a simple open-eye detector, and found its correlation with
attractiveness scores is only 0.45. It is also useful to visualize the difference between
attractive and un-attractive photos with the same eye size (Figure 2.13). We show
average images of a single subject grouped into attractive (right) and unattractive
(left) clusters by score. The y-axis of the visualization is organized by how open the

2.7. DATA ANALYSIS AND VISUALIZATION 31

eyes are; very open eyes are at the top, and closed eyes at the bottom. If we look
at the middle bins, we can see a substantial difference in the appearance of good
and bad eyes, even though they are open to the same degree. On the left, the eyes
appear drugged; the upper eyelid is lowered more substantially than on the right,
while the lower eyelid is lower. These bad images usually correspond to expressions
in transition (e.g., half-way through a blink). On the right, we can see the same eye
size made naturally. Note that smiles often involve narrowing of the eyes.

This observation is consistent with a recent viral video on principles of portrait
posing by Peter Hurley2 that recommends “squinching” (raising the lower rather than
the upper eyelid to narrow the eyes). We can see that good eyes of the same size as
bad eyes exhibit more squinching.

2.7.2 Subject Preferences and Poses

When subjects are asked to rank their own best portraits, are their opinions
consistent with the crowd? We asked four subjects to rank their top three portraits
from the visualization in Figure 2.4. Their average rank compared to the first, second,
and third choices of the crowd are 10, 11, and 10.7. These ranks suggest that subject
preferences are not generally consistent with other viewers. An open question is
whether friends of the subject, rather than strangers, would also have different
opinions.

Second, we examine the success of subjects at posing upon demand. The beginning
of our video designed to elicit emotions asks subjects to first pose for three styles
of portraits; an open-mouth smile, a closed-mouth smile, and a neutral professional
photo. Then, for seven subjects we look at the top ten attractive portraits, and use
the video timeline to determine if they came from portrait posing, or from natural
responses to videos. We find that, on average, 7.9 of these ten expressions come from
natural response, and 2.1 expressions are posed. The mean rank of the single top
posed expression in these top ten is 6.6, versus 1.4 for natural expressions. This
difference suggests that subjects do not generally show their best expressions when
asked to pose. An alternate explanation is that subjects choose to convey something
different with their expressions than what the crowd wishes to see.

2.7.3 Improving Expressions

A subject may like a specific expression, but wish to see if there are similar expres-
sions that the crowd finds more attractive. We therefore generate the visualization

2http://www.youtube.com/watch?v=ff7nltdBCHs

http://www.youtube.com/watch?v=ff7nltdBCHs

2.7. DATA ANALYSIS AND VISUALIZATION 32

Figure 2.14: Given a query image (middle) we show expressions that are similar
but less or more attractive; expressions are sorted by attractiveness score in increas-
ing order. We show examples for three subjects. (Zoom to see subtle differences;
attractiveness scores are shown in red.)

shown in Figure 2.14, where a query expression is shown in the middle, and less and
more attractive expressions that are similar to the query are shown on the left and
right, respectively. This visualization lets the subject see subtle differences between
similar expressions and how they may be improved (or worsened).

To create the visualization from a query expression we retrieve the top two most
similar expressions who scores are higher than the query, and two that are lower.
Similarity is computed as in Section 2.4.2.

2.7.4 Changing One Feature

Another scenario arises when a subject is interested in a specific expression,
but wishes to know how changing one feature of the face affects attractiveness. For
example, the subject can ask to see different eye or smile sizes, with all other aspects
of the face the same. In Figure 2.15 we show examples of different eye sizes, increasing
from left to right, for a specific query image (middle). We can see in the first row

2.8. RESULTS 33

Figure 2.15: Given a query image (middle) we show expressions that are similar but
with different eye sizes, increasing from left to right, for two subjects. (Zoom to see
subtle differences; attractiveness scores are shown in red.)

that increasing the eye size slightly increases attractiveness, but opening the eyes
too widely introduces awkwardness.

To create the visualization from a query expression we select the top two most
similar expressions whose eye sizes are larger, and two that are smaller. However, in
this case we turn off the HOG eye window when computing similarity, since we do
not want the eye appearance to be too similar.

2.8 Results
We tested our method on nine subjects who are not the authors, and two authors;

three of these were also tested using the more expensive, randomly-sampled method
in Section 2.5.1. We have already numerically evaluated our active learning scheme,
and shown results in Figure 2.4. Note that all our results shown in Figures are
generated by active learning, rather than random-sampling. We tested our training
app on four subjects, and show results of mimicking expressions in Figure 2.12.

We also show that our method works on imagery that we did not capture
specifically for this work; in each case, we use only the cross-subject model without
any additional crowdsourcing. First, we downloaded a YouTube video3 on portrait
posing; in this video the photographer freezes the frame nine times to indicate good
portraits. We select the ten most attractive frames after running peak detection

3https://www.youtube.com/watch?v=yrC9eUwPIoo

https://www.youtube.com/watch?v=yrC9eUwPIoo

2.9. DISCUSSION 34

0.2
0.4
0.6
0.8

1

0 100 200 300 400 500 600 700 800 900

S
co

re

Frame count Prediction Score Frozen Moment

Figure 2.16: The ten most attractive expressions selected by our algorithm run on
an Internet video about portrait posing (top). We also show a plot of attractiveness
over the frames of the video (bottom); the orange rectangles indicate freeze frames
used by the photographer to indicate expressions they select. Remarkably, nine out
of ten of our selects come from these freeze-frame regions of the video.

on the attractiveness score signal (to avoid repeating multiple frames of the most
attractive expression). Remarkably, nine out of ten selected expressions are the
same as those selected by the photographer (Figure 2.16). We show a plot of the
attractiveness scores rated by our cross-subject model over time in Figure 2.16.

Next, we try two personal photo collections (Figure 2.17). The first comes from a
public person photo dataset [57], which already has faces labeled. The second comes
from a personal photo collection; we use Picasa to isolate and identify the subjects,
and then automatically remove non-frontal faces (angles larger than 15 ◦) using the
pose estimates from the face tracker. We compute the attractiveness score on all
faces of specific subjects, and show the ten most and least attractive photos. Note
that these photo collections are already partially filtered, so there are fewer very bad
photos.

Finally, we add an experiment combining our method with the Photobios feature
in Picasa [107]. We filter the representative expressions to images with attractiveness
scores greater than 0.6, and set their dates in order of decreasing seriousness. The
resulting Photobio shows a smooth animation of attractive expressions from the most
serious to the least.

2.9 Discussion
We describe a method that uses a combination of crowdsourcing and machine

learning to provide users feedback on their best portrait expressions, and to select
their most flattering ones from photo collections and videos. While the graphics
and vision communities have focused extensively on improving photos through post-
processing, we believe there are numerous opportunities to improve photos before
they are taken. For example, we could identify which photos or very short videos are
most effective at eliciting attractive expressions, and play them before snapping a

2.9. DISCUSSION 35

Figure 2.17: We show two rows for each of three subjects from personal photo
collections: the ten most attractive, and the ten least. We select these expressions
from 111, 101, and 85 images of each subject, respectively.

picture. Our large, and often unexplored, collections of photos and videos also offer
a large opportunity for identifying flattering content.

Limitations and future work Our method has a number of limitations. While
our videos were selected to elicit a wide range of expressions, there is no guarantee
that our input video is not missing good expressions of subjects, or that all good
expressions can be triggered by watching videos. Also, we only investigate the
influence of expression on attractiveness; there are many other factors, such as
lighting, camera viewpoint and angle, makeup, and hair. These other factors may not
be independent of expression. Though we demonstrate some results on faces captured
from an angle, our current methods are not trained on profile or near-profile views.

The most fundamental question about our expression training app is whether it
actually helps people pose better for portraits. Conducting this user study accurately
would require evaluating the attractiveness of photos from portrait photography

2.9. DISCUSSION 36

sessions before and after using the app; the second session should not be immediately
after the training session, to avoid improvements that are only short-term. We leave
this more ambitious user study to future work. Our expression training app is only a
proof-of-concept for now; it remains an open question whether people can be trained
to make certain expressions, or how training compares to other alternatives (such as
remembering certain happy or funny moments).

Finally, while we describe methods to select the best expressions, a subject may
wish to slightly modify an expression to increase its attractiveness. Using our scoring
model to optimize image edits or warps is a promising avenue for future work.

37

Chapter 3

Learning Visual Realism without
Human Supervision

The above active learning method can reduce the labeling cost by a large margin.
However, it is not scalable to typical graphics scenarios, which include many pa-
rameters rather than just one (e.g., facial expression). Active learning methods still
require a prohibitive amount of human-labeled data, as these parameters are combi-
natorial and the space of plausible generated images is so vast. To further address
the annotation issue, this chapter introduces a method for learning the perception
of visual realism directly from large amounts of unlabeled data, without using any
labels regarding human perception. We focus on image compositing, as it contains
many factors such as the inserted object instance, as well as the lighting and color of
the inserted objects. In particular, we train a Convolutional Neural Network (CNN)
model [124] that distinguishes natural photographs from automatically generated
composite images. The model learns to predict visual realism of a scene regarding
color, lighting and texture compatibility, without any human annotations pertaining
to it. Our model outperforms previous works that rely on hand-crafted heuristics for
the task of classifying realistic vs. unrealistic photographs. Furthermore, we apply
our learned model to compute optimal parameters of a compositing method, to
maximize the visual realism score predicted by our CNN model. We demonstrate its
advantage against existing methods via a human perception study.

3.1 Introduction
As mentioned in Chapter 1, the human ability to very quickly decide whether a

given image is “realistic”, i.e. a likely sample from our visual world, is very impressive.

3.1. INTRODUCTION 38

Natural Images

Composite Images

Figure 3.1: We train a discriminative model to distinguish natural images (top left)
and automatically generated image composites (bottom right). The red boundary
illustrates the decision boundary between two. Our model is able to predict the
degree of perceived visual realism of a photo, whether it’s an actual natural photo, or
a synthesized composite. For example, the composites close to the boundary appear
more realistic.

Indeed, this is what makes good computer graphics and photographic editing so
difficult. So many things must be “just right" for a human to perceive an image as
realistic, while a single thing going wrong will likely hurtle the image down into the
Uncanny Valley [144].

Computers, on the other hand, find distinguishing between “realistic” and “artifi-
cial” images incredibly hard. Much heated online discussion was generated by recent
results suggesting that image classifiers based on Convolutional Neural Network
(CNN) are easily fooled by random noise images [147,199]. But in truth, no existing

3.1. INTRODUCTION 39

method (deep or not) has been shown to reliably tell whether a given image resides
on the manifold of natural images. This is because the spectrum of unrealistic images
is much larger than the spectrum of natural ones. Indeed, if this was not the case,
photo-realistic computer graphics would have been solved long ago.

In this chapter, we are taking a small step in the direction of characterizing the
space of natural images. We restrict the problem setting by choosing to ignore the
issues of image layout, scene geometry, and semantics and focus purely on appearance.
For this, we use a large dataset of automatically generated image composites, which
are created by swapping similarly-shaped object segments of the same object category
between two natural images [119]. This way, the semantics and scene layout of the
resulting composites are kept constant, only the object appearance changes. Our
goal is to predict whether a given image composite will be perceived as realistic by a
human observer. While this is admittedly a limited domain, we believe the problem
still reveals the complexity and richness of our vast visual space, and therefore can
give us insights about the structure of the manifold of natural images.

Our insight is to train a high-capacity discriminative model (a Convolutional
Neural Network) to distinguish natural images (assumed to be realistic) from
automatically-generated image composites (assumed to be unrealistic). Clearly, the
latter assumption is not quite valid, as a small number of “lucky” composites will, in
fact, appear as realistic as natural images. But this setup allows us to train on a very
large visual dataset without the need of costly human labels. One would reasonably
worry that a classifier trained in this fashion might simply learn to distinguish natural
images from composites, regardless of their perceived realism. But, interestingly, we
have found that our model appears to be picking up on cues about visual realism, as
demonstrated by its ability to rank image composites by their perceived realism, as
measured by human subjects. For example, Figure 3.1 shows two composites which
our model placed close to the decision boundary – these turn out to be composites
which most of our human subjects thought were natural images. On the other hand,
the composite far from the boundary is clearly seen by most as unrealistic. Given
a large corpus of natural and composite training images, we show that our trained
model is able to predict the degree of realism of a new image. We observe that our
model mainly characterizes the visual realism in terms of color, lighting and texture
compatibility.

We also demonstrate that our learned model can be used as a tool for creat-
ing better image composites automatically via simple color adjustment. Given a
low-dimensional color mapping function, we directly optimize the visual realism
score predicted by our CNN model. We show that this outperforms previous color
adjustment methods on a large-scale human subjects study. We also demonstrate
how our model can be used to choose an object from a category that best fits a given

3.2. BACKGROUND 40

background at a specific location.

3.2 Background
Our work attempts to characterize properties of images that look realistic. This

is closely related to the extensive literature on natural image statistics. Much of that
work is based on generative models [52,160,251]. Learning a generative model for
full images is challenging due to their high dimensionality, so these works focus on
modeling local properties via filter responses and small patch-based representations.
These models work well for low-level imaging tasks such as denoising and deblurring,
but they are inadequate for capturing higher level visual information required for
assessing photo realism.

Other methods take a discriminative approach [80, 135, 168, 181, 227]. These
methods can generally attain better results than generative ones by carefully sim-
ulating examples labeled with the parameters of the data generation process (e.g.
joint velocity, blur kernel, noise level, color transformation). Our approach is also
discriminative, however, we generate the negative examples in a non-task-specific
way and without recording the parameters of the process. Our intuition is that using
large amounts of data leads to an emergent ability of the method to evaluate photo
realism from the data itself.

In this work we demonstrate our method on the task of assessing realism of
image composites. Traditional image compositing methods try to improve realism
by suppressing artifacts that are specific to the compositing process. These include
transition of colors from the foreground to the background [22,156], color inconsis-
tencies [119,165,167,227], texture inconsistencies [34,100], and suppressing “bleeding”
artifacts [202]. Some work best when the foreground mask aligns tightly with the
contours of the foreground object [119, 165, 167, 227], while others need the fore-
ground mask to be rather loose and the two backgrounds not too cluttered or too
dissimilar [34,76,120,156,202]. These methods show impressive visual results and
some are used in popular image editing software like Adobe Photoshop, however
they are based on hand-crafted heuristics and, more importantly, do not directly try
to improve (or measure) the realism of their results. A recent work [201] explored
the perceptual realism of outdoor composites but focused only on lighting direction
inconsistencies.

The work most related to ours, and a departure point for our approach, is Lalonde
and Efros [119] who study color compatibility in image composites. They too generate
a dataset of image composites and attempt to rank them on the basis of visual
realism. However, they use simple, hand-crafted color-histogram based features and

3.3. LEARNING THE PERCEPTION OF REALISM 41

(a) Fully Supervised (b) Partially Supervised (c) Unsupervised

Figure 3.2: Example composite images for CNN training: (a) image composites
generated by fully supervised foreground and background masks, (b) image composites
generated by a hybrid ground truth mask and object proposal, (c) image composites
generated by a fully unsupervised proposal system. See text for details. Best viewed
in color.

do not do any learning.
Our method is also superficially related to work on digital image forensics [106,158]

that try to detect digital image manipulation operations such as image warping,
cloning, and compositing, which are not perceptible to the human observer. But, in
fact, the goals of our work are entirely different: rather than detecting which of the
realistic-looking images are fake, we want to predict which of the fake images will
look realistic.

3.3 Learning the Perception of Realism
Our goal is developing a model that could predict whether or not a given image

will be judged to be realistic by a human observer. However, training such a model
directly would require a prohibitive amount of human-labeled data, since the negative
(unrealistic) class is so vast. Instead, our idea is to train a model for a different
“pretext” task, which is: 1) similar to the original task, but 2) can be trained with
large amounts of unsupervised (free) data. The “pretext” task we propose is to
discriminate between natural images and computer-generated image composites. A

3.3. LEARNING THE PERCEPTION OF REALISM 42

Feathering

Scale

Translate

Masking

Masking

(a) Source Object F

(c) Target Object (d) Background 𝐵 ⋅ (1 − 𝛼)

(e) Image Composite 𝐼

(b) Segmented Object 𝐹 ⋅ 𝛼

Figure 3.3: We generate a composite image by replacing the target object (c) by
the source object F (a). We rescale and translate the source object to match the
location and scale of the target object (c). We generate the final composite (e) by
combining the segmented object (b) and the masked background (d).

high-capacity convolutional neural network (CNN) classifier is trained using only
automatically-generated “free” labels (i.e. natural vs. generated). While this “pretext”
task is different from the original task we wanted to solve (realistic vs. unrealistic),
our experiments demonstrate that it performs surprisingly well on our manually-
annotated test set (c.f. Section 3.6).

We use the network architecture of the recent VGG model [189], a 16-layer
model with small 3× 3 convolution filters. We initialize the weights on the ImageNet
classification challenge [36] and then fine-tune on our binary classification task. We
optimize the model using back-propagation with Stochastic Gradient Descent (SGD)
using Caffe [97].

3.3.1 Automatically Generating Composites

To generate training data for the CNN model, we use the LabelMe image
dataset [174] because it contains many categories along with detailed annotation for
object segmentation. For each natural image in the LabelMe dataset, we generate a
few composite images as follows.

3.3. LEARNING THE PERCEPTION OF REALISM 43

(a) Target Object

(c) Object Mask

(b) Composite Images

(d) Object Masks with Similar Shapes

Figure 3.4: Given an original photo with target object (a) and its object mask (c), we
search for source objects whose object mask matches well the shape of target object,
and replace the target object with them. We show the nearest neighbor object masks
in (d) and their corresponding generated composites (b).

Generate a Single Composite Figure 3.3 illustrates the process of generating a
single composite image, which follows [119]. Starting with a background image B
(Figure 3.3c) that contains an object of interest (target object), we locate a source
object F (Figure 3.3a) with a similar shape elsewhere in the dataset, and then rescale
and translate the source object F so that the source object matches the target
location. (Figure 3.3b). We assume the object is well segmented and the alpha map
α of the source object is known (Figure 3.3d). We apply a simple feathering based on
a distance transform map to the object mask α of the source object. We generate the
final composite by combining the source object and background I = α ·F +(1−α) ·B.

Generate Composite Dataset For each target object in each image, we search for
source objects with similar shapes by computing the SSD of blurred and subsampled
(64×64) object masks. Take Figure 3.4, for example. We replace the original building
with other buildings with similar outlines. The purpose of the rough matching of
object shape is to make sure that the generated composites are already close to the
manifold of natural images. However, this procedure requires detailed segmentation
annotations for both source and target objects. We call this procedure FullySupervised
as it requires full annotation of object masks.

An alternative way is to use automatic image segmentation produced by an “object
proposal” method (in our implementation we used Geodesic Object Proposals [114]).
In this case, training images are still generated using human labeled segmentation for
the target objects, but source objects are obtained by searching for object proposal

3.3. LEARNING THE PERCEPTION OF REALISM 44

segments with similar shapes to the target objects in all images. This requires much
fewer segmented training images. We name this procedure PartiallySupervised. The
third way is fully automatic: we use object proposals for both source and target
objects. In particular, we randomly sample an object proposal for a given image, and
replace it by other object proposals with the most similar shapes from the dataset.
This procedure is fully unsupervised and we call it Unsupervised. Later, we show that
this fully automatic procedure only performs slightly worse than FullySupervised
w.r.t human annotations, in terms of predicting visual realism (Section 3.6). We
also experimented with randomly cutting and pasting objects from one image to
the other without matching object masks. In this case, the CNN model we trained
mainly picked up artifacts of high-frequency edges that appear in image composites
and performed significantly worse. In our experiments, we used ∼ 11, 000 natural
images containing ∼25, 000 object instances from the largest 15 categories of objects
in the LabelMe dataset. For FullySupervised and PartiallySupervised, we generated
a composite image for each annotated object in the image. For Unsupervised, we
randomly sample a few object proposals as target objects, and generate a composite
image for each of them.

Figure 3.2 shows some examples of image composites generated by all three
methods. Notice that some composite images are artifact-free and appear quite
realistic, which forces the CNN model to pick up not only the artifacts of the
segmentation and blending algorithms, but also the compatibility between the visual
content of the inserted object and its surrounding scene. Different from previous
work [119], we do not manually remove any structurally inconsistent images. We find
that composites generated by FullySupervised are usually correct with regards to
semantics and geometry, but sometimes suffer from inconsistent lighting and color.
PartiallySupervised also often generates meaningful scenes, but sometimes tends to
paste an object into parts of another object. While Unsupervised tends to generate
scenes with incorrect semantics, the number of scenes that can be generated is not
restricted by the limited amount of human annotation.

Ranking of Training Images Interestingly, our trained CNN model is able to
rank visually appealing image composites higher than unrealistic photos with visual
artifacts. In Figure 3.5, we use our model to rank the training composites by their
realism score prediction. The top row shows high-quality composites that are difficult
for humans to spot while the bottom row shows poor composites due to incorrect
segmentation and color inconsistency. We demonstrate that our model matches to
human perception with quantitative experiments in Section 3.6.

3.4. IMPROVING IMAGE COMPOSITES 45

(a) Most realistic composites ranked by our model

(b) Least realistic composites ranked by our model

Figure 3.5: Ranking of generated training composites in terms of realism scores. Best
viewed in color.

3.4 Improving Image Composites
Let f(I; θ) be our trained CNN classifier model predicting the visual realism of an

image I. We can use this classifier to guide an image compositing method to produce
more realistic outputs. This optimization not only improves object composition, but
also reveals many of the properties of our learned realism model.

We formulate the object composition process as Ig = α · g(F) + (1−α) ·B where
F is the source object, B is the background scene, and α ∈ [0, 1] is the alpha mask
for the foreground object. For this task, we assume that the foreground object is
well segmented and placed at a reasonable location. The color adjustment model g(·)
adjusts the visual properties of the foreground to be compatible with the background
image. Color plays an important role in the object composition process [119]. Even
if an object fits well to the scene, the inconsistent lighting will destroy the illusion of
realism.

The goal of a color adjustment is to optimize the adjustment model g(·), such that
the resulting composite appears realistic. We express this in the following objective
function:

E(g, F) = −f(Ig; θ) + w · Ereg(g), (3.1)

where f measures the visual realism of the composite and Ereg imposes a regularizer

3.4. IMPROVING IMAGE COMPOSITES 46

on the space of possible adjustments. A desired image composite should be realistic
while staying true to identity of the original object (e.g. do not turn a white horse to be
yellow). The weight w controls the relative importance between the two terms (we set
it to w = 50 in all our experiments). We apply a very simple brightness and contrast
model to the source object F for each channel independently. For each pixel we map
the foreground color values F p = (cp1, c

p
2, c

p
3) to g(F p) = (λ1c

p
1+β1, λ2c

p
2+β2, λ3c

p
3+β3).

The regularization term for this model can be formulated as:

Ereg(g) =
1

N

∑

p

(
‖Ipg − I

p
0‖2+

∑

i,j

‖(λi−1)·cpi +βi − (λj−1)·cpj−βj‖2
) (3.2)

where N is the number of foreground pixels in the image, and I0 = α·F+(1−α)·B
is the composite image without recoloring, Ipg and Ip0 denotes the color values for
pixel p in the composite image. The first term penalizes large change between the
original object and recolored object, and the second term discourages independent
color channel variations (roughly hue change).

Note that the discriminative model θ has been trained and fixed during this
optimization.

Optimizing Color Compatibility We would like to optimize color adjustment
function g∗ = arg ming E(g, F). Our objective (Equation 3.1) is differentiable, if the
color adjustment function g is also differentiable. This allows us to optimize for color
adjustment using gradient-descent.

To optimize the function, we decompose the gradient into ∂E
∂g

= −∂f(Ig ,θ)

∂Ig
· ∂Ig
∂g

+
∂Ereg

∂g
. Notice that −∂f(Ig ,θ)

∂Ig
can be computed through backpropagation of CNN model

from the loss layer to the image layer while the other parts have a simple close form
of gradient. See our online arXiv paper at https://arxiv.org/abs/1510.00477 for
the gradient derivation. We optimize the cost function using L-BFGS-B [23]. Since
the objective is non-convex, we start from multiple random initializations and output
the solution with the minimal cost.

In Section 3.6.1, we compare our model to existing methods, and show that our
method generates perceptually better composites. Although our color adjustment
model is relatively simple, our learned CNN model provides guidance towards better
color compatible composite.
Selecting Best-fitting Objects Imagine that a user would like to place a car on
a street scene (e.g. as in [120]). Which car should she choose? We could choose an
object F ∗ = arg minF E(g, F). For this, we essentially generate a composite image

https://arxiv.org/abs/1510.00477

3.5. IMPLEMENTATION 47

for each candidate car instance and select the object with minimum cost function
(Equation 3.1). We show our model can select more suitable objects for composition
task in Section 3.6.2.

3.5 Implementation
CNN Training We used the VGG model [189] from the authors’ website, which is
trained on ImageNet [36]. We then fine-tune the VGG Net on our binary classification
task (natural photos vs. composites). We optimize the CNN model using SGD. The
learning rate α is initialized to 0.0001 and reduced by factor 0.1 after 10, 000 iterations.
We set the learning rate for fc8 layer to be 10 times higher than the lower layers.
The momentum is 0.9, the batch size 50, and the maximum number of iterations
25, 000.

Dataset Generation For annotated objects and object proposals in the LabelMe
dataset [174], we only consider objects whose pixels occupy between 5% ∼ 50% of
image pixels. For human annotation, we exclude occluded objects whose object label
strings contain the words “part”, “occlude”, “regions” and “crop”.

3.6 Experiments
We first evaluate our trained CNN model in terms of classifying realistic photos

vs. unrealistic ones.

Evaluation Dataset We use a public dataset of 719 images introduced by Lalonde
and Efros [119], which comprises of 180 natural photographs, 359 unrealistic compos-
ites, and 180 realistic composites. The images were manually labeled by three human
observers with normal color vision. All methods are evaluated on a binary realistic
vs. unrealistic classification task with 359 unrealistic photos versus 360 realistic
photos (which include natural images plus realistic composites). Our method assigns
a visual realism score to each photo. Area under ROC curve is used to evaluate the
classification performance. We call our method RealismCNN. Although trained on
a different loss function (i.e. classifying natural photos vs. automatically generated
image composites), with no human annotations for visual realism, our model outper-
forms previous methods that build on matching low-level visual statistics including
color std/mean [165], color palette, texture and color histogram [119]. Notice that
Lalonde and Efros [119] also requires a mask for the inserted object, making the task
much easier, but less useful.

3.6. EXPERIMENTS 48

Methods without object mask

Color Palette [119] (no mask) 0.61
VGG Net [189] + SVM 0.76
PlaceCNN [242] + SVM 0.75
AlexNet [116] + SVM 0.73
RealismCNN 0.84
RealismCNN + SVM 0.88
Human 0.91

Methods using object mask

Reinhard et al. [165] 0.66
Lalonde and Efros [119] (with mask) 0.81

Table 3.1: Area under ROC curve comparing our method against previous meth-
ods [119,165]. Note that several methods take advantage of human annotation (object
mask) as additional input while our method assumes no knowledge of the object
mask.

Supervised Training Without any human annotation for visual realism, our
model already outperforms previous methods. But it would be more interesting
to see how our RealismCNN model improves with a small additional amount of
human realism labeling. For this, we use the human annotation (realistic photos
vs. unrealistic photos) provided by [119], and train a linear SVM classifier [27] on
top of the fc7 layer’s 4096 dimensional features extracted by our RealismCNN
model, which is a common way to adapt a pre-trained deep model to a relatively
small dataset. We call this RealismCNN + SVM. Figure 3.6 shows a few composites
ranked with this model. In practice, fc6 and fc7 layers give similar performance,
and higher compared to lower layers. We evaluate our SVM model using 10-fold
cross-validation. This adaptation further improves the accuracy of visual realism
prediction. As shown in Table 3.1, RealismCNN + SVM (0.88) outperforms existing
methods by a large margin. We also compare our SVM model with other SVM models
trained on convolutional activation features (fc7 layer) extracted from different CNN
models including AlexNet [116] (0.75), PlaceCNN [242] (0.73) and original VGG
Net [189] (0.76). As shown in Table 3.1, our Realism + SVM model reports much
better results, which suggests that training a discriminative model using natural
photos, and automatically generated image composites can help learn better feature
representation for predicting visual realism.

