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Abstract

In multimedia, machine learning techniques are often applied to build models to
map low-level feature vectors into semantic labels. As data such as images and videos
come from a variety of domains (e.g., genres, sources) with different distributions, there
is a benefit of adapting models trained from one domain to other domains in terms of
improving performance and reducing computational and human cost. In this thesis,
we focus on a generic adaptation setting in multimedia, where supervised classifiers
trained from one or more auziliary domains are adapted to a new classifier that works
well on a target domain with limited labeled examples. Our main contribution is a
discriminative framework for function-level classifier adaptation based on regularized
loss minimization, which adapts classifiers of any type by modifying their decision func-
tions in an efficient and principled way. Two adaptation algorithms derived from this
general framework, adaptive support vector machines (aSVM) and adaptive kernel lo-
gistic regression (aKLR), are discussed in details. We further extend this framework by
integrating domain analysis approaches that measure and weight the utility of auxil-
iary domains, and sample selection methods that identify informative examples to help
the adaptation process. The proposed approaches are evaluated on cross-domain video
concept detection using the TRECVID corpus, where preliminary experiments have
shown promising results. Our general approaches can be applied to other adaptation
problems including retrieval model adaptation and cross-corpus text categorization.
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1 Introduction

The explosive growth of multimedia data makes their analysis, classification, and re-
trieval a critical problem in both research and industry. Recently, machine learning is
playing an increasingly important role in this area, where models are built for tasks
varying from classifying images into categories, detecting semantic concepts in video
shots, to matching image and video data with user queries. With multimedia data
coming from a variety of domains, such as different genres, producers, and media,
there is a desire to generalize and adapt models trained from one domain to other do-
mains. Compared with building new models for each domain, adapting existing models
is beneficial in terms of computational and human resource and performance, but also
challenging given that data distribution changes arbitrarily across domains. This the-
sis is dedicated to developing efficient and principled approaches to adapting models
across multimedia domains. We will discuss the motivation, goal, and challenges of
this research, and briefly overviews our approaches and the key contributions.

1.1 Motivation and Task Definition

Adapting models for multimedia data is necessary because the models have poor gener-
alizability across different domains, i.e., models trained from data in one domain work
well on this specific domain but poorly on other domains. This is caused by different
data characteristics in different domains. More precisely, it is because the distribution
of features representing multimedia data usually changes from one domain to another,
and distribution mismatch is a fundamental problem that causes learning models to fail
to generalize. An example is concept detection in news video, where models are built
to recognize semantic concepts from video scenes. As shown in Figure 1, due to large
visual discrepancy between video data from different news channels, the performance
of a model trained from one channel drops substantially when applied to a different
channel. For example, the “studio” scenes from NBC and NTDTYV channel differ in
terms of background, room setting, and the number of people, which causes perfor-
mance of the model for NTDTV to plummet from 0.98 average precision on NTDTV
to only 0.24 on NBC.

One can address the generalizability problem by building new models for every
domain. However, we prefer adapting existing models over this costly approach because
adaptation requires fewer labeled examples to achieve the same performance, or achieves
higher performance using the same number of labeled examples. This is important
given that labeling multimedia data is time-consuming and the size of training data
needed to build reliable models is large. According to the statistics on TRECVID 2007
collaborative annotation [61], roughly 215 intense man-hours were spent on labeling
50-hour video w.r.t 36 concepts in order to build models for another 50-hour video. If
this number does not appear daunting, imagine that this effort has to be repeated if
one choose to build new models for every video collection. On the other hand, existing
models trained from other domains provide valuable information to tasks in a new
domain. This is shown by the “building” detector for LBC channel in Figure 1, which
performs reasonably well even on the CNN data. Exploiting the knowledge in these
out-of-domain models reduces the required labeled examples, and consequently, the
human effort needed to label them and the cost for training models over them.
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Figure 1: Example video scenes of three semantic concepts from different news video channels.
We show the performance of concept detectors trained from each channel as measured by average
precision (AP) when they are applied to the same channel and a different channel. There is a
significant decline in performance when applying concept detectors to other channels.

Therefore, cross-domain model adaptation is necessary and beneficial in multime-
dia. However, this problem is so far overlooked or at best understudied in the multime-
dia community. Although there are techniques for adapting concept detectors across
correlated concepts [55, 95, 60] or retrieval models across query classes [94, 45], no
work is devoted to adaptation across data domains. Also, there has not been a general
approach to various adaptation problems in multimedia based on a unified formulation.

Many learning tasks in multimedia can be formulated as a classification problem
of mapping data description x to some semantic, categorical label y. For example,
video concept detection is to map low-level features of video shots into a binary la-
bel indicating the presence (or absence) of a semantic concept. Other tasks such as
image classification and multimedia retrieval can be formulated similarly. Therefore,
supervised classifiers that learn such feature-label mappings f : x — y are the most
frequently used models for multimedia. The goal of this research is to develop efficient
and principled approaches to adapting supervised classifiers across different domains
of multimedia data. Formally, we define domain and model adaptation as:

Definition 1. A domain is a set of multimedia data generated by the same data
distribution p(x) and class-conditional distribution p(y|x). Concretely, a domain is
described by image or video data belonging to a certain genre, or created by a specific
producer, etc. For example, cartoon images and photographs are two image domains,
news video and documentaries are two video domains, and news video from different
channels can be also viewed as from different domains.

Definition 2. Cross-domain model adaptation is to adapt supervised classi-
fiers for a given task trained from one or more auxiliary domains to a new classifier
that works well on a different target domain. We call the existing classifiers aux-



iliary classifiers and the new classifier target classifier. There are two further
assumptions: (1) The auziliary domains are related to the target domain in the sense
that auziliary classifiers have better-than-random performance on the target domain;
(2) Only a limited number of labeled data are available in the target domain, while the
labeled data in the auxiliary domains are plenty.

The first definition implies that domains may have different distributions. In some
cases, the data distribution p(x) changes across domains, while the class-conditional
p(y|x) stays the same. Nevertheless, classifiers trained from one domain are unlikely
to capture the true p(y|x) given the bias in data. For example, we apply an “anchor”
classifier trained from CCVT news video, where anchors always appear in studios,
to CNN news video, where anchors often appear outdoors. The definition of anchor
does not change, which means p(y|x) is the same, but the classifier cannot recognize
outdoor anchors as it never see them before. In other cases, both p(x) and p(y|x)
changes across domains. This happens when a retrieval model that combines various
similarity scores into a relevance label is adapted across query classes, because, for
example, the importance of face similarity score as part of x changes from person-
related queries to other queries. Since both p(x) and p(y|x) may change, we make
no assumption as to whether and how the distribution changes between auxiliary and
target domain. This does not mean the two domains are totally irrelevant. Instead,
we constrain their relation through classifier performance as specified by the second
assumption in the above definition.

1.2 Research Challenges

Model adaptation has been studied in different areas and various related techniques
have been proposed. In machine learning, inductive transfer and multi-task learning
methods apply knowledge learned from one or more tasks to solving related tasks
[23, 13, 50, 52, 88, 100]. In data mining, there has been research on recognizing drifting
concepts from data streams [46, 76, 86]. Specialized adaptation methods are available
to adapt language and parsing models in natural language processing (NLP) [5, 41, 65]
and acoustic models in speech recognition [34, 49]. Nevertheless, the properties of
multimedia data and their models raise several challenges which existing approaches
are unable to fully address. The major challenges are:

e Modeling distribution changes of multimedia data is technically infeasible. As
mentioned, data distribution p(x) almost always changes across multimedia do-
mains, and class-conditional p(y|x) often changes. Changes of p(x) are difficult
to capture because there are no generic and accurate data models for multimedia,
which can be represented by a variety of features. Modeling changes of p(y|x)
is simply impossible without sufficient labels in the target domain. Indeed, ar-
ticulating distribution change is a harder problem than classifying the data, and
solving it would make the solution to classification problems trivial. We thus pre-
fer adaptation approaches that require no knowledge and make no assumptions
on whether and how distribution changes. Existing methods [9, 10, 77, 99] relying
on such knowledge or assumptions are not suitable.

e Training on raw data from auxiliary domains is costly. This is because models
for multimedia data are expensive to train due to high-dimensional, real-valued
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features and learning algorithms with superlinear cost w.r.t data size (e.g., SVM).
Training the target classifier over data aggregated from all domains, a widely used
approach in previous work [22, 46, 50, 88], is inefficient or intractable given the
large size of auxiliary data. Auxiliary data can be also unavailable or inaccessible
due to copyright or privacy issues. An efficient approach is desired to exploit
more compact representations of domain knowledge than complete raw data.

o Auxiliary domains are not equally useful. Exploiting an unrelated auxiliary do-
main does more harm than good to solving problems in the target domain. Mea-
suring the relatedness between auxiliary and target domain, and selecting and
weighting the auxiliary classifiers accordingly, is critical to the success of model
adaptation. This issue has not been addressed in previous work.

e FExzamples in the target domain are not equally informative. Since many clas-
sification problems in multimedia are imbalanced, examples from the rare class
are more valuable. Also, in the context of adaptation, examples that provide
complementary information to auxiliary domains are more useful. When we can
label only a limited number of examples in the target domain, selecting more
informative examples is particularly important.

1.3 An Overview of our Approach

To address these challenges, we organize our research around three correlated problems:

1. How to adapt classifiers across domains in an efficient and principled way?

2. How to measure domain relatedness and the utility of auxiliary classifiers?

3. How to identify informative training examples to facilitate adaptation?

7
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The foundation of our work is a discriminative framework for function-level classi-
fier adaptation based on loss minimization principle, which is illustrated in Figure 2. In
this framework, an auxiliary classifier f*(x) of any type is adapted to a new classifier
f(x) for the target domain by adding a “delta function” A f(x) to the decision function
of f*(x). The learning of Af(x) is based on the labeled examples in target domain
and the auxiliary classifier f*(x), under dual objectives that the target classifier f(x)
achieves minimum classification error and its distance to f*(x) in the function space is
also minimized. As a fundamental difference from extent approaches which directly use
data from auxiliary domains, this framework exploits auxiliary classifier as a summary
of the classification-related knowledge distilled from the raw data. Using such compact
representation of domain knowledge implies high efficiency and broad applicability of
our approach. In practice, this general framework can be “instantiated” into concrete
adaptation algorithms by plugging in specific loss and regularization functions. We
describe two such algorithms, namely adaptive support vector machines (aSVM) and
adaptive kernel logistic regression (aKXLR), where the latter can be also derived from a
probabilistic perspective. This addresses the first problem of model adaptation.

As shown in Figure 3, we extend the basic framework to accommodate multiple
auxiliary domains and their weighting. In this framework, the target classifier f(x) is
obtained by adding the delta function A f(x) to a weighted ensemble of auxiliary clas-
sifiers f{'(x), ..., fi;(x), where the weights reflect the utility of these auxiliary classifiers
w.r.t the target domain. We propose several domain analysis methods to measure the
relatedness between auxiliary and target domains and determine the utility of auxiliary
classifiers, first based on their performance on the labeled data in target domain and
then based on domain features that indicate domain relatedness. We integrate these
methods into our adaptation framework, leading to several extensions of aSVM such
as aSVM with domain weighting (aSVM-DW) and aSVM with domain feature based
weighting (aSVM-DFW). Moreover, we explore two sample selection methods for iden-



tifying informative examples from the target domain to facilitate adaptation. The first
method selects examples to achieve the largest loss reduction on auxiliary classifiers,
while the second one selects examples causing maximal disagreement between auxiliary
classifiers. This addresses the second and third problem of model adaptation.