3.6. EXPERIMENTS 49

0
%

2
5
%

5
0
%

7
5
%

1
0
0
%

Figure 3.6: Ranking of photos according to our model’s visual realism prediction. The
color of image border encodes the human annotation: green: realistic composites; red:
unrealistic composites; blue: natural photos. The different rows contain composites
corresponding to different rank percentiles of scores predicted with RealismCNN +
SVM.

Human Performance Judging an image as photo-realistic or not can be ambigu-
ous even for humans. To measure the human performance on this task, we collected
additional annotations for the 719 images in [119] using Amazon Mechanical Turk.
We collected on average 13 annotations for each image by asking a simple question
"Does this image look realistic?" and allowing the worker to choose one of four
options: 1 (definitely unrealistic), 2 (probably unrealistic), 3 (probably realistic)
and 4 (definitely realistic). We then average the scores of human response and com-
pare the MT workers’ ratings to the “ground truth” labels provided in the original
dataset [119]. Humans achieve a score of 0.91 in terms of area under ROC curve,
suggesting our model achieves performance that is close to level of human agreement
on this dataset.

3.6. EXPERIMENTS 50

RealismCNN RealismCNN + SVM

FullySupervised 0.84 0.88
PartiallySupervised 0.79 0.84
Unsupervised 0.78 0.84

Table 3.2: Area under ROC curve comparing different dataset generation procedures.
FullySupervised uses annotated objects for both source object and target object.
PartiallySupervised uses annotated objects only for target object, but using object
proposals for source object. Unsupervised uses object proposals for both cases.

Dataset Generation Procedure The CNN we reported so far was trained on the
image composites generated by the FullySupervised procedure. In Table 3.2, we further
compare the realism prediction performance when training with other procedures
described in Section 3.3.1. We find that FullySupervised RealismCNN gives better
results when no human realism labeling is available. With SVM supervised training
(using human annotations), the margin between different dataset generation methods
becomes smaller. This suggests that we can learn the feature representation using
fully unsupervised data (without any masks), and improve it using small amounts of
human rating annotations.

Indoor Scenes The Lalonde and Efros dataset [119] contains mainly photographs
of natural outdoor environments. To complement this dataset, we construct a new
dataset that contains 720 indoor photos with man-made objects from the LabelMe
dataset. Similar to [119], our new dataset contains 180 natural photos, 180 realistic
composites, and 360 unrealistic composites. To better model indoor scenes, we train
our CNN model on ∼21, 000 natural images (both indoor and outdoor) that contain
∼42, 000 object instances from more than 200 categories of objects in the LabelMe
dataset. We use MTurk to collect human labels for realistic and unrealistic composites
(13 annotations per image). Without SVM training, our RealismCNN alone achieves
0.83 on the indoor dataset, which is consistent with our results on the Lalonde and
Efros dataset.

3.6.1 Optimizing Color Compatibility

Generating a realistic composite is a challenging problem. Here we show how our
model can recolor the object so that it better fits the background.

3.6. EXPERIMENTS 51

Object mask Cut-n-paste [15] [33] Ours

R
ea

listic
U

n
rea

listic
N

a
tu

ra
l (rea

l)

Figure 3.7: Example composite results: from left to right: objects mask, cut-and-paste,
Lalonde and Efros [119], Xue et al. [227] and our method.

3.6. EXPERIMENTS 52

Dataset, Baselines and Evaluation We use the dataset from [119] that provides
a foreground object, its mask, and a background image for each photo. Given an
input, we recolor the foreground object using four methods: simple cut-and-paste,
Lalonde and Efros [119], Xue et al. [227] and our color adjustment model described
in Section 3.4. We use the FullySupervised version of RealismCNN model without
SVM training. We follow the same evaluation setting as in [227] and use Amazon
Mechanical Turk to collect pairwise comparisons between pairs of results (the question
we ask is “Given two photos generated by two different methods, which photo looks
more realistic?”). We collected in total 43140 pairwise annotations (10 annotations for
each pair of methods for all 719 images). We use the Thurstone’s Case V Model [205]
to obtain a realism score for each method per image from the pairwise annotations,
and normalize the scores so that their standard deviation for each image is 1.
Finally, we compute the average scores over all the photos. We report these average
human rating scores for three categories of images: unrealistic composites, realistic
composites and natural photos. We use natural photos for sanity check since an
ideal color adjustment algorithm should not modify the color distribution of an
object in a natural photo. For natural photos, if no color adjustment is applied, the
“cut-and-paste” result does not alter the original photo.

Results Table 3.3 compares different methods in terms of average human ratings.
On average, our method outperforms other existing color adjustment methods. Our
method significantly improves the visual realism of unrealistic photos. Interestingly,
none of the methods can notably improve realistic composites although our model
still performs best among the three color adjustment methods. Having a sense of
visual realism informs our color adjustment model as to when, and how much, it
should recolor the object. For both realistic composites and natural photos, our
method typically does not change much the color distribution since these images are
correctly predicted as already being quite realistic. On the other hand, the other two
methods try to always match the low-level statistics between the foreground object
and background, regardless of how realistic the photo is before recoloring. Figure 3.7
shows some example results.

Hard Negative Mining We observe that our color optimization method performs
poorly for some images once we turn off the regularization term Ereg. (See Figure 3.8
for examples). We think this is because some of the resulting colors (without Ereg)
never appear in any training data (positive or negative). To avoid this unsatisfactory
property, we add newly generated color adjustment results as the negative data,
and retrain the CNN with newly added data, similar to hard negative mining in
object detection literature [53]. Then we use this new CNN model to recolor the

3.6. EXPERIMENTS 53

Cut-n-paste Iteration 1 Iteration 2Object mask

Figure 3.8: From left to right: object mask, cut-and-paste, results generated by
CNNIter1 and CNNIter2 without the regularization term Ereg.

object again. We repeat this process three times, and obtain three CNN models
named as CNNIter1, CNNIter2 and CNNIter3. We compare these three models
(with Ereg added back) using the same MTurk experiment setup, and obtain the
following results: CNNIter1: −0.162, CNNIter2: 0.045, and CNNIter3: 0.117. As
shown in Figure 3.8, the hard negative mining avoids extreme coloring, and produces
better results in general. We use CNNIter3 with Ereg to produce the final results
in Table 3.3 and Figure 3.7.

3.6.2 Selecting Suitable Object

We can also use our RealismCNN model to select the best-fitting object from
a database given a location and a background image. In particular, we generate
multiple possible candidate composites for one category (e.g. a car) and use our
model to select the most realistic one among them.

We randomly select 50 images from each of the 15 largest object categories in the
LabelMe dataset and build a dataset of 750 background images. For each background
photo, we generate 25 candidate composite images by finding 25 source objects (from
all other objects in the same category) with the most similar shapes to the target
object, as described in Section 3.3.1. Then the task is to pick the object that fits
the background best. We select the foreground object using three methods: using
RealismCNN, as described in Section 3.4; select the object with the most similar

3.6. EXPERIMENTS 54

(a) Best-fitting object selected by RealismCNN

(b) Object with most similar shape

(c) Random selected objects

Figure 3.9: For the same photo and the same location, we produce different composites
using objects selected by three methods: (a) RealismCNN, (b) the object with the
most similar shape, and (c) a randomly selected object.

shape (denoted Shape); and randomly select the object from 25 candidates (denoted
Random).

We follow the same evaluation setting described in Section 3.6.1. We collect 22500
human annotations, and obtain the following average Human ratings: RealismCNN :
0.285, Shape: −0.033, and Random: −0.252. Figure 3.9 shows some example results
for the different methods. Our method can suggest more suitable objects for the
composition task.

3.7. DISCUSSION 55

Unrealistic
Composites

Realistic
Composites

Natural
Photos

cut-and-paste -0.024 0.263 0.287
[119] 0.123 -0.299 -0.247
[227] -0.410 -0.242 -0.237
ours 0.311 0.279 0.196

Table 3.3: Comparison of methods for improving composites by average human
ratings. We use the authors’ code to produce results for Lalonde and Efros [119] and
Xue et al [227]. We follow the same evaluation setting as in [227] and obtain human
ratings from pairwise comparisons using Thurstone’s Case V Model [205].

3.7 Discussion
In this chapter, we present a learning approach for characterizing the space of

natural images, using a large dataset of automatically created image composites.
We show that our learned model can predict whether a given image composite will
be perceived as realistic or not by a human observer. Our model can also guide
automatic color adjustment and object selection for image compositing.

Many factors play a role in the perception of realism. While our learned model
mainly picks up on purely visual cues such as color compatibility, lighting consistency,
and segment compatibility, high-level scene cues (semantics, scene layout, perspective)
are also important factors. Our current model is not capable of capturing these cues
as we generate composites by replacing the object with an object from the same
category and with a similar shape. Further investigation in these high-level cues will
be required.

56

Part II

Generative Modeling for
Visual Exploration and Synthesis

57

Chapter 4

Visual Exploration via Image
Averaging

This chapter studies a quite simple and old image generation model: image
averaging, pioneered by Sir Francis Galton [59] in 1878. The image averaging model
constrains the output result to be a convex combination of the database images.
Building on this simple model, we propose an interactive framework that allows
a user to rapidly explore and visualize a large image collection using the medium
of average images. Our interactive, real-time system provides a way to summarize
large amounts of visual data by weighted averages of an image collection, with the
weights reflecting user-indicated importance. We capture not only the mean of the
distribution, but also a set of modes, discovered via interactive exploration. We pose
this exploration in terms of a user interactively “editing” the average image using
various types of strokes, brushes, and warps, with each user interaction providing a
new constraint for updating the average. New weighted averages can be spawned
and edited either individually or jointly. Together, these tools allow the user to
simultaneously perform two fundamental operations on visual data, user-guided
clustering and user-guided alignment, within the same framework. We show that our
system is useful for various computer vision and graphics applications.

4.1 Introduction
The world is drowning in a data deluge [The Economist, Feb 25th 2010], and

much of that data is visual. As mentioned in Chapter 1, an estimated 4.7 trillion
photographs have been taken since the invention of photography, of which around
20% within the past 12 months.For example, Facebook alone reports 3 million photo

4.1. INTRODUCTION 58

Figure 4.1: Average images, such as ‘Kids with Santa’ c© Jason Salavon (a) are a
creative way to visualize image data. However, attempts to replicate this technique
with data automatically scraped from the Internet (b) does not lead to good results
(c,d). In this work, we propose an interactive framework for discovering visually
informative modes in the data and providing visual correspondences within each
mode (e).

uploads per day, and YouTube sees 300 hours of video uploaded every single minute.
Additionally, there is the data that hasn’t made it onto the Internet (yet), such as
the 24/7 video feeds from millions of surveillance cameras in convenience stores and
ATMs. In fact, there is so much visual data out there already that much of it might
never be seen by a human being! But unlike other types of “Big Data”, such as text
or consumer records, much of the visual content cannot be easily indexed, searched
or hyperlinked, making it Internet’s “digital dark matter” [157].

How can we explore this vast visual space, to see what’s out there? One way is to
anchor off the image meta-data (keywords, surrounding text, GPS, etc) as a proxy
for indexing visual content. For example, typing “wedding kiss” into Google Image
Search will return pages upon pages of photos that have somehow been associated
with the words “wedding” and “kiss”, most of them actually depicting formal kissing
of various sorts (Figure 4.6a). While this semantic focusing vastly narrows down the

4.1. INTRODUCTION 59

data (from {all_photos} down to {all_wedding_kiss_photos}), the resulting set
is still far too vast to take in by mere visual inspection. How can we capture the
visual gestalt of this data, its Platonic ideal?

The main inspiration and a departure point for this chapter is the recent surge in
the use of data analytics and visualization techniques in contemporary art [210]. In
particular, the simple technique of image averaging has been used extensively, and
to great effect, by several well-known contemporary visual artists, such as Krzysztof
Pruszkowski [161], Jason Salavon [176], James Campbell [25], and Idris Khan [109].
An average image of a set of photographs is obtained by simply computing the
average color at each (x, y) pixel position independently across the set. This has
the effect of capturing the overall similarities within the set while blurring out the
individual differences1. For example, Figure 4.1a shows a piece by Salavon titled
‘Kids with Santa’, from his 100 Special Moments series [176], which is an average
computed over a hundred photos the artist manually picked from the Internet. Notice
how, although the average is quite blurred, one can definitely decipher a figure
dressed as Santa Claus, with another figure sitting on his knee – the individuality
and uniqueness of each “special moment” usurped to tell a universal story.

Alas, we discovered that trying to replicate Salavon’s averages automatically
turns out to be quite difficult, e.g. simply downloading the top hundred images using
a Google query “kids with Santa” (Figure 4.1b) and averaging them does not work
well (Figure 4.1c). This is because the data is too varied (e.g. there are close-ups vs.
long-range views, Santa could be in vastly different poses, or be missing altogether),
and even images that depict the same type of scene (e.g. sitting Santa with kid on
left knee) are not spatially aligned resulting in an extremely blurry average. Trying
to reduce the data variability by first clustering the images using popular techniques,
gives a slight improvement (Figure 4.1d), but nowhere close to Salavon’s hand-picked
average.

Of course, it is an artist’s role to “actively guide analytical reasoning and encourage
a contextualized reading of their subject matter” [210], but the only active guidance
available in image averaging is the choice of which images to include – a blunt and
inefficient instrument. What if we wanted to bring into focus different parts of the
average image, such as Santa’s face, or that of the kid? Antonio Torralba (a computer
scientist who is also an accomplished artist) has been working on centered average
images [203] where a dataset is first centered (aligned) on a particular object (e.g. a
face, a spoon, etc) before the average is computed. Torralba’s beautiful averages [203]

1In fact, this technique is almost as old photography itself, going back to Sir Francis Galton who,
“having obtained photographs of several persons alike in most respects, but differing in minor detail”,
created “composite portraits” by “throwing faint images of the several portraits, in succession, upon
the same sensitised photographic plate” as way of “extracting typical characteristics from them” [59].

4.2. BACKGROUND 60

contrast a sharper focal point with an eerie, dream-like background. Unfortunately,
to achieve this effect requires that the object in focus be carefully hand-labeled
in all images in the dataset before computing the average, making this approach
completely impractical for large-scale data.

In this chapter, we propose an interactive framework that allows a user to rapidly
explore and visualize a large image collection using average images. The idea is to
summarize the visual data by weighted averages of an image collection, with the
weights reflecting user-indicated image and feature importance. The aim is to capture
not just the mean of the distribution, but a set of modes and projections (Figure 4.1e
top), discovered via interactive exploration. The user interactively “edits” the average
image using various types of brushes and warps, similar to a normal image editor,
with each user interaction providing a new constraint to update the average. The
user can also spawn and edit new weighted averages either individually or jointly, in
which case an image that is weighted highly in one average will automatically be
down-weighted in the others.

Alternatively, one can view the proposed framework as a new way to perform
two fundamental operations on visual data: user-guided clustering and user-guided
alignment. Automatic (i.e. unsupervised) image clustering and image alignment are, of
course, two key problems in computer vision, both largely unsolved. By bringing the
user into the loop, we demonstrate how to address these two problems jointly, within
the same framework. And while our main driving application is in Big Visual Data
exploration and improved artistic expression, we also demonstrate our framework to
be of value in various other computer vision and graphics tasks.

4.2 Background
Our work builds on ideas from a number of different areas:
Image stacks: Given a stack of (typically) registered images of the same subject

matter, methods such as Photomontage [1] offer various multi-image pixel operations
on the stack, resulting in a combined “best” image. Our approach shares the idea
of operating on an image stack, except our stack is 1) made up of semantically,
but not necessarily visually similar data, 2) not typically well aligned, and 3) far
too large for any manual per-image user guidance. Also related, a computer vision
technique called congealing [86, 123] jointly aligns a stack of images of the same
object category by iteratively bringing each image into closer alignment with the
average. A recent extension [141] can even jointly align and cluster simple digit
images. The congealing pipeline is fully automatic and while it works quite well
for simple, unimodal categories (e.g. digits) and small mis-alignments, due to its

4.2. BACKGROUND 61

iterative nature, it often falls into local minima on more complex image data.
Image clustering and data mining: A standard way to model and visualize

multi-modal data is by clustering. However, clustering is a highly under-constrained
problem [11], so most clustering algorithms, such as k-means, spectral clustering [185],
make strong distributional assumptions about the data and/or the distance metric,
which often produce results that do not correspond to what is anticipated by the
user. The present work can be thought of as a type of interactive clustefring [11]
where the user can refine clustering results via interactive feedback. Other efforts
aim to mine visual collections by finding a small number of important or “iconic”
images [15,188] or visual elements [41]. We differ in that our aim is to capture the
gestalt of the data, not sample from it (although our system provides the latter as
well). Unsupervised sub-category discovery approaches [40, 84] use discriminative
clustering to find multiple modes for a given visual category. However, these methods
do not provide local image alignment, resulting in poor clusters (see Sec. 6.6.2).

Data-assisted content editing and content creation: There has been recent
interest in using large amounts of online visual data as content for computer graphics.
For example, Hays and Efros [75] use millions of Flickr images as data for filling
holes in a given scene, whereas Sketch2Photo [28] allows a user to generate new
visual content by employing sketch and text queries to find and compose together
content from existing photographs. There are also methods that use large amounts
of data to provide artistic guidance to the user as part of the content creation
process. Most related to our work is ShadowDraw [126], which helps users draw
better by providing real-time average “shadow” suggestions of what to draw next
by matching what has already been drawn against a large database of existing
imagery. Our sketching brush tool is very much inspired by ShadowDraw, but
whereas ShadowDraw is fundamentally a reactive, bottom-up process – first asking
the user to draw something and only then providing suggestions, our system aims to
be top-down – first giving the user a sense of what is in the data, and only then asking
him to refine it. More importantly, the target goals are fundamentally different: while
ShadowDraw aims to help the user in drawing, our AverageExplorer aims to help
the user in exploring and aligning large image collections, while also facilitating a
number of other applications (Sec. 6.6.2). Inspired by successful content-based image
retrieval systems like Fast Multiresolution Image Querying [94] and BlobWorld [26],
our system also takes paint strokes and user-specified regions as input (Sec. 4.3.3).

Exploratory data visualization: There is a large body of work on exploring
and mining Big Data in a visual way (see [35] for a survey), but the vast majority
is on visualizing non-visual data, which is rather different from the problem we are
trying to address. Several works show beautiful ways of visualizing a specific type of
visual data, such as photos of the same location [193], or of the same person [108]. Of

4.3. APPROACH 62

the few attempts to visualize generic, large-scale visual data, the most related is the
“Visual Dictionary of Tiny Images” [204], that aims to provide a visual summary of
80 million images using an atlas of 53464 tiny average image tiles, each corresponding
to one English noun. While the online demo is fun to explore, semantic concepts
(words) often do not correspond to coherent visual concepts, making many of the
average images noisy and uninformative. In this work, we only use semantics (e.g.
keyword tags) as an initialization, and then let the user interactively discover visual
concepts hidden in the data.

4.3 Approach
AverageExplorer is a real-time interactive system that allows the user to easily

explore and navigate a large image collection through the manipulation of average
image(s). The input is a (potentially very large) collection of images, typically
representing the same semantic concept (“cats”, “shoes”, “Paris”, etc.) but with wide
variation in appearance, e.g. Internet images retrieved using a search engine. The
output is a set of average images that depict different modes in the data, as well
as feature correspondences between images within each mode. The user is provided
with a set of brush tools to iteratively “edit” each average image. The objective is to
summarize the image collection with weighted average(s) of images, in which the
weights reflect the user’s suggested importance.

AverageExplorer has five main components: (1) the user interface, which displays
one or more average images that reveal different modes in the data; (2) a method to
generate/update an average image, which continuously takes the user’s edits and
re-ranks the database images accordingly; (3) a set of brush tools (explorer, coloring,
and sketching), which the user applies to the average image to denote what she
deems important; (4) cluster spawning, which dynamically creates a new cluster
at anytime for simultaneous exploration of multiple average images; and (5) image
alignment, which automatically warps each image in the dataset to better align it
with the user-specified constraints.

4.3.1 User interface
The AverageExplorer interface is composed of the current average image, a button

for each brush tool, a button to generate a new cluster, and a retrieval display of the
top most similar (i.e. highest-weighted) images to the current average. The average
image and retrieved images are updated in real-time as the user continuously provides
edits. When the user makes an edit, it is highlighted on both the average image
and in each of the retrieved images. If more than one average image is being edited,

4.3. APPROACH 63

Figure 4.2: We propose a set of brush tools that can be used to edit the average image
to interactively explore the data. Each user interaction provides a new constraint to
update the average.

the user can switch focus between them by pressing the ‘tab’ key or clicking on the
corresponding cluster with the mouse cursor (see video).

4.3.2 Generating the average image

Given a database of N images {I1, . . . , IN}, we continuously update its average
image in real-time as the user interacts with the system. We create the average
image Iavg by computing a weighted average of the database images that reflects the
score (i.e. weight) si of each image (for now, we assume that the images are spatially
aligned; in Sec. 4.3.5, we will relax this assumption):

Iavg =

∑N
i=1 si · Ii∑N
i=1 si

. (4.1)

We initialize si = 1/N,∀i so, we start with Iavg being a simple pixel-wise mean
of the entire image collection. Once editing begins, the score si for each image Ii is
updated to reflect how well that image matches the user’s edits, and is computed
cumulatively:

si =
∑T

t=1match(wt
user, Ii), (4.2)

where si is the cumulative score of image i after T edits, wt
user represents the user edit

at time t, and match(·) returns how similar a given image Ii is to the user edit wt
user.

For now, we will define match(wt
user, Ii) = wt

user · φ(Ii), i.e. the dot-product between

4.3. APPROACH 64

the user edit wt
user and image Ii in some feature space defined by φ(·). (the exact

representation of wt
user and φ(·) depends on the type of user edit and will be defined

in Sec. 4.3.3). Intuitively, each user edit tells the system which visual patterns should
be present (or emphasized) within the spatial region where the edit has occurred. An
image that has similar visual patterns as the user’s edit will produce a high match(·)
value, while an image that has dissimilar visual patterns will produce a low match(·)
value. Because the image scores are computed cumulatively, we only need to update
the score to reflect the latest edit, which allows our system to update the average
image very quickly and smoothly from one edit to the next.

To reduce the effect of noisy matches produced when editing has just started
(e.g. with a single edit, there can be a few matches that agree extremely well at
the local region level, but not at the global image level), we apply the following
nonlinear function (also used by [126] for a similar purpose) to each image score:
s∗i = max(0, si − α · s̄)γ , where s∗i is the updated image score, s̄ is the average of the
top K image scores, α = 0.2 + 0.05 ·T , γ = 0.1 ·T , and K = 20. As α increases, fewer
images will have score greater than 0, and as γ increases, the distribution of those
positive scores will become more peaked. The combined effect makes the average
image blurry initially and sharper over time (i.e. as T increases).

4.3.3 Brush tools

AverageExplorer provides three brush tools to navigate the data: coloring, sketch-
ing, and explorer. Each tool allows the user to dynamically update the average image.
After each edit, the weight of each database image is changed according to how
similar it is to all of the user’s edits provided thus far.

Coloring Brush

The coloring brush allows the user to paint on the average image by adding color
strokes. The user chooses a color (mouse right button) from either a standard color
palette or a “data-driven palette” which contains the most common colors for the
region currently under the brush across the dataset. The user can adjust the size of
the brush by scrolling the mouse wheel, and color by holding down the left mouse
button. This tool is most useful when the user wants to constrain the color of a
specific spatial region (e.g. to specify the color of a person’s hair or eyes). We encode
the user’s color stroke at the current iteration T as wT

user = Hc, which is a normalized,
5-dimensional (x,y,R,G,B) histogram containing a uniformly-sampled 4x4x4 RGB
histogram within each 8x8 pixel block of the stroke (see Figure 4.2d). Each database
image Ii is encoded in the same way, φ(Ii) = Hc,Ii ; a normalized 5-dimensional
(x,y,R,G,B) histogram computed in the same spatial region as the user’s color stroke.

4.3. APPROACH 65

match(wt
user, Ii) = Hc ·Hc,Ii , a dot-product between the two histograms, encoding

the degree of their similarity.
As the user paints, the average image is updated dynamically at 30 fps. Fig-

ure 4.2(a) shows an example usage: a user selects the brown color, clicks on the
center of the average image and starts painting, giving high weight to the brown
images in the dataset, which changes the average image accordingly.

Sketching Brush

The sketching brush allows the user to add line strokes to the average image.
The user can choose the size of the brush by scrolling the mouse wheel, and sketch
by holding down the left mouse button. It is most useful for adding fine details (e.g.
outlining the shape of the chin or drawing glasses when exploring faces). We encode
the user’s sketch at the current iteration T as wT

user = Hg, which is a histogram
with spatial and orientation bins encoding the gradients under the stroke region. We
use the standard Histogram of Gradients (HOG) representation [32] with 8x8 pixel
spatial bins (see Figure 4.2d). Each database image Ii is encoded in the same way,
φ(Ii) = Hg,Ii ; a HOG feature computed in the same spatial region as the user’s line
stroke. Thus, match(wt

user, Ii) = Hg ·Hg,Ii , a dot-product between the two histograms,
encoding the degree of their similarity.

As with color brush, as the user sketches, we dynamically update the average
image at 30 fps. Figure 4.2(b) shows an example usage: the user sketches a diagonal
stroke to denote a particular chair leg shape, which gives high weight to the database
chair images that have similar shaped legs and updates the average image and the
top retrieved images accordingly.

Explorer Brush

The coloring and sketching brushes are useful to emphasize and sharpen the
features that are already visible in the average image. However, if the user wants
to explore information that may be hidden in the data and not immediately visible
through the average, she is essentially limited to guessing the correct stroke. The
explorer brush attempts to overcome this limitation; it is thus our most important
tool. The main idea is to collect local patches situated in the same spatial position
across all database images, and cluster them into a set of visually-informative modes.
As part of the explorer tool, the user can pick a single mode, and see the global
average computed using only the images that are assigned to (conditioned on) that
mode, as illustrated on Figure 4.3. This give the user a local tool to interactively
explore the different components that make up an average image.

4.3. APPROACH 66

Figure 4.3: Our explorer brush groups local image patches (shown in green bounding
boxes) from the same rough spatial position across all database images. Then, for
each group, our system averages the full images assigned to the group to create an
average image.

Specifically, given a mouse cursor position, we find the dominant local modes
(groups) in the image stack data for that rough spatial location. To find the modes,
we adapt the mid-level discriminative patch discovery approach of [190]. It mines mid-
level visual patterns that are frequently-occurring but also discriminative (sufficiently
different from the rest of the “natural visual world”). We first sample a thousand
“seed” patches centered at the mouse cursor position from a random subset of the
database images. For each seed, we compute distances to patches from (roughly) the
same spatial position in all remaining database images, and also compute distances
to random patches in random images (downloaded from Flickr), which represent
the “natural visual world”. For each potential group (seed patch and its k nearest
neighbors) we compute the inlier score u, which is the ratio of the database images
(inliers) to the Flickr images (outliers) in the k nearest neighbor patches (k = 50 in
our experiments). The inlier score measures the uniqueness of the nearest neighbors.
A group that includes many Flickr patches will not be unique as it will capture
common visual patterns found in the natural world, whereas a group comprised
mostly of patches from the database will capture unique visual patterns, and thus
be good for matching and alignment (see Figure 4.3; the top-ranked modes are
discriminative and lead to accurate matches).

We then rank each group of seed patch pj and nearest neighbors {d1, . . . , dN} by:
(
∑N

m=1 sm · z(dm)) · uj, where N is the number of detections (one per image), sm is

4.3. APPROACH 67

the score of the image containing patch dm, z(dm) is the similarity score between
pj and dm, and uj is the inlier score. This scoring function will assign high rank to
unique groups whose nearest neighbors match well to the seed patch and come from
highly weighted images (due to previous edits). This reinforces the gradual change of
the average image, since the top suggestions (i.e. highest ranked groups) are likely to
come from images that contributed highly to the previous average image (see next
paragraph for details on how to choose between different groups). We retain groups
that have inlier score u greater than 0.75, and remove near-duplicate groups that
have spatial overlap of more than 25% between any 30 patches of their members.
This typically results in 10-50 groups that represent the main local modes of the
data at that spatial position.

The user interaction proceeds as follows: As the mouse hovers over a particular
part of the average image, the top-ranked local modes are displayed below the average
image, as average local patches (Figure 4.2c). The user can interactively change the
size of the local patches by scrolling the mouse wheel. By default, the main panel
displays the average image according to the top-ranked local mode. But the user
can explore the average images of the lower-ranked modes by pressing the ‘tab’ key,
which shifts down to the next mode (Figure 4.2c). Once the user finds an interesting
position on the average image and picks the preferred local mode, she can use this
mode as an extra constraint on the average image by pressing the left mouse button.
Specifically, we encode the user’s mode constraint at the current iteration T as
wT

user = He, which is a histogram of the gradients in the seed patch of the given mode,
again using HOG. Each database image Ii is encoded in the same way, φ(Ii) = He,Ii ;
a HOG feature computed in the same spatial region as the selected mode. Thus,
match(wt

user, Ii) = He · He,Ii , a dot-product between the user edit’s and database
image’s HOGs. This has the effect of constraining the average image to give more
weight to the images from that local mode.

Real-time speed-up: Unlike the previous tools, the computation required for
the explorer tool is too expensive to run in real time due to large amount of patch
nearest neighbor searching across the entire dataset, the discriminative patch mining,
and the fact that the user wants to explore the space rapidly. To achieve real-time
performance, we are forced to pre-compute the matches offline. Specifically, we first
sample seed patches on a dense regular grid (4-pixel stride) at multiple scales (32x32,
48x48, 80x80, 128x128 pixel patches) for the entire image collection. We then compute
distances (dot-product in HOG space) to all patches within a 2x length (64 to 256
pixels) region surrounding the seed patch in all remaining database images. For each
seed, we store the top matching patch per image with match score greater than 0.5,
and record both the match score as well as the position and scale of the matched
patch. During online processing, for each seed in the current mouse cursor position,

4.3. APPROACH 68

Initial avg. 1st edit 2nd edit 3rd edit Final avg. w/o alignment

Figure 4.4: We align each database image to produce a sharper average image. Notice
how just clustering (without alignment) is insufficient to produce a sharp average
(right-most column).

Figure 4.5: Examples of interactively discovered modes in the data using AverageEx-
plorer.

our system selects the top-matching patch in each database image to create the
average image.

Figure 4.2d shows example usage: given a database of face images initially with
uniform weight (top), the user explores different types of mouths (bottom). The user
has chosen the second mode, which changes the average image accordingly.

4.3. APPROACH 69

4.3.4 Interactive Clustering
At any time during data exploration, the user can spawn a new cluster. This is

particularly useful when the user wants to explore multiple modes in the data at
the same time. For example, when exploring human faces, the user might want to
separate, say, people with oval faces from people with rounder faces. To this end,
we present a tool for interactive clustering, in which a user’s edit on one average
image influences the average images of the other clusters (i.e. modes). The goal is to
simultaneously produce sharper average images for all clusters, which means that
each cluster should consist of images that are similar to each other and dissimilar
to images in other clusters. E.g. if the user edits an average image of a face to be
rounder, then the other average images should become oval-shaped.

To simultaneously update all clusters with each edit, we compute a cluster-specific
weight for each image. The average image for each cluster is created as in Sec. 4.3.2,
but the weight of each image can now be different for each cluster. We normalize
the cluster-specific weights in such a way that an image cannot contribute highly to
all clusters. Specifically, we initialize a new cluster c by assigning each image with
uniform weight si,c = 1/N,∀i. We then normalize the weights such that the total
cluster-specific weights of an image sum to one: i.e.

∑
j si,j = 1, where j indexes the

clusters. In effect, the normalization limits high contribution of an image to one or a
few clusters, which in turn makes each cluster tighter. To give a simple example, if
there are two clusters, and the user colors one average image white, then the second
average image will become black, since all the highest weighted images for the first
cluster will be white, while the highest weighted images for the second cluster will
be the opposite (i.e. black).

4.3.5 Image Alignment
Thus far, we have assumed that the semantic concepts (“cats”, “shoes”, “Paris”, etc)

depicted in each database image will be spatially aligned. In practice, this will rarely
be the case (even within the same mode), especially when working with Internet
images retrieved using a search engine. If the database images are not spatially well
aligned, the resulting average will be blurry, which, in turn, will lead to meaningless
user edits. AverageExplorer provides a two-step solution to mitigate this problem:
robustness to mis-alignment and image warping.

First, we update the matching function so that it is robust to (some) spatial
misalignment between the database images using max-pooling [16]:

match(wt
user, Ii) = max

p∈P
wt

user · φp(Ii), (4.3)

4.4. RESULTS AND APPLICATIONS 70

where p indexes over the possible x, y locations in P , and φp(Ii) is the feature space
representation of image Ii computed over the spatial location defined by p. We set P
to be the locations that cover up to 64 pixels in both x, y directions surrounding the
user’s edit.

We then apply non-linear warping to align the database images. For this, we use
Moving Least Squares (MLS) [180], which provides a simple closed-form solution that
yields fast deformations for real-time performance. MLS estimates a deformation
function that maps a set of source control points to a set of target control points. We
use the center of mass of each user edit in the average image as a target control point
and the center of mass of the corresponding matching region in the database image
as a source control point. We then warp the database image such that its control
points (from all T edits thus far) align to the corresponding control points in the
average image. The deformation function is applied to every pixel in the database
image (see [180] for more details). Note that the warping does not affect the matching
function defined in Eqn. 4.3; it is used only to align the images more accurately to
form a sharper average.

We compute the average image with the warped images IMLS
i :

Iavg =

∑N
i=1 si · IMLS

i∑N
i=1 si

. (4.4)

Our iterative, user-guided process leads to image stacks that have increasingly
better image alignment, producing not only sharper average images (Figure 4.4), but
also surprisingly high-quality local feature correspondences (Figure 4.1e bottom),
which can be useful for rapid data annotation (Sec. 6.6.2, “Image annotation”).

Finally, after each user edit, we update each database image with its warped
version. For non-linear warping, we need to recompute the database image features
(HOG, color histograms, and discriminative patches), which is prohibitively expensive.
Therefore, we only translate each image according to the mean offset between the
source and target control points.

4.4 Results and Applications
We demonstrate how our system can be used to explore and visualize large image

collections, and show several potential applications.
Datasets: We experimented with a variety of visual image collections from

multiple sources. They are: Labeled Faces in the Wild (LFW) [87], which has 13233
images with 5749 different people; Cat database [239] (10000 images); Query-based
collections downloaded from Google Images and Flickr using the following keywords:

4.4. RESULTS AND APPLICATIONS 71

Figure 4.6: Interactive exploration and alignment. For each dataset we show (a)
example images, (b) global average image, (c) our discovered modes with 4 top
retrieved images and automatically marked correspondences (an experienced user
spent on average 134 seconds discovering each mode using on average 3.4 user edits),
and (d) comparison to [84] cluster averages and representative instances that have the
highest confidence scores (i.e., most discriminative). Comparisons to other techniques
are in the supp. material. Notice how our averages are sharper and more semantically
meaningful, while our retrieved images offer much better correspondence. To visualize
the correspondences, we display color strokes for coloring tool (e.g. yellow strokes
on the forehead), black strokes for sketching tool (e.g. sketch of glasses), and green
bounding boxes for explorer tool.

4.4. RESULTS AND APPLICATIONS 72

(b) Our discovered modes (a) [Divvala et al. 2012] modes

Figure 4.7: We compare the averages generated by the visual subcategory learning
approach of [40] (a) to our averages (b) using the PASCAL 2007 horse dataset. See
text for more details.

‘Church’ (11007 images), ‘Paris’ (7823 images), ‘Butterfly’ (15640 images), ‘Beach’
(8375 images), ‘Wedding kiss’ (16868 images), and ‘Kids with Santa’ (1640 images);
YouTube videos: 50 clips of 1 minute summary of the Cobert Report, sampled at 2
fps (5232 frames total); and 362 PASCAL 2007 Horse images.

Implementation details:We resize each image to the average size of its dataset.
To compute wuser for coloring and sketching we first create a tight bounding box
surrounding the user’s stroke or selected region. We then compute the color or HOG
histograms over 8x8 spatial bins, and zero-out any cells that do not spatially overlap
with the users’ stroke/region. We whiten the HOG descriptors, as described in [74],
which makes dot product similarity computations more visually meaningful. When
computing the average image, we ignore any pixels in the warped images that fall
outside of the dimensions of the average image. We run our system in real-time on a
PC with Intel i7-4770K processor (3.50GHz, 4 cores) and 16GB RAM. For a 10000
image dataset, the pre-computation processing of features and discriminative patch
discovery can be done on a 150-core cluster in about 10 hours. Our system is publicly
available on our project page.

Interactive exploration and alignment: We first show how AverageExplorer
can help to uncover meaningful patterns in visual data. We compare against the
standard global average of the dataset, as well as several baselines: 1) k-means
clustering, 2) spectral clustering [185], and 3) discriminative sub-category discovery
algorithm of [84], which uses negative images (irrelevant to the category at hand)
to learn a better distance metric for clustering. For all baselines, we represent each
image using the standard HOG descriptor (8x8 pixel cells) concatenated with a tiny
color image (original RGB image resized by 1/8 in width and height) to spatially
encode gradient and color information. For [84], we generate a weighted average

4.4. RESULTS AND APPLICATIONS 73

M=3 M=6 M=12 M=24 mean
Random Accuracy (%) 55.3 64.9 67.1 64.4 62.9
Manual Accuracy (%) 66.0 65.2 72.6 68.6 68.1
Ours Accuracy (%) 67.4 68.3 71.0 67.8 68.6

Manual Time (minutes) 24 28 39 54 36.25
Ours Time (minutes) 6 9 15 28 14.5

Table 4.1: User study. Human selection accuracy and timing results with M repre-
sentative images. See text for details.

image for each cluster, where each cluster instance is weighted according to the score
that indicates how representative it is to that cluster (see [84] for more details).
For k-means and spectral clustering, we create weighted averages by weighting each
image by its total intra-cluster affinity.

Figure 4.6 shows results of our system on 3 sample datasets: ‘Wedding Kiss’,
Faces, and ‘Church’. In each case, we show a global average image, six of our
discovered modes with four top retrieved images each (showing correspondences)
and results of [84] (see project web page for more detailed comparisons, including
those to k-means and spectral clustering). As discussed earlier, the global average
image can only summarize the data coarsely, displaying only the rough global shape,
since it weighs all pixels equally. Standard clustering techniques, e.g. k-means and
spectral clustering, try to represent different modes in the data, but often focus
on the non-important parts of the image (e.g. see k-means cluster faces based on
their background color in Figure 3 of the supp. material). [84] does better, as it
learns a better distance metric to discover sub-clusters within each category. For
example, for faces, the representative cluster instances are mostly consistent visually.
However, it is not able to cope with misalignment, which limits matching accuracy
and resulting in blurry averages. Our averages, on the other hand, are sharp and
clearly depict key modes in the data. For example, we can discover and align faces of
people wearing hats, beards, and glasses. This is possible due to our system finding
accurate correspondences between visually-similar features and providing real-time
feedback to the user for interactive refinement of the average image. Notice how our
approach allows us to discover visual modes in the data that might have otherwise
gone unnoticed, such as a gay wedding kiss (the rightmost mode in the top figure). We
also conducted a simple study to determine which of the average representations were
preferred by the users. The results show overwhelming preference for AverageExplorer
results against all other baselines. Figure 4.5 shows more examples of the modes
discovered by our system.

We also compare our method to the visual subcategory learning approach of [40],
which is similar to [84] but also performs global alignment (translation and scaling)
for more accurate clustering. In this setting, we simultaneously edit 15 clusters.

4.4. RESULTS AND APPLICATIONS 74

Two kids sitting on Santa's both laps A kid wearing Santa's suit Two Santas

A brown tabby cat A solid black cat A cat looking up at the sky

A person riding a horse A horse facing to the right A horse sitting on the ground

Figure 4.8: Average images created by users given a text query. The last two columns
show failure cases. The users produced blurry and distorted averages for ‘difficult’
queries that have insufficient data.

Figure 4.9: Qualitative keypoint annotation results: We show examples of the an-
notated average image (a), and corresponding propagated annotations to cluster
instances (b) for Caltech Faces dataset [6] (left) and LFPW dataset [13] (right). The
blue points are human-marked annotations and green points are our annotations. The
outlier images in (c) were not assigned to any cluster. They correspond to atypical
face images, such as a baby doll or Dracula (sharp teeth and heavy make-up).

Figure 4.7 shows the average images for the 15 clusters discovered from the PASCAL
2007 Horse category by the baseline (a) and our approach (b). Note that both ours
and the baseline operate on the human-annotated horse bounding box region within
each image. Even so, the object regions are only coarsely aligned and contain many
different modes. Both methods are able to discover a diverse set of modes. However,

4.4. RESULTS AND APPLICATIONS 75

detected faces annotated clusters annotated images annotated points
BioID 1506 27 (∼55 imgs/cluster) 98.6% 93.2%
LFPW 798 22 (∼32 imgs/cluster) 88.2% 71.1%

Caltech Faces 6476 58 (∼101 imgs/cluster) 90.8% 71.0%

Table 4.2: Keypoint annotation statistics. Since AverageExplorer accurately aligns
images of the same mode, it can be used to efficiently propagate keypoint annotations.
For example, given 6476 face images from the Caltech Faces dataset, we are able to
annotate 90.8% of the images (and 71.0% of the keypoints) by annotating only 58
average images.

Global
average k-means Spectral

clustering [84] [86] [84]
+ [86] Ours error between

annotators
BioID 4.80 3.90 3.69 3.93 4.42 3.73 1.93 N/A (1 annotator)
LFPW 5.97 5.75 5.70 5.69 5.83 5.28 3.38 2.40 (2-3 annotators)

Caltech Faces 5.05 4.74 4.88 4.86 5.05 4.65 2.65 2.43 (1-7 annotators)

Table 4.3: Keypoint annotation mean pixel error rates. The error rates always
compares the annotations produced by each method to the ground-truth human
annotations. Lower numbers are better. For global average and [86], we annotate
a single average image. For all other methods, we annotate 27, 22, and 58 average
images on BioID, LFPW, and Caltech Faces, respectively. The last column shows
the error between the different human annotators.

our averages are significantly sharper due to more accurate interactive clustering,
local warping and alignment between intra-cluster images.

Visual data representation user study: We conducted a user study com-
paring different ways to compactly represent a visual dataset: 1) Ours: M average
images generated with our system by an experienced user; 2) Manual: M manually
picked iconic images that represent the database; and 3) Random: M randomly
sampled images from the database. The bottom two rows in Table 4.1 show the time
it took to create/select the images with M = {3, 6, 12, 24} for Ours and Manual
(Random is automatic).

For each experiment, we presented the subjects with M images (on the same
screen) which “collectively represent some concept”. We also displayed 30 test images
and asked the subjects to identify 15 of them which are likely to be examples of the
same (unspecified) concept as the “training” images above. We picked two concepts:
‘Paris’ and ‘Kids with Santa’, with M = {3, 6, 12, 24}. We used 15 randomly
sampled non-Paris Flickr images and 15 “Santa Claus” internet images as distracters
for ‘Paris’ and ‘Kids with Santa’, respectively. Table 4.1 shows the result. Across
both concepts, the users were able to select the correct images around 68% of the
time using both Ours and Manual, and 61% of the time using Random. This suggests

4.4. RESULTS AND APPLICATIONS 76

that our system is able to produce a concise representation of the database that is
as informative as manually selected iconic images, but using significantly less time.

User experience study: We next design an experiment to evaluate the user
experience of our system. We invited 5 novice users to create average images that
correspond to text descriptions such as “a kid wearing Santa suit”. Each user spent
5-10 minutes getting familiar with the user interface, using an image collection
unrelated to the study. We then asked each user to create average images for the
following text descriptions in three datasets: 1) Kids with Santa: “a kid wearing
Santa’s suit”, “two kids sitting on Santa’s both laps”, and “two Santas” (difficult);
2) Cat: “a brown tabby cat”, “a solid black cat” and “a cat looking up at the sky”
(difficult); 3) Horse: “a person riding a horse”, “a horse facing to the right”, and “a
horse sitting on the ground” (difficult). We allowed each user to spend 4 minutes
per average image. We label a text query as “difficult” if there is insufficient data to
create an average corresponding to the text description. This is to measure how long
(in the allotted 4-minutes) it takes a user to realize that the corresponding mode does
not exist in the database. On average, the users spent 201 seconds on the difficult
query (as reference, they spent 108 seconds on the other queries). 93.3% of time, the
users believed that it was impossible to create the difficult mode. We show examples
of the user-generated averages in Figure 4.8. For the difficult queries, the users were
unable to create an average image that corresponded to the text description. The
resulting average images were distorted, blurry, or irrelevant to the text description
despite the users spending more time to create them.

Rapid image dataset annotation: Our system’s ability to accurately align
images suggests potential applications in computer vision, such as rapid annotation
of keypoints, for example, to train an object detector. Object/keypoint detection
requires a lot of training data and the standard approach to keypoint annotation
is to mark every image independently, by hand. This can be extremely tedious
and time-consuming, especially for very large datasets. With AverageExplorer, we
show that one can significantly accelerate this process. We evaluate our system by
annotating human face keypoints on three widely-used datasets: BioID [96], Labeled
Face Parts in the Wild (LFPW) [13] and Caltech Web Faces [6]. For each dataset,
we first run the Viola-Jones face detector to get a coarse alignment of the faces, and
resize each face to 200x200 pixels. We then cluster and align the faces using our
system, and annotate the keypoints on the resulting average images, which are then
automatically propagated to the corresponding cluster members. This way, only a
few clusters need to be annotated manually, instead of each image.

Table 4.2 shows keypoint annotation statistics. Using AverageExplorer, we are able
to annotate 88-98% of the images and 71-94% of the keypoints by annotating only 22-
58 average images. This is a huge saving in effort compared to the standard approach

4.5. DISCUSSION 77

for annotation, which would require annotating 798-6476 images. Figure 4.9 (a) and
(b) show examples of annotated averages and propagated annotations, respectively.

Table 4.3 shows pixel error rates compared to the ground-truth human annota-
tions (GT) for ours and several baselines. For each method, we compute the error
by averaging the average pair-wise difference for all keypoints across all images.
Computing a single global average given the entire image stack produces high error
rates. Clustering methods (k-means, spectral clustering [185], and discriminative
sub-category discovery [84]) do slightly better, but without any form of alignment
these methods cannot be used to make fine keypoint correspondences. Congealing [86],
which is an automatic algorithm that jointly aligns a set of images, could also be used
for keypoint annotation, but only if all data represents a single visual mode. Since
our interactive method can do both, clustering and alignment at the same time, it is
best suited for the annotation task. As can be seen in Table 4.3, our method aligns
the images well, producing pixel error rates that are only slightly worse than the
average error between the different human annotators. The images that we missed
are those that could not be aligned well, such as outlier images that do not belong
to any mode (see Figure 4.9c).

4.5 Discussion
Our work is but a small step in an exciting new direction of interactive Visual

Data Exploration. We hope that the ideas and the prototype system presented in
this chapter will inspire others to explore this ripe research topic. Here, we will
first sketch some potential applications of our system and then discuss its current
limitations.

Interactive portraits: We believe our system could be a fun alternative to still
image portraits, e.g., displayed on social networking sites like Facebook (see
Figure 4.10). Social networking sites have lots of portraits for each user. Instead
of the user selecting a single portrait, we envision each web visitor exploring and
browsing a collection [58] of the user’s face images (e.g., detected via a face detector).
Our system could add an element of human interaction to the portraits, allowing
each visitor to freely explore, e.g., different hairstyles, expressions, clothing, etc. of
the user’s portrait as s/he likes. See our video for this idea in action.

Visual data analytics: Analytics is the discovery and communication of meaningful
(potentially hidden) patterns in data. Due to AverageExplorer’s progressive updates,
in which the user’s edits cumulatively change the average image, we can “fix” (i.e.
condition on) one region and observe the resulting different modes in other regions.
This could allows us to do a simple form of conditional visual analytics. For example,

4.5. DISCUSSION 78

Figure 4.10: Interactive portraits. AverageExplorer could be used in social networking
sites to explore the owner’s face portraits.

VS.

Figure 4.11: Visual data-driven analytics.We demonstrate a simple form of conditional
data-driven analytics. We can discover Stephen Colbert’s different ties (left) and
explore his posture when discussing Romney versus Obama (right). The green boxes
show the user selected regions via our explorer tool and the average patches to the
right display the corresponding main modes.

given a large collection of The Colbert Report footage, we could discover what
Stephen Colbert’s ties look like by first fixing the region of interest on his face and
then exploring the region beneath his face (Figure 4.11 left). In a similar manner,
we could also observe what Stephen Colbert’s posture or expression looks like when
he is discussing Romney versus Obama (Figure 4.11 right).

Limitations Following are the main limitations of our current system. First, our
system assumes that the image collection to be explored is already in some kind of
“rough” alignment. This is typically not a problem for object-centric datasets like
those one might get by using an Internet Search Engine, e.g. searching for “car” will
mostly return images with a large car at the center of the image. However, for more
scene-centric datasets, like Google StreetView, cars will be a small part of the image
and not in the center, which will make them almost impossible to find using our

4.5. DISCUSSION 79

system.
Second, our system is critically relying on good visual matching. When a user’s

edit is incorrectly matched, the warping algorithm will produce a distorted or blurry
average image. Unfortunately, there is no way to rectify an incorrect match with
ensuing edits. This greedy matching approach can be problematic when the system
produces a mismatch of two repeated objects (e.g. two faces) that are close to each
other, and the user still desires to discover them both. One possible solution to
this mismatching issue would be to develop an efficient global matching method
that recomputes matching at each time step using all existing user edits and their
geometric relationships.

Third, while AverageExplorer has good tools for refining clusters and making
sharper averages, it is not as well-equipped at starting visual exploration “from
scratch". For a dataset with a fairly complex visual concept, the initial average image
is likely to be a gray nothing, making it hard to know where to start the exploration.
The Explorer tool and the Cluster Spawning tool aim to address this very problem,
but often they are either too fine (former) or too coarse (latter) to provide a robust
solution. Some sort of a multi-scale exploration strategy might be a fruitful direction.

Lastly, speed and memory are the biggest obstacles to scaling our system up to
millions of images, since our system must run in real-time. We are looking at the
use of large-memory GPUs for speed up, as well as optimizing the off-line/on-line
processing pipeline.

80

Chapter 5

Visual Manipulation with Deep
Generative Models

Simple image averaging models can serve as an intuitive and artistic medium for
visual data exploration. However, the generated results often look blurry and far
from realistic, even with our alignment algorithm. Furthermore, novel results cannot
always be represented as simple combinations of dataset images. To produce more
natural and diverse results, we turn to recently developed deep generative models,
due to the quality and complexity of their samples. In this chapter, we propose to
learn the natural image manifold directly from data, using a Generative Adversarial
Network [67]. We then define a class of image editing operations, constraining their
outputs to lie on that learned manifold at all times. The model automatically adjusts
the outputs based on user desires, while keeping all edits as realistic as possible.
All our manipulations are expressed in terms of constrained optimization and are
applied in near-real time. We evaluate our algorithm on the task of realistic photo
manipulation in shape and color. The presented method can further be used for
changing one image to look like another, as well as generating novel imagery from
scratch based on a user’s scribbles.

5.1 Introduction
As mentioned in Chapter 1, today’s visual communication is sadly one-sided. We

all perceive information in the visual form (through photographs, paintings, sculpture,
etc), but only a chosen few are talented enough to effectively express themselves
visually. This imbalance manifests itself even in the most mundane tasks. Consider
an online shopping scenario: a user looking for shoes has found a pair that mostly

5.1. INTRODUCTION 81

(a) original photo

(b) projection on manifold

Project Edit Transfer

(d) smooth transition between the original and edited projection

(e) different degree of image manipulation

(c) Editing UI

Figure 5.1: We use generative adversarial networks (GAN) [67,162] to perform image
editing on the natural image manifold. We first project an original photo (a) onto a
low-dimensional latent vector representation (b) by regenerating it using GAN. We
then modify the color and shape of the generated image (d) using various brush tools
(c) (for example, dragging the top of the shoe). Finally, we apply the same amount
of geometric and color changes to the original photo to achieve the final result (e).
See interactive image editing video on our website.

suits her but she would like them to be a little taller, or wider, or in a different color.
How can she communicate her preference to the shopping website? If the user is
also an artist, then a few minutes with an image editing program will allow her to
transform the shoe into what she wants, and then use image-based search to find it.
However, for most of us, even a simple image manipulation in Photoshop presents
insurmountable difficulties. One reason is the lack of “safety wheels” in image editing:
any less-than-perfect edit immediately makes the image look completely unrealistic.
To put another way, classic visual manipulation paradigm does not prevent the user
from “falling off” the manifold of natural images.

Understanding and modeling the natural image manifold has been a long-standing
open research problem. But in the last two years, there has been rapid advancement,
fueled largely by the development of the generative adversarial networks [67]. In
particular, several recent papers [37, 44, 67, 113,162] have shown visually impressive
results sampling random images drawn from the natural image manifold. However,
there are two reasons preventing these advances from being useful in practical
applications at this time. First, the generated images, while good, are still not
quite photo-realistic (plus there are practical issues in making them high resolution).
Second, these generative models are setup to produce images by sampling a latent

5.2. BACKGROUND 82

vector-space, typically at random. So, these methods are not able to create and/or
manipulate visual content in a user-controlled fashion.

In this chapter, we use the generative adversarial neural network to learn the
manifold of natural images, but we do not actually employ it for image generation.
Instead, we use it as a constraint on the output of various image manipulation
operations, to make sure the results lie on the learned manifold at all times. This
enables us to reformulate several editing operations, specifically color and shape
manipulations, in a natural and data-driven way. The model automatically adjusts
the output keeping all edits as realistic as possible (Figure 5.1).

We show three applications based on our system: (1) Manipulating an existing
photo based on an underlying generative model to achieve a different look (shape
and color); (2) “Generative transformation” of one image to look more like another;
(3) Generate a new image from scratch based on user’s scribbles and warping UI.

All manipulations are performed in a straightforward manner through gradient-
based optimization, resulting in a simple and fast image editing tool. We hope that
this work inspires further research in data-driven generative image editing, and thus
release the code and data at our website.

5.2 Background
Image editing and user interaction: As described in Chapter 1, image editing is
a well established area in computer graphics where an input image is manipulated to
achieve a certain goal specified by the user. Examples of basic editing include changing
the color properties of an image either globally [166] or locally [127]. More advanced
editing methods such as image warping [9,90,115] or structured image editing [12]
intelligently reshuffle the pixels in an image following user’s edits. While achieving
impressive results in the hands of an expert, when these types of methods fail,
they produce results that look nothing like a real image. Common artifacts include
unrealistic colors, exaggerated stretching, obvious repetitions and over-smoothing.
This is because they rely on low-level principles (e.g., similarity of color, gradients or
patches) and do not capture higher-level information about natural images.
Image morphing: There are a number of techniques for producing a smooth visual
transition between two input images. Traditional morphing methods [221] combine
an intensity blend with a geometric warp that requires a dense correspondence. In
Regenerative Morphing [184] the output sequence is regenerated from small patches
sampled from the source images. Thus, each frame is constrained to look similar to
the two sources. Exploring Photobios [107] presented an alternative way to transition
between images, by finding a shortest path in a large image collection based on

http://www.eecs.berkeley.edu/~junyanz/projects/gvm

5.3. LEARNING THE NATURAL IMAGE MANIFOLD 83

pairwise image distances. Here we extend this idea and produce a morph that is
both close to the two sources and stays on, or close to, the natural image manifold.
Natural image statistics: Generative models of local image statistics have long
been used as a prior for image restoration problems such as image denoising and
deblurring. A common strategy is to learn local filter or patch models, such as
Principal Components, Independent Components, Mixture of Gaussians or wavelet
bases [149,159,251]. Some methods attempt to capture full-image likelihoods [173]
through dense patch overlap, though the basic building block is still small patches
that do not capture global image structures and long range relations. Zhu et al. [246]
recently showed that discriminative deep neural networks learn a much stronger
prior that captures both low-level statistics, as well as higher order semantic or
color-balance clues. This deep prior can be directly used for a limited set of editing
operations (e.g. compositing). However it does not extend to the diversity of editing
operations considered in this work.
Neural generative models: There is a large body of work on neural network
based models for image generation. Early classes of probabilistic models of images
include restricted Boltzmann machines (e.g., [82]) and their deep variants [175],
auto-encoders [82,211] and more recently, stochastic neural networks [14,69,113] and
deterministic networks [45]. Generative adversarial networks (GAN), proposed by
Goodfellow et al. [67], learn a generative network jointly with a second discriminative
adversarial network in a mini-max objective. The discriminator tries to distinguish
between the generated samples and natural image samples, while the generator tries
to fool the discriminator producing highly realistic looking images. Unfortunately in
practice, GAN does not yield a stable training objective, so several modifications
have been proposed recently, such as a multi-scale generation [37] and a convolution-
deconvolution architecture with batch normalization [162]. While the above methods
attempt to generate an image starting from a random vector, they do not provide
tools to change the generation process with intuitive user controls. In this chapter
we try to remedy this by learning a generative model that can be easily controlled
via a few intuitive user edits.