The proposed approaches are evaluated on the task of cross-domain video concept
detection based on the TRECVID benchmark dataset [74]. Following a comprehensive
survey on the impact of domain change to the performance of video concept classifiers,
we demonstrate that our approaches can efficiently adapt concept classifiers to new
domains with minimum human labeling effort. We also apply our approaches to other
adaptation problems including adapting video retrieval models across queries, adapting
text categorization models across corpora, and others to be determined.

We summarize the key advantages of our approach as follows:

e Performance gain: Based on the same set of labeled data, a classifier adapted
from one in a related domain consistently outperforms a new classifier trained
from scratch in terms of the quality of results. The gain is substantial when the
labeled set is small, and does not fade out until a large amount of data is labeled.

e “Black-box” applicability: As a key benefit of function-level adaptation, our
approach is able to adapt classifiers of any type by treating them as “black boxes”,
namely decision functions f(x). This is important because a variety of classifiers
are used in multimedia, including SVM, neural network, and so on. Being able to
adapt without raw data in auxiliary domains also makes our approach applica-
ble to tasks where such data are unavailable or inaccessible. This is critical for
applications involving copyright-protected data or privacy-related data such as
surveillance video.

e High efficiency: The freedom from training over auxiliary data results in high
efficiency. The cost of adapting a classifier using limited target data is shown
to be substantially lower than training one from all the data, because classifiers
like SVM have super-linear training cost against data size and auxiliary data are
typically plenty. Another aspect of efficiency comes from the ability to find the
most informative examples, such that fewer examples need to be labeled to reach
the same performance.

e Maximal domain utility: The domain analysis component makes educated
decisions on weighting the utility of auxiliary domains (classifiers). It therefore
maximizes the overall utility of auxiliary domains.

e Extendability: The proposed framework advocates a methodology for construct-
ing adaptation algorithms. One can drive virtually an infinite number of algo-
rithms from this framework by varying the loss and regularization function.

The remainder of the proposal is organized as follows. Section 2 reviews related
work in multimedia, machine learning, data mining, and other areas. Section 3 sur-
veys the impact of domain change to video concept detection, which is the benchmark
task of the proposed approach. Section 4 describes the discriminative framework for
function-level classifier adaptation and the aSVM and aKLR algorithm derived from
this framework. Section 5 proposes domain analysis approaches for measuring domain
relatedness and utility of auxiliary classifiers, and Section 6 proposes two sample se-
lection methods in the context of adaptation. Section 7 explores the application of



the proposed approaches in various adaptation tasks other than the benchmark task.
Finally, Section 8 summarizes the proposed work and gives a tentative timeline.
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2 Literature Review

In this section, we review previous work related to cross-domain model adaptation in
different research areas. We first discuss the approaches for adaptation problems in
multimedia, which is the main application of this thesis. This is followed by a review
of related works on transfer learning and multi-task learning in the machine learning
area, concept drift detection in the data mining area, and adaptation in specific areas
such as speech recognition and natural language processing. We will focus on the
connections and differences between the existing techniques and our approach.

2.1 Adaptation in Multimedia

Recent work on the analysis, classification, and retrieval of multimedia data involve
building various machine learning models, particularly supervised classifiers. In image
classification and video concept detection [1, 16, 38, 60, 74, 75, 79, 85, 89, 95], super-
vised classifiers are used to map features representing images or video shots into labels
indicating the categories or concepts they belong to. These classifiers are trained from
manually labeled data using learning methods such as support vector machines (SVM)
and neural network. Moreover, multimedia retrieval models [1, 45, 87, 94, 92] need
to combine the relevance scores computed from multiple knowledge sources, such as
keyword similarity and image similarity. The combination weights can be estimated
using classifiers such as logistic regression trained from past queries and their (labeled)
results [45, 94, 92]. As suggested by Natesv et al. [57], classification and retrieval can
be viewed as the same problem of classifying multimedia data as relevant or irrelevant
w.r.t categories or queries. While supervised classifiers are perhaps the most widely
used learning models in multimedia, there are many other types of models, such as
models for annotating images with keywords [7, 11, 36, 42], for labeling video shots
with person names [68, 97] and with locations [96].

In terms of performance and (computational and human) efficiency, there is a need
and benefits for adapting models of multimedia data across different domains. However,
the problem of model adaptation is in general overlooked or at best understudied in
multimedia. Most work in multimedia assume the training and test data come from the
same domain. For example, image classification and annotation models [7, 16, 32] are
often trained and tested on selected subsets of the Corel database, which contains high-
quality photos. Most video concept detection and video search models [1, 38, 57, 60, 75]
are trained and tested on the TRECVID collection [74] of each year (from 2002 to 2007),
which contains a specific type of video such as documentary and broadcast news video.
While there is nothing wrong with this evaluation setting, in practice we may have
to work with data from different domains simultaneously or one by one. The need of
adaptation becomes apparent if we want to reuse existing models while shifting from
one domain to another.

Previous work on two specific problems in multimedia can be related to model
adaptation, although the proposed methods are specialized to those two problems.
One of them is video concept detection based on the correlations between multiple
semantic concepts. Methods for this problem learn classifiers of multiple concepts
simultaneously, which perform better than classifiers learned independently for indi-
vidual concepts. For example, Naphade et al. [55] explicitly modeled the linkages
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between concepts via a Bayesian network that implicitly offered ontology semantics in
a video collection. Amir et al. [1] concatenated the prediction scores of various corre-
lated concepts into a long feature vector called “model vector”, based on which a SVM
classifier was built for each concept. Yan et al. [95] proposed a series of probabilistic
graphical models to mine the relationships between concepts. In addition, Qi et al.
[60] proposed correlative multi-label (CML) framework and Chen and Hauptmann [18]
proposed multi-concept discriminative random field (MDRF) to automatically identify
concept correlations and learn concept classifiers simultaneously. These two methods
are similar in spirit as they modify the regularization term of support vector machines
(in [60]) or logistic regression (in [18]) to accommodate the correlations between dif-
ferent concepts. This problem has also been studied by Snoek et al. [75] and by Wu
et al. [91]. However, these methods do not adapt concept classifiers of one concept to
another. There is also no prior work exploring the correlations between data domains
for the purpose of concept detection.

Another related research is on adapting multimedia retrieval models towards new
queries with or without users’ feedbacks on retrieval results. Relevance feedback meth-
ods for content-based image retrieval [20, 67] update the initial query representations,
distance metrics in the feature space, and/or retrieval models based on user feedbacks
in order to improve retrieval results. In video retrieval, Yan [92] proposed to construct
the retrieval model for a new query as a mixture of existing models of several predefined
“query classes”, and update the model based on users’ implicit and explicit feedbacks to
better reflect the characteristics of the new query. This work is extended by Kennedy
et al. [45] to allow query classes to be automatically discovered. These methods are
designed for specific feature representation and retrieval algorithms and not applicable
to general adaptation problems.

To summarize, the issue of model adaptation has been studied for some specific
problems in multimedia, yet there lacks a generic and systematic approach. In this
thesis, we take an unified view of various adaptation problems in multimedia, as well
as a generic and systematic approach to these problems. Specifically, we will focus on
adapting supervised classifiers since they are arguably the most widely used model in
multimedia. A generic approach avoids the need of developing algorithms for different
problems, and allows people to treat emerging adaptation problems with ease.

2.2 Transfer and Multi-Task Learning, Incremental Learn-
ing, and Sample Bias Correction

In machine learning, research along several directions are relevant to the problem of
cross-domain model adaptation. Transfer learning and multi-task learning both refer to
the notion of applying knowledge learned from one or more tasks to related tasks, where
the former refers to the transfer from related tasks to a target task, while the latter
refers to the case of learning multiple related tasks together. Cross-domain adaptation
can be viewed as transfer learning between multiple data sets on the same task, and
our approach can be treated as a function-level transfer learning approach. Besides,
incremental learning continuously updates a model based on subsets of the training
data, and sample bias correction deals with learning problems where the distribution
of test and training data are different. We review previous work in these directions and
discuss their relation to our problem.

12



2.2.1 Transfer learning

Transfer learning (TL) aims to apply knowledge learned from auxiliary tasks, where
labeled data are usually plenty, to develop an effective model for a related target task
with limited labeled data. There is no formal definition of “related tasks”, and in
practice it refers to either related learning problems on the same dataset or the same
learning problem on different datasets. After the notion was first introduced by Thrun
[81] about 10 years ago, approaches have been proposed to transfer the knowledge at
different levels of abstraction, including data level, representation level, and parametric
level.

Transfer at data level augments the training data of the target task with labeled
data from auxiliary tasks in order to build a better model for the target task. This has
been the spirit in TL approach for k-nearest neighbor [81], for support vector machines
by Wu and Dietterich [88], for logistic regression by Liao et al. [50], and for AdaBoost
by Dai et al. [22]. While some of these methods (e.g., [88, 22]) do not directly add
auxiliary data into the training set, a close examination reveals that such data play
the role of additional training data in these methods. A key issue is the weights of
data from the auxiliary tasks, which can be specified manually [88] or according to the
degree of “mismatch” with the target data [50, 22]. Efficiency is the main disadvantage
of these methods, which training can be considerably more expensive due to the large
number of auxiliary data.

Approaches at representation level learn an effective feature representation and/or
distance metric from the auxiliary tasks and use it for the target task. In fact, the first
work on transfer learning [81] suggested to learn both a new data representation and
a distance function from the labeled data in auxiliary tasks. Moreover, Ben-David et
al. [23] derived a common representation that makes the auxiliary and target (data)
domains appear to have similar distributions in order to enable effective adaptation,
and Raina [62] used unlabeled images collected from various sources to learn high-level
feature representations that can make image classification tasks easier in general. These
approaches are obviously more general and efficient than data-level transfer learning
methods, since the representation needs to be learned only once and is applicable to
many other tasks.

Parameter-level approaches use the parameters of previously learned models from
related tasks to form a “prior” for the model parameters to be learned for the target
task. The new model can be thought as a “posterior” obtained by updating the prior in
the light of the examples in the target task. Many approaches choose Bayesian logistic
regression with a Gaussian prior (on parameters) as the learning algorithms for the
primary task. In Marx [52], both the mean and variance of the prior are computed from
the parameters of the models for related tasks. Similarly, Raina et al. [63] constructed
a Gaussian prior with its covariance matrix encoding the word correlations derived from
text classification tasks and applied it to similar tasks. Zhang [101] combined Rocchio
algorithm with logistic regression via a Gaussian prior to yield a low-variance model
for adaptive filtering. Fei-fei [31] implemented the Bayesian prior in more sophisticated
models for one-shot learning of object categories.

There are also more specialized TL approaches. For instance, Taylor and Stone
[80] proposed a transfer algorithm for reinforcement learning, and Heitz et al. [39]
described a landmark-based model for transfer the “essence” of object classes learned
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from cartoon images to natural images. The issue of transfer with multiple auxiliary
tasks was discussed by Marx et al. [52] and a simple solution was provided. Rosenstein
et al. [66] explored the impact of the relatedness between target and auxiliary tasks
on the performance of transfer learning.

The framework to be proposed in this thesis can be viewed as transfer learning
at a even higher level: the function level. Our framework aims to directly adapt the
decision functions of one or more auxiliary classifiers into the decision function of a
classifier for the target data. Function-level transfer learning offers many benefits,
including high efficiency by avoiding training over auxiliary data and flexibility from
the freedom of using auxiliary classifiers of any types. To our knowledge, the most
similar work in the literature has been that by Schapire et al. [69], which modifies the
AdaBoost algorithm such that the Kullback-Leibler divergence between the classifier
learned and a prior model representing human knowledge is minimized. However, this
method is specialized for AdaBoost, our framework is able to adapt classifiers of any
type. Moreover, issues such as weighting of auxiliary classifiers and sample selection
will be discussed in the same framework.

2.2.2 Multi-task learning

Multi-task learning (MTL) explores the dependency between related tasks, and aims
to achieve better performance than learning each task independently and to generalize
previously learned knowledge for benefiting new tasks in future. Unlike in TL where the
knowledge transfer is unidirectional (from auxiliary tasks to target task), in MTL the
knowledge transfer is be mutual and between any related tasks. Despite the difference
on problem setting, MTL approaches provide important references to our cross-domain
adaptation approach as they both deal with knowledge transfer between tasks.

Similar to the approaches for TL, most MTL approaches support the transfer of
knowledge either at the representation level or at the parametric level. Representation-
level approaches [2, 3, 4, 13, 100] learn to map features into a latent feature space
(i.e., representation) shared by all the tasks, and simultaneously learn the model for
each task independently in this common feature space. The shared representations
are derived to achieve maximal independence through latent independent component
analysis in Zhang et al. [100], to maximize sparsity (i.e., lower dimension) in the
method by Argyriou and Evgeniou [4], or under other heuristics. A related method is
that by Niculescu-Mizil and Caruana [58], which learn the structure of a Bayes net from
related tasks. Parametric-level approaches assume the model parameters of multiple
related tasks must be related in a certain way and can be optimized together. The
constraint on the model parameters is realized by a common Bayesian prior on all the
model parameters as in the method of Bakker and Heskes [6], or by a regularization
term penalizing the distance between model parameters in the work of Evgeniou et al.
[28, 27]. The work in [98] extended the idea using a hierarchical Bayesian method, where
the models of related tasks in the form of Gaussian processes (GPs) are constrained
in the function space, i.e., characterized by a common mean function and kernel. In
addition, Lawrence and Platt [48] studied sample selection strategies and Ben-David
and Schuller [8] provided a mathematical notion of task relatedness.
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2.2.3 Incremental Learning

Incremental learning, or online learning, is to continuously update a model based on
subsets of the data. It is preferred over training a model in one batch using all the
data when the latter is computationally intractable due to large data size or when
new data become available after the model is trained. There are many incremental
learning methods for updating classifiers especially SVMs. For example, Syed et al.
[78] proposed to update a SVM model by re-training it from the previous support
vectors and the new data, and Cauwenberghs and Poggio [14] extended it by allowing
also decremental learning of SVM.

On the surface, our adaptation approach is similar to incremental learning methods
because both update existing classifiers based on additional labeled examples. Never-
theless, there are fundamental difference between them in terms of assumption, goal,
and approach. Incremental learning approaches assumes the same underlying distri-
bution, and their goal is that the incrementally trained models are identical or close
approximation of models trained in one batch. In comparison, our adaptation approach
acknowledges likely distribution changes across domains, and it does not require the
adapted models to be close to batch-learned models (and they should not be). In fact,
a major contribution of this thesis is on analyzing the relatedness between domains and
weighting their contribution accordingly. Moreover, most incremental learning meth-
ods involve at least part of old training data (such as support vectors) in the training.
Hence, they are not as efficient as our approach which directly adapts the existing
classifier and uses absolutely no old data. To summarize, our adaptation approach can
be used for efficient incremental learning, but not the other way around.

2.2.4 Sample Bias Correction

Another line of research focuses on learning with distinct training and testing distrib-
utions, a problem known as sample selection bias or covariance shift. In this problem
setting, the training sample is govern from an unknown distribution p(x|\) while the
unlabeled test data is governed by a different unknown distribution p(x|6). The train-
ing and test distribution may differ arbitrarily, but there is only one true unknown
conditional distribution p(y|x). The goal is to find a classifier f : x — y that can
accurately classify the test data.

Many sample bias correction methods are based on the theorem that the expected
loss on test distribution p(x,y|f) equals the weighted expected loss on the training
distribution as p(x, y|\) 5 E:K% This means one can train a classifier that minimizes the

loss on the test distribution by weighting the training loss with an instance-specific

scaling factor z g:‘lig Since p(x|\) and p(x|f) are typically unknown, Shimodaira [73]
and Sugiyama et al. [77] propose to estimate p(x|\) and p(x|f) from the training and

test data using kernel density estimation, and then use 5(()’:; N to resample or weight

the training examples in the training of classifiers. Instead of estimating the data

distribution p(x|\) and p(x|0), Zadronzy [99] and Bickel and Scheffer [10] directly
p(x|0)
p(x[X)?
whether an example x drawn under the test distribution p(x|f) is moved into the
training set (s = 1) or not (s = 0). In practice, p(s = 1|x, A, 0) is estimated from the
training and test data, usually by a discriminative approach [10]. Besides, Huang et

estimate the ratio p(s = 1|x, A, 6) where s is a selector variable that decides
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al. [40] devised the kernel mean matching method that sets the weights of training
instances such that the first moment of training and test data matches. Bickel et
al. [9] improved upon these methods by integrating the weight estimation and model
training into a unified discriminative framework. Fan [30] suggested to use simple
model averaging technique to alleviate the effect of sample bias.

Despite the advance on sample bias correction methods, several difficulties limit
their applicability on our problem. One of them is the difficulty of estimating the
distribution of multimedia data p(x), not to mention its change across domains. While
several generative models for image and video data exist [11, 90], they are specialized for
certain features (e.g., color histogram) and have not shown to be effective. Moreover,
the class-conditional p(y|x) often changes. This violates the basic assumption of sample
bias correction and renders all the aforementioned methods inapplicable. Thus, in this
thesis we try to adapt models without articulating how the data distribution changes
across domains.

2.3 Concept Drift in Data Mining

Domain adaptation is also related to the problem of concept drift in the mining of
streaming data. This refers to the case where statistical properties of a target variable
or concept, which a model is trying to predict, changes over time due to the change
of some hidden context. An example of concept drift is spam detection from a user’s
daily emails, where the definition of spam may change over time (e.g., to include email
advertisements) and the types of spam can change drastically with time. Concept drift
may involve changes of the target concept definition (i.e., p(y|x)) and/or the change of
the data distribution (i.e., p(x)).

There are two major approaches in data mining to detecting a drifting concept
in time-evolving data. The first approach selects training instances using a temporal
window with fixed or adaptive size that moves over the data stream, possibly weights
the selected instances by their utility to the target concept, and uses them to build a
single classifier. This has been the approach employed by Klinkenberg and Joachims
[46], and by Cunningham et al. [21]. The second type of approaches maintains an
(weighted) ensemble classifier that combines the outputs of a set of base classifiers
learned from selected chunks of the data stream. Wang et al. [86], Street and Kim
[76], and Kolter and Maloof [47] adopted this approach.

Despite being proposed for streaming data, the aforementioned methods can be
adapted to solve domain adaptation problems if we treat each domain as a data chunk
from a data stream. However, methods for concept drift usually make implicit as-
sumptions about the underlying distribution of the data stream. For example, many
assume [86, 46| the distribution of current data is similar to that of the most recent
data, so that the model can be trained mainly on the recent data, and in the ensemble
approach the base classifiers can be selected and weighted based on their performance
on recent data. While such assumption may be reasonable in temporally correlated
streaming data, no similar assumptions can be made on the distributions of domains,
which are allowed to differ arbitrarily. In fact, as discussed in Section 1, measuring the
relatedness between different domains is one of the key challenges to be tackled in this
thesis. A related work from data mining is from Fan [29], which analyzed the impact
of combining “old data” for training and proposed an efficient and systematic way to
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selecting useful data.

2.4 Adaptation in Other Areas

Model adaptation has been also studied in specific problem domains in natural language
processing, speech, and many other domains. In natural language processing, there is
often a need to adapt language models, parsers, and models for various tasks such
as named entity detection, from one corpus to other corpora. Through experiments
on Wall Street Journal corpus and Brown corpus, Gildea [35] found that statistical
parsing models, especially the bigram statistics, are very corpus-specific, and suggested
a technique to pruning model parameters to achieve better generalization ability. Hwa
[41] proposed a two-stage adaptation process to first train a grammar from a fully-
labeled old domain and re-estimate the probabilities of the grammars from a sparsely-
labeled new domain. Roark and Bacchiani [65] investigated adapting a lexicalized
probabilistic context-free grammar (PCFG) from an old domain to a new domain.
Their approach is to compute the maximum a posterior (MAP) estimation of the model
parameters under a prior distribution given by the old (“out-of-domain”) models. In
[5], they applied the same approach to adapt language models across corpora, where a
language model is a generative model governing the distribution of terms and phrases
in documents. In addition, Shen et al. [72] explored adapting a general hidden Markov
Model (HMM) named entity recognizer from newswire domains to a biomedical domain.
While most of the aforementioned models are generative ones, Chelba and Acero [17]
proposed to adapt maximum entropy classifiers for recovering correct capitalizations
in uniformly cased text based on MAP estimation of model parameters.

Model adaptation has been extensively studied in speech recognition, where the
model mismatch problem can be caused by different speakers, dialects, speaking styles,
and environments (noise levels). Since the acoustic model of a speech recognition sys-
tem is usually based on hidden Markov model (HMM), most adaptation methods learn
to adjust the parameters of the HMM model to better fit the target data. Such meth-
ods include speaker adaptation methods based on Maximum-a-posterior (MAP) [34],
Maximum Likelihood Linear Regression (MLLR) [49], Vocal Tract Length Normaliza-
tion (VTLN) [84], and noise adaptation methods such as parallel model combination
(PMC) [33]. Overall, these adaptation methods are specialized to the (generative)
acoustic models used in speech recognition systems.
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3 Domain Impact on Video Concept Detection

Video concept detection is a typical learning problem in multimedia whose performance
is vulnerable to the change of data domains. The goal of video concept detection is to
automatically determine whether certain semantic concepts (e.g., Studio, Qutdoor, and
Sports) are present in video shots, where a video shot is a sequence of video frames taken
in a single camera operation. The standard approach to this task is to build supervised
concept classifiers which map the low-level features of video shots into binary labels
indicating the presence (or absence) of the given concepts.

Conventionally, concept classifiers are trained and evaluated from the video data
from a single domain, such as broadcast news video of certain channel(s). There is no
study on the performance of these concept classifiers when being applied to domains
other than their training domain, although such scenario is likely in practice. In this
section, we conduct a comprehensive survey on the impact of domain change to the
performance of video concept detection, in order to provide insights on the importance
and challenges of the model adaptation problem in multimedia. We also describe
cross-domain video concept detection as a benchmark task against which the proposed
approaches will be evaluated.