5.3 Learning the Natural Image Manifold
Let us assume that all natural images lie on an ideal low-dimensional manifold M

with a distance function S(x1, x2) that measures the perceptual similarity between two
images x1, x2 ∈M. Directly modeling this ideal manifold M is extremely challenging,
as it involves training a generative model in a highly structured and complex million
dimensional space. Following the recent success of deep generative networks in

5.3. LEARNING THE NATURAL IMAGE MANIFOLD 84

(a) random samples (b) random jittering (c) linear interpolation

Figure 5.2: GAN as a manifold approximation. (a) Randomly generated examples
from a GAN, trained on the shirts dataset; (b) random jittering: each row shows a
random sample from a GAN (the first one at the left), and its variants produced by
adding Gaussian noise to z in the latent space; (c) interpolation: each row shows
two randomly generated images (first and last), and their smooth interpolations in
the latent space.

generating natural looking images, we approximate the image manifold by learning a
model using generative adversarial networks (GAN) [67,162] from a large-scale image
collection. Beside the high quality results, GAN has a few other useful properties for
our task we will discuss next.
Generative Adversarial Networks: A GAN model consists of two neural net-
works: (1) a generative network G(z; θg) that generates an image x ∈ RH×W×C given
a random vector z ∈ Z, where Z denotes a d-dimensional latent space, and (2) a dis-
criminative network D(x; θd) that predicts a probability of a photo being real (D = 1)
or generated (D = 0). For simplicity, we denote G(z; θG) and D(x; θD) as G(z) and
D(x) in later sections. One common choice of Z is a multivariate uniform distribution
Unif [−1, 1]d. D and G are learned using a min-max objective [67]. GAN works well
when trained on images of a certain class. We formally define M̃ = {G(z)|z ∈ Z}
and use it as an approximation to the ideal manifold M (i.e M̃ ≈ M). We also
approximate the distance function of two generated images as an Euclidean distance
between their corresponding latent vectors, i.e., S(G(z1), G(z2)) ≈ ‖z1 − z2‖2.
GAN as a manifold approximation: We use GAN to approximate an ideal
manifold for two reasons: first, it produces high-quality samples (see Figure 5.2 (a)
for example). Though lacking visual details sometimes, the model can synthesize
appealing samples with a plausible overall structure. Second, the Euclidean distance in
the latent space often corresponds to a perceptually meaningful visual similarity (see
Figure 5.2 (b) for examples). We therefore argue that GAN is a powerful generative
model for modeling the image manifold.
Traversing the manifold: Given two images on the manifold G(z0), G(zN)) ∈

5.4. APPROACH 85

M̃, one would like to seek a sequence of N + 1 images
[
G(z0), G(z1), . . . G(zN)

]

with a smooth transition. This is often done by constructing an image graph with
images as nodes, and pairwise distance function as the edge, and computing a
shortest path between the starting image and end image [107]. In our case, we
minimize

∑N−1
t=0 S(G(zt), G(zt+1)) where S is the distance function. In our case

S(G(z1), G(z2)) ≈ ‖z1−z2‖2 , so a simple linear interpolation
[
(1− t

N
) ·z0+ t

N
·zN
]N
t=0

is the shortest path. Figure 5.2 (c) shows a smooth and meaningful image sequence
generated by interpolating between two points in the latent space. We will now use
this approximation of the manifold of natural images for realistic photo editing.

5.4 Approach
Figure 5.1 illustrates the overview of our approach. Given a real photo, we first

project it onto our approximation of the image manifold by finding the closest latent
feature vector z of the GAN to the original image. Then, we present a real-time
method for gradually and smoothly updating the latent vector z so that it generates
a desired image that both satisfies the user’s edits (e.g. a scribble or a warp; more
details in Section 5.5) and stays close to the natural image manifold. Unfortunately,
in this transformation the generative model usually looses some of the important
low-level details of the input image. We therefore propose a dense correspondence
method that estimates both per-pixel color and shape changes from the edits applied
to the generative model. We then transfer these changes to the original photo using
an edge-aware interpolation technique and produce the final manipulated result.

5.4.1 Projecting an Image onto the Manifold

A real photo xR lies, by definition, on the ideal image manifold M. However for
an approximate manifold M̃, our goal here is to find a generated image x∗ ∈ M̃ close
to xR in some distance metric L(x1, x2) as

x∗ = arg min
x∈M̃

L(x, xR). (5.1)

For the GAN manifold M̃ we can rewrite the above equation as follows:

z∗ = arg min
z∈Z̃

L(G(z), xR). (5.2)

Our goal is to reconstruct the original photo xR using the generative model G by
minimizing the reconstruction error, where L(x1, x2) = ‖C(x1) − C(x2)‖2 in some

5.4. APPROACH 86

differentiable feature space C. If C(x) = x, then the reconstruction error is simply
pixel-wise Euclidean error. Previous work [44, 99] suggests that using deep neural
network activations leads to a reconstruction of perceptually meaningful details.
We found that a weighted combination of raw pixels and conv4 features (×0.002)
extracted from AlexNet [116] trained on ImageNet [36] to perform best.
Projection via optimization: As both the feature extractor C and the generative
model G are differentiable, we can directly optimize the above objective using L-
BFGS-B [23]. However, the cascade of C(G(z)) makes the problem highly non-convex,
and as a result, the reconstruction quality strongly relies on a good initialization of
z. We can start from multiple random initializations and output the solution with
the minimal cost. However the number of random initializations required to obtain a
stable reconstruction is prohibitively large (more than 100), which makes real-time
processing impossible. We instead train a deep neural network to minimize equation
5.2 directly.
Projection via a feedforward network: We train a feedforward neural network
P (x; θP) that directly predicts the latent vector z from a x. The training objective
for the predictive model P is written as follows:

θ∗P = arg min
θP

∑

n

L(G(P (xRn ; θP)), xRn), (5.3)

where xRn denotes the n-th image in the dataset. The architecture of the model P
is equivalent to the discriminator D of the adversarial networks, and only varies
in the final number of network outputs. Objective 5.3 is reminiscent of an auto-
encoder pipeline, with a encoder P and decoder G. However, the decoder G is fixed
throughout the training. While the optimization problem 5.2 is exactly the same as
the learning objective 5.3, the learning based approach often performs better and
does not fall into local optima. We attribute this behavior to the regularity in the
projection problem and the limited capacity of the network P . Projections of similar
images will share similar network parameters and produce a similar result. In some
sense the loss for one image provides information for many more images that share a
similar appearance [62]. However, the learned inversion is not always perfect, and
can often be improved further by a few additional steps of optimization.
A hybrid method: The hybrid method takes advantage of both approaches above.
Given a real photo xR, we first predict P (xR; θP) and then use it as the initialization
for the optimization objective (Equation 5.2). So the predictive model we have
trained serves as a fast bottom-up initialization method for a non-convex optimization
problem. Figure 5.3 shows a comparison of these three methods. See Section 5.7.4
for a more quantitative evaluation.

5.4. APPROACH 87

Reconstruction

via Optimization

Reconstruction

via Network

Reconstruction

via Hybrid Method

Original photos

0.3390.190 0.382 0.302 0.2510.198 0.482 0.270 0.248 0.263

0.2490.164 0.370 0.279 0.3500.165 0.437 0.255 0.178 0.227

0.2040.141 0.298 0.218 0.1600.133 0.318 0.185 0.183 0.190

Figure 5.3: Projecting real photos onto the image manifold using GAN. Top row:
original photos (from handbag dataset); 2nd row: reconstruction using optimization-
based method; 3rd row: reconstruction via learned deep encoder P ; bottom row:
reconstruction using the hybrid method (ours). We show the reconstruction loss
below each image.

5.4.2 Manipulating the Latent Vector

With the image xR0 projected onto the manifold M̃ as x0 = G(z0) via the projection
methods just described, we can start modifying the image on that manifold. We
update the initial projection x0 by simultaneously matching the user intentions while
staying on the manifold, close to the original image x0.

Each editing operation is formulated as a constraint fg(x) = vg on a local part
of the output image x. The editing operations g include color, shape and warping
constraints, and are further described in Section 5.5.1. Given an initial projection
x0, we find a new image x ∈M close to x0 trying to satisfy as many constraints as
possible

x∗ = arg min
x∈M

{∑

g

‖fg(x)− vg‖2

︸ ︷︷ ︸
data term

+λs · S(x, x0)︸ ︷︷ ︸
manifold

smoothness

}
, (5.4)

where the data term measures deviation from the constraint and the smoothness
term enforces moving in small steps on the manifold, so that the image content is
not altered too much. We set λs = 5 in our experiments.

The above equation simplifies to the following on the approximate GAN manifold

5.4. APPROACH 88

(b) Updated images according to user edits

(c) Linear interpolation between and

(a) User constraints at different update steps

Figure 5.4: Updating latent vector given user edits. (a) Evolving user constraint vg
(black color strokes) at each update step; (b) intermediate results at each update
step (G(z0) at leftmost, and G(z1) at rightmost); (c) a smooth linear interpolation
in latent space between G(z0) and G(z1).

M̃:
z∗ = arg min

z∈Z

{∑

g

‖fg(G(z))− vg‖2

︸ ︷︷ ︸
data term

+λs · ‖z − z0‖2︸ ︷︷ ︸
manifold

smoothness

+ED

}
. (5.5)

Here the last term ED = λD · log(1−D(G(z))) optionally captures the visual realism
of the generated output as judged by the GAN discriminator D. This further pushes
the image towards the manifold of natural images, and slightly improves the visual
quality of the result. By default, we turn off this term to increase frame rates.
Gradient descent update: For most constraints Equation 5.5 is non-convex. We
solve it using gradient descent, which allows us to provide the user with a real-time
feedback as she manipulates the image. As a result, the objective 5.5 evolves in
real-time as well. For computational reasons, we only perform a few gradient descent
updates after changing the constraints vg. Each update step takes 50−100 ms, which
ensures an interactive feedback. Figure 5.4 shows one example of the update of z.
Given an initial red shoe as shown in Figure 5.4, the user gradually scribbles a black
color stroke (i.e. specifies a region is black) on the shoe image (Figure 5.4 a). Then
our update method smoothly changes the image appearance (Figure 5.4 b) by adding
more and more of the user constraints. Once the final result G(z1) is computed, a

5.4. APPROACH 89

Figure 5.5: Edit transfer via Motion+Color Flow. Following user edits on the left
shoe G(z0) we obtain an interpolation sequence in the generated latent space G(z)
(top right). We then compute the motion and color flows (right middle and bottom)
between neighboring images inG(z). These flows are concatenated and, as a validation,
can be applied on G(z0) to obtain a close reconstruction of G(z) (left middle). The
bottom left row shows how the edit is transferred to the original shoe using the same
concatenated flow, to obtain a sequence of edited shoes.

user can see the interpolation sequence between the initial point z0 and z1 (Figure 5.4
c), and select any intermediate result as the new starting point.

While this editing framework allows us to modify any generated image on the
approximate natural image manifold M̃, it does not directly provide us a way to
modify the original high resolution image xR0 . In the next section we show how edits
on the approximate manifold can be transferred to the original image.

5.4.3 Edit Transfer

Give the original photo xR0 (e.g. a black shoe) and its projection on the manifold
G(z0), and a user modification G(z1) by our method (e.g. the generated red shoe).
The generated image G(z1) captures the roughly change we want, albeit the quality
is degraded w.r.t the original image.

Can we instead adjust the original photo and produce a more photo-realistic
result xR1 that exhibits the changes in the generated image? A straightforward way
is to transfer directly the pixel changes (i.e. xR1 = xR0 + (G(z1) − G(z0)). We have
tried this approach and it introduces new artifacts due to the misalignment of the
two images. To address this issue, we develop a dense correspondence algorithm to
estimate both the geometric and color changes induced by the editing process.

Specifically, given two generated images G(z0) and G(z1), we can generate any
number of intermediate frames

[
G((1− t

N
) · z0 + t

N
· z1)

]N
t=0

, where consecutive frames
only exhibit minor visual variations.
Motion+Color flow algorithm:We then estimate the color and geometric changes

5.5. USER INTERFACE 90

by generalizing the brightness constancy assumption in traditional optical flow
methods [20,21]. This results in the following motion+color flow objective1:

∫∫
‖I(x, y, t)−A·I(x+u, y+v, t+1)‖2︸ ︷︷ ︸

data term

+σs(‖∇u‖2+‖∇v‖2)︸ ︷︷ ︸
spatial reg

+σc‖∇A‖2︸ ︷︷ ︸
color reg

dxdy, (5.6)

where I(x, y, t) denotes the RGB values (r, g, b, 1)T of pixel (x, y) in the generated
image G((1− t

N
) · z0 + t

N
· z1). (u, v) is the flow vector with respect to the change of

t, and A denotes a 3× 4 color affine transformation matrix. The data term relaxes
the color constancy assumption by introducing a locally affine color transfer model
A [186] while the spatial and color regularization terms encourage smoothness in
both the motion and color change. We solve the objective by iteratively estimating
the flow (u, v) using a traditional optical flow algorithm, and computing the color
change A by solving a system of linear equations [186]. We iterate 3 times. We
produce 8 intermediate frames (i.e. N = 7).

We estimate the changes between nearby frames, and concatenate these changes
frame by frame to obtain long-range changes between any two frames along the
interpolation sequence z0 → z1. Figure 5.5 shows a warping sequence after we apply
the flow to the initial projection G(z0).
Transfer edits to the original photo: After estimating the color and shape
changes in the generated image sequence, we apply them to the original photo and
produce an interesting transition sequence of photo-realistic images as shown in
Figure 5.5. As the resolution of the flow and color fields are limited to the resolution
of the generated image (i.e. 64× 64), we upsample those edits using a guided image
filter [78].

5.5 User Interface
The user interface consists of a main window showing the current edited photo, a

display showing thumbnails of all the candidate results, and a slider bar to explore
the interpolation sequence between the original photo and the final result.
Candidate results: Given the objective (Equation 5.5) derived with the user guid-
ance, we generate multiple different results by initializing z as random perturbations
of z0. We generate 64 examples and show the best 9 results sorted by the objective
cost (Equation 5.5).

1For simplicity, we omit the pixel subscript (x, y) for all the variables.

5.6. IMPLEMENTATION DETAILS 91

Relative edits: Once a user finishes one edit, she can drag a slider to see all the
intermediate results interpolated between the original and the final manipulated
photo. We call this “relative edits” as it allows a user to explore more alternatives
with a single edit. Similar to relative attributes [154], a user can express ideas like
changing the handle of the handbag to be more red, or making the heel of the shoes
slightly higher, without committing to a specific final state.

5.5.1 Editing constraints

Our system provides three constraints to edit the photo in different aspects:
coloring, sketching and warping. All constraints are expressed as brush tools. In the
following, we explain the usage of each brush, and the corresponding constraints.
Coloring brush: The coloring brush allows the user to change the color of a specific
region. The user selects a color from a palette and can adjust the brush size. For
each pixel marked with this brush we constrain the color fg(I) = Ip = vg of a pixel p
to the selected values vg.
Sketching brush: The sketching brush allows the user to outline the shape or add
fine details. We constrain fg(I) = HOG(I)p a differentiable HOG descriptor [33] at a
certain location p in the image to be close to the user stroke (i.e. vg = HOG(stroke)p).
We chose the HOG feature extractor because it is binned, which makes it robust to
sketching inaccuracies.
Warping brush: The warping brush allows the user to modify the shape more
explicitly. The user first selects a local region (a window with adjustable size), and
then drag it to another location. We then place both a color and sketching constraint
on the displaced pixels encouraging the target patch to mimic the appearance of the
dragged region.

Figure 5.8 shows a few examples where the coloring and sketching brushed were
used in the context of interactive image generation. Figure 5.1 shows the result of
the warping brush that was used to pull the topline of the shoe up. Figure 5.6 shows
a few more examples.

5.6 Implementation Details
Network architecture: We follow the same architecture of deep convolutional
generative adversarial networks (DCGAN) [162]. DCGAN mainly builds on multiple
convolution, deconvolution and ReLU layers, and eases the min-max training via
batch normalization [92]. We train the generator G to produce a 64× 64× 3 image
given a 100-dimensional random vector. Notice that our method can also use other

5.7. RESULTS 92

generative models (e.g. variational auto-encoder [113] or future improvements in this
area) to approximate the natural image manifold.
Computational time: We run our system on a Titan X GPU. Each update of the
vector z takes 50 ∼ 100 milliseconds, which allows the real-time image editing and
generation. Once an edit is finished, it takes 5 ∼ 10 seconds for our edit transfer
method to produce high-resolution final result.

5.7 Results
We first introduce the statistics of our dataset. We then show three main applica-

tions: realistic image manipulation, generative image transformation, and generating
a photo from scratch using our brush tools. Finally, we evaluate our image recon-
struction methods, and perform a human perception study to understand the realism
of generated results.
Datasets: We experiment with multiple photo collections from various sources as
follows: “shoes” dataset [232], which has 50K shoes collected from Zappos.com (the
shoes are roughly centered but not well aligned, and roughly facing left, with frontal
to side view); “church outdoor” dataset (126K images) from the LSUN challenge [233];
“outdoor natural” images (150K) from the MIT Places dataset [242]; and two query-
based product collections downloaded from Amazon, including “handbags” (138K)
and “shirts” (137K). The downloaded handbags and shirts are roughly centered but
no further alignment has been performed.

5.7.1 Image Manipulation

Our main application is photo-realistic image manipulation using the brush
interactions described in Section 5.5.1. See Figure 5.6 for a few examples where the
brush edits are depicted on the left (dashed line for the sketch tool, color scribble for
the color brush and a red square with arrow for the warp tool).

5.7.2 Generative Image Transformation

An interesting outcome of the editing process is the sequence of intermediate
generated images that can be seen as a new kind of image morphing [182,184,221].
We call it “generative transformation”. We use this sequence to transform the shape
and color of one image to look like another image automatically, i.e., without any
user edits. This is done by applying the motion+color flow on either of the sources.
Figure 5.7 shows a few “generative transform” examples.

5.7. RESULTS 93

Figure 5.6: Image manipulation examples: for each example, we show the original
photo and user edits on the left. The top row on the right shows the generated
sequence and the bottom row shows the edit transfer sequence on the original image.

5.7.3 Interactive Image Generation

Another byproduct of our method is that if there is no image to begin with and
all we have are the user brush strokes, the method would generate a natural image
that best satisfies the user constraints. This could be useful for dataset exploration
and browsing. The difference with previous sketch-to-image retrieval methods [196]
or AverageExplorer [248], is that due to potentially contradicting user constraints,
the result may look very different than any single image from the dataset or an
average of such images, and more of a realistic hybrid image [170]. See some examples
in Figure 5.8.

5.7.4 Evaluation

Image reconstruction evaluation: We evaluate three image reconstruction meth-
ods described in Section 5.4.1: optimization-based, network-based and our hybrid
approach that combines the last two. We run these on 500 test images per category,
and evaluate them by the reconstruction error L(x, xR) defined in Equation 5.1.

5.7. RESULTS 94

Image 1 Image 2

only shape, no color (outdoor natural dataset)

both shape and color (shoes dataset)

Image 1 Image 2

Figure 5.7: Generative image transformation. In both rows, the source on the left is
transformed to have the shape and color (or just shape in the 2nd example) of the
one on the right.

User edits Generated images User edits Generated imagesUser edits Generated images

Church Natural OutdoorChurch

Query Nearest neighbor real photos Query Nearest neighbor real photos Query Nearest neighbor real photos

Figure 5.8: Interactive image generation. The user uses the brush tools to generate
an image from scratch (top row) and then keeps adding more scribbles to refine the
result (2nd and 3rd rows). In the last row, we show the most similar real images
to the generated images. (dashed line for the sketch tool, and color scribble for the
color brush)

5.8. DISCUSSION 95

Shoes Church Outdoor Natural Handbags Shirts
Optimization-based 0.155 0.319 0.176 0.299 0.284
Network-based 0.210 0.338 0.198 0.302 0.265
Hybrid (ours) 0.140 0.250 0.145 0.242 0.184

Table 5.1: Average per-dataset image reconstruction error measured by L(x, xR).

Table 5.1 shows the mean reconstruction error of these three methods on 5 different
datasets. We can see the optimization-based and neural network-based methods
perform comparably, where their combination yields better results. See Figure 5.3
for a qualitative comparison.
Class-specific model: So far, we have trained the generative model on a particular
class of images. As a comparison, we train a cross-class model on three datasets
altogether (i.e. shoes, handbags, and shirts), and observe that the model achieves
worse reconstruction error compared to class-specific models (by ∼ 10%). We also
have tried to use a class-specific model to reconstruct images from a different class.
The mean cross-category reconstruction errors are much worse: shoes model used for
shoes: 0.140 vs. shoes model for handbags: 0.398, and for shirts: 0.451. However, we
expect a model trained on many categories (e.g. 1, 000) to generalize better to novel
objects.
Perception study: We perform a small perception study to compare the photo
realism of four types of images: real photos, generated samples produced by GAN,
our method (shape only), and our method (shape+color). We collect 20 annotations
for 400 images by asking Amazon Mechanical Turk workers if the image look realistic
or not. Real photos: 91.5%, DCGAN: 14.3%, ours (shape+color): 25.9%; ours (shape
only): 48.7%. DCGAN model alone produces less photo-realistic images, but when
combined with our edit transfer, the realism significantly improves.

5.8 Discussion
We presented a step towards image editing with a direct constraint to stay close to

the manifold of real images. We approximate this manifold using the state-of-the-art
in deep generative models (DCGAN). We show how to make interactive edits to the
generated images and transfer the resulting changes in shape and color back to the
original image. Thus, the quality of the generated results (low resolution, missing
texture and details) and the types of data DCGAN is applicable to (works well on
structured datasets such as product images and worse on more general imagery),

5.8. DISCUSSION 96

limits how far we can get with this editing approach. However our method is not tied
to a particular generative method and will improve with the advancement of this
field. Our current editing brush tools allow rough changes in color and shape but
not texture and more complex structure changes. We leave these for future work.

97

Part III

Image-to-Image Translation

98

Chapter 6

Unpaired Image-to-Image
Translation

This chapter introduces image-to-image translation, a class of vision and graphics
problems, where the goal is to learn the mapping between an input domain to an
output domain. We briefly discuss a baseline algorithm [93] that can learn to produce
a single output given paired training data. However, for many tasks, paired training
data will not be available. To address this challenge, we present an approach for
learning to translate an image from a source domain X to a target domain Y in
the absence of paired examples. Our goal is to learn a mapping G : X → Y , such
that the distribution of images from G(X) is indistinguishable from the distribution
Y . Because this mapping is highly under-constrained, we couple it with an inverse
mapping F : Y → X and introduce a cycle consistency loss to enforce F (G(X)) ≈ X
(and vice versa). Qualitative results are presented on several tasks where paired
training data does not exist, including collection style transfer, object transfiguration,
season transfer and photo enhancement, etc. Quantitative comparisons against several
prior methods demonstrate the superiority of our approach.

6.1 Introduction
What did Claude Monet see as he placed his easel by the bank of the Seine near

Argenteuil on a lovely spring day in 1873 (Figure 6.1, top-left)? A color photograph,
had it been invented, may have documented a crisp blue sky and a glassy river
reflecting it. Monet conveyed his impression of this same scene through wispy brush
strokes and a bright palette.

What if Monet had happened upon the little harbor in Cassis on a cool summer

6.1. INTRODUCTION 99

Zebras Horses

horse zebra

zebra horse

Summer Winter

summer winter

winter summer

Photograph Van Gogh CezanneMonet Ukiyo-e

Monet Photos

Monet photo

photo Monet

Figure 6.1: Given any two unordered image collections X and Y , our algorithm
learns to automatically “translate” an image from one into the other and vice versa:
(left) Monet paintings and landscape photos from Flickr; (center) zebras and horses
from ImageNet; (right) summer and winter Yosemite photos from Flickr. Example
application (bottom): using a collection of paintings of famous artists, our method
learns to render natural photographs into the respective styles.

evening (Figure 6.1, bottom-left)? A brief stroll through a gallery of Monet paintings
makes it possible to imagine how he would have rendered the scene: perhaps in pastel
shades, with abrupt dabs of paint, and a somewhat flattened dynamic range.

We can imagine all this despite never having seen a side by side example of a
Monet painting next to a photo of the scene he painted. Instead we have knowledge
of the set of Monet paintings and of the set of landscape photographs. We can reason
about the stylistic differences between these two sets, and thereby imagine what a
scene might look like if we were to “translate” it from one set into the other.

In this chapter, we present a method that can learn to do the same: capturing
special characteristics of one image collection and figuring out how these character-
istics could be translated into the other image collection, all in the absence of any
paired training examples.

This problem can be more broadly described as image-to-image translation [93],
converting an image from one representation of a given scene, x, to another, y, e.g.,
grayscale to color, image to semantic labels, edge-map to photograph. Years of research
in computer vision, image processing, computational photography, and graphics have
produced powerful translation systems in the supervised setting, where example image

6.1. INTRODUCTION 100

()
⋯

,

()
⋯

Paired Unpaired

n o
,

n o
,

n o
,

⋯

X Yxi yi

Figure 6.2: Paired training data (left) consists of training examples {xi, yi}Ni=1, where
the correspondence between xi and yi exists [93]. We instead consider unpaired
training data (right), consisting of a source set {xi}Ni=1 (xi ∈ X) and a target set
{yj}j=1 (yj ∈ Y), with no information provided as to which xi matches which yj.

pairs {x, y} are available (Figure 6.2, left), e.g., [50,81,93,99,118,136,186,220,224,237].
However, obtaining paired training data can be difficult and expensive. For example,
only a couple of datasets exist for tasks like semantic segmentation (e.g., [31]), and
they are relatively small. Obtaining input-output pairs for graphics tasks like artistic
stylization can be even more difficult since the desired output is highly complex,
typically requiring artistic authoring. For many tasks, like object transfiguration (e.g.,
zebra↔horse, Figure 6.1 top-middle), the desired output is not even well-defined.

We therefore seek an algorithm that can learn to translate between domains
without paired input-output examples (Figure 6.2, right). We assume there is some
underlying relationship between the domains – for example, that they are two different
renderings of the same underlying scene – and seek to learn that relationship. Although
we lack supervision in the form of paired examples, we can exploit supervision at the
level of sets: we are given one set of images in domain X and a different set in domain
Y . We may train a mapping G : X → Y such that the output ŷ = G(x), x ∈ X, is
indistinguishable from images y ∈ Y by an adversary trained to classify ŷ apart from
y. In theory, this objective can induce an output distribution over ŷ that matches the
empirical distribution pdata(y) (in general, this requires G to be stochastic) [67]. The

6.2. BACKGROUND 101

optimal G thereby translates the domain X to a domain Ŷ distributed identically to
Y . However, such a translation does not guarantee that an individual input x and
output y are paired up in a meaningful way – there are infinitely many mappings G
that will induce the same distribution over ŷ. Moreover, in practice, we have found it
difficult to optimize the adversarial objective in isolation: standard procedures often
lead to the well-known problem of mode collapse, where all input images map to the
same output image and the optimization fails to make progress [65].

These issues call for adding more structure to our objective. Therefore, we exploit
the property that translation should be “cycle consistent", in the sense that if we
translate, e.g., a sentence from English to French, and then translate it back from
French to English, we should arrive back at the original sentence [19]. Mathematically,
if we have a translator G : X → Y and another translator F : Y → X, then G and F
should be inverses of each other, and both mappings should be bijections. We apply
this structural assumption by training both the mapping G and F simultaneously, and
adding a cycle consistency loss [244] that encourages F (G(x)) ≈ x and G(F (y)) ≈ y.
Combining this loss with adversarial losses on domains X and Y yields our full
objective for unpaired image-to-image translation.

We apply our method to a wide range of applications, including collection style
transfer, object transfiguration, season transfer and photo enhancement. We also
compare against previous approaches that rely either on hand-defined factorizations
of style and content, or on shared embedding functions, and show that our method
outperforms these baselines. Our code is available at https://github.com/junyanz/
CycleGAN. Check out more results at https://junyanz.github.io/CycleGAN/.