3.1 TRECVID Video Collections

An ideal corpus for studying the impact of domain change to video concept detection is
a large, heterogenous corpus consisting of data from multiple domains. A good choice
is the video collections used in TREC Video Retrieval Evaluation (TRECVID) [74].
TRECVID is an annual workshop sponsored by the National Institute of Standards and
Technologies (NIST) to promote research in content-based video retrieval in large col-
lections via an open, metrics-based evaluation. It has defined a set of retrieval-related
tasks for evaluation, including shot boundary detection, high-level feature extraction
(a.k.a video concept detection), and automatic and interactive search. From 2002 to
2007, the TRECVID collection varies on a yearly basis from documentaries and movies
to broadcast news video and documentary video. Among all the TRECVID collections,
we select the “development set” of the collection used in 2005 and in 2007, which are
referred to as TRECVID 2005 and TRECVID 2007 in this thesis.

TRECVID 2005 collection contains broadcast news video footage of 86 hours in
length. The footage belongs to 6 different TV channels, including CNN, NBC, MSNBC,
CCTV, NTDTV, and LBC. Among them, CCTV and NTDTV are in Chinese (Man-
darin), LBC is in Arabic, while the others are in English. The data in each channel
come from 2-3 different news programs, e.g., the footage from CNN are from “Live
From CNN” and “Anderson Cooper 360”. Due to the difference on editing styles,
target audience, and other factors, the data from different channels exhibit different
characteristics. The 86-hour footage has been manually partitioned into 61,901 video
shots and the shot boundaries are provided. The footage is relatively evenly distrib-
uted across different channels, with “largest” channel containing 11,025 shots and the
“smallest” one having 6,481 shots. Each shot is represented by one video frame as its
“keyframe”, usually the one in the middle of its duration. Fach keyframe is depicted by
a 273-d feature vector, which consists of a 225-d color moment feature computed from
5 x 5 grids and a 48-d Gabor texture feature. Since there is not much change in the
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content within a shot, we use this 273-d keyframe feature as the feature of the video
shot.

As part of the Light Scale Concept Ontology for Multimedia (LSCOM-Lite) project
[54], all the shots in TRECVID 2005 have been manually annotated with (binary)
labels indicating the presence or absence of 39 semantic concepts. These concepts
cover a wide variety of types, varying from outdoor scene (Building, Road), indoor
setting (Studio, Meeting), to news genre (Sports, Entertainment), and general objects
(Airplane, Animal).

3.2 Proposed Work: A Survey of Domain Impact on Video
Concept Detection

We plan to conduct an comprehensive study on the impact of domain change to the
performance of video concept detection based on TRECVID video collections. This is
realized by building concept classifiers from one domain and comparing their perfor-
mance on the data from the same domain (i.e., in-domain data) and the data from other
domains (i.e., out-of-domain data). Specifically, this experiment will be performed in
two settings: cross-channel and cross-genre setting. In the cross-channel setting, we
evaluate the concept classifiers trained from one channel (of broadcast news footage)
applied to the other channels, based on the multi-channel TRECVID 2005 collection.
In the cross-genre setting, we evaluate the concept classifiers trained from broadcast
news video in TRECVID 2005 collection applied to documentary video in TRECVID
2007 collection. This study not only compares the in-domain and out-of-domain perfor-
mance of concept classifiers, but also examines how the performance change is affected
by factors including the relatedness between domains, the types of semantic concepts,
and so on.

3.3 Cross-Domain Video Concept Detection

It is clear from the survey that concept classifiers generalize poorly to domains other
than its training domain. They need to be adapted to other domains. We call the task
of detecting video concepts in one domain using concept classifiers that are adapted
from existing concept classifiers built for other domains as cross-domain video concept
detection. We use this task as the benchmark task against which we evaluate our adap-
tation approaches. This is because this task represents a set of common challenges
faced by other adaptation problems in multimedia: Concept classifiers are vulnerable
to the change of underlying data distributions across domains; The distribution change
is arbitrary and hard to model; Training concept classifiers are computationally expen-
sive, and labeling the training data is tedious and time-consuming. It is reasonable to
assume that our approach is applicable to various adaptation problems in multimedia
if it works well on cross-domain video concept detection.
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4 A Discriminative Framework for Classifier
Adaptation

As the foundation of the propose work, we propose a discriminative framework for
function-level classifier adaptation, as well as two adaptation algorithms derived from
the framework, namely adaptive support vector machines (aSVM) and adaptive kernel
logistic regression (aKLR).

4.1 Problem Settings and Notations

We begin by defining a general problem setting and introducing the terminologies
and notations used in this thesis. We consider a binary classification task in a target
domain, where only a limited set of data are labeled while most data are unlabeled. We
denote the labeled data as D' = {(x;,y;)};, where N is the number of instances, x;
is the feature vector of the iy, instance, and y; € {—1,+1} is its binary label indicating
relevance (or irrelevance) to a concept or category. For notational simplicity, we let
each data vector x always include a constant 1 as its first element such that x; € R,
where d is the number of features.

In addition to the target domain, there is an auziliary domain which contains a large
set of data D® labeled w.r.t the same concept or category. Similarly, we have D% =
{(x%,y")}¥|, where N is the number of instances, x¢ € R*! and y¢ € {—1,+1}. The
distribution of auxiliary data D® may be relevant but different from the distribution
of target data D! in an unknown way. A binary classifier has been trained from the
auxiliary data D and is denoted as auwiliary classifier f®(x). This classifier can be
trained using any classification algorithms (e.g., SVM, decision tree), but it is subject
to a uniform representation as a decision function that predicts the data label as its
sign, i.e., § = sgn(f%(x)). For simplicity, we do not distinguish classifier and the
decision function of classifier.

Sometimes, there are multiple auxiliary domains and their respective labeled data
sets are denoted as DY, ..., D{;. We define Df = {(xf, yf) ﬁl, where x’f e R and
yF € {~1,+1}. The distribution of these auxiliary datasets can be different from that
of target data in different ways. We have trained an auxiliary classifier f¢(x) from each

auxiliary dataset Df.

The goal of our research is to propose a general framework for adapting an auxiliary
classifier f%(x), or a set of auxiliary classifiers f{(x),..., fi;(x), to a target classifier
f(x) that works well on the target domain, based on the limited number of labeled
examples D! in the target domain. As a fundamental difference from many existing
methods, our adaptation approach directly updates the decision function of the classi-
fier. It does not use any auxiliary data or require them to be available.

4.2 A Discriminative Framework for Adaptation

We propose a generic and principled discriminative framework for function-level clas-
sifier adaptation based on regularized loss minimization principle. In this framework,
the target classifier f(x) has an additive form: it is the sum of the auxiliary classifier
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f*(x) and a delta function A f(x):

f(x) = [(x) + Af(x) (1)

This means that the transition from f%(x) to f(x) is realized by adding a small
function A f(x) on top of f*(x). The delta function A f(x) is learned from the labeled
examples D! = {(x;,4;)}]Y, in the target domain under the influence of auxiliary
classifier f%(x). We propose to learn Af(x) in a framework that aims to minimize the
regularized empirical risk [37]:

N
HAlifHZL(yi,f(Xi)) + (A F1+) (2)
=1

where L is the empirical loss function, €2(-) is some monotonically increasing regular-
ization function on the domain [0, +00], ||-||# is the norm of a function in a reproducing
kernel Hilbert space (called RKHS) H as a function space, and A is a scalar.

In Eq.(2), the first term measures the classification error (loss) of the target classifier
f(x) on the training examples; The second term is a regularizer that controls the
complexity of the hypothesis space. Because ||Af|lx = ||f — f%|lx, this regularizer
measures the distance between the auxiliary and target classifier in the function space.
Hence, the target classifier f(x) learned under this framework must satisfy two goals:

1. minimal classification error on the training examples;

2. minimal distance from the auziliary classifier f(-).

While the second goal does not seem to be as intuitive as the first one, it is as
important. If minimal classification error is the only goal, one may find a large number
of classifiers achieving the same classification error (even zero classification error when
the training size is small), although many of them do not generalize well beyond the
training examples. The regularizer in Eq.(2) uses the distance to the auxiliary classifier
as a second criterion for ranking candidate classifiers. This can be justified by our
assumption that the auxiliary classifier has better-than-random performance on the
target domain. The two goals is balanced by constant A, and in practice its value
needs to be determined based on the utility of the auxiliary classifier.

We can understand this adaptation approach as making minimum changes to the
auxiliary classifier that are necessary to correctly classify the labeled examples. This
“minimum necessary changes” principle is what underlies our adaptation framework.
This is illustrated in Figure 4. The classification boundary A is trained from the
auxiliary domain, and its performance on the target domain is suboptimal due to the
distribution change. Our adaptation approach tries to find a new decision boundary
B which is slightly modified from A but can classify the target data well.

In terms of bias-variance tradeoff, this framework attempts to reduce the high
variance caused by limited training examples using the auxiliary classifier trained from
sufficient out-of-domain data. It represents a middle way between two extremes, namely
using a unbiased, high-variance classifier trained exclusively from limited examples, and
using the low-variance but probably-biased auxiliary classifier. We expect the adapted
classifier achieves better bias-variance tradeoff.
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Figure 4: An illustration of classifier adaptation, where red '+’ denotes positive instances, blue ’-’
denotes negatives, and red and blue ’?’ denotes unlabeled positive and negative instances. The
decision boundary A is trained from the labeled data in the auxiliary domain, B is trained from
the labeled data in the target domain, and C' is adapted from A.

Taking a function-level adaptation approach results in great flexibility and efficiency.
This is because our framework directly exploits the auxiliary classifiers as a summary of
the knowledge of auxiliary domains, instead of using the raw data in auxiliary domains.
By using this compact representation of knowledge, our approach is more efficient
than existing adaptation methods that train models over typically a large number of
auxiliary data [22, 50, 88]. On the other hand, this framework is applicable even
when the auxiliary data are not available or accessible, which is usually the case in
applications involving copyright-protected or privacy-related data such as surveillance
video.

From this generic framework, one can derive concrete algorithms for classifier adap-
tation by choosing certain loss functions L(-), regularization functions (), and the
form of the delta function Af(-). While the choices are virtually infinite, we will focus
on two specific algorithms coming out of this framework, which adopt the loss function
of support vector machines (SVM) and of kernel logistic regression (KLR) respectively.
The first takes the advantage of the discriminative power of SVM, while the second
gives a probabilistic interpretation of our framework.

4.3 Adaptive Support Vector Machines (aSVM)

The empirical success of support vector machines (SVM) in various classification prob-
lems has demonstrated the effectiveness of its hinge loss function. By plugging SVM’s
loss function into the adaptation framework, we reach a specific adaptation algorithm
named Adaptive Support Machines or aSVM.

4.3.1 Model Formulation

In aSVM, the delta function takes a linear form either in the original feature space as
Af(x) = wlx, where w € R are the parameters, or in a transformed feature space
as Af(x) = wl¢(x), where ¢(-) is the feature map projecting the original feature x
into the transformed space. In the latter case, f%(x) is in fact a non-linear function in
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the original feature space.

We adopt the hinge loss function of SVM which is expressed as L(y, f(x)) = (1 —
yf(x))s = max(1 — yf(x),0). Moreover, we set the regularizer to |[w||* by using a
trivial regularization function Q(z) = z. The objective function of aSVM is given by
plugging this loss function and regularizer into the adaptation framework in Eq.(2):

N
min Sfiwi? + €300~ yif (x0) 0
=1

This is equivalent to the following function:

N
1 9

II}’én§|’W\| +C;fi (4)

st & >0, yf'(x) +yw! d(xi) >1—¢&, Y(x4,y) € D

While this objective function is very similar to that of SVM (Eq.(12.8) in [37]), there
is a fundamental difference: here w denotes the parameters of Af(x) instead of f(x).
In fact, we will show that ||wl||? = [|Af||3, = || f — f*||3,, which shows the regularizer is
the distance between the auxiliary and target classifier in the function space, instead
of “margin” in the case of SVM. Since ), & measures the classification error of the
target classifier f(x), the objective function in Eq.(5) seeks a classification boundary
(hyperplane) that is close to the boundary of the auxiliary classifier, and is meanwhile
able to correctly classify the labeled examples in D!. The cost factor C' in aSVM
balances the contribution between the auxiliary classifier (through the regularizer) and
the training examples. Larger C indicates smaller influence of the auxiliary classifier,
and vice versa. In practice, C' should be decided based on the utility of auxiliary
classifiers.

By integrating the constraints in Eq.(5) using Lagrange multipliers, we can rewrite
the objective function as the following (primal) Lagrangian function:

N N N
Lp= %HWHQ +CY &=y b=y aiyif ta) Fyiw o(xi) = (1-&))  (5)
=1 =1 i=1

where o; > 0, p; > 0 are Lagrange multipliers. We minimize Lp by setting its derivative
with respect to w and £ to zero, which results in:

N
w = Zaiyz‘¢(xz‘); a;=C —p;, Vi (6)

i=1

From the above, it is easy to show that Af(-) = ZfL a;y; K (-,x;) as a function in the
RKHS. Given the definition of inner product in RKHS, we can prove the regularizer
|w||? indeed measure the distance between the target classifier f(x) and the auxiliary

classifier f*(x) in RKHS.

N N
If = £ = IAFIP = (AF AN DD aiayyiy; K (xi,%5) = [|w|? (7)

i=1 j=1
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In addition to Eq.(6), the Karush-Kuhn-Tucker (KKT) conditions, which the opti-
mal solution of Eq.(5) must satisfy, also include:

ai{yif*(xi) + yiw' xi — (1 = &)} =0
a; >0
yif (%) +yiw x; — (1= &) >0
wi& =0
pi =0

§& >0 (8)

Substituting Eq.(6) into Eq.(5), we get the Lagrange dual objective function:

N 1 N N
LD = Z(l — AZ)O[Z — 5 Z Z aiajyiyjK(xi,xj) (9)
=1 =1 j=1

where \; = y; f¢(x;). The model parameters a{a;}¥; can be estimated by maximizing
Lp under the constraint 0 < a; < C,Vi. This would give a solution equivalent to that
obtained by minimizing the primal function Lp. Maximizing Lp over « is a quadratic
programming (QP) problem solved using the algorithm in Section 4.3.3. Given the
solutions &, the target classifier is written as:

N
Fx) = U+ K (x,x;) (10)
i—1

where (x;,y;) € D!. The target classifier f(x) can be seen as the auxiliary classifier
f*(x) augmented with support vectors from the labeled examples of the target data.

4.3.2 Discussion

In this section, we discuss several key issues of aSVM in order to gain deeper insights
of its properties and its connections/differences with other methods.

On support vectors. Support vectors of SVM are training examples that are
on the classification boundary or on the wrong side of the boundary. Support vectors
of aSVM have a different interpretation. We start by comparing the dual objective
function of SVM (Eq.(12.13) in [37]) and aSVM in Eq.(9). The only difference is that
the latter has {\;}XY, in the first term, where \; = y; f¢(x;). It is interesting to see
how A\ affect the estimation of a. In Eq.(9), if A; = y;f*(x;) < 0, which means the
auxiliary classifier f® misclassifies x;, a larger «; is desired in order to maximize Lp,
and vice versa. This is intuitive because the target classifier f is adapted from f¢
with the support vectors x; € D!, and «; can be seen as the weight of each support
vector. If the auxiliary classifier f* misclassifies x;, which means the boundary of f¢
around x; is wrong, then the boundary of the target classifier f around x; needs to
made different from f¢ in order to correctly classify x;. This is realized by adding x;
as a support vector with a large weight «;. On the contrary, if the auxiliary classifier
correctly classifies x;, f(x;) does not need to be different from f%(x;), so the weight «;
can be small or even zero. This shows that the support vectors in aSVM are used to
correct the misclassifications of the auxiliary classifier.
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On training cost. A key benefit of function-level adaptation is high efficiency as
the result of avoiding training over auxiliary data. We show why it is the case in aSVM.
It is clear form from Eq.(9) that the number of parameters {a;}Y ; in aSVM is equal
to the number of target examples N, and not related to the number of auxiliary data
N¢. It has the same number of parameters as a standard SVM model trained from
Dt. Thus, adapting f%(x) to f(x) using aSVM is no more expensive than training a
SVM model entirely from D!, except the cost associated with computing {>\z}fi1 Since
Ai = yi f%(x;) remains as a constant throughout the optimization process (see Section
4.3.3), this is one-time cost of evaluating f%(x) for N data instances in D!.

While the actual cost of {f%(x;)}Y; depends on the complexity of the auxiliary
classifier f¢, it is linear with N. In comparison, even the most efficient training methods
for SVM, such as SVM-Light [43], SMO [59], LIBSVM [15], all have superlinear scaling
factor with N. In [43], it has been shown that the time complexity of SVM is O(N*)
where k ~ 1.7 for real-valued feature vectors. So the complexity of training an aSVM
model and training a SVM model from D! are both O(N*). This is considerably smaller
than the O((N 4+ N%)*) complexity of training a SVM model over all training examples
D | J D, because the size of auxiliary data is typically much larger than that of labeled
target data, i.e., N* >> N. The experiments to be presented support this analysis.

On cost factor C. In aSVM, C balances the classification error and the deviation
from the auxiliary classifier f®, with large C' emphasizing small classification error and
small C' emphasizing closeness to f®. Intuitively, one should use smaller C' for “better”
auxiliary classifiers that work well on the target data, and vice versa. That being
said, in practice the absolute value of C' is also influenced by the range of f%(-). Since
0 < a; < C, the range of delta function Af(x) = Zf\il &;y; K (x,x;) is constrained by
C'. If the range of f(-) is large, say, [—100, +100], C needs to be large enough so that
Af(x) is not overwhelmed by f%(x) when they add up to form the target classifier
f(x) (see Eq.(10)). Another possibility is to normalize f%(-) to a fixed range such as
[0,1]. We will explore such engineering issues in the experiments.

Comparison with ensemble and increment learning. The decision function
f(z) defined by Eq.(10) has an additive form, which is similar to an ensemble classifier
that combines the auxiliary classifier f*(z) and the delta function Af(x). However,
it is different from a genuine ensemble classifier where the component classifiers are
trained independently from different datasets (D and D! in our case). It is clear from
Eq.(9) that a as parameters of Af(-) is estimated under the influence of f%(-), so its
value would be different if it is estimated ezclusively from D!. Also, aSVM should
not be mixed up with some incremental learning algorithms for SVM, such as those
proposed by Syed et al. [78] and by Cauwenberghs and Poggio [14]. Although these
methods add support vectors from new data into the existing SVM model, they also
modify the original support vectors in the existing model. In comparison, aSVM does
not change the original support vectors in the auxiliary classifier.

4.3.3 Learning Algorithm of aSVM

The parameters o of aSVM are estimated by maximizing the dual objective function
defined in Eq.(9). This is a quadratic programming (QP) problem, where the number
of variables {ai}f\il is equal to the number of labeled examples in D?. The sequential
minimal optimization (SMO) algorithm proposed by Platt [59] can efficiently solve a

25



large QP problem by decomposing it into a series of QP subproblems and optimizing
them iteratively. We modify the original SMO algorithm to solve aSVM efficiently.

Before the technical details, it is worthwhile to note an important difference between
the SMO algorithm for aSVM and that for standard SVM. For SVM, the minimum
sub-problem tackled in each iteration of SMO optimizes two variables. One cannot
optimize a single variable at a time because of the linear constraint » . o;y; = 0 derived
from 85—{ = 0, where b is the intercept in a decision function f(z) = w’¢(x) 4+ b. In
contrast, such constraint does not exist in aSVM and therefore its SMO algorithm
optimizes only one variable in each iteration. On the surface, as the constraint is
derived from aaLbe = 0, its absence is because our decision function f(z) = w’¢(z)
does not explicitly represent the intercept b but implicitly includes it as a component
of w. This notational difference is not critical. The real reason is that in aSVM, the
intercept is implicitly involved in the regularizer ||w]|?, while in SVM the intercept
is not part of the regularizer (since it does not affect margin). Even if we explicitly
include b in f(x), one cannot derive this linear constraint as long as b is included as

part of regularizer, say, in the form of ||b||%.

The parameter « is the optimal solution to the QP problem in Eq.(9) if and only
if the KKT conditions in Eq.(8) are fulfilled. We decompose the optimality condition
in Eq.(8) according to the value of a;:

=0 = p=0C&=0=yf(x)=>1
0<a;<C = pi>0,8=0=yf(x)=1
a=C = p;=0&§2>0=yf(x)<1 (11)

If the above optimal conditions are satisfied for every i, the QP problem is solved,
otherwise it is not. Eq.(11) provides a method to check the optimality condition of
the problem, and also to find variables «; that violate such condition and need to be
optimized. Our SMO algorithm chooses one variable to optimize in each iteration.
While there are many ways to select working variables, we use an intuitive heuristic of
selecting the variable «;+« that violates the optimality condition the most:

i* = argmax |y;f(x;) — 1] (12)
ie{iup7ilow}

where i, = argmin y;f(X;), liow = argmax y; f(x;)
ie{tlar<C} ie{t|a;>0}

Without loss of generality, suppose «a; is the working variable to optimize. We
update it by setting the derivative of the dual objective function Lp against a; to
Zero:

OLp

Foo = 1=y @) =y (0l = o) K(w1,21) = 0
o

where f°9(x) is the target classifier Eq.(10) evaluated using the existing value of o
This leads to an analytical solution of ajy:

Qe — old + 1— ylfOld('r1>
1 1 K(xl,:nl)
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Due to 0 < «; < C, the constrained optimal of «; is given by clipping the uncon-
strained optimal using the following bounds:

C, if a7 > C;
17 d :
aqfew,c ipped _ anew, if0 < A < C; (13)
0, if a" <0

To summarize the SMO learning algorithm, we start with certain initializations of
a, and iteratively choose working variables using Eq.(12) and optimize them one at a
time using Eq.(13). This process continues until the optimality condition in Eq.(11) is
satisfied up to a certain accuracy.

4.4 Adaptive Kernel Logistic Regression (aKLR)

In this section, we derive Adaptive Kernel Logistic Regression or aKLR from our adap-
tation framework by adopting the logistic loss function. We will present an alternative,
probabilistic interpretation of aKLR, where it is derived from the maximum-a-posterior
(MAP) estimation of a kernel logistic regression (KLR) model with a Gaussian Process
prior.