6.2 Background
Generative Adversarial Networks (GANs) [67,240] have achieved impres-

sive results in image generation [37, 162], image editing [247], and representation
learning [140,162,177]. Recent methods adopt the same idea for conditional image
generation applications, such as text2image [164], image inpainting [155], and future
prediction [139], as well as to other domains like videos [213] and 3D data [222]. The
key to GANs’ success is the idea of an adversarial loss that forces the generated
images to be, in principle, indistinguishable from real images. This is particularly
powerful for image generation tasks, as this is exactly the objective that much of
computer graphics aims to optimize. We adopt an adversarial loss to learn the
mapping such that the translated image cannot be distinguished from images in the
target domain.

Image-to-Image Translation The idea of image-to-image translation goes back

https://github.com/junyanz/CycleGAN
https://github.com/junyanz/CycleGAN
https://junyanz.github.io/CycleGAN/

6.2. BACKGROUND 102

at least to Hertzmann et al.’s Image Analogies [81], who employ a non-parametric
texture model [49] on a single input-output training image pair. More recent ap-
proaches use a dataset of input-output examples to learn a parametric translation
function using CNNs, e.g. [136]. Our approach builds on the “pix2pix" framework
of Isola et al. [93], which uses a conditional generative adversarial network [67] to
learn a mapping from input to output images. Similar ideas have been applied to
various tasks such as generating photographs from sketches [178] or from attribute
and semantic layouts [104]. However, unlike these prior works, we learn the mapping
without paired training examples.

Unpaired Image-to-Image Translation Several other methods also tackle the
unpaired setting, where the goal is to relate two data domains, X and Y . Rosales et
al. [172] propose a Bayesian framework that includes a prior based on a patch-based
Markov random field computed from a source image, and a likelihood term obtained
from multiple style images. More recently, CoGAN [134] and cross-modal scene
networks [10] use a weight-sharing strategy to learn a common representation across
domains. Concurrent to our method, Liu et al. [133] extends this framework with a
combination of variational autoencoders [113] and generative adversarial networks.
Another line of concurrent work [17,187,200] encourages the input and output to
share certain “content" features even though they may differ in “style“. They also
use adversarial networks, with additional terms to enforce the output to be close to
the input in a predefined metric space, such as class label space [17], image pixel
space [187], and image feature space [200].

Unlike the above approaches, our formulation does not rely on any task-specific,
predefined similarity function between the input and output, nor do we assume that
the input and output have to lie in the same low-dimensional embedding space. This
makes our method a general-purpose solution for many vision and graphics tasks. We
directly compare against several prior and contemporary approaches in Section 6.6.1.

Cycle Consistency The idea of using transitivity as a way to regularize struc-
tured data has a long history. In visual tracking, enforcing simple forward-backward
consistency has been a standard trick for decades [197]. In the language domain,
verifying and improving translations via “back translation and reconsiliation” is a tech-
nique used by human translators [19] (including, humorously, by Mark Twain [207]),
as well as by machines [77]. More recently, higher-order cycle consistency has been
used in structure from motion [234], 3D shape matching [89], co-segmentation [215],
dense semantic alignment [243, 244], and depth estimation [64]. Of these, Zhou et
al. [244] and Godard et al. [64] are most similar to our work, as they use a cycle
consistency loss as a way of using transitivity to supervise CNN training. In this work,
we are introducing a similar loss to push G and F to be consistent with each other.
Concurrent with our work, in these same proceedings, Yi et al. [231] independently

6.3. PAIRED IMAGE-TO-IMAGE TRANSLATION 103

Labels to Facade BW to Color

Aerial to Map

Labels to Street Scene

Edges to Photo

input output input

inputinput

input output

output

outputoutput

input output

Day to Night

Figure 6.3: Many problems in image processing, graphics, and vision involve trans-
lating an input image into a corresponding output image. These problems are often
treated with application-specific algorithms, even though the setting is always the
same: map pixels to pixels. Conditional adversarial nets are a general-purpose solu-
tion that appears to work well on a wide variety of these problems. Here we show
results of the pix2pix method on several. In each case the models use the same
architecture and objective, and simply train on different data.

use a similar objective for unpaired image-to-image translation, inspired by dual
learning in machine translation [77].

Neural Style Transfer [60,61,99,208] is another way to perform image-to-image
translation, which synthesizes a novel image by combining the content of one image
with the style of another image (typically a painting) based on matching the Gram
matrix statistics of pre-trained deep features. Our main focus, on the other hand,
is learning the mapping between two image collections, rather than between two
specific images, by trying to capture correspondences between higher-level appearance
structures. Therefore, our method can be applied to other tasks, such as painting→
photo, object transfiguration, etc. where single sample transfer methods do not
perform well. We compare these two methods in Section 6.6.2.

6.3 Paired Image-to-Image Translation
Here, we first briefly review the pix2pix framework (Isola et al. [93]), an image-

conditional GANs that learn a mapping from observed image x to y, G : x → y
where x and y follows the data distribution x ∼ pdata(x) and y ∼ pdata(y). The
training data contains input-output pairs {(xi, yi)}Ni=1 with the joint distribution

6.3. PAIRED IMAGE-TO-IMAGE TRANSLATION 104

fake

G(x)

x

D

real

D

G
x y

x

Figure 6.4: Training a conditional GAN to map edges→photo. The discriminator, D,
learns to classify between fake (synthesized by the generator) and real {edge, photo}
tuples. The generator, G, learns to fool the discriminator. Unlike an unconditional
GAN, both the generator and discriminator observe the input edge map.

(x, y) ∼ pdata(x, y). The generator G is trained to produce outputs that cannot be
distinguished from “real" images by an adversarially trained discriminator, D, which
is trained to do as well as possible at detecting the generator’s “fakes". This training
procedure is diagrammed in Figure 6.4.

The adversarial loss of pix2pix can be expressed as

LcGAN(G,D) = E(x,y)∼pdata(x,y)[logD(x, y)] + Ex∼pdata(x)[log(1−D(x,G(x))], (6.1)

where G tries to minimize this objective against an adversarial D that tries to
maximize it, i.e. G∗ = arg minG maxD LcGAN(G,D).

Previous approaches have found it beneficial to mix the GAN objective with a
more traditional loss, such as L2 distance [155]. The discriminator’s job remains
unchanged, but the generator is tasked to not only fool the discriminator but also to
be near the ground truth output in an L2 sense. The pix2pix framework uses a L1
distance rather than L2 as L1 encourages less blurring:

LL1(G) = E(x,y)∼pdata(x,y)[‖y −G(x)‖1]. (6.2)

The final objective of pix2pix can be formulated as:

G∗ = arg min
G

max
D
LcGAN(G,D) + λLL1(G). (6.3)

The pix2pix method implements the generator as an U-Net [171] and the
discriminator as a fully convolutional network [136] for classifying 70×70 overlapping
patches. Please find more details in the original paper https://arxiv.org/abs/
1611.07004. Figure 6.3 shows a few example results generated by pix2pix framework
on various image-to-image translation tasks.

https://arxiv.org/abs/1611.07004
https://arxiv.org/abs/1611.07004

6.4. UNPAIRED IMAGE-TO-IMAGE TRANSLATION 105

X Y

G

F

DYDX

G

F
Ŷ

X Y(X Y
(

G

F
X̂

(a) (b) (c)

cycle-consistency
loss

cycle-consistency
loss

DY DX

ŷx̂x y

Figure 6.5: (a) Our model contains two mapping functions G : X → Y and F :
Y → X, and associated adversarial discriminators DY and DX . DY encourages G to
translate X into outputs indistinguishable from domain Y , and vice versa for DX

and F . To further regularize the mappings, we introduce two cycle consistency losses
that capture the intuition that if we translate from one domain to the other and
back again we should arrive at where we started: (b) forward cycle-consistency loss:
x → G(x) → F (G(x)) ≈ x, and (c) backward cycle-consistency loss: y → F (y) →
G(F (y)) ≈ y

6.4 Unpaired Image-to-Image Translation
Different from the paired image-to-image translation described in Section 6.3,

our goal here is to learn mapping functions between two domains X and Y given
training samples {xi}Ni=1 where xi ∈ X and {yj}Mj=1 where yj ∈ Y 1. Note that no
paired data is provided for the model training. We denote the data distribution as
x ∼ pdata(x) and y ∼ pdata(y). As illustrated in Figure 6.5 (a), our model includes
two mappings G : X → Y and F : Y → X. In addition, we introduce two adversarial
discriminators DX and DY , where DX aims to distinguish between images {x} and
translated images {F (y)}; in the same way, DY aims to discriminate between {y}
and {G(x)}. Our objective contains two types of terms: adversarial losses [67] for
matching the distribution of generated images to the data distribution in the target
domain; and cycle consistency losses to prevent the learned mappings G and F from
contradicting each other.

1We often omit the subscript i and j for simplicity.

6.4. UNPAIRED IMAGE-TO-IMAGE TRANSLATION 106

Input 𝑥 Generated image 𝐺(𝑥) Reconstruction F(𝐺 𝑥)

Figure 6.6: The generated images G(x) and the reconstructed images F (G(x)) from
various experiments. From top to bottom: photo↔Cezanne and horses↔zebras.

6.4.1 Adversarial Loss

We apply adversarial losses [67] to both mapping functions. For the mapping
function G : X → Y and its discriminator DY , we express the objective as:

LGAN(G,DY , X, Y) = Ey∼pdata(y)[logDY (y)] + Ex∼pdata(x)[log(1−DY (G(x))], (6.4)

where G tries to generate images G(x) that look similar to images from domain Y ,
while DY aims to distinguish between translated samples G(x) and real samples
y. G aims to minimize this objective against an adversary D that tries to max-
imize it, i.e. minG maxDY

LGAN(G,DY , X, Y). We introduce a similar adversarial
loss for the mapping function F : Y → X and its discriminator DX as well: i.e.
minF maxDX

LGAN(F,DX , Y,X).

6.4.2 Cycle Consistency Loss

Adversarial training can, in theory, learn mappings G and F that produce outputs
identically distributed as target domains Y and X respectively (strictly speaking,
this requires G and F to be stochastic functions) [65]. However, with large enough
capacity, a network can map the same set of input images to any random permutation
of images in the target domain, where any of the learned mappings can induce an
output distribution that matches the target distribution. Thus, adversarial losses

6.4. UNPAIRED IMAGE-TO-IMAGE TRANSLATION 107

alone cannot guarantee that the learned function can map an individual input xi to
a desired output yi. To further reduce the space of possible mapping functions, we
argue that the learned mapping functions should be cycle-consistent: as shown in
Figure 6.5 (b), for each image x from domain X, the image translation cycle should
be able to bring x back to the original image, i.e. x → G(x) → F (G(x)) ≈ x. We
call this forward cycle consistency. Similarly, as illustrated in Figure 6.5 (c), for each
image y from domain Y , G and F should also satisfy backward cycle consistency:
y → F (y)→ G(F (y)) ≈ y. We can incentivize this behavior using a cycle consistency
loss :

Lcyc(G,F) = Ex∼pdata(x)[‖F (G(x))− x‖1] + Ey∼pdata(y)[‖G(F (y))− y‖1]. (6.5)

In preliminary experiments, we also tried replacing the L1 norm in this loss with an
adversarial loss between F (G(x)) and x, and between G(F (y)) and y, but did not
observe improved performance.

The behavior induced by the cycle consistency loss can be observed in Figure 6.6:
the reconstructed images F (G(x)) end up matching closely to the input images x.

6.4.3 Full Objective

Our full objective is:

L(G,F,DX , DY) = LGAN(G,DY , X, Y) + LGAN(F,DX , Y,X) + λLcyc(G,F), (6.6)

where λ controls the relative importance of the two objectives. We aim to solve:

G∗, F ∗ = arg min
G,F

max
Dx,DY

L(G,F,DX , DY). (6.7)

Notice that our model can be viewed as training two “autoencoders" [83]: we learn
one autoencoder F ◦G : X → X jointly with another G◦F : Y → Y . However, these
autoencoders each have special internal structure: they map an image to itself via an
intermediate representation that is a translation of the image into another domain.
Such a setup can also be seen as a special case of “adversarial autoencoders" [137],
which use an adversarial loss to train the bottleneck layer of an autoencoder to match
an arbitrary target distribution. In our case, the target distribution for the X → X
autoencoder is that of domain Y .

In Section 6.6.1, we compare our method against ablations of the full objective,
including the adversarial loss LGAN alone and the cycle consistency loss Lcyc alone,
and empirically show that both objectives play critical roles in arriving at high-quality
results. We also evaluate our method with only cycle loss in one direction, and show
that a single cycle is not sufficient to regularize the training for this under-constrained
problem.

6.5. IMPLEMENTATION 108

6.5 Implementation
Network Architecture We adapt the architecture for our generative networks
from Johnson et al. [99] who have shown impressive results for neural style transfer
and super-resolution. This network contains two stride-2 convolutions, several residual
blocks [79], and two fractionally-strided convolutions with stride 1

2
. We use 6 blocks

for 128 × 128 images, and 9 blocks for 256 × 256 and higher-resolution training
images. Similar to Johnson et al. [99], we use instance normalization [209]. For the
discriminator networks we use 70×70 PatchGANs [93,125,129], which aim to classify
whether 70 × 70 overlapping image patches are real or fake. Such a patch-level
discriminator architecture has fewer parameters than a full-image discriminator, and
can be applied to arbitrarily-sized images in a fully convolutional fashion [93].

Training details We apply two techniques from recent works to stabilize our
model training procedure. First, for LGAN (Equation 6.4), we replace the negative
log likelihood objective by a least-squares loss [138]. This loss is more stable dur-
ing training and generates higher quality results. In particular, for a GAN loss
LGAN(G,D,X, Y), we train the G to minimize Ex∼pdata(x)[(D(G(x))− 1)2] and train
the D to minimize Ey∼pdata(y)[(D(y)− 1)2] + Ex∼pdata(x)[D(G(x))2].

Second, to reduce model oscillation [65], we follow Shrivastava et al’s strategy [187]
and update the discriminators using a history of generated images rather than the
ones produced by the latest generative networks. We keep an image buffer that stores
the 50 previously generated images.

For all the experiments, we set λ = 10 in Equation 6.6. We use the Adam
solver [112] with a batch size of 1. All networks were trained from scratch with a
learning rate of 0.0002. We keep the same learning rate for the first 100 epochs and
linearly decay the rate to zero over the next 100 epochs. Please see our online arXiv
paper https://arxiv.org/abs/1703.10593 for more details about the datasets,
architectures, and training procedures.

6.6 Results
We first compare our approach against recent methods for unpaired image-to-

image translation on paired datasets where ground truth input-output pairs are
available for evaluation. We then study the importance of both the adversarial loss
and the cycle consistency loss, and compare our full method against several variants.
Finally, we demonstrate the generality of our algorithm on a wide range of applications
where paired data does not exist. For brevity, we refer to our method as CycleGAN. The

https://arxiv.org/abs/1703.10593

6.6. RESULTS 109

Figure 6.7: Different methods for mapping labels↔photos trained on Cityscapes
images. From left to right: input, BiGAN/ALI [42, 47], CoGAN [134], feature loss +
GAN, SimGAN [187], CycleGAN (ours), pix2pix [93] trained on paired data, and
ground truth.

Figure 6.8: Different methods for mapping aerial photos↔maps on Google Maps.
From left to right: input, BiGAN/ALI [42,47], CoGAN [134], feature loss + GAN,
SimGAN [187], CycleGAN (ours), pix2pix [93] trained on paired data, and ground
truth.

code and full results can be viewed at https://github.com/junyanz/CycleGAN.

https://github.com/junyanz/CycleGAN

6.6. RESULTS 110

6.6.1 Evaluation

Using the same evaluation datasets and metrics as “pix2pix” [93], we compare our
method against several baselines both qualitatively and quantitatively. The tasks
include semantic labels↔photo on the Cityscapes dataset [31], and map↔aerial
photo on data scraped from Google Maps. We also perform ablation study on the
full loss function.

Metrics

AMT perceptual studies On the map↔aerial photo task, we run “real vs fake"
perceptual studies on Amazon Mechanical Turk (AMT) to assess the realism of our
outputs. We follow the same perceptual study protocol from Isola et al. [93], except
we only gather data from 25 participants per algorithm we tested. Participants were
shown a sequence of pairs of images, one a real photo or map and one fake (generated
by our algorithm or a baseline), and asked to click on the image they thought was
real. The first 10 trials of each session were practice and feedback was given as to
whether the participant’s response was correct or incorrect. The remaining 40 trials
were used to assess the rate at which each algorithm fooled participants. Each session
only tested a single algorithm, and participants were only allowed to complete a
single session. Note that the numbers we report here are not directly comparable to
those in [93] as our ground truth images were processed slightly differently 2 and the
participant pool we tested may be differently distributed from those tested in [93]
(due to running the experiment at a different date and time). Therefore, our numbers
should only be used to compare our current method against the baselines (which
were run under identical conditions), rather than against [93].

FCN score Although perceptual studies may be the gold standard for assessing
graphical realism, we also seek an automatic quantitative measure that does not
require human experiments. For this we adopt the “FCN score" from [93], and
use it to evaluate the Cityscapes labels→photo task. The FCN metric evaluates
how interpretable the generated photos are according to an off-the-shelf semantic
segmentation algorithm (the fully-convolutional network, FCN, from [136]). The FCN
predicts a label map for a generated photo. This label map can then be compared
against the input ground truth labels using standard semantic segmentation metrics
described below. The intuition is that if we generate a photo from a label map of

2We train all the models on 256× 256 images while in pix2pix [93], the model was trained on
256× 256 patches of 512× 512 images, and run convolutionally on the 512× 512 images at test
time. We choose 256× 256 in our experiments as many baselines cannot scale up to high resolution
images, and CoGAN cannot be tested fully convolutionally.

6.6. RESULTS 111

“car on road", then we have succeeded if the FCN applied to the generated photo
detects “car on road".

Semantic segmentation metrics To evaluate the performance of photo→labels,
we use the standard metrics from the Cityscapes benchmark, including per-pixel ac-
curacy, per-class accuracy, and mean class Intersection-Over-Union (Class IOU) [31].

Baselines

CoGAN [134] This method learns one GAN generator for domain X and one for
domain Y , with tied weights on the first few layers for shared latent representation.
Translation from X to Y can be achieved by finding a latent representation that
generates image X and then rendering this latent representation into style Y .

SimGAN [187] Like our method, Shrivastava et al. [187] uses an adversarial
loss to train a translation from X to Y . The regularization term ‖X −G(X)‖1 was
used to penalize making large changes at pixel level.

Feature loss + GAN We also test a variant of SimGAN [187] where the
L1 loss is computed over deep image features using a pretrained network (VGG-
16 relu4_2 [189]), rather than over RGB pixel values. Computing distances in
deep feature space, like this, is also sometimes referred to as using a “perceptual
loss" [44,99].

BiGAN/ALI [42,47] Unconditional GANs [67] learn a generator G : Z → X,
that maps random noise Z to images X. The BiGAN [47] and ALI [42] propose to
also learn the inverse mapping function F : X → Z. Though they were originally
designed for mapping a latent vector z to an image x, we implemented the same
objective for mapping a source image x to a target image y.

pix2pix [93] We also compare against pix2pix [93], which is trained on paired
data, to see how close we can get to this “upper bound" without using any paired
training data.

For a fair comparison, we implement all the baselines using the same architecture
and details as our method, except for CoGAN [134]. CoGAN builds on generators
that produce images from a shared latent representation, which is incompatible with
our image-to-image network. We use the public implementation of CoGAN instead 3.

Comparison against baselines As can be seen in Figure 6.7 and Figure 6.8,
we were unable to achieve compelling results with any of the baselines. Our method,
on the other hand, is able to produce translations that are often of similar quality to
the fully supervised pix2pix.

Table 6.1 reports performance regarding the AMT perceptual realism task. Here,
we see that our method can fool participants on around a quarter of trials, in both

3https://github.com/mingyuliutw/CoGAN

6.6. RESULTS 112

Map → Photo Photo → Map
Loss % Turkers labeled real % Turkers labeled real
CoGAN [134] 0.6% ± 0.5% 0.9% ± 0.5%
BiGAN/ALI [42,47] 2.1% ± 1.0% 1.9% ± 0.9%
SimGAN [187] 0.7% ± 0.5% 2.6% ± 1.1%
Feature loss + GAN 1.2% ± 0.6% 0.3% ± 0.2%
CycleGAN (ours) 26.8% ± 2.8% 23.2% ± 3.4%

Table 6.1: AMT “real vs fake" test on maps↔aerial photos at 256× 256 resolution.

Loss Per-pixel acc. Per-class acc. Class IOU
CoGAN [134] 0.40 0.10 0.06
BiGAN/ALI [42,47] 0.19 0.06 0.02
SimGAN [187] 0.20 0.10 0.04
Feature loss + GAN 0.06 0.04 0.01
CycleGAN (ours) 0.52 0.17 0.11
pix2pix [93] 0.71 0.25 0.18

Table 6.2: FCN-scores for different methods, evaluated on Cityscapes labels→photo.

the maps→aerial photos direction and the aerial photos→maps direction at 256×256
resolution4. All baselines almost never fooled participants.

Table 6.2 assesses the performance of the labels→photo task on the Cityscapes
and Table 6.3 assesses the opposite mapping (photos→labels). In both cases, our
method again outperforms the baselines.

Analysis of the loss function In Table 6.4 and Table 6.5, we compare against
ablations of our full loss. Removing the GAN loss substantially degrades results, as

4We also train CycleGAN and pix2pix at 512 × 512 resolution, and observe the comparable
performance: maps→aerial photos: CycleGAN: 37.5%± 3.6% and pix2pix: 33.9%± 3.1%; aerial
photos→maps: CycleGAN: 16.5%± 4.1% and pix2pix: 8.5%± 2.6%

Loss Per-pixel acc. Per-class acc. Class IOU
CoGAN [134] 0.45 0.11 0.08
BiGAN/ALI [42,47] 0.41 0.13 0.07
SimGAN [187] 0.47 0.11 0.07
Feature loss + GAN 0.50 0.10 0.06
CycleGAN (ours) 0.58 0.22 0.16
pix2pix [93] 0.85 0.40 0.32

Table 6.3: Classification performance of photo→labels for different methods on
cityscapes.

6.6. RESULTS 113

Ground truthInput GAN aloneCycle alone GAN+forward GAN+backward CycleGAN (ours)

Figure 6.9: Different variants of our method for mapping labels↔photos trained on
cityscapes. From left to right: input, cycle-consistency loss alone, adversarial loss
alone, GAN + forward cycle-consistency loss (F (G(x)) ≈ x), GAN + backward
cycle-consistency loss (G(F (y)) ≈ y), CycleGAN (our full method), and ground
truth. Both Cycle alone and GAN + backward fail to produce images similar to the
target domain. GAN alone and GAN + forward suffer from mode collapse, producing
identical label maps regardless of the input photo.

Loss Per-pixel acc. Per-class acc. Class IOU
Cycle alone 0.22 0.07 0.02
GAN alone 0.51 0.11 0.08
GAN + forward cycle 0.55 0.18 0.12
GAN + backward cycle 0.39 0.14 0.06
CycleGAN (ours) 0.52 0.17 0.11

Table 6.4: Ablation study: FCN-scores for different variants of our method, evaluated
on Cityscapes labels→photo.

does removing the cycle-consistency loss. We therefore conclude that both terms are
critical to our results. We also evaluate our method with the cycle loss in only one
direction: GAN+forward cycle loss Ex∼pdata(x)[‖F (G(x))− x‖1], or GAN+backward
cycle loss Ey∼pdata(y)[‖G(F (y)) − y‖1] (Equation 6.5) and find that it often incurs
training instability and causes mode collapse, especially for the direction of the
mapping that was removed. Figure 6.9 shows several qualitative examples.

Image reconstruction quality In Figure 6.6, we show a few random samples
of the reconstructed images F (G(x)). We observed that the reconstructed images
were very close to the original inputs x, at both training and testing time, even in
cases where one domain represents significantly more diverse information, such as
map↔aerial photos.

Additional results on paired datasets Figure 6.10 shows some example re-
sults on other paired datasets used in “pix2pix” [93], such as architectural labels↔photos

6.6. RESULTS 114

Loss Per-pixel acc. Per-class acc. Class IOU
Cycle alone 0.10 0.05 0.02
GAN alone 0.53 0.11 0.07
GAN + forward cycle 0.49 0.11 0.07
GAN + backward cycle 0.01 0.06 0.01
CycleGAN (ours) 0.58 0.22 0.16

Table 6.5: Ablation study: classification performance of photo→labels for different
losses, evaluated on Cityscapes.

label→ facade

facade → label

edges → shoes

edges → shoes

Input Output Input Output Input Output

Figure 6.10: Example results of CycleGAN on paired datasets used in “pix2pix” [93]
such as architectural labels↔photos and edges↔shoes.

from the CMP Facade Database [163], and edges↔shoes from the UT Zappos50K
dataset [232]. The image quality of our results is close to those produced by the fully
supervised pix2pix while our method learns the mapping without paired supervision.

6.6. RESULTS 115

6.6.2 Applications

We demonstrate our method on several applications where paired training data
does not exist. Please refer to our online arXiv version https://arxiv.org/abs/
1703.10593 for more details about the datasets. We observe that translations on
training data are often more appealing than those on test data, and full results of all
applications on both training and test data can be viewed on our project website.

Collection style transfer (Figure 6.12 and Figure 6.13) We train the
model on landscape photographs downloaded from Flickr and WikiArt. Note that
unlike recent work on “neural style transfer" [61], our method learns to mimic the
style of an entire collection of artworks, rather than transferring the style of a single
selected piece of art. Therefore, we can learn to generate photos in the style of, e.g.,
Van Gogh, rather than just in the style of Starry Night. The size of the dataset for
each artist/style was 526, 1073, 400, and 563 for Cezanne, Monet, Van Gogh, and
Ukiyo-e.

Object transfiguration (Figure 6.15) The model is trained to translate one
object class from ImageNet [36] to another (each class contains around 1000 training
images). Turmukhambetov et al. [206] proposes a subspace model to translate one
object into another object of the same category, while our method focuses on object
transfiguration between two visually similar categories.

Season transfer (Figure 6.15) The model is trained on 854 winter photos and
1273 summer photos of Yosemite downloaded from Flickr.

Photo generation from paintings (Figure 6.14) For painting→photo, we
find that it is helpful to introduce an additional loss to encourage the mapping to
preserve color composition between the input and output. In particular, we adopt the
technique of Taigman et al. [200] and regularize the generator to be near an identity
mapping when real samples of the target domain are provided as the input to the
generator: i.e. Lidentity(G,F) = Ey∼pdata(y)[‖G(y)− y‖1] + Ex∼pdata(x)[‖F (x)− x‖1].

Without Lidentity, the generator G and F are free to change the tint of input
images when there is no need to. For example, when learning the mapping between
Monet’s paintings and Flickr photographs, the generator often maps paintings of
daytime to photographs taken during sunset, because such a mapping may be equally
valid under the adversarial loss and cycle consistency loss. The effect of this identity
mapping loss are shown in Figure 6.11.

In Figure 6.14, we show additional results translating Monet’s paintings to
photographs. This figure and Figure 6.11 show results on paintings that were included
in the training set, whereas for all other experiments in the chapter, we only evaluate
and show test set results. Because the training set does not include paired data,
coming up with a plausible translation for a training set painting is a nontrivial

https://arxiv.org/abs/1703.10593
https://arxiv.org/abs/1703.10593

6.6. RESULTS 116

CycleGANInput CycleGAN+𝐿"#$%&"&'

Figure 6.11: The effect of the identity mapping loss on Monet’s painting→ photos.
From left to right: input paintings, CycleGAN without identity mapping loss, Cycle-
GAN with identity mapping loss. The identity mapping loss helps preserve the color
of the input paintings.

task. Indeed, since Monet is no longer able to create new paintings, generalization to
unseen, “test set", paintings is not a pressing problem.

Photo enhancement (Figure 6.16) We show that our method can be used
to generate photos with shallower depth of field. We train the model on flower
photos downloaded from Flickr. The source domain consists of photos of flower taken
by smartphones, which usually have deep DoF due to small aperture. The target
contains photos captured by DSLRs with larger aperture. Our model successfully
generates photos with shallower depth of field from the photos taken by smartphones.

Comparison with Gatys et al. [61] In Figure 6.17, we compare our results
with neural style transfer [61] on photo stylization. For each row, we first use two
representative artworks as the style images for [61]. Our method, on the other hand,
is able to produce photos in the style of entire collection. To compare against neural
style transfer of an entire collection, we compute the average Gram Matrix across
the target domain, and use this matrix to transfer the “average style" using [61].