4.4.1 Model Formulation

To derive aKLR from the adaptation framework in Eq.(2), we adopt the logistic loss
function L(y, f(x) = log(1 +exp(—yf(x))) used by (kernel) logistic regression, and set
the delta function as Af(x) = w’ ¢(x) and the regularizer as ||w||?. This leads to the
following objective function:

N
o1
min J[[wi? + €' log(1 + exp(—yif (x:)) (14)
i=1
By defining &; = —y; f(x;), we can rewrite it as the (primal) Lagrangian form:
1 N N
Lp = 5lwl*+ O log(l+€%) = > (& +yif*(xi) + yiw" x;) (15)
i=1 i=1

where {;} | are Lagrange multipliers. To minimize Lp, we set its derivative against
w and &; to zero, which gives w = ZZ]\LI a;yi0(x;) and & = log Cflaz Plugging them
into the primal form in Eq.(15), we have the dual Lagrangian function:

= _Zazyz Xz —*ZZ%O‘J?/Z?JJ X“Xj)

i=1 j=1

N

—Z (C — ;) log(C — ) Zallogal (16)
i=1

The parameters {ai}i\il are estimated by maximizing the above dual form using the
learning algorithm to be described in Section 4.4.3. The target classifier has exactly
the same form as that of aSVM, i.e., f(x) = f4(x) + N | aimi K (x, ;).
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4.4.2 A Probabilistic Interpretation

We show that aKLR can be also derived from a probabilistic perspective where the
auxiliary classifier is treated as “prior model” of the target classifier. This alternative
derivation is based on mazimum-a-posterior (MAP) estimation. Following the repre-
sentation of (kernel) logistic regression [37], we define the conditional probability as
p(ylx) = 1/(1 + exp(—yf(x))). Thus, the log-likelihood of the training examples is
represented as:

Zlogp yilxi) = Zlog (1 + €5) (17)

where & = —y; f(x;). This log-likelihood corresponds to the second term of aKLR’s
objective function in Eq.(14), which represents empirical loss.

From a Bayesian point of view, the regularizer |[w||? is the outcome of a Guassian
prior distribution on parameters, i.e., w ~ N(0,CI), where I is an identity matrix.
The distribution p(w) specifies the properties of the considered function space of f(x)
in terms of the mean function:

E(f(x)) = f*(x) + BE(w")¢(x) = f*(x)

and covariance function:
Cov(f(x), F(x)) = E(wTé(x) - w7 o(x')) = Var(w)K (x,x') = CK(x,X)

This means the target classifier f(x) follows a prior Gaussian process (GP) [64]
with mean function f*(z) and its covariance function CK(x,x’):

f(x) ~ GP(f*(x), CK(x,x'))

GP is a distribution in the function space. This GP prior in particular favors
target classifiers f(x) that are close to the auxiliary classifier f*(x) in the func-
tion space. According to the definition of GP [64], a finite sample of f(x) as f =
{f(x1), .. (XN)} where x; € D!, follow a joint Gaussian distribution with mean as
fo = {f* (xl), ., f%(xn)} and covariance matrix as CK where K = [K(x;,%;)|nx N,
e, f ~N(f*, CK).

To learn the target classifier f(x), we resort to the mazimum-a-posterior (MAP)
estimation instead of a fully Bayesian approach. If we treat f as the model parameters,
the logarithm of the posterior distribution is specified by the log-likelihood of data and
the prior p(f):

logp(f|D) o U(D;f) + log p(f)

N
1
= =) log(l+e%) - Tei fOTKL(f — £) + const
N
= - log(1 + %) — 2 1
Z og(1 + e%) 2CHWH + const (18)
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which is to be maximized subject to § = —y;f(x;). This maximization problem is
identical to the minimization problem of aKLR in Eq.(14). This shows that the aKLR
model can be equivalently derived from a fully probabilistic perspective.

This probabilistic interpretation does not extend to other methods under our adap-
tation framework, such as aSVM, because their loss functions cannot be interpreted as
conditional probabilities. Nevertheless, it sheds light on the role of auxiliary classifier
in this framework, which is a prior in the hypothesis (function) space for the target
classifier f(x). The regularizer ||Af|| penalizes any hypothesis f(x) that deviates
from this prior.

4.4.3 Learning Algorithm for aKLR

Similar to aSVM, the parameters of aKLR are also estimated by minimizing its dual
Lagrangian form Lp in Eq.(16). This is a quadratic programming (QP) problem solved
using another variation of SMO algorithm we proposed. It is inspired by the SMO
algorithm for kernel logistic regression proposed by Keerthi et al. [44].

For simplicity, we define F; = —y;f(x;) + log(C — ;) — log ;. To maximize Lp
defined in Eq.(16), we can set its derivative against every «; to zero:

OLp
80@

=~y f(x;) +log(C — ;) —loga; = F; 20 (19)

This provides a method for checking the optimality condition (i.e., F; = 0,Vi ) and
for finding variables that violate the condition. Following the same reason discussed
in Section 4.3.3, only one working variable is optimized in each iteration of this SMO
algorithm. We select the one that violates the optimality condition the most as our
working variable, i.e., ix = argmax; | Fj|.

Without loss of generality, let a; be the current working variable. Unlike in aSVM,
here we cannot derive an analytical solution of a; from Eq.(19), so we resort to the
Newton-Raphson (NR) method to optimize «; iteratively. Suppose af®" = ozfld + t.
In the NR method, ¢ is iteratively updated using the following equation:

dLp (0*Lp\ "
+1 — l _ D D 9
=t - 52 (%) £l
where
6LD 8LD 80&1 0 o) O
T T Bar o~ S Ga) K (xx) £ 1og(C - af! — 1) —log(af" + 1)
0?Lp 1 1
=2 - _K — _
ot? Ger) = 5 afd —t  agld 4t

Starting from t = 0, we repeatedly invoke Eq.(20) to update ¢ until a certain accuracy
is reached or the constraint 0 < a1 < C becomes tight. The resulting ¢ is used to
update a;. We iteratively optimize selected working variables until the optimality
condition is satisfied, i.e., F; = 0, V4.
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4.5 Preliminary Experiments

We have applied aSVM and aKLR to the problem of adapting classifiers for semantic
video concepts across different news video corpora and demonstrated their effectiveness
in comparison with several reference methods in accuracy and efficiency.

4.5.1 Approaches for Comparison

We discuss four alternative approaches for classifying the data in the target domain.
The first two are baseline approaches, while the last two methods can be viewed as
adaptation approaches because they exploits the knowledge in both the auxiliary and
target domain.

e Aux-only approach: As suggest by its name, this approach directly applies the
classifier f*(x) (SVM or KLR) trained from an auxiliary domain on the target
domain. The cost factor used in training is C°.

e Target-only approach: Opposite to the first approach, this approach ignores
the auxiliary domain and builds SVM or KLR classifier f!(x) entirely from the
labeled examples D! in the target domain. We use C to denote the cost factor
used in training.

e Aggregation approach: This computationally intensive approach learns a sin-
gle SVM or KLR classifier using all the labeled examples aggregated from the
auxiliary domain and the target domain, i.e., D*|JD!. The examples from the
two domains are weighted according to their relative importance to the task by
using different cost factors in SVM or in KLR algorithm. We modify the imple-
mentation for SVM and KLR to support different cost factors of examples. In
the case of SVM, the decision function is f%99"(x) = w! ¢(x) with w estimated
from the following objective function:

N N¢
1
min o |[w?+C)_&+C) & (21)
i=1 =1

st. &>0, ywl o(x)>1-¢&, Y(xi,yi) €D
>0, yrwlo(xy)>1-¢, V(xi,yl) e D

where C' and C*® are the cost factors for examples in the target domain and in the
auxiliary domain, respectively. Intuitively, we we have C > C° because the goal
is to classify the target domain well. The aggregation approach based on KLR
has a similar form. This approach represents the data-level transfer learning
approaches used in existing works [24, 46, 50, 88]. It is fundamentally different
from our adaptation approach in that it involves the auxiliary data in the training
process while our approach directly manipulate the auxiliary classifiers.

e Ensemble approach: While the aggregation approach combines the training ex-
amples, the ensemble approach combines the output of two classifiers, one trained
from the auxiliary domain and the other trained from the target domain. Its re-
sult is equal to a weighted sum of output of the target-only method and the
aux-only method:

Frx) = Cff (%) + Cf(x) (22)
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(d) target-only (16.7% error) (e) aggregation (16.8% error) (f) adaptation (15.0% error)
Figure 5: (a) Distribution of Dy4; (b) Distribution of Dr; (c¢)-(f) Decision boundaries of the

classifiers trained using aux-only, target-only, aggregation and adaptation method and
applied to Dr. The number in the parentheses show the error rate of each classifier.

where C and C* are used as the weights of the two classifiers. This has been the
approach used in [47, 86]. Note that although our adapted classifier takes a similar
ensemble form f(x) = f*(x)+ Af(x), it is different from this ensemble approach
since Af(x) is learned with the influence of f*(x). In contrast, in this ensemble
approach the two base classifiers f¢(x) and f(x) are learned independently.

e Adaptation approach: We use the proposed aSVM or aKLR algorithm to
adapt the classifier f%(x) trained from the auxiliary domain to a new classifier
f(x) based on the labeled target examples D?. The cost factor in aSVM or aKLR
is set to C.

Cares are taken to ensure these approaches and our adaptation approach are com-
parable. In experiments, they are always trained using the same learning algorithms,
either SVM (and aSVM) or KLR (and aKLR), and the same kernel function, which we
use the empirically successful RBF kernel K (z;, z;) = e~Pllzi=2;l” “ We also ensure that
the cost factor C° for the auxiliary domain as well as C* for the target domain are the
same across different approaches. For simplicity, we set C* = 1 in all the experiments,
and set C to different values to study its impact on the classification performance.

4.5.2 Performance: Synthetic Data

To illustrate our model, we generate two synthetic data sets D4 and Dy from different
distributions in a 2-d feature space to represent the data in the auxiliary and target
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domain, respectively. Each set has 100 positive and 500 negative data. The positive
data in each set are generated from a Gaussian mixture model with 3 Gaussian com-
ponents, and the negative data are sampled uniformly outside the area of the positive
data. For D4, the 3 Gaussian components are centered at (—0.4,0.5), (0.5,0.7), and
(—=0.1,—0.6), while for Dy their means shift to (—0.4,0.3), (0.5,0.3), and (0, —0.65).

Figure 5 (a) and (b) shows the distribution of D4 and D7, where small circles denote
positive instances and dots denote negative instances. We assume all the instances in
D 4 are labeled, while only 20 instances are labeled in D7, including 3 positive instances
and 17 negative instances, shown as large dots in Figure 5 (b). In the task of classifying
Dr in the target domain, we compare our adaptation approach based on aSVM with
the target-only, aux-only, aggregation, and ensemble approach mentioned above.

We plot the decision boundary of the four classifiers on Dz in Figure 5 (c) to
(f). The error rate of each classifier is shown below each figure. Not surprisingly,
the boundary of aux-only classifier is biased towards the distribution of D4, and it
is unable to discriminate the positive data in D7 whose positions have shifted. The
target-only approach is unbiased, but has a large variance due to the limited training
data. aux-only and target-only have the two worst error rates, showing that using
evidence from a single domain is inadequate. Although trained from examples in both
domains, the aggregation method is still biased perhaps because the examples from
Dt are outnumbered by those from D 4. The adaptation method achieves the lowest
error rate, and its decision boundary captures the distribution of the positive data in
D7 more precisely than the other approaches. We attribute its superior performance
to a good bias-variance tradeoff: the model has a low bias by training from only the
examples of Dy, and meanwhile achieves a low variance through a regularizer penalizing
its difference from a prior model.

4.5.3 Performance: Cross-channel Video Concept Detection

The experiment on cross-domain video concept detection is conducted based on the
TRECVID 2005 collection described in Section 3. This collection contains news video
from 6 different channels (broadcasters) and manual annotations of 39 semantic con-
cepts. We choose one channel as the target channel and another as the auxiliary
channel. We assume all the video shots in the auxiliary channel are labeled w.r.t the
39 concepts, based on which a concept classifier has been trained from each concept.
The video shots in the target channel are partitioned into a development set and a test
set. In temporal order, the first 40% of the shots belong to the development set, and
the remaining 60% belong to the test set. We label a certain number of shots randomly
selected from the development set, and treat them as the training examples. The shots
in the test set are unlabeled and used for evaluation purpose.

The goal is to adapt the classifier of a given concept trained from the auxiliary
channel to a classifier for the target channel based on the training examples in its
development set. The adapted classifier is evaluated on the test set using the average
precision (AP) metric. In the experiment, we iterative over all the 39 concepts except
the “Weather” concept since its number of relevant shots is too small. For each concept,
we repeat the experiment using 4 sets of random samples in order to reduce the variance
caused by random sampling. The overall performance is measured by mean average
precision (MAP) averaged from 38 concepts and 4 random iterations for each concept.
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Figure 6: Comparison of our adaptation approach with two baseline approaches in terms of average
performance of detecting 38 concepts in CNN channel using NBC as auxiliary channel.

In this experiment we choose CNN as the target channel and NBC as the auxiliary
channel.

We compare five approaches including the adaptation approach based on aSVM,
and the target-only, aux-only, aggregation, and ensemble approach, where the last
four approaches are based on SVM. All the approaches use the same cost factor C' =1
and C® = 1. Moreover, they all use the Radius Basis Function (RBF) K(z;,z;) =
e~Plzi=zill* a5 the kernel function with p=0.1.

Comparison with Baseline Methods: Figure 6 compares our adaptation ap-
proach based on aSVM and the target-only and aux-only approach in terms of MAP
across 38 concepts. We vary the number of training examples in the target channel
from 50 to 4410, which is the size of the entire development set, each time doubling
the number of examples. Because the average frequency of a concept is only 7%, which
means only 7 out of 100 labeled shots are relevant to a concept, the positive examples
actually labeled are relatively few and far below the amount needed to train reliable
classifiers. So the numbers of labeled examples in this experiment are limited compared
with existing works [1, 38, 74].

We see that on average the adaptation approach outperforms the two baseline
approaches by a substantial margin. The performance gain over target-only, which
uses a new classifier trained without the knowledge of the auxiliary channel, is signifi-
cant especially when the training examples are relatively scarce. The gain diminishes
as the number of the training examples increases, but does not fade out even when
all the data in the development set are used for training. This shows adaptation is
beneficial even when there is a relatively large amount of training data. From another
perspective, adaptation needs much less training data to reach the same performance.
For example, target-only needs 400 labeled examples to achieve the same MAP of
adaptation using only 50 examples, or 1600 examples to reach the MAP of adapta-
tion at 400 examples. This clearly shows the benefit of leveraging the knowledge of
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Figure 7: Performance of detecting each concept in CNN using NBC as auxiliary channel.

Concept frequency High(>10%) | Medium Low(<1%) | Overall
# of concepts 6 20 12 38
target-only 0 2 2 4 (10.5%)
Best
aux-only 0 1 7 (18.4%)
Performer -
adaptation 6 12 9 27 (71.1%)
target-only 5 9 3 17 (44.7%)
Worst
aux-only 1 11 9 21 (52.6%)
Performer -
adaptation 0 0 0 0 (0%)

Table 1: The distribution of concepts by the performance of three approaches.

auxiliary channel (classifiers) in terms of improving performance or reducing labeling
effort. In contrast, the performance gain of the adapted classifier (adaptation) over
the auxiliary classifier (aux-only) enlarges as more training examples become avail-
able. This shows that aSVM can effectively exploit the knowledge in training examples
to improve existing classifiers.

We also compare the three approaches on a per concept basis in order to examine the
consistency of the performance improvement from adaptation. Figure 7 compares their
performance in terms of AP on the 38 concepts in descending order of frequency, when
there are 400 training examples available. In addition, Table 1 shows the number of
concepts on which each approach has the best or worst performance in each frequency
range. We see that the adaptation approach is the best performer on majority of
the concepts, and a close runner-up in the remaining concepts. It never has worst
performance in any concept. Since we do not know a-priori whether target-only or
aux-only performs better, this result means that adaptation is able to (implicitly)
pick the best of the two and improve on it. So our approach is relatively consistent
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# of Methods

samples target-only aux-only ensemble aggregation | adaptation
50 0.122 0.173 0.165 0.171 0.174
100 0.140 0.173 0.171 0.183 0.179
200 0.158 0.173 0.182 0.191 0.191
400 0.181 0.173 0.194 0.205 0.204

Table 2: Performance comparison of different methods.

150

—#&A— Adaptation (aSVM)
Aggregation (SVM)
— % — Target-only / Ensemble (SVM)

[

o

o
I

Training time (seconds)
3

0 b= — = = | | | . .
0 500 1000 1500 2000 2500 3000 3500 4000 4500
# of training examples

Figure 8: Comparison of average training time of 38 concepts

across different concepts, although there is still room for improvement.

A closer examination shows that the adaptation approach exploits different types
of knowledge depending on the frequency of a concept. For frequent concepts, the aux-
iliary classifiers generalize well and perform better than new classifiers trained from
limited labeled examples. In this case, our approach mainly relies on the auxiliary
classifiers and further improve their performance through adaptation. For rare con-
cepts, the auxiliary classifiers perform poorly with the worst performance on 9 out 12
concepts, and the training examples become more valuable. In this case, the adap-
tation approach can fully utilize the training examples without affected by the poor
auxiliary classifiers. This demonstrates that our approach is able to take advantage of
“the best of two worlds” in any situations.

Comparison with competing approaches: We also compare our method to
two competing methods that exploit both the auxiliary and target channel: the ag-
gregation method, which trains concept classifiers from labeled data aggregated from
the two channels,and the ensemble approach, which combines the outputs of classifiers
trained separately from the two channels. Table 3 shows the performance of them and
the two baseline approaches in terms of MAP of detecting 38 concepts. Clearly, the
three methods leveraging the knowledge from both channels significantly outperforms
those using knowledge from a single channel. Among the top three, adaptation and
aggregation have comparable performance, which is better than the performance of
ensemble.
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# of Auxiliary channel
samples NBC MSNBC | LBC CCTV NTDTV
0 (no adaptation) 0.173 0.197 0.151 0.146 0.131
50 0.181 0.190 0.165 0.165 0.155
100 0.192 0.199 0.178 0.179 0.168
200 0.196 0.207 0.193 0.189 0.180
400 0.205 0.213 0.202 0.199 0.190

Table 3: The performance of aSVM using different auxiliary channels.

# of Cost factor C

samples | C=1 C=2 C=3 C=5
50 0.174 0.166 0.161 0.155
100 0.179 0.172 0.169 0.164
200 0.191 0.185 0.181 0.177
400 0.204 0.201 0.198 0.196

Table 4: The performance of aSVM with different cost factors.

Training cost is another important performance metric that our adaptation ap-
proach aims to improve. We compare the total training time of adaptation, aggre-
gation, ensemble, and target-only in Figure 4. We assume auxiliary classifiers are
trained “offline”, and consequently, the cost of ensemble is equal to that of target-
only. From Figure 4, we see that the training time of adaptation is considerably
lower than aggregation especially at small sample size. This is due to the fact that
the aggregation method involves a large amount of auxiliary data in training, while
the adaptation method does not. Therefore, our aSVM-based adaptation method
achieves a good balance between efficiency and classification performance.

Impact of domain relatedness: While we use a fixed auxiliary channel in the
experiments, it is very interesting to investigate how the choice of auxiliary channel
(classifier) affects performance. With CNN being the target channel, we vary our choice
of auxiliary channel between the other five channels, and for each choice evaluate the
aSVM-based adaptation approach using the setting described above. As shown in Ta-
ble 3, the performance of adaptation is largely influenced by the choice of auxiliary
channels, and is closely related to the performance of auxiliary classifiers (before adap-
tation) on the target channel. In general, better auxiliary classifiers lead to better
adapted classifiers by providing a higher starting point for adaptation. When more
training examples are available, the performance difference between auxiliary channels
becomes less substantial.

Besides choosing auxiliary channels, we can adjust the contribution of an auxiliary
classifier in aSVM through the cost factor C. Based on the discussion in Section
4.3, smaller C puts more emphasis on the auxiliary classifiers, and vice versa. From
Table 4 we see that the choice of C also has a moderate impact on the performance of
our adaptation approach. Although its impact is not as large as that of the choice of
auxiliary channel, one needs to choose a proper cost factor in order to maximally utilize
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the chosen auxiliary channel. Currently, C' can be only chosen through cross-validation
which is computationally expensive.

Choosing auxiliary classifiers and choosing cost factor are two orthogonal aspects of
an important issue: measuring the utility of an auxiliary classifier in adaptation. Our
adaptation approach is limited as each auxiliary classifier is treated equally without
considering its utility. While the experiment suggests to select auxiliary classifiers with
better performance on the target data, measuring such performance is challenging given
that the target domain is mostly unlabeled. We will address this issue using domain
analysis approaches in Section 5.
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5 Domain Analysis

The proposed adaptation framework and algorithms do not consider how much the
auxiliary domain is related to the target domain. They provide a mechanism for doing
the adaptation, without asking whether the adaptation should be done or how much
emphasis should be given to the auxiliary classifiers. This is a limitation because adap-
tation is beneficial only when the auxiliary and target domain is sufficiently related.
Classifiers adapted from irrelevant auxiliary domains can perform worse than classi-
fiers trained only from the target domain. Another limitation is that only one auxiliary
classifier is used in adaptation, while in practice more than one auxiliary domains may
provide useful knowledge for problems in the target domain. For example, to build
concept classifiers for CCTV video, one may find the classifiers for CNN, MSNBC,
and NTDTYV video helpful. Therefore, it is desired to support adaptation of multiple
auxiliary classifiers, as well as to include weight for each classifier to reflect its (pro-
jected) contribution to the target domain. In this section, we extend our adaptation
framework to accommodate multiple auxiliary classifiers, and explore several domain
analysis approaches to measure the relatedness between auxiliary and target domains
in order to weight the contribution of auxiliary classifiers accordingly.

5.1 Proposed Work: Adaptation with Domain Weighting
5.1.1 Extended Framework

We deal with multiple auxiliary classifiers and their weighting by constructing a weighted
combination, or an ensemble, of the outputs of the auxiliary classifiers ), t; f*(x) and
treat it as a single classifier to be adapted to the target classifier. Here, { fg}iw: , de-
note classifiers trained separately from M auxiliary domains, and t = {t;}2L, are their
weights. The weights reflect the utility of each auxiliary classifier, which is in turn
determined by the relatedness between each auxiliary domain and the target domain.
In this case, the target classifier is represented as:

M
Fx) = trfii(x) + Af(x) (23)
k=1

The weights {tk}é\/fz , can be set manually based on our knowledge about the re-
latedness of each auxiliary domain to the target domain. In this case, the ensemble
Yoptefi(x) is fived before the adaptation process, and we can use exactly the same
approach in Section 4 to adapt it to the target classifier. However, manually defining
the weights is not desirable because the human knowledge about domain relatedness
can be inaccurate and often unavailable.