Figure 6.18 demonstrates similar comparisons for other translation tasks. We
observe that Gatys et al. [61] requires finding target style images that closely match
the desired output, but still often fails to produce photo-realistic results, while our
method succeeds to generate natural looking results, similar to the target domain.

6.7. DISCUSSION 117

6.7 Discussion
Although our method can achieve compelling results in many cases, the results are

far from uniformly positive. Several typical failure cases are shown in Figure 6.19. On
translation tasks that involve color and texture changes, like many of those reported
above, the method often succeeds. We have also explored tasks that require geometric
changes, with little success. For example, on the task of dog→cat transfiguration, the
learned translation degenerates to making minimal changes to the input (Figure 6.19).
This might be caused by our generator architecture choices which are tailored for
good performance on the appearance changes. Handling more varied and extreme
transformations, especially geometric changes, is an important problem for future
work.

Some failure cases are caused by the distribution characteristics of the training
datasets. For example, the horse → zebra example (Figure 6.19, right) has got
confused, because our model was trained on the wild horse and zebra synsets of
ImageNet, which does not contain images of a person riding a horse or zebra.

We also observe a lingering gap between the results achievable with paired training
data and those achieved by our unpaired method. In some cases, this gap may be very
hard – or even impossible – to close: for example, our method sometimes permutes
the labels for tree and building in the output of the photos→labels task. To resolve
this ambiguity may require some form of weak semantic supervision. Integrating
weak or semi-supervised data may lead to substantially more powerful translators,
still at a fraction of the annotation cost of the fully-supervised systems.

Nonetheless, in many cases completely unpaired data is plentifully available and
should be made use of. This chapter pushes the boundaries of what is possible in
this “unsupervised" setting.

While most of the current image-to-image translation methods focus on 2D
images, in the future, we plan to explore the similar idea on other types of visual data
such as light fields [103,218] and videos [55,219], which require additional constraints
like temporal consistency and spatial-angular photo-consistency.

6.7. DISCUSSION 118

Ukiyo-eMonetInput Van Gogh Cezanne

Figure 6.12: Collection style transfer I: we transfer input images into the artistic styles
of Monet, Van Gogh, Cezanne, and Ukiyo-e. Please see our website for additional
examples.

6.7. DISCUSSION 119

Monet Ukiyo-eInput Van Gogh Cezanne

Figure 6.13: Collection style transfer II: we transfer input images into the artistic
styles of Monet, Van Gogh, Cezanne, Ukiyo-e. Please see our website for additional
examples.

6.7. DISCUSSION 120

Input Output Input Output

Figure 6.14: Relatively successful results on mapping Monet’s paintings to pho-
tographs. Please see our website for additional examples.

6.7. DISCUSSION 121

Input Input Input OutputOutputOutput

horse → zebra

zebra → horse

summer Yosemite → winter Yosemite

apple → orange

orange → apple

winter Yosemite → summer Yosemite

Figure 6.15: Our method applied to several translation problems. These images are
selected as relatively successful results – please see our website for more comprehensive
and random results. In the top two rows, we show results on object transfiguration
between horses and zebras, trained on 939 images from the wild horse class and
1177 images from the zebra class in Imagenet [36]. Also check out the horse→zebra
demo video at https://youtu.be/9reHvktowLY. The middle two rows show results
on season transfer, trained on winter and summer photos of Yosemite from Flickr.
In the bottom two rows, we train our method on 996 apple images and 1020 navel
orange images from ImageNet.

https://youtu.be/9reHvktowLY

6.7. DISCUSSION 122

Input Output Input Output Input Output Input Output

Figure 6.16: Photo enhancement: mapping from a set of iPhone snaps to professional
DSLR photographs, the system often learns to produce shallow focus. Here we
show some of the most successful results in our test set – average performance is
considerably worse. Please see our website for more comprehensive and random
examples.

Input Gatys et al. (image I) CycleGANGatys et al. (image II) Gatys et al. (collection)

Photo → Van Gogh

Photo → Ukiyo-e

Photo → Cezanne

Figure 6.17: We compare our method with neural style transfer [61] on photo styliza-
tion. Left to right: input image, results from [61] using two different representative
artworks as style images, results from [61] using the entire collection of the artist,
and CycleGAN (ours).

6.7. DISCUSSION 123

Input Gatys et al. (image I) CycleGANGatys et al. (image II) Gatys et al. (collection)

apple → orange

horse → zebra

Monet → photo

Figure 6.18: We compare our method with neural style transfer [61] on various
applications. From top to bottom: apple→orange, horse→zebra, and Monet→photo.
Left to right: input image, results from [61] using two different images as style images,
results from [61] using all the images from the target domain, and CycleGAN (ours).

Input Output Input Output

apple → orange zebra → horse

dog → cat cat → dog

winter → summer

Monet → photo

photo → Ukiyo-e photo → Van Gogh

Input Output

iPhone photo → DSLR photo

Horse → Zebra

ImageNet “wild horse” training images

Figure 6.19: Typical failure cases of our method. Please see our website for more
comprehensive results.

124

Chapter 7

Multimodal Image-to-Image
Translation

The above method can only produce one plausible result given an input image.
However, many image-to-image translation problems are inherently ambiguous, as a
single input image may correspond to multiple possible outputs. In this chapter, we
aim to model a distribution of possible outputs, in a conditional generative modeling
setting. The ambiguity of the mapping is distilled into a low-dimensional latent
vector, which can be randomly sampled at test time. A generator learns to map the
given input, combined with this latent code, to the output. We explicitly encourage
the connection between output and the latent code to be invertible. This helps
prevent a many-to-one mapping from the latent code to the output during training,
also known as the problem of mode collapse, and produces diverse results. We
explore several variants of this approach by employing different training objectives,
network architectures, and methods of injecting the latent code. Our proposed
method encourages bijective consistency between the latent encoding and output
modes. We present a systematic comparison of our method and other variants on
both perceptual realism and diversity.

7.1 Introduction
Deep learning techniques have made rapid progress in conditional image genera-

tion. For example, networks have been used to inpaint missing image regions [93,
155,229], create sentence conditioned generations [235], add color to grayscale im-
ages [91, 93, 122, 237], and sketch-to-photo [93, 179]. However, most techniques in
this space have focused on generating a single result conditioned on the input. In

7.1. INTRODUCTION 125

(a) Input night image

(b) Diverse day images sampled by our model

⋯

Figure 7.1: Multimodal image-to-image translation using our proposed method: given
an input image from one domain (night image of a scene), we aim to model a
distribution of potential outputs (corresponding day images) in the target domain,
producing both realistic and diverse results.

this work, our focus is to model a distribution of potential results, as many of these
problems may be multimodal or ambiguous in nature. For example, in a night-to-day
translation task (see Figure 7.1), an image captured at night may correspond to
many possible day images with different types of lighting, sky and clouds. There
are two main goals of the conditional generation problem: producing results which
are (1) perceptually realistic and (2) diverse, while remaining faithful to the input.
This multimodal mapping from a high-dimensional input to a distribution of high-
dimensional outputs makes the conditional generative modeling task challenging. In
existing approaches, this leads to the common problem of mode collapse [65], where
the generator learns to generate only a small number of unique outputs. We system-
atically study a family of solutions to this problem, which learn a low-dimensional
latent code for aspects of possible outputs which are not contained in the input
image. The generator then produces an output conditioned on both the given input
and this learned latent code.

We start with the pix2pix framework [93] which has previously been shown
to produce good-quality results for a variety of image-to-image translation tasks.
The trains a generator network, conditioned on the input image, with two losses:
(1) a regression loss to produce a similar output to the known paired ground truth
image and (2) a learned discriminator loss to encourage realism. The authors note
that trivially appending a randomly drawn latent code did not help produce diverse
results, and using random dropout at test time only helped marginally. Instead, we
propose encouraging a bijection between the output and latent space. Not only do
we perform the direct task of mapping from the input and latent code to the output,

7.1. INTRODUCTION 126

z

(a) Testing Usage for all models (b) Training pix2pix+noise

(c) Training cVAE-GAN (d) Training cLR-GAN

(e) Training BicycleGAN

!"!
#

$(&|!)

)(&)
*+

)(&)

#
!"

!

!" !"

&

!

##

)(&))(&)
,,

, , --

+. + 0

0

+.+. + 0

Target	latent	distribution

Ground	truth	output

Network	output

Loss

Sample	from	distribution

Input	Image

Deep	network

Figure 7.2: Overview: (a) Test time usage of all the methods. To produce a sample
output, a latent code z is first randomly sampled from a known distribution (e.g., a
standard normal distribution). A generator G maps input image A (blue) and latent
sample z to produce output sample B̂ (yellow). (b) pix2pix+noise [93] baseline,
with additional input B (brown) that corresponds to A. (c) cVAE-GAN (and cAE-GAN)
start from ground truth target image B and encode it into the latent space. The
generator then attempts to map the input image A along with a sampled z back
into original image B. (d) cLR-GAN randomly samples a latent code from a known
distribution, uses it to map A into the output B̂, and then tries to reconstruct the
latent code from it. (e) Our hybrid BicycleGAN method combines constraints in
both directions.

we also jointly learn an encoder from the output back to the latent space. This
discourages two different latent codes from generating the same output (non-injective
mapping). During training, the learned encoder is trained to find a latent code vector
that corresponds to the ground truth output image, while passing enough information
to the generator to resolve any ambiguities about the mode of output. For example,
when generating a day image from a night one (Figure 7.1), the latent vector may
encode information about the sky color, lighting effects on the ground and the density
and shape of clouds. In both cases, applying the encoder and generator, in either
order, should be consistent, resulting in either the same latent code or the same
image.

7.2. BACKGROUND 127

In this work, we instantiate this idea by exploring several objective functions
inspired by the literature in unconditional generative modeling:

• cVAE-GAN (Conditional Variational Autoencoder GAN): One popular approach
to model multimodal output distribution is by learning the distribution of latent
encoding given the output as popularized by VAEs [113]. In the conditional setup
(similar to unconditional analogue [121]), we enforce that the latent distribution
encoded by the desired output image maps back to the output via conditional
generator. The latent distribution is regularized using KL-divergence to be close
to a standard normal distribution so as to sample random codes during inference.
This variational objective is then optimized jointly with the discriminator loss.

• cLR-GAN (Conditional Latent Regressor GAN): Another approach to enforce mode-
capture in latent encoding is to explicitly model the inverse mapping. Starting from
a randomly sampled latent encoding, the conditional generator should result into
an output which when given itself as input to the encoder should result back into
the same latent code, enforcing self-consistency. This method could be seen as a
conditional formulation of the “latent regressor" model [42, 47] and also related to
InfoGAN [30].

• BicycleGAN: Finally, we combine both these approaches to enforce the connection
between latent encoding and output in both directions jointly and achieve improved
performance. We show that our method can produce both diverse and visually
appealing results across a wide range of image-to-image translation problems,
significantly more diverse than other baselines, including naively adding noise in
the pix2pix framework. In addition to the loss function, we study the performance
with respect to several encoder networks, as well as different ways of injecting the
latent code into the generator network.

We perform a systematic evaluation of these variants by using real humans to
judge photo-realism and an automated distance metric to assess output diversity.
Code and data are available at https://github.com/junyanz/BicycleGAN.

7.2 Background
Generative modeling Parametric modeling of the natural image distribution
is a challenging problem. Classically, this problem has been tackled using au-
toencoders [83, 212] or Restricted Boltzmann machines [192]. Variational autoen-
coders [113] provide an effective approach to model stochasticity within the network

https://github.com/junyanz/BicycleGAN

7.3. MULTIMODAL IMAGE-TO-IMAGE TRANSLATION 128

by reparametrization of a latent distribution. Other approaches to modeling stochas-
ticity include autoregressive models [150,151] which can model multimodality via
sequential conditional prediction. These approaches are trained with a pixel-wise
independent loss on samples of natural images using maximum likelihood and stochas-
tic back-propagation. This is a disadvantage because two images, which are close
regarding a pixel-wise independent metric, may be far apart on the manifold of
natural images. Generative adversarial networks [67] overcome this issue by learning
the loss function using a discriminator network, and have recently been very suc-
cessful [7, 30,37,42,47,162,164,235,240,247]. Our method builds on the conditional
version of VAE [113] and InfoGAN [30] or latent regressor [42] model via alternating
joint optimization to learn diverse and realistic samples. We revisit this connection
in Section 7.3.4.

Conditional image generation Potentially, all of the methods defined above
could be easily conditioned. While conditional VAEs [194], PixelCNN [151], con-
ditional autoregressive models [150, 151] have shown promise [71, 214, 228], image-
to-image conditional GANs have lead to a substantial boost in the quality of the
results. However, the quality has been attained at the expense of multimodality, as
the generator learns to largely ignore the random noise vector when conditioned on
a relevant context [93,155,179,223,229,249]. In fact, it has even been shown that
ignoring the noise leads to more stable training [93,139,155].

Explicitly-encoded multimodality One way to express multiple modes in the
output is to encode them, conditioned on some mode-related context in addition to
the input image. For example, color and shape scribbles and other interfaces were
used as conditioning in iGAN [247], pix2pix [93], Scribbler [179] and interactive
colorization [238]. While there has been some degree of success for generating mul-
timodal outputs in unconditional and text-conditional setups [39,67,121,146,164],
conditional image-to-image generation is still far from achieving the same results,
unless explicitly encoded as discussed above. In this work, we learn conditional gen-
eration models for modeling multiple modes of output by enforcing tight connections
in both image and latent space.

7.3 Multimodal Image-to-Image Translation
Our goal is to learn a multi-modal mapping between two image domains, for

example, edges and photographs, or day and night images, etc. Consider the input
domain A ⊂ RH×W×3 which is to be mapped to an output domain B ⊂ RH×W×3.

7.3. MULTIMODAL IMAGE-TO-IMAGE TRANSLATION 129

During training, we are given a dataset of paired instances from these domains,{
(A ∈ A,B ∈ B)

}
, which is representative of a joint distribution p(A,B). It is

important to note that there could be multiple plausible paired instances B that
would correspond to an input instance A, but the training dataset usually contains
only one such pair. However, given a new instance A during test time, our model
should be able to generate a diverse set of output B̂’s, corresponding to different
modes in the distribution p(B|A).

While conditional GANs have achieved success in image-to-image translation
tasks [93,249], they are primarily limited to generating deterministic output B̂ given
the input image A. On the other hand, we would like to learn the mapping that
could sample the output B̂ from true conditional distribution given A, and produce
results which are both diverse and realistic. To do so, we learn a low-dimensional
latent space z ∈ RZ , which encapsulates the ambiguous aspects of the output mode
which are not present in the input image. For example, a sketch of a shoe could map
to a variety of colors and textures, which could get compressed in this latent code.
We then learn a deterministic mapping G : (A, z) → B to the output. To enable
stochastic sampling, we desire the latent code vector z to be drawn from some prior
distribution p(z); we use a standard Gaussian distribution N (0, I) in this work.

We first discuss a simple extension of existing methods and discuss its strengths
and weakness, motivating the development of our proposed approach in the subsequent
subsections.

7.3.1 Baseline: pix2pix+noise

The recently proposed pix2pix model [93] has shown high quality results in image-
to-image translation setting. It uses conditional adversarial networks [67,143] to help
produce perceptually realistic results. GANs train a generator G and discriminator
D by formulating their objective as an adversarial game. The discriminator attempts
to differentiate between real images from the dataset and fake samples produced by
the generator. Randomly drawn noise z is added to attempt to induce stochasticity.
We illustrate the formulation in Figure 7.2(b) and describe it below.

LGAN(G,D) = EA,B∼p(A,B)[log(D(A,B))] + EA∼p(A),z∼p(z)[log(1−D(A, G(A, z)))]
(7.1)

To encourage the output of the generator to match the input as well as stabilize
the GANs training, we use an `1 loss between the output and the ground truth image.

Limage
1 (G) = EA,B∼p(A,B),z∼p(z)||B−G(A, z)||1 (7.2)

7.3. MULTIMODAL IMAGE-TO-IMAGE TRANSLATION 130

The final loss function uses the GAN and `1 terms, balanced by λ.

G∗ = arg min
G

max
D

LGAN(G,D) + λLimage
1 (G) (7.3)

In this scenario, there is no incentive for the generator to make use of the noise
vector which encodes random information. It was also noted in the preliminary
experiments in [93] that the generator simply ignored the added noise and hence the
noise was removed in their final experiments. This observation is consistent with [139,
155] and the mode collapse phenomenon observed in unconditional cases [65,177]. In
this chapter, we explore different ways to explicitly enforce the generator to use the
latent encoding by making it capture relevant information than being random.

7.3.2 Conditional Variational Autoencoder GAN: cVAE-GAN

One way to force the latent code z to be “useful" is to directly map the ground
truth B to it using an encoding function E. The generator G then uses both the
latent code and the input image A to synthesize the desired output B̂. The overall
model can be easily understood as the reconstruction of B, with latent encoding ẑ
concatenated with the paired A in the middle – similar to an autoencoder [83]. This
interpretation is better shown in Figure 7.2(c).

This approach has been successfully investigated in Variational Auto-Encoders [113]
in the unconditional scenario without the adversarial objective. Extending it to con-
ditional scenario, the distribution Q(z|B) of latent code z using the encoder E
with a Gaussian assumption, Q(z|B) , E(B). To reflect this, Equation 7.1 is mod-
ified to sampling z ∼ E(B) using the re-parameterization trick, allowing direct
back-propagation [113].

LVAE
GAN = EA,B∼p(A,B)[log(D(A,B))] + EA,B∼p(A,B),z∼E(B)[log(1−D(A, G(A, z)))]

(7.4)
We make the corresponding change in the `1 loss term in Equation 7.2 as well to
obtain LVAE

1 (G) = EA,B∼p(A,B),z∼E(B)||B−G(A, z)||1. Further, the latent distribution
encoded by E(B) is encouraged to be close to random gaussian so as to sample z at
inference (i.e., B is not known).

LKL(E) = EB∼p(B)[DKL(E(B)|| N (0, I))], (7.5)

where DKL(p||q) = −
∫
p(z) log p(z)

q(z)
dz. This forms our cVAE-GAN objective, a condi-

tional version of the VAE-GAN [121] as

G∗ = arg min
G,E

max
D

LVAE
GAN(G,D,E) + λLVAE

1 (G,E) + λKLLKL(E). (7.6)

7.3. MULTIMODAL IMAGE-TO-IMAGE TRANSLATION 131

As a baseline, we also consider the deterministic version of this approach, i.e.,
dropping KL-divergence and encoding z = E(B). We call it cAE-GAN and show
comparison in the experiments. However, there is no guarantee in cAE-GAN on the
distribution of the latent space z, which makes test-time sampling of z difficult.

7.3.3 Conditional Latent Regressor GAN: cLR-GAN

We explore another method of enforcing the generator network to utilize the
latent code embedding z, while staying close to the actual test time distribution
p(z), but from the latent code’s perspective. We start from the latent code z, as
shown in Figure 7.2(d), and then enforce that E(G(A, z)) map back to the randomly
drawn latent code with an `1 loss. Note that the encoder E here is producing a point
estimate for ẑ, whereas the encoder in the previous section was predicting a Gaussian
distribution.

Llatent
1 (G,E) = EA∼p(A),z∼p(z)||z− E(G(A, z))||1 (7.7)

We also include the discriminator loss LGAN(G,D) (Equation 7.1) on B̂ to
encourage the network to generate realistic results, and the full loss can be written
as:

G∗ = arg min
G,E

max
D

LGAN(G,D) + λlatentLlatent
1 (G,E) (7.8)

The `1 loss for the ground truth image B is not used. In this case, since the
noise vector is randomly drawn, we do not want the predicted B̂ to be the ground
truth, but rather a realistic result. The above objective bears similarity to the “latent
regressor" model [30, 42, 47], where the generated sample B̂ is encoded to generate a
latent vector.

7.3.4 Our Hybrid Model: BicycleGAN

We combine the cVAE-GAN and cLR-GAN objectives in a hybrid model. For
cVAE-GAN, the encoding is learned from real data, but a random latent code may
not yield realistic images at test time – the KL loss may not be well optimized, and
perhaps more importantly, the adversarial classifier D does not have a chance to
see randomly sampled results during training. In cLR-GAN, the latent space is easily
sampled from a simple distribution, but the generator is trained without the benefit of
seeing ground truth input-output pairs. We propose to train with constraints in both
directions, aiming to take advantage of both cycles (B→ z→ B̂ and z→ B̂→ ẑ),

7.4. IMPLEMENTATION DETAILS 132

z z

+ +

Figure 7.3: Alternatives for injecting z into generator: Latent code z is injected
by spatial replication and concatenation into the generator network. We tried two
alternatives, (left) injecting into the input layer and (right) every intermediate layer
in the encoder.

hence the name BicycleGAN.

G∗ = arg min
G,E

max
D

LVAE
GAN(G,D,E) + λLVAE

1 (G,E)

+LGAN(G,D) + λlatentLlatent
1 (G,E) + λKLLKL(E),

(7.9)

where the hyper-parameters λ, λlatent, and λKL control the importance of each term.
In the unconditional GAN setting, it has been observed that using samples both

from random z and encoded vector E(B) help further improves the results [121].
Hence, we also report one variant which is the full objective shown above (Equa-
tion 7.9), but without the reconstruction loss on the latent space Llatent

1 . We call
it cVAE-GAN++, as it is based on cVAE-GAN with additional loss LGAN(G,D), that
encourages the discriminator to also see the randomly generated samples.

7.4 Implementation Details
The code and additional results are publicly available on our website. Please refer

to our online arXiv paper at https://arxiv.org/abs/1711.11586 [250] for more
details about the datasets, architectures, and training procedures.

Network architecture For generator G, we use the U-Net [171], which contains
an encoder-decoder architecture, with symmetric skip connections. The architecture
has been shown to produce strong results in the unimodal image prediction setting,
when there is spatial correspondence between input and output pairs. For discrimi-
nator D, we use two PatchGAN discriminators [93] at different scales, which aims to
predict real vs. fake for 70×70 and 140×140 overlapping image patches, respectively.
For the encoder E, we experiment with two networks: (1) E_CNN: CNN with a few
convolutional and downsampling layers and (2) E_ResNet: a classifier with several
residual blocks [79].

https://arxiv.org/abs/1711.11586

7.5. EXPERIMENTS 133

Training details We build our model on the Least Squares GANs (LSGANs)
variant [138], which uses a least-squares objective instead of a cross entropy loss.
LSGANs produce high quality results with stable training. We also find that not
conditioning the discriminator D leads to better results (also discussed in [155]), and
hence choose to do the same for all methods. We set the parameters λimage = 10,
λlatent = 0.5 and λKL = 0.01 in all our experiments. In practice, we tie the weights for
the generators in the cVAE-GAN and cLR-GAN. We observe that using two separate
discriminators yields slightly better visual results compared to discriminators with
shared weights. We train our networks from scratch using Adam [112] with a batch
size of 1 and with learning rate of 0.0002. We choose latent dimension to be 8 across
all the datasets.

Injecting the latent code z to generator G. How to propagate the infor-
mation encoded by latent code z to the image generation process is critical to our
applications. We explore two choices as shown in Figure 7.3: (1) add_to_input: We
simply extend a Z-dimensional latent code z to an H×W× Z spatial tensor and
concatenate it with the H×W× 3 input image. (2) add_to_all: Alternatively, we
add z to each intermediate layer of the network G.

7.5 Experiments
Datasets We test our method on several image-to-image translation problems

from prior work, including edges → photos [232,247], Google maps → satellite [93],
labels → images [31], and outdoor night → day images [118]. These problems are all
one-to-many mappings. We train all the models on 256× 256 images. Code and data
are available at https://github.com/junyanz/BicycleGAN.

MethodsWe train the following models described in Section 7.3: pix2pix+noise,
cAE-GAN, cVAE-GAN, cVAE-GAN++, cLR-GAN and the hybrid model BicycleGAN.

7.5.1 Qualitative Evaluation

We show qualitative comparison results on Figure 7.5. We observe that pix2pix+noise
typically produces a single realistic output, but does not produce any meaningful
variation. cAE-GAN adds variation to the output, but typically reduces quality of
results, as shown for an example on facades on Figure 7.4. We observe more variation
in the cVAE-GAN, as the latent space is encouraged to encode information about
ground truth outputs. However, the space is not densely populated, so drawing
random samples may cause artifacts in the output. The cLR-GAN shows less variation
in the output, and sometimes suffers from mode collapse. When combining these
methods, however, in the hybrid method BicycleGAN, we observe results which are

https://github.com/junyanz/BicycleGAN

7.5. EXPERIMENTS 134

Input Ground truth Generated samples

Figure 7.4: Example results: We show example results of our hybrid model
BicycleGAN. The left column show shows the input. The second shows the
ground truth output. The final four columns show randomly generated samples.
We show results of our method on night→day, edges→shoes, edges→handbags,
and maps→satellites. Models and additional examples are available at https:
//junyanz.github.io/BicycleGAN.

both diverse and realistic. We show example results in Figure 7.4. Please see our
website for a full set of results.

https://junyanz.github.io/BicycleGAN
https://junyanz.github.io/BicycleGAN

7.5. EXPERIMENTS 135

pi
x2
pi
x+
no
is
e

cA
E-
G
ANInput

Ground truth

cL
R
-G
AN

cV
AE

-G
AN

cV
AE

-G
AN

++
Bi
cy
cl
eG

AN

Figure 7.5: Qualitative method comparison: We compare results on the labels →
facades dataset across different methods. The BicycleGAN method produces results
which are both realistic and diverse.

Realism Diversity
AMT Fooling VGG-16

Method Rate [%] Distance
Random real images 50.0% 3.520±.021
pix2pix+noise [93] 27.93±2.40 % 0.338±.002
cAE-GAN 13.64±1.80 % 2.304±.012
cVAE-GAN 24.93±2.27 % 1.350±.013
cVAE-GAN++ 29.19±2.43 % 1.425±.014
cLR-GAN 29.23±2.48 % 11.374±.022
BicycleGAN 34.33±2.69 % 1.469±.014

Figure 7.6: Realism vs Diversity: We measure diversity using average feature distance
in the VGG-16 space using cosine distance summed across five layers, and realism
using a real vs. fake AMT test on the Google maps → satellites task.

7.5.2 Quantitative Evaluation

We perform a quantitative analysis on the diversity, realism, and latent space
distribution on our six variants and baselines. We quantitatively test the Google
maps → satellites dataset.

Diversity We randomly draw samples from our model and compute average
distance in a deep feature space. In the context of style transfer, image super-

7.5. EXPERIMENTS 136

0.0 0.5 1.0 1.5 2.0 2.5
Diversity (Average VGG Distance)

0

5

10

15

20

25

30

35

40

R
e
a
lis

m
 (

A
M

T
 F

o
o
lin

g
 R

a
te

 [
%

])

pix2pix+noise
cAE-GAN
cVAE-GAN
cVAE-GAN++
cLR-GAN
BicycleGAN

Figure 7.7: We show all the methods’ realism and diversity on a 2D plot. The
pix2pix+noise baseline produces little diversity. Using only cAE-GAN method pro-
duces large artifacts during sampling. The hybrid BicycleGAN method, which com-
bines cVAE-GAN++ and cLR-GAN, produces results which have higher realism while
maintaining diversity.

resolution [99], and feature inversion [44], pretrained networks have been used as a
“perceptual loss" and explicitly optimized over. In the context of generative modeling,
they have been used as a held-out “validation" score, for example to assess how
semantic samples from a generative model [177] or the semantic accuracy of a
grayscale colorization [237].

In Figure 7.7, we show the diversity-score using the cosine distance, averaged
across spatial dimensions, and summed across the five conv layers preceding the
pool layers on the VGG-16 network [189], pre-trained for Imagenet classification [36].

7.5. EXPERIMENTS 137

The maximum score is 5.0, as all the feature responses are nonnegative. For each
method, we compute the average distance between 1900 pairs of randomly generated
output B̂ images (sampled from 100 input A images). Random pairs of ground truth
real images in the B ∈ B domain produce an average variation of 3.520 using cosine
distance. As we are measuring samples B̂ which correspond to a specific input, a
system which stays faithful to the input should definitely not exceed this score.

The pix2pix system [93] produces a single point estimate. Adding noise to the
system pix2pix+noise produces a diversity score of 0.338, confirming the finding
in [93] that adding noise does not produce large variation. Using an cAE-GAN model
to encode ground truth image B into latent code z does increase the variation.
The cVAE-GAN, cVAE-GAN++, and BicycleGAN models all place explicit constraints
on the latent space, and the cLR-GAN model places an implicit constraint through
sampling. These four methods all produce similar diversity scores. We note that
high diversity scores may also indicate that nonrealistic images are being generated,
causing meaningless variation. Next, we investigate the visual realism of our samples.

Perceptual Realism To judge the visual realism of our results, we use human
judgments, as proposed in [237] and later used in [93, 249]. The test sequentially
presents a real and generated image to a human for 1 second each, in a random
order, asks them to identify the fake, and measures the “fooling" rate. Figure
7.7(left) shows the realism across methods. The pix2pix+noise model achieves
high realism score, but without large diversity, as discussed in the previous section.
The cAE-GAN helps produce diversity, but this comes at a large cost to the visual
realism. Because the distribution of the learned latent space is unclear, random
samples may be from unpopulated regions of the space. Adding the KL-divergence
loss in the latent space, used in the cVAE-GAN model recovers the visual realism.
Furthermore, as expected, checking randomly drawn z vectors in the cVAE-GAN++
model slightly increases realism. The cLR-GAN, which draws z vectors from the
predefined distribution randomly, produces similar realism and diversity scores.
However, the cLR-GAN model resulted in large mode collapse - approximately 15%
of the outputs produced the same result, independent of the input image. The full
hybrid BicycleGAN gets the best of both worlds, as it does not suffer from mode
collapse and also has the highest realism score by a significant margin.

Encoder architecture The pix2pix framework [93] have conducted extensive
ablation studies on discriminators and generators. Here we focus on the performance
of two encoders E_CNN and E_ResNet for our applications on maps and facades
datasets, and we find that E_ResNet can better encode the output image, regarding
the image reconstruction loss ||B−G(A, E(B))||1 on validation datasets as shown
in Table 7.1.

Methods of injecting latent code We evaluate two ways of injecting latent

7.6. DISCUSSION 138

Encoder E_ResNet E_ResNet E_CNN E_CNN
Injecting z add_to_all add_to_input add_to_all add_to_input
label→photo 0.292± 0.058 0.292± 0.054 0.326± 0.066 0.339± 0.069
map → satellite 0.268± 0.070 0.266± 0.068 0.287± 0.067 0.272± 0.069

Table 7.1: The encoding performance with respect to the different encoder ar-
chitectures and methods of injecting z. Here we report the reconstruction loss
||B−G(A, E(B))||1

.

|z| = 2 |z| = 256|z| = 8Input label

Figure 7.8: Different label→ facades results trained with varying length of the latent
code |z| ∈ {2, 8, 256}.

code z: add_to_input and add_to_all (Section 7.4), regarding the same recon-
struction loss ||B−G(A, E(B))||1. Table 7.1 shows that two methods give similar
performance. This indicates that the U_Net [171] can already propagate the informa-
tion well to the output without the additional skip connections from z.

Latent code length We study the BicycleGAN model results with respect to
the varying number of dimensions of latent codes {2, 8, 256} in Figure 7.8. A low-
dimensional latent code may limit the amount of diversity that can be expressed by
the model. On the contrary, a high-dimensional latent code can potentially encode
more information about an output image at the cost of making sampling quite difficult.
The optimal length of z largely depends on individual datasets and applications, and
how much ambiguity there is in the output.

7.6 Discussion
In conclusion, we have evaluated a few methods for combating the problem of

mode collapse in the conditional generative setting. We find that by combining
multiple objectives for encouraging a bijective mapping between the latent and
output spaces, we obtain results which are more realistic and diverse. We see many
interesting avenues of future work, including directly enforcing a distribution in the

7.6. DISCUSSION 139

latent space that encodes semantically meaningful attributes to allow for image-to-
image transformations with user controllable parameters.

140

Chapter 8

Discussion

In conclusion, we have described a few data-driven approaches for learning visual
realism directly from large-scale image collections. We use the learned visual realism
models for realistic image synthesis and editing. Our extensive experiments have
shown that the presented approaches can produce more visually appealing results
compared to previous methods that rely on hand-crafted engineering or heuristics.
Our algorithms have also enabled many new visual synthesis and manipulation effects,
unachievable by any prior works.

Below, we discuss several potential future directions, building on our current
image synthesis and manipulation algorithms.

Image Search by Mental Picture While working on interactive visual synthesis
projects, we realized that in addition to content creation, the user-guided image gen-
eration is a potentially powerful tool for image retrieval. We performed a preliminary
experiment with the AverageExplorer system [248], seeing if it could assist online
shoppers in finding a desired item, such as a specific shoe. As shown in Figure 8.1,
the user may start with a set of black high heels (left), and then decide on a different
color. Simply drawing a stroke with the desired red color on the generated image
(center) retrieves the available red shoes of similar styles. If the user then desires a
heel with more support, adding an edge stroke at the bottom of the shoe switches
the heel style (right).

Visual Domain Adaptation To goal of domain adaptation is to adapt existing
models to new environments. Most current work focuses on adaptation at the feature
level. By learning domain invariant feature representations, models are less likely
to degrade in performance when presented with a domain shift. However, these
models are often difficult to interpret, as the changes are in an abstract feature

141

Figure 8.1: Image search with mental picture: our image synthesis system could be
potentially used as an image search interface for efficient browsing

(a) GTA5 (b) GTA5 → Cityscapes (c) CityScapes (d) CityScapes → GTA5

Figure 8.2: Unpaired Image-to-Image translation results on GTA5 ↔ Cityscapes

space. In addition, the additional constraints are only applied at a high level, so the
models may fail to bridge the low-level domain gap. To address these issues, a few
recent methods investigate pixel -level domain adaptation, building, in part, upon our
image-to-image translation methods [93,249]. Our models excel at translating images
from one domain to another, even in the absence of paired training data [249]. See
Figure 8.2 for CycleGAN results on translating between two semantic segmentation
datasets: GTA5 [169] ↔ Cityscapes [31]. Intuitively, matching statistics at the pixel-
level perfectly would also match statistics at the feature-level by definition. These
proposed methods have shown state-of-the-art results across various adaptation
tasks, including semantic segmentation of street-view imagery [85,145], person re-
identification [241], digit classification [85], and synthetic to real adaptation [145].
However, our image-to-image models can struggle to handle large spatial misalignment
across domains, in which feature-level domain adaptation may still be needed. In the
future, we would like to explore how to effectively combine pixel-level and feature-
level domain adaptation, to align both low-level statistics and high-level semantics
across domains.

High-resolution Visual Synthesis and Manipulation Existing GAN-based
image synthesis systems have enabled a wide range of vision and graphics applications,
but most of the results are limited in resolution and far from perfect. The main
reason is that it is difficult to train GANs to produce high-resolution images, due to
training instability and optimization issues. These challenges call for better network

142

architectures, as well as more robust loss functions and stable training procedures.
Two recent works have succeeded in the megapixel regime, synthesizing 1024× 1024
images in the unconditional setting [105], and 2048× 1024 images in the conditional
setting [217]. These breakthroughs may enable high-resolution photorealistic editing
applications. Both of these works include coarse-to-fine architectures, curriculum
learning procedures, and a few carefully designed implementation details for robust
training. In the future, end-to-end training with more compact, simple, and memory-
efficient network architectures are a potential next step in this direction.

143

Bibliography

[1] Aseem Agarwala, Mira Dontcheva, Maneesh Agrawala, Steven Drucker, Alex
Colburn, Brian Curless, David Salesin, and Michael Cohen. Interactive digital
photomontage. In ACM Transactions on Graphics (TOG), volume 23, pages
294–302. ACM, 2004.

[2] Nir Ailon. An active learning algorithm for ranking from pairwise preferences
with an almost optimal query complexity. Journal of Machine Learning
Research, 13(1):137–164, 2012.

[3] Georgia Albuquerque, Timo Stich, Anita Sellent, and Marcus Magnor. The
good, the bad and the ugly: Attractive portraits from video sequences. In
European Conference on Visual Media Production, London, UK, November
2008.

[4] Hani Altwaijry and Serge Belongie. Relative ranking of facial attractiveness.
In IEEE Winter Confererence on Applications of Computer Vision, pages
117–124, 2013.

[5] Zara Ambadar, Jeffrey F. Cohn, and Lawrence Ian Reed. All smiles are not
created equal: Morphology and timing of smiles perceived as amused, polite,
and embarrassed/nervous. Journal of Nonverbal Behavior, 33(1):17–34, 2009.

[6] Anelia Angelova, Y Abu-Mostafam, and Pietro Perona. Pruning training sets
for learning of object categories. In CVPR, 2005.

[7] Martín Arjovsky and Léon Bottou. Towards principled methods for training
generative adversarial networks. In ICLR, 2017.

[8] Shai Avidan and Ariel Shamir. Seam carving for content-aware image resizing.
In ACM Transactions on graphics (TOG), volume 26, page 10. ACM, 2007.

[9] Shai Avidan and Ariel Shamir. Seam carving for content-aware image resizing.
In to appear in SIGGRAH, 2007.

BIBLIOGRAPHY 144

[10] Yusuf Aytar, Lluis Castrejon, Carl Vondrick, Hamed Pirsiavash, and Antonio
Torralba. Cross-modal scene networks. arXiv preprint arXiv:1610.09003, 2016.

[11] Maria-Florina Balcan and Avrim Blum. Clustering with interactive feedback.
In Algorithmic Learning Theory, pages 316–328. Springer, 2008.

[12] Connelly Barnes, Eli Shechtman, Adam Finkelstein, and Dan Goldman. Patch-
match: a randomized correspondence algorithm for structural image editing.
ACM Transactions on Graphics (TOG), 28(3):24, 2009.

[13] Peter N Belhumeur, David W Jacobs, David J Kriegman, and Neeraj Kumar.
Localizing parts of faces using a consensus of exemplars. In CVPR, 2011.

[14] Yoshua Bengio, Eric Laufer, Guillaume Alain, and Jason Yosinski. Deep
generative stochastic networks trainable by backprop. In ICML, pages 226–234,
2014.

[15] T.L. Berg and A.C. Berg. Finding iconic images. In 2nd Workshop on Internet
Vision, 2009.

[16] Y-L. Boureau, J. Ponce, and Y. LeCun. A theoretical analysis of feature
pooling in vision algorithms. In International Conference on Machine Learning,
2010.

[17] Konstantinos Bousmalis, Nathan Silberman, David Dohan, Dumitru Erhan, and
Dilip Krishnan. Unsupervised pixel-level domain adaptation with generative
adversarial networks. 2017.

[18] Ralph Allan Bradley and Milton E Terry. Rank analysis of incomplete block
designs: I. the method of paired comparisons. Biometrika, 39(3/4):324–345,
1952.

[19] Richard W Brislin. Back-translation for cross-cultural research. Journal of
cross-cultural psychology, 1(3):185–216, 1970.

[20] Thomas Brox, Andrés Bruhn, Nils Papenberg, and Joachim Weickert. High
accuracy optical flow estimation based on a theory for warping. In ECCV,
pages 25–36. Springer, 2004.

[21] Andrés Bruhn, Joachim Weickert, and Christoph Schnörr. Lucas/kanade
meets horn/schunck: Combining local and global optic flow methods. IJCV,
61(3):211–231, 2005.

BIBLIOGRAPHY 145

[22] Peter J Burt and Edward H Adelson. A multiresolution spline with application
to image mosaics. ACM Transactions on Graphics (TOG), 2(4):217–236, 1983.

[23] Richard H Byrd, Peihuang Lu, Jorge Nocedal, and Ciyou Zhu. A limited
memory algorithm for bound constrained optimization. SIAM Journal on
Scientific Computing, 16(5):1190–1208, 1995.

[24] Andy Calder, Gillian Rhodes, Mark Johnson, and James Haxby. Oxford
Handbook of Face Perception. Oxford University Press, 2012.

[25] Jim Campbell. http://jimcampbell.tv/portfolio/still_image_works/, 2002.

[26] Chad Carson, Serge Belongie, Hayit Greenspan, and Jitendra Malik. Blob-
world: Image segmentation using expectation-maximization and its application
to image querying. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 2002.

[27] Chih-Chung Chang and Chih-Jen Lin. Libsvm: a library for support vector
machines. ACM Transactions on Intelligent Systems and Technology (TIST),
2(3):27, 2011.

[28] Tao Chen, Ming-Ming Cheng, Ping Tan, Ariel Shamir, and Shi-Min Hu.
Sketch2photo: Internet image montage. ACM Transactions on Graphics (TOG),
28(5):124, 2009.

[29] Xi Chen, Paul N. Bennett, Kevyn Collins-Thompson, and Eric Horvitz. Pair-
wise ranking aggregation in a crowdsourced setting. In ACM International
Conference on Web Search and Data Mining, pages 193–202, 2013.

[30] Xi Chen, Yan Duan, Rein Houthooft, John Schulman, Ilya Sutskever, and
Pieter Abbeel. Infogan: interpretable representation learning by information
maximizing generative adversarial nets. In NIPS, 2016.

[31] Marius Cordts, Mohamed Omran, Sebastian Ramos, Timo Rehfeld, Markus
Enzweiler, Rodrigo Benenson, Uwe Franke, Stefan Roth, and Bernt Schiele.
The cityscapes dataset for semantic urban scene understanding. In Computer
Vision and Pattern Recognition, 2016.

[32] N. Dalal and B. Triggs. Histograms of oriented gradients for human detection.
In Computer Vision and Pattern Recognition, 2005.

[33] Navneet Dalal and Bill Triggs. Histograms of oriented gradients for human
detection. In CVPR, volume 1, pages 886–893. IEEE, 2005.

BIBLIOGRAPHY 146

[34] Soheil Darabi, Eli Shechtman, Connelly Barnes, Dan B Goldman, and Pradeep
Sen. Image melding: combining inconsistent images using patch-based synthesis.
ACM Transactions on Graphics (TOG), 31(4), 2012.

[35] Maria Cristina Ferreira de Oliveira and Haim Levkowitz. From visual data ex-
ploration to visual data mining: A survey. IEEE Transactions on Visualization
and Computer Graphics, 9(3):378–394, 2003.

[36] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet:
A large-scale hierarchical image database. In Computer Vision and Pattern
Recognition, pages 248–255. IEEE, 2009.

[37] Emily L Denton, Soumith Chintala, Arthur Szlam, and Rob Fergus. Deep
generative image models using a laplacian pyramid of adversarial networks. In
Neural Information Processing Symposium, 2015.

[38] Hamdi Dibeklioglu, Theo Gevers, and Albert Ali Salah. Are you really smiling
at me? spontaneous versus posed enjoyment smiles. In European Conference
on Computer Vision, number 3, pages 525–538, 2012.

[39] Laurent Dinh, Jascha Sohl-Dickstein, and Samy Bengio. Density estimation
using real nvp. In ICLR, 2017.

[40] Santosh K. Divvala, Alexei A. Efros, and Martial Hebert. How important are
’deformable parts’ in the deformable parts model? In Parts and Attributes
Workshop, ECCV, 2012.

[41] Carl Doersch, Saurabh Singh, Abhinav Gupta, Josef Sivic, and Alexei A Efros.
What makes paris look like paris? SIGGRAPH, 31(4):101, 2012.

[42] Jeff Donahue, Philipp Krähenbühl, and Trevor Darrell. Adversarial feature
learning. arXiv preprint arXiv:1605.09782, 2016.

[43] Jeffrey Donahue, Lisa Anne Hendricks, Sergio Guadarrama, Marcus Rohrbach,
Subhashini Venugopalan, Kate Saenko, and Trevor Darrell. Long-term recurrent
convolutional networks for visual recognition and description. In Computer
Vision and Pattern Recognition, pages 2625–2634, 2015.

[44] Alexey Dosovitskiy and Thomas Brox. Generating images with perceptual
similarity metrics based on deep networks. arXiv preprint arXiv:1602.02644,
2016.

BIBLIOGRAPHY 147

[45] Alexey Dosovitskiy, Jost Tobias Springenberg, and Thomas Brox. Learning to
generate chairs with convolutional neural networks. In CVPR, pages 1538–1546,
2015.

[46] Shichuan Du, Yong Tao, and Aleix M. Martinez. Compound facial expressions
of emotion. Proceedings of the National Academy of Sciences, 2014.

[47] Vincent Dumoulin, Ishmael Belghazi, Ben Poole, Alex Lamb, Martin Arjovsky,
Olivier Mastropietro, and Aaron Courville. Adversarially learned inference.
2017.

[48] Alexei A Efros and William T Freeman. Image quilting for texture synthesis
and transfer. In SIGGRAPH, pages 341–346. ACM, 2001.

[49] Alexei A Efros and Thomas K Leung. Texture synthesis by non-parametric
sampling. In ICCV, volume 2, pages 1033–1038. IEEE, 1999.

[50] David Eigen and Rob Fergus. Predicting depth, surface normals and semantic
labels with a common multi-scale convolutional architecture. In International
Conference on Computer Vision, pages 2650–2658, 2015.

[51] P. Ekman and W. V. Friesen. The Facial Action Coding System: A Technique
for the Measurement of Facial Movement. Consulting Psychologists Press,
1978.

[52] M. Elad and M. Aharon. Image denoising via sparse and redundant repre-
sentations over learned dictionaries. IEEE Transactions on Image Processing,
15(12):3736–3745, 2006.

[53] Pedro F Felzenszwalb, Ross B Girshick, David McAllester, and Deva Ramanan.
Object detection with discriminatively trained part-based models. PAMI,
32(9):1627–1645, 2010.

[54] Juliet Fiss, Aseem Agarwala, and Brian Curless. Candid portrait selection
from video. ACM Transactions on Graphics (TOG), 30(6):128:1–128:8, 2011.

[55] John Flynn, Ivan Neulander, James Philbin, and Noah Snavely. Deepstereo:
Learning to predict new views from the world’s imagery. In Computer Vision
and Pattern Recognition, pages 5515–5524, 2016.

[56] Jerome H Friedman. Greedy function approximation: a gradient boosting
machine. Annals of Statistics, pages 1189–1232, 2001.

BIBLIOGRAPHY 148

[57] A. Gallagher and T. Chen. Clothing cosegmentation for recognizing people. In
Computer Vision and Pattern Recognition, 2008.

[58] Andrew C Gallagher and Tsuhan Chen. Clothing cosegmentation for recognizing
people. In Computer Vision and Pattern Recognition, 2008.

[59] Francis Galton. Composite portraits made by combining those of many different
persons into a single figure. Nature, (18):97–100, 1878.

[60] Leon A Gatys, Matthias Bethge, Aaron Hertzmann, and Eli Shechtman. Pre-
serving color in neural artistic style transfer. arXiv preprint arXiv:1606.05897,
2016.

[61] Leon A Gatys, Alexander S Ecker, and Matthias Bethge. Image style transfer
using convolutional neural networks. CVPR, 2016.

[62] Samuel J Gershman and Noah D Goodman. Amortized inference in probabilistic
reasoning. In Proceedings of the 36th Annual Conference of the Cognitive
Science Society, 2014.

[63] Ross Girshick, Jeff Donahue, Trevor Darrell, and Jitendra Malik. Rich fea-
ture hierarchies for accurate object detection and semantic segmentation. In
Computer Vision and Pattern Recognition, 2014.

[64] Clément Godard, Oisin Mac Aodha, and Gabriel J Brostow. Unsupervised
monocular depth estimation with left-right consistency. In CVPR, 2017.

[65] Ian Goodfellow. NIPS 2016 tutorial: Generative adversarial networks. arXiv
preprint arXiv:1701.00160, 2016.

[66] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep learning. MIT
press, 2016.

[67] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-
Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative adver-
sarial nets. In Neural Information Processing Symposium, 2014.

[68] Douglas Gray, Kai Yu, Wei Xu, and Yihong Gong. Predicting facial beauty
without landmarks. In European Conference on Computer Vision, pages 434–
447. 2010.

[69] Karol Gregor, Ivo Danihelka, Alex Graves, and Daan Wierstra. Draw: A
recurrent neural network for image generation. In International Conference on
Machine Learning, 2015.

BIBLIOGRAPHY 149

[70] JJ Gross and RW Levenson. Emotion elicitation using films. Cognition &
Emotion, 1995.

[71] Sergio Guadarrama, Ryan Dahl, David Bieber, Mohammad Norouzi, Jonathon
Shlens, and Kevin Murphy. Pixcolor: Pixel recursive colorization. In BMVC,
2017.

[72] Sarah D. Gunnery, Judith A. Hall, and Mollie A. Ruben. The deliberate
duchenne smile: Individual differences in expressive control. Journal of Non-
verbal Behavior, 37(1):1–13, 2012.

[73] Bharath Hariharan, Jitendra Malik, and Deva Ramanan. Discriminative
decorrelation for clustering and classification. In European Conference on
Computer Vision, pages 459–472. 2012.

[74] Bharath Hariharan, Jitendra Malik, and Deva Ramanan. Discriminative
decorrelation for clustering and classification. In ECCV, 2012.

[75] James Hays and Alexei A Efros. Scene completion using millions of photographs.
In SIGGRAPH, volume 26, page 4, 2007.

[76] James Hays and Alexei A Efros. Scene completion using millions of photographs.
ACM Trans. on Graphics, 26(3), 2007.

[77] Di He, Yingce Xia, Tao Qin, Liwei Wang, Nenghai Yu, Tieyan Liu, and Wei-
Ying Ma. Dual learning for machine translation. In Neural Information
Processing Symposium, pages 820–828, 2016.

[78] Kaiming He, Jian Sun, and Xiaoou Tang. Guided image filtering. In ECCV,
pages 1–14. Springer, 2010.

[79] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual
learning for image recognition. In Computer Vision and Pattern Recognition,
pages 770–778, 2016.

[80] Y. Hel-Or and D. Shaked. A discriminative approach for wavelet denoising.
IEEE Transactions on Image Processing, 17(4):443–457, 2008.

[81] Aaron Hertzmann, Charles E Jacobs, Nuria Oliver, Brian Curless, and David H
Salesin. Image analogies. In SIGGRAPH, pages 327–340. ACM, 2001.

[82] Geoffrey E. Hinton and R. R. Salakhutdinov. Reducing the dimensionality of
data with neural networks. Science, 313(5786):504–507, 2006.

BIBLIOGRAPHY 150

[83] Geoffrey E Hinton and Ruslan R Salakhutdinov. Reducing the dimensionality
of data with neural networks. Science, 313(5786):504–507, 2006.

[84] M. Hoai and A. Zisserman. Discriminative Sub-categorization. In CVPR, 2013.

[85] Judy Hoffman, Eric Tzeng, Taesung Park, Jun-Yan Zhu, Phillip Isola, Kate
Saenko, Alexei A Efros, and Trevor Darrell. Cycada: Cycle-consistent adver-
sarial domain adaptation. arXiv preprint arXiv:1711.03213, 2017.

[86] G. Huang, V. Jain, and E. Learned-Miller. Unsupervised Joint Alignment of
Complex Images. In ICCV, 2007.

[87] Gary B. Huang, Manu Ramesh, Tamara Berg, and Erik Learned-Miller. Labeled
Faces in the Wild: A Database for Studying Face Recognition in Unconstrained
Environments. Technical report, University of Massachusetts, Amherst, 2007.

[88] Jinggang Huang and David Mumford. Statistics of natural images and models.
In Computer Vision and Pattern Recognition, volume 1, pages 541–547. IEEE,
1999.

[89] Qi-Xing Huang and Leonidas Guibas. Consistent shape maps via semidefinite
programming. In Computer Graphics Forum, volume 32, pages 177–186. Wiley
Online Library, 2013.

[90] Takeo Igarashi, Tomer Moscovich, and John F Hughes. As-rigid-as-possible
shape manipulation. SIGGRAPH, 24(3):1134–1141, 2005.

[91] Satoshi Iizuka, Edgar Simo-Serra, and Hiroshi Ishikawa. Let there be Color!:
Joint End-to-end Learning of Global and Local Image Priors for Automatic
Image Colorization with Simultaneous Classification. ACM Transactions on
Graphics (TOG), 35(4), 2016.

[92] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep
network training by reducing internal covariate shift. In ICML, volume 37,
pages 448–456, 2015.

[93] Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, and Alexei A Efros. Image-to-image
translation with conditional adversarial networks. In Computer Vision and
Pattern Recognition, 2017.

[94] Charles E Jacobs, Adam Finkelstein, and David H Salesin. Fast multiresolution
image querying. In SIGGRAPH, 1995.

BIBLIOGRAPHY 151

[95] Kevin G. Jamieson and Robert D. Nowak. Active ranking using pairwise
comparisons. In Neural Information Processing Symposium, pages 2240–2248,
2011.

[96] Oliver Jesorsky, Klaus J Kirchberg, and Robert W Frischholz. Robust face
detection using the hausdorff distance. In Audio-and video-based biometric
person authentication, pages 90–95. Springer, 2001.

[97] Yangqing Jia, Evan Shelhamer, Jeff Donahue, Sergey Karayev, Jonathan Long,
Ross Girshick, Sergio Guadarrama, and Trevor Darrell. Caffe: Convolutional
architecture for fast feature embedding. In ACM Multimedia, pages 675–678,
2014.

[98] Bihan Jiang, Michel François Valstar, and Maja Pantic. Action unit detection
using sparse appearance descriptors in space-time video volumes. In IEEE
Conference on Automatic Face and Gesture Recognition, pages 314–321, 2011.

[99] Justin Johnson, Alexandre Alahi, and Li Fei-Fei. Perceptual losses for real-time
style transfer and super-resolution. 2016.

[100] Micah K Johnson, Kevin Dale, Shai Avidan, Hanspeter Pfister, William T
Freeman, and Wojciech Matusik. Cg2real: Improving the realism of computer
generated images using a large collection of photographs. IEEE Transactions
on Visualization and Computer Graphics, 17(9):1273–1285, 2011.

[101] Neel Joshi, Wojciech Matusik, Edward H Adelson, and David J Kriegman.
Personal photo enhancement using example images. ACM Transactions on
Graphics (TOG), 29(2):1–15, 2010.

[102] Amit Kagian, Gideon Dror, Tommer Leyvand, Isaac Meilijson, Daniel Cohen-
Or, and Eytan Ruppin. A machine learning predictor of facial attractiveness
revealing human-like psychophysical biases. Vision research, 48(2):235–43,
2008.

[103] Nima Khademi Kalantari, Ting-Chun Wang, and Ravi Ramamoorthi. Learning-
based view synthesis for light field cameras. SIGGRAPH Asia, 2016.

[104] Levent Karacan, Zeynep Akata, Aykut Erdem, and Erkut Erdem. Learning to
generate images of outdoor scenes from attributes and semantic layouts. arXiv
preprint arXiv:1612.00215, 2016.

BIBLIOGRAPHY 152

[105] Tero Karras, Timo Aila, Samuli Laine, and Jaakko Lehtinen. Progressive
growing of GANs for improved quality, stability, and variation. arXiv preprint
arXiv:1710.10196, 2017.

[106] Eric Kee, James F O’brien, and Hany Farid. Exposing photo manipulation
from shading and shadows. ACM Transactions on Graphics (TOG), 33(5):165,
2014.

[107] Ira Kemelmacher-Shlizerman, Eli Shechtman, Rahul Garg, and Steven M Seitz.
Exploring photobios. ACM Transactions on Graphics (TOG), 30(4):61, 2011.

[108] Ira Kemelmacher-Shlizerman, Eli Shechtman, Rahul Garg, and Steven M. Seitz.
Exploring photobios. In SIGGRAPH, 2011.

[109] Idris Khan. www.skny.com/artists/idris-khan/images/, 2005.

[110] Aditya Khosla, Wilma A. Bainbridge, Antonio Torralba, and Aude Oliva.
Modifying the memorability of face photographs. In International Conference
on Computer Vision, 2013.

[111] M Hadi Kiapour, Kota Yamaguchi, Alexander C Berg, and Tamara L Berg.
Hipster wars: Discovering elements of fashion styles. In European Conference
on Computer Vision, pages 472–488. 2014.

[112] Diederik Kingma and Jimmy Ba. Adam: A method for stochastic optimization.

[113] Diederik P Kingma and Max Welling. Auto-encoding variational bayes. Inter-
national Conference on Learning Representations, 2014.

[114] Philipp Krähenbühl and Vladlen Koltun. Geodesic object proposals. In ECCV,
pages 725–739. 2014.

[115] Philipp Krähenbühl, Manuel Lang, Alexander Hornung, and Markus Gross. A
system for retargeting of streaming video. In ACM Transactions on Graphics
(TOG), volume 28, page 126. ACM, 2009.

[116] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification
with deep convolutional neural networks. In Neural Information Processing
Symposium, pages 1097–1105, 2012.

[117] Eva Gabriele Krumhuber and Antony Stephen Reid Manstead. Can duchenne
smiles be feigned? new evidence on felt and false smiles. Emotion, 9(6):807–820,
2009.

BIBLIOGRAPHY 153

[118] Pierre-Yves Laffont, Zhile Ren, Xiaofeng Tao, Chao Qian, and James Hays.
Transient attributes for high-level understanding and editing of outdoor scenes.
ACM Transactions on Graphics (TOG), 33(4):149, 2014.

[119] Jean-François Lalonde and Alexei A Efros. Using color compatibility for
assessing image realism. In ICCV, pages 1–8, 2007.

[120] Jean-François Lalonde, Derek Hoiem, Alexei A Efros, Carsten Rother, John
Winn, and Antonio Criminisi. Photo clip art. In ACM Transactions on Graphics
(TOG), volume 26, page 3, 2007.

[121] Anders Boesen Lindbo Larsen, Søren Kaae Sønderby, Hugo Larochelle, and
Ole Winther. Autoencoding beyond pixels using a learned similarity metric.
In ICML, 2016.

[122] Gustav Larsson, Michael Maire, and Gregory Shakhnarovich. Learning repre-
sentations for automatic colorization. ECCV, 2016.

[123] E. Learned-Miller. Data Driven Image Models through Continuous Joint
Alignment. IEEE Transactions on Pattern Analysis and Machine Intelligence,
28(2):236–250, 2006.

[124] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-
based learning applied to document recognition. Proceedings of the IEEE,
86(11):2278–2324, 1998.

[125] Christian Ledig, Lucas Theis, Ferenc Huszár, Jose Caballero, Andrew Cunning-
ham, Alejandro Acosta, Andrew Aitken, Alykhan Tejani, Johannes Totz, Zehan
Wang, et al. Photo-realistic single image super-resolution using a generative
adversarial network. Computer Vision and Pattern Recognition, 2017.

[126] Yong Jae Lee, C Lawrence Zitnick, and Michael F Cohen. Shadowdraw:
real-time user guidance for freehand drawing. SIGGRAPH, 30(4):27, 2011.

[127] Anat Levin, Dani Lischinski, and Yair Weiss. Colorization using optimization.
In ACM Transactions on Graphics (TOG), volume 23, pages 689–694. ACM,
2004.

[128] Tommer Leyvand, Daniel Cohen-Or, Gideon Dror, and Dani Lischinski. Data-
driven enhancement of facial attractiveness. ACM Transactions on Graphics
(TOG), 27(3):38:1–38:9, 2008.

BIBLIOGRAPHY 154

[129] Chuan Li and Michael Wand. Precomputed real-time texture synthesis with
markovian generative adversarial networks. ECCV, 2016.

[130] Lucy Liang and Kristen Grauman. Beyond comparing image pairs: Setwise
active learning for relative attributes. In Computer Vision and Pattern Recog-
nition, 2014.

[131] Joseph CR Licklider. Man-computer symbiosis. IRE transactions on human
factors in electronics, (1):4–11, 1960.

[132] Joseph CR Licklider and Robert W Taylor. The computer as a communication
device. Science and technology, 76(2):1–3, 1968.

[133] Ming-Yu Liu, Thomas Breuel, and Jan Kautz. Unsupervised image-to-image
translation networks. Neural Information Processing Symposium, 2017.

[134] Ming-Yu Liu and Oncel Tuzel. Coupled generative adversarial networks. In
Neural Information Processing Symposium, pages 469–477, 2016.

[135] Yiming Liu, Jue Wang, Sunghyun Cho, Adam Finkelstein, and Szymon
Rusinkiewicz. A no-reference metric for evaluating the quality of motion
deblurring. ACM Transactions on Graphics (TOG), 32(6):175, 2013.

[136] Jonathan Long, Evan Shelhamer, and Trevor Darrell. Fully convolutional
networks for semantic segmentation. In CVPR, pages 3431–3440, 2015.

[137] Alireza Makhzani, Jonathon Shlens, Navdeep Jaitly, Ian Goodfellow, and
Brendan Frey. Adversarial autoencoders. International Conference on Learning
Representations, 2016.

[138] Xudong Mao, Qing Li, Haoran Xie, Raymond YK Lau, Zhen Wang, and
Stephen Paul Smolley. Least squares generative adversarial networks. In
International Conference on Computer Vision, 2017.

[139] Michael Mathieu, Camille Couprie, and Yann LeCun. Deep multi-scale video
prediction beyond mean square error. ICLR, 2016.

[140] Michael F Mathieu, Junbo Zhao, Aditya Ramesh, Pablo Sprechmann, and
Yann LeCun. Disentangling factors of variation in deep representation using
adversarial training. In Neural Information Processing Symposium, pages
5040–5048, 2016.

BIBLIOGRAPHY 155

[141] Marwan Mattar, Allen Hanson, and Erik G Learned-Miller. Unsupervised joint
alignment and clustering using bayesian nonparametrics. In Computer Vision
and Pattern Recognition, 2012.

[142] Daniel McDuff, Rana El Kaliouby, and Rosalind W. Picard. Crowdsourcing
facial responses to online videos. IEEE Transactions on Affective Computing,
3(4):456–468, 2012.

[143] Mehdi Mirza and Simon Osindero. Conditional generative adversarial nets.
arXiv preprint arXiv:1411.1784, 2014.

[144] Masahiro Mori, Karl F MacDorman, and Norri Kageki. The uncanny valley.
Robotics & Automation Magazine, IEEE, 19(2):98–100, 2012.

[145] Zak Murez, Soheil Kolouri, David Kriegman, Ravi Ramamoorthi, and Kyung-
nam Kim. Image to image translation for domain adaptation. arXiv preprint
arXiv:1712.00479, 2017.

[146] Anh Nguyen, Jason Yosinski, Yoshua Bengio, Alexey Dosovitskiy, and Jeff
Clune. Plug & play generative networks: Conditional iterative generation of
images in latent space. In CVPR, 2017.

[147] Anh Nguyen, Jason Yosinski, and Jeff Clune. Deep neural networks are easily
fooled: High confidence predictions for unrecognizable images. In Computer
Vision and Pattern Recognition, 2015.

[148] Peter O’Donovan, Janis Libeks, Aseem Agarwala, and Aaron Hertzmann.
Exploratory Font Selection Using Crowdsourced Attributes. ACM Transactions
on Graphics (TOG), 33(4), 2014.

[149] Bruno A. Olshausen and David J. Field. Emergence of simple-cell receptive field
properties by learning a sparse code for natural images. Nature, 381:607–609,
June 1996.

[150] Aaron van den Oord, Nal Kalchbrenner, and Koray Kavukcuoglu. Pixel
recurrent neural networks. International Conference on Machine Learning,
2016.

[151] Aaron van den Oord, Nal Kalchbrenner, Oriol Vinyals, Lasse Espeholt, Alex
Graves, and Koray Kavukcuoglu. Conditional image generation with pixelcnn
decoders. In Neural Information Processing Symposium, 2016.

BIBLIOGRAPHY 156

[152] Nikolaas N. Oosterhof and Alexander Todorov. The functional basis of face
evaluation. Proceedings of the National Academy of Sciences, 105(32):11087–
11092, 2008.

[153] Maja Pantic and Leon J. M. Rothkrantz. Automatic analysis of facial ex-
pressions: The state of the art. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 22:1424–1445, 2000.

[154] Devi Parikh and Kristen Grauman. Relative attributes. In International
Conference on Computer Vision, pages 503–510. IEEE, 2011.

[155] Deepak Pathak, Philipp Krähenbühl, Jeff Donahue, Trevor Darrell, and Alexei
Efros. Context encoders: Feature learning by inpainting. In Computer Vision
and Pattern Recognition, 2016.

[156] Patrick Pérez, Michel Gangnet, and Andrew Blake. Poisson image editing. In
ACM Transactions on graphics (TOG), volume 22, pages 313–318. ACM, 2003.

[157] Pietro Perona. Vision of a visipedia. Proceedings of the IEEE, 98(8):1526–1534,
2010.

[158] Alin C Popescu and Hany Farid. Exposing digital forgeries by detecting traces
of resampling. Signal Processing, IEEE Transactions on, 53(2):758–767, 2005.

[159] Javier Portilla and Eero P. Simoncelli. A Parametric Texture Model Based on
Joint Statistics of Complex Wavelet Coefficients. IJCV, 40(1):49–70, October
2000.

[160] Javier Portilla, Vasily Strela, Martin J. Wainwright, and Eero P. Simoncelli.
Image denoising using scale mixtures of gaussians in the wavelet domain. IEEE
Transactions on Image Processing, 12:1338–1351, 2003.

[161] Krzysztof Pruszkowski. http://www.gallerywm.com/prusz_index.html, 1986.

[162] Alec Radford, Luke Metz, and Soumith Chintala. Unsupervised representation
learning with deep convolutional generative adversarial networks. International
Conference on Learning Representations, 2016.

[163] Radim Šára Radim Tyleček. Spatial pattern templates for recognition of
objects with regular structure. In German Conference on Pattern Recognition,
Saarbrucken, Germany, 2013.

BIBLIOGRAPHY 157

[164] Scott Reed, Zeynep Akata, Xinchen Yan, Lajanugen Logeswaran, Bernt Schiele,
and Honglak Lee. Generative adversarial text to image synthesis. arXiv
preprint arXiv:1605.05396, 2016.

[165] Erik Reinhard, Ahmet Oguz Akuyz, Mark Colbert, Charles E Hughes, and
Matthew O’Connor. Real-time color blending of rendered and captured video.
In Interservice/Industry Training, Simulation and Education Conference, vol-
ume 18, 2004.

[166] Erik Reinhard, Michael Ashikhmin, Bruce Gooch, and Peter Shirley. Color
transfer between images. IEEE Comput. Graph. Appl., September 2001 2001.

[167] Erik Reinhard, Michael Ashikhmin, Bruce Gooch, and Peter Shirley. Color
transfer between images. IEEE Comput. Graph. Appl., 21(5):34–41, September
2001.

[168] Liu Ren, Alton Patrick, Alexei A Efros, Jessica K Hodgins, and James M Rehg.
A data-driven approach to quantifying natural human motion. ACM Trans.
on Graphics, 24(3):1090–1097, 2005.

[169] Stephan R Richter, Vibhav Vineet, Stefan Roth, and Vladlen Koltun. Playing
for data: Ground truth from computer games. In European Conference on
Computer Vision, pages 102–118. Springer, 2016.

[170] Eric Risser, Charles Han, Rozenn Dahyot, and Eitan Grinspun. Synthesizing
structured image hybrids. SIGGRAPH, 29(4):85:1–85:6, 2010.

[171] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional
networks for biomedical image segmentation. In MICCAI, pages 234–241.
Springer, 2015.

[172] Rómer Rosales, Kannan Achan, and Brendan J Frey. Unsupervised image
translation. In International Conference on Computer Vision, pages 472–478,
2003.

[173] Stefan Roth and Michael J. Black. Fields of Experts: A Framework for Learning
Image Priors. In CVPR, 2005.

[174] Bryan C Russell, Antonio Torralba, Kevin P Murphy, and William T Freeman.
Labelme: a database and web-based tool for image annotation. IJCV, 77(1-
3):157–173, 2008.

BIBLIOGRAPHY 158

[175] Ruslan Salakhutdinov and Geoffrey E. Hinton. Deep boltzmann machines. In
AISTATS, 2009.

[176] Jason Salavon. www.salavon.com/work/specialmoments/, 2004.

[177] Tim Salimans, Ian Goodfellow, Wojciech Zaremba, Vicki Cheung, Alec Rad-
ford, and Xi Chen. Improved techniques for training GANs. arXiv preprint
arXiv:1606.03498, 2016.

[178] Patsorn Sangkloy, Jingwan Lu, Chen Fang, Fisher Yu, and James Hays. Scrib-
bler: Controlling deep image synthesis with sketch and color. In CVPR, 2017.

[179] Patsorn Sangkloy, Jingwan Lu, Chen Fang, Fisher Yu, and James Hays. Scrib-
bler: Controlling deep image synthesis with sketch and color. In CVPR, 2017.

[180] S. Schaefer, T. McPhail, and J. Warren. Image deformation using moving least
squares. SIGGRAPH, 25:533–540, 2006.

[181] Uwe Schmidt, Carsten Rother, Sebastian Nowozin, Jeremy Jancsary, and Stefan
Roth. Discriminative non-blind deblurring. In Computer Vision and Pattern
Recognition, June 2013.

[182] Steven M. Seitz and Charles R. Dyer. View morphing. In SIGGRAPH, pages
21–30, New York, 1996.

[183] Rajvi Shah and Vivek Kwatra. All smiles : Automatic photo enhancement by
facial expression analysis. In European Conference on Visual Media Production,
2012.

[184] Eli Shechtman, Alex Rav-Acha, Michal Irani, and Steve Seitz. Regenerative
morphing. In CVPR, San-Francisco, CA, June 2010.

[185] J. Shi and J. Malik. Normalized Cuts and Image Segmentation. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, 22(8):888–905, 2000.

[186] Yichang Shih, Sylvain Paris, Frédo Durand, and William T Freeman. Data-
driven hallucination of different times of day from a single outdoor photo.
ACM Transactions on Graphics (TOG), 32(6):200, 2013.

[187] Ashish Shrivastava, Tomas Pfister, Oncel Tuzel, Josh Susskind, Wenda Wang,
and Russ Webb. Learning from simulated and unsupervised images through
adversarial training. Computer Vision and Pattern Recognition, 2017.

BIBLIOGRAPHY 159

[188] I. Simon, N. Snavely, and S. Seitz. Scene Summarization for Online Image
Collections. In ICCV, 2007.

[189] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks
for large-scale image recognition. In International Conference on Learning
Representations, 2015.

[190] S. Singh, A. Gupta, and A. A. Efros. Unsupervised Discovery of Mid-Level
Discriminative Patches. In ECCV, 2012.

[191] Alex J Smola and Bernhard Schölkopf. A tutorial on support vector regression.
Statistics and computing, 14(3):199–222, 2004.

[192] Paul Smolensky. Information processing in dynamical systems: Foundations of
harmony theory. Technical report, DTIC Document, 1986.

[193] Noah Snavely, Steven M. Seitz, and Richard Szeliski. Photo tourism: Exploring
photo collections in 3D. In SIGGRAPH, 2006.

[194] Kihyuk Sohn, Xinchen Yan, and Honglak Lee. Learning structured output
representation using deep conditional generative models. In NIPS, 2015.

[195] I N Springer, J Wiltfang, J T Kowalski, P a J Russo, M Schulze, S Becker, and
S Wolfart. Mirror, mirror on the wall: self-perception of facial beauty versus
judgement by others. Journal of cranio-maxillo-facial surgery, 40(8):773–6,
2012.

[196] Xinghai Sun, Changhu Wang, Chao Xu, and Lei Zhang. Indexing billions of
images for sketch-based retrieval. In ACM Multimedia, 2013.

[197] Narayanan Sundaram, Thomas Brox, and Kurt Keutzer. Dense point trajecto-
ries by gpu-accelerated large displacement optical flow. In European Conference
on Computer Vision, pages 438–451. Springer, 2010.

[198] Ivan E Sutherland. Sketchpad a man-machine graphical communication system.
Transactions of the Society for Computer Simulation, 2(5):R–3, 1964.

[199] Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru
Erhan, Ian Goodfellow, and Rob Fergus. Intriguing properties of neural
networks. In International Conference on Learning Representations, 2014.

[200] Yaniv Taigman, Adam Polyak, and Lior Wolf. Unsupervised cross-domain
image generation. International Conference on Learning Representations, 2017.

BIBLIOGRAPHY 160

[201] Minghui Tan, Jean-François Lalonde, Lavanya Sharan, Holly Rushmeier, and
Carol O’sullivan. The perception of lighting inconsistencies in composite
outdoor scenes. ACM Transactions on Applied Perception, 12(4):18:1–18:18,
September 2015.

[202] Michael W Tao, Micah K Johnson, and Sylvain Paris. Error-tolerant image
compositing. IJCV, 103(2):178–189, 2013.

[203] Antonio Torralba. http://people.csail.mit.edu/torralba/gallery/, 2001.

[204] Antonio Torralba, Hector J. Bernal, Rob Fergus, Yair Weiss, and William
Freeman. http://groups.csail.mit.edu/vision/tinyimages/, 2008.

[205] K. Tsukida and M. R. Gupta. How to analyze paired comparison data. Technical
Report UWEETR-2011-0004, Dept. of Electrical Engineering, University of
Washington, 2011.

[206] Daniyar Turmukhambetov, Neill DF Campbell, Simon JD Prince, and Jan
Kautz. Modeling object appearance using context-conditioned component
analysis. In Computer Vision and Pattern Recognition, pages 4156–4164, 2015.

[207] Mark Twain. The Jumping Frog: in English, then in French, and then Clawed
Back into a Civilized Language Once More by Patient, Unremunerated Toil.
1903.

[208] Dmitry Ulyanov, Vadim Lebedev, Andrea Vedaldi, and Victor Lempitsky.
Texture networks: Feed-forward synthesis of textures and stylized images. In
International Conference on Machine Learning, 2016.

[209] Dmitry Ulyanov, Andrea Vedaldi, and Victor Lempitsky. Instance nor-
malization: The missing ingredient for fast stylization. arXiv preprint
arXiv:1607.08022, 2016.

[210] Fernanda B Viégas and Martin Wattenberg. Artistic data visualization: Beyond
visual analytics. In Online Communities and Social Computing, pages 182–191.
Springer, 2007.

[211] Pascal Vincent, Hugo Larochelle, Yoshua Bengio, and Pierre-Antoine Manzagol.
Extracting and composing robust features with denoising autoencoders. In
ICML, 2008.

BIBLIOGRAPHY 161

[212] Pascal Vincent, Hugo Larochelle, Yoshua Bengio, and Pierre-Antoine Manzagol.
Extracting and composing robust features with denoising autoencoders. In
International Conference on Machine Learning, 2008.

[213] Carl Vondrick, Hamed Pirsiavash, and Antonio Torralba. Generating videos
with scene dynamics. In Neural Information Processing Symposium, pages
613–621, 2016.

[214] Jacob Walker, Carl Doersch, Abhinav Gupta, and Martial Hebert. An uncertain
future: Forecasting from static images using variational autoencoders. In
European Conference on Computer Vision, 2016.

[215] Fan Wang, Qixing Huang, and Leonidas J Guibas. Image co-segmentation via
consistent functional maps. In International Conference on Computer Vision,
pages 849–856, 2013.

[216] Jue Wang and Michael F. Cohen. Very low frame-rate video streaming for
face-to-face teleconference. In Proceedings of the Data Compression Conference,
pages 309–318, 2005.

[217] Ting-Chun Wang, Ming-Yu Liu, Jun-Yan Zhu, Andrew Tao, Jan Kautz, and
Bryan Catanzaro. High-resolution image synthesis and semantic manipulation
with conditional GANs. arXiv preprint arXiv:1711.11585, 2017.

[218] Ting-Chun Wang, Jun-Yan Zhu, Ebi Hiroaki, Manmohan Chandraker, Alexei
Efros, and Ravi Ramamoorthi. A 4D light-field dataset and CNN architectures
for material recognition. In European Conference on Computer Vision, 2016.

[219] Ting-Chun Wang, Jun-Yan Zhu, Nima Khademi Kalantari, Alexei A. Efros,
and Ravi Ramamoorthi. Light field video capture using a learning-based hybrid
imaging system. ACM Transactions on Graphics (TOG), 36(4), 2017.

[220] Xiaolong Wang and Abhinav Gupta. Generative image modeling using style
and structure adversarial networks. ECCV, 2016.

[221] George Wolberg. Digital Image Warping. IEEE Computer Society Press, Los
Alamitos, CA, 1990.

[222] Jiajun Wu, Chengkai Zhang, Tianfan Xue, Bill Freeman, and Josh Tenen-
baum. Learning a probabilistic latent space of object shapes via 3d generative-
adversarial modeling. In Neural Information Processing Symposium, pages
82–90, 2016.

BIBLIOGRAPHY 162

[223] Wenqi Xian, Patsorn Sangkloy, Jingwan Lu, Chen Fang, Fisher Yu, and James
Hays. Texturegan: Controlling deep image synthesis with texture patches. In
arXiv preprint arXiv:1706.02823, 2017.

[224] Saining Xie and Zhuowen Tu. Holistically-nested edge detection. In ICCV,
2015.

[225] Xuehan Xiong and Fernando De la Torre. Supervised descent method and its
applications to face alignment. In Computer Vision and Pattern Recognition,
pages 532–539, 2013.

[226] Kelvin Xu, Jimmy Ba, Ryan Kiros, Kyunghyun Cho, Aaron Courville, Ruslan
Salakhudinov, Rich Zemel, and Yoshua Bengio. Show, attend and tell: Neural
image caption generation with visual attention. In International Conference
on Machine Learning, pages 2048–2057, 2015.

[227] Su Xue, Aseem Agarwala, Julie Dorsey, and Holly Rushmeier. Understanding
and improving the realism of image composites. ACM Transactions on Graphics
(TOG), 31(4):84, 2012.

[228] Tianfan Xue, Jiajun Wu, Katherine Bouman, and Bill Freeman. Visual dy-
namics: Probabilistic future frame synthesis via cross convolutional networks.
In Neural Information Processing Symposium, 2016.

[229] Chao Yang, Xin Lu, Zhe Lin, Eli Shechtman, Oliver Wang, and Hao Li.
High-resolution image inpainting using multi-scale neural patch synthesis. In
Computer Vision and Pattern Recognition, 2017.

[230] Fei Yang, Jue Wang, Eli Shechtman, Lubomir Bourdev, and Dimitri Metaxas.
Expression flow for 3d-aware face component transfer. ACM Transactions on
Graphics (TOG), 30(4):60, 2011.

[231] Zili Yi, Hao Zhang, Tang Gong, Tan, and Minglun Gong. Dualgan: Unsuper-
vised dual learning for image-to-image translation. In International Conference
on Computer Vision, 2017.

[232] Aron Yu and Kristen Grauman. Fine-grained visual comparisons with local
learning. In CVPR, pages 192–199, 2014.

[233] Fisher Yu, Yinda Zhang, Shuran Song, Ari Seff, and Jianxiong Xiao. Construc-
tion of a large-scale image dataset using deep learning with humans in the
loop. arXiv preprint arXiv:1506.03365, 2015.

BIBLIOGRAPHY 163

[234] Christopher Zach, Manfred Klopschitz, and Marc Pollefeys. Disambiguating
visual relations using loop constraints. In Computer Vision and Pattern
Recognition, pages 1426–1433. IEEE, 2010.

[235] Han Zhang, Tao Xu, Hongsheng Li, Shaoting Zhang, Xiaolei Huang, Xiaogang
Wang, and Dimitris Metaxas. Stackgan: Text to photo-realistic image synthesis
with stacked generative adversarial networks. In International Conference on
Computer Vision, 2017.

[236] Li Zhang, Noah Snavely, Brian Curless, and Steven M. Seitz. Spacetime faces:
High-resolution capture for modeling and animation. ACM Transactions on
Graphics (TOG), 23(3), 2004.

[237] Richard Zhang, Phillip Isola, and Alexei A Efros. Colorful image colorization.
In ECCV, 2016.

[238] Richard Zhang, Jun-Yan Zhu, Phillip Isola, Xinyang Geng, Angela S Lin,
Tianhe Yu, and Alexei A Efros. Real-time user-guided image colorization with
learned deep priors. SIGGRAPH, 2017.

[239] Weiwei Zhang, Jian Sun, and Xiaoou Tang. Cat head detection-how to effec-
tively exploit shape and texture features. In European Conference on Computer
Vision. 2008.

[240] Junbo Zhao, Michael Mathieu, and Yann LeCun. Energy-based generative
adversarial network. In ICLR, 2017.

[241] Zhun Zhong, Liang Zheng, Zhedong Zheng, Shaozi Li, and Yi Yang. Camera
style adaptation for person re-identification. arXiv preprint arXiv:1711.10295,
2017.

[242] Bolei Zhou, Agata Lapedriza, Jianxiong Xiao, Antonio Torralba, and Aude
Oliva. Learning deep features for scene recognition using places database. In
Neural Information Processing Symposium, 2014.

[243] Tinghui Zhou, Yong Jae Lee, Stella X Yu, and Alyosha A Efros. Flowweb:
Joint image set alignment by weaving consistent, pixel-wise correspondences.
In Computer Vision and Pattern Recognition, pages 1191–1200, 2015.

[244] Tinghui Zhou, Philipp Krahenbuhl, Mathieu Aubry, Qixing Huang, and
Alexei A Efros. Learning dense correspondence via 3d-guided cycle consistency.
In Computer Vision and Pattern Recognition, pages 117–126, 2016.

BIBLIOGRAPHY 164

[245] Jun-Yan Zhu, Aseem Agarwala, Alexei A Efros, Eli Shechtman, and Jue Wang.
Mirror mirror: Crowdsourcing better portraits. ACM Transactions on Graphics
(TOG), 33(6), 2014.

[246] Jun-Yan Zhu, Philipp Krähenbühl, Eli Shechtman, and Alexei A. Efros. Learn-
ing a discriminative model for the perception of realism in composite images.
In ICCV, 2015.

[247] Jun-Yan Zhu, Philipp Krähenbühl, Eli Shechtman, and Alexei A. Efros. Gen-
erative visual manipulation on the natural image manifold. In ECCV, 2016.

[248] Jun-Yan Zhu, Yong Jae Lee, and Alexei A Efros. Averageexplorer: Interactive
exploration and alignment of visual data collections. SIGGRAPH, 33(4), 2014.

[249] Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A Efros. Unpaired
image-to-image translation using cycle-consistent adversarial networks. In
International Conference on Computer Vision, 2017.

[250] Jun-Yan Zhu, Richard Zhang, Deepak Pathak, Trevor Darrell, Alexei A Efros,
Oliver Wang, and Eli Shechtman. Toward multimodal image-to-image transla-
tion. In Neural Information Processing Symposium. 2017.

[251] Daniel Zoran and Yair Weiss. From learning models of natural image patches
to whole image restoration. In International Conference on Computer Vision,
pages 479–486, 2011.

	List of Figures
	List of Tables
	Acknowledgments
	Introduction
	Visual Synthesis and Manipulation
	Learning Visual Realism
	Dissertation Overview

	I Discriminative Learning of Visual Realism and Aesthetics
	Modeling Photo Aesthetics with Active Learning
	Introduction
	Background
	Overview
	Collecting Portrait Data
	Collecting a Personal Portrait Dataset
	Pre-Processing
	Crowdsourcing Pairwise comparisons

	Portrait Evaluation
	Scoring Representative Expressions
	Single-subject predictive model
	Cross-subject predictive model
	Active Learning
	Visualization details

	Expression Training App
	Data Analysis and Visualization
	Eyes open
	Subject Preferences and Poses
	Improving Expressions
	Changing One Feature

	Results
	Discussion

	Learning Visual Realism without Human Supervision
	Introduction
	Background
	Learning the Perception of Realism
	Automatically Generating Composites

	Improving Image Composites
	Implementation
	Experiments
	Optimizing Color Compatibility
	Selecting Suitable Object

	Discussion

	II Generative Modeling for Visual Exploration and Synthesis
	Visual Exploration via Image Averaging
	Introduction
	Background
	Approach
	User interface
	Generating the average image
	Brush tools
	Interactive Clustering
	Image Alignment

	Results and Applications
	Discussion

	Visual Manipulation with Deep Generative Models
	Introduction
	Background
	Learning the Natural Image Manifold
	Approach
	Projecting an Image onto the Manifold
	Manipulating the Latent Vector
	Edit Transfer

	User Interface
	Editing constraints

	Implementation Details
	Results
	Image Manipulation
	Generative Image Transformation
	Interactive Image Generation
	Evaluation

	Discussion

	III Image-to-Image Translation
	Unpaired Image-to-Image Translation
	Introduction
	Background
	Paired Image-to-Image Translation
	Unpaired Image-to-Image Translation
	Adversarial Loss
	Cycle Consistency Loss
	Full Objective

	Implementation
	Results
	Evaluation
	Applications

	Discussion

	Multimodal Image-to-Image Translation
	Introduction
	Background
	Multimodal Image-to-Image Translation
	Baseline: pix2pix+noise
	Conditional Variational Autoencoder GAN: cVAE-GAN
	Conditional Latent Regressor GAN: cLR-GAN
	Our Hybrid Model: BicycleGAN

	Implementation Details
	Experiments
	Qualitative Evaluation
	Quantitative Evaluation

	Discussion

	Discussion
	Bibliography