In this section, we extend our framework in Section 4 so that the weights {tk},]c”: 1
of auxiliary classifiers can be learned automatically and simultaneously with the target
classifier in one unified learning process. This is realized by adding another regularizer
U(]||t]]) to the regularized loss minimization framework:

min > L(yi, f(x:)) + QA fll7) + BE(It]%) (24)

38



where ¥(-) is a monotonically increasing regularization function, ||t||? is the norm of
the weights, and 3 is a scalar. This new regularizer allows the framework to penalize
large weights for auxiliary classifiers and favors small weights. This means the extended
framework seeks to minimize the overall contribution of auxiliary classifiers, which is
measured by [[t||2. This may appear to be counter-intuitive given that this framework
is used for adaptation, but it is reasonable when considered together with the other
two goals of this framework.

The three terms in Eq.(24) indicates three factors to be minimized: (1) classification
error, (2) the complexity of the delta function Af(-), and (3) the contribution of the
auxiliary classifiers { f¢'(-)}x. So there is a contention between the contribution of Af()
and {f¢(-)}r. However, because the target classifier f(x) is a combination of them (see
Eq.(23)), they cannot be minimized at the same time or we will have f(x) ~ 0 which
cannot achieve small classification error. To reach a f(x) with small classification error,
one can either construct a relatively complex delta function, or construct a complex
ensemble of auxiliary classifiers, or a combination of both approaches balanced by their
respective cost measured by the two regularization terms. This framework prevents
over-complicated delta function and too much reliance on auxiliary classifiers, as both
of them are prone to overfitting.

5.1.2 Adaptive SVM with Domain Weighting (aSVM-DW)

As an extension of aSVM, we propose adaptive SVM with domain weighting, named as
aSVM-DW, from the extended adaptation framework described above. This is realized
by adopting SVM’s hinge loss function L(y, f(x) = max(0,1 — yf(x) and using trivial
regularization functions as (x) = = and ¥(x) = z. It is easy to show the objective
function is equivalent to:

N
min 5wl + SB[6]* + C D&

i=1
M

st & >0,y Y teff(xi) +uiw g(xi) > 1 - &, V(xiy) €D’
=1

By integrating the constraints through Lagrange multipliers, we can rewrite this
objective function as a minimization problem of the following Lagrange (primal) func-
tion:

1 1 N N N
Lp = SIwlP + 5Bl + O3 6 = S uiti = Y oulyf (i) - (1- &) (25)
=1 =1 =1

where a; > 0 and w; > 0 are Lagrange multipliers. We minimize Lp by setting its
derivative against w, t, and £ to zero, which gives:

N N
1 .
W= E Qiyid(%i), b= B E Qiyife(Xi), i=0C—p;, Vi (26)
i1 i=1

This equation on t; shows a strong connection between weight ¢, and the perfor-
mance of the corresponding auxiliary classifier fi on the target domain. Since y; f7(x;)
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is a “margin” indicating how well f classifies instance x;, with larger margin indicating
better performance, t;, as the weighted sum of the margins on all the examples in D?
measures the overall performance of f7. This is intuitive because auxiliary classifiers
with better performance usually lead to target classifiers with better performance by
providing a higher starting point for adaptation. The extended adaptation framework
and aSVM-DW embodies this intuitive principle. It justifies regularizer ||t||? in the
objective function in Eq.(24) and in Eq.(25).

By plugging Eq.(26) into the primal Lagrangian Eq.(25), we obtain the dual La-
grange function as:

Lp= Zaz iy Zazajyzyj( i)+ S RE)) (@)
k

11]1

The parameters a = {ai}f\il are estimated by maximizing Lp using another varia-
tion of SMO algorithm, which will be presented in Section 5.1.4. The target classifier
expressed using the estimated & is:

M

éawi(z«xz, Z <)) (28)

5.1.3 Discussion of aSVM-DW

We offer an alternative interpretation of aSVM-DW as a normal SVM model that
treats the outputs of auxiliary classifiers as additional features. For each instance x,
we treat the outputs of auxiliary classifiers f = [f{*(x), ..., fi;(x)] as an extra feature
vector in addition to its original feature vector x. Similarly, f; = [f{'(x;), ..., fi;(x:)] is
an additional feature vector to x;. We can rewrite the target classifier in Eq.(28) as
f(x) =3, qiyi(K(xi,x) + 5f; - £). While K (x;,x) is the similarity between x; and x
in the (transformed) feature space, and f; - f measures the similarity of two instances in
terms of the outputs of auxiliary classifiers on them. If the classifiers’ outputs on them
are close, in which case f; - f is large, their similarity is high, and vice versa. Compared
with a SVM classifier f(x) =, oy K(x4,%), an aSVM-DW classifier simply extends
the measure of similarity to include the similarity on the classifier-output space.

In the linear case where a trivial kernel function K(x;,x) = x; - x is used, we
can concatenate feature x with classifiers outputs f to form a “hybrid” feature vector
z = | ¢ |, and similarly, z; = [ )f(‘l |. Assuming B = 1 without loss of generality, the

1

target classifier in aSVM-DW can be written as f(x) = ), o;y;2; - z, which is identical
to a linear SVM model based on the concatenated feature vector z.

This “feature concatenation” view does not apply in general cases where K(-,-) is
non-trivial. This is because the feature similarity is computed in any kernel space,
while the classifier-output similarity is computed in linear space. Therefore, we cannot
implement aSVM-DW as SVM over concatenated feature vectors. Neither can we use
the training algorithm for SVM to learn aSVM-DW by simply replacing K (x;, x;) with
K(x;,%x;) + %fi -f;. We will explore this issue in Section 5.1.4.

The idea of treating model (classifier) outputs as additional features is not new.
For example, Natsev et al. [56] adopted the so called “model-vector” approach which
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constructed semantic feature of a video shot from the scores of video concept classi-
fiers and used it in retrieval. Wu et al. [89] used the outputs of concept classifiers
built on different modalities as meta-features for concept detection. Here, we offer a
more principled interpretation of this seemingly ad-hoc technique: using classifier out-
puts as features is equivalent to adapting these classifiers under the regularized loss
minimization framework.

The above discussion provides insights on the scalar B. We see the role of B as
to balances the contribution between feature similarity and the similarity based on
auxiliary classifier outputs. The scale of these two similarity terms is affected by the
feature dimension d and the number of auxiliary classifiers M, respectively. Typically,
we have d > M since features for multimedia data is of high dimension. We need to
set % > 1 to avoid the classifier-output similarity being overwhelmed by the feature
similarity. A good starting point is to set B = % such that that the two similarity
terms have equal contribution.

5.1.4 Learning Algorithm for aSVM-DW

The fact that the dual form of aSVM-DW (in Eq.(27)) can be derived from SVM’s dual
form by replacing K (x;,x;) with K (x;,x;) + % Y. fo(xi) f2(x) gives the impression
that aSVM-DW can be implemented using SVM’s learning algorithm by replacing the
kernel term. This impression is not true. Despite the correspondence between their
dual form, the intercept term of a classifier is involved in the objective function of
aSVM-DW through regularizer ||w||?, but it is not involved in the objective function
of SVM. Based on our discussion in Section 4.3.3, this allows the SMO algorithm for
aSVM-DW to optimize only one working variable in each iteration, instead of two
variables as for SVM. This changes the structure of the learning algorithm.

The SMO algorithm for aSVM-DW can be modified from that for aSVM we de-
scribed in Section 4.3.3. In fact, the optimality condition and selection criterion of
working variable remain exactly the same as for aSVM, which are given by Eq.(11)
and Eq.(12). The only difference is the analytical solution of each working variable,
because aSVM-DW has a different optimization function. Suppose a7 is the working
variable. We set the derivative of the dual form in Eq.(27) against it to zero:

M
aLD O new O 1 a
Doy 1—y1f7(x1) = (a7 — o) <K(X17X1) B k;Z1fk (X1)2> £0 (29)
which leads to the analytical solution of «j:
1— old
e = agld 1 () (30)

M
K(x1,%1) + 5 Y ey fH(x1)?
This optimal solution may need to be clipped to satisfy the constraint 0 < a3 < C.

Thus, the learning algorithm of aSVM-DW is the same as that for aSVM except that
the variable update equation in Eq.(13) needs to be replaced by Eq.(30).

5.2 Extraction of Domain Features

The approach in the previous section associates the weights of auxiliary classifiers with
their classification performance on the labeled examples in the target domain. The
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underlying assumption is that auxiliary classifiers perform well on the target domain
is more useful in adaptation. While this is a valid assumption, a classifier’s perfor-
mance on labeled examples D! is not a reliable approximation of its performance on
the whole domain, because D! is too small to faithfully represent the distribution of
domain population. Labeling more examples in the target domain may improve such
approximation but would offset the benefit of adaptation on minimizing labeling effort.
In order to better weight auxiliary domains, we explore several domain features that
indicate how closely different domains are related or how well a classifier trained from
one domain performs on another domain. These features are combined to predict the
performance of an auxiliary classifier on the target domain. We discuss the extraction
of several domain features below.

5.2.1 Domain Metadata

In many cases, metadata are available which describe domains in terms of the genre,
style, editor and provider of the data. These metadata provide important clues as to
how much two domains are related to each other. For example, in TRECVID 2005
corpus, the language, country, and broadcaster (channel) information of news video
footage is available. It is reasonable to assume the footage edited by broadcaster in
the same country, such as CNN and NBC data, are more related than footage from
broadcasters of two countries, such as CNN and CCTV. We may also assume that the
relatedness between TRECO05 data and TRECO07 data is weaker because the latter are
documentary video data.

5.2.2 Features on Score Distribution

A classifier produces a score on each data instance to indicate how likely its label is a
positive (or negative). When a classifier is applied to a dataset, the distribution of the
scores provide clues as to how well this classifier performs. For a “good” classifier, the
scores of positive instances and those of negative ones are well separated, while for a
“poor” classifiers their scores are mixed together. This between-class score separation
is a good indicator of the classifier’s performance, but it requires the data labels which
are unavailable in a target domain. We propose a model-based approach to overcome
this problem. Assuming the scores of positive and negative data follow distributions of
a certain family, we recover their respective distributions from classifier outputs using
Expectation Maximization (EM) algorithm [37] in order to extract features like score
separation.

Models of score distribution have been explored for combining multiple search en-
gine outputs [51] and rank aggregation [25]. Given the diversity of classification al-
gorithms, it is impossible to find a distribution family that fits the scores produced
by any classifier. Thus, we made several assumptions on classifier output: (1) the
scores are in the range of (—oo,+00); (2) the boundary between two classes is zero,
with scores above zero indicating positive instances, and vice versa; (3) the absolute
value of a score indicates the degree of confidence on the predicted label. While seem-
ingly restrictive, these assumptions are actually general enough to include widely used
classification methods in multimedia, such as SVM and (kernel) logistic regression.

Based on these assumptions, we use Gaussian distributions to fit the scores of pos-
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Figure 9: The score distribution of two classifiers on the same dataset. The histograms show

the actual score distributions, and the Gaussian curves are fit by EM. Classifier A performs
better than B.

itive instances and of negative instances respectively, because they fit the actual scores
well and their parameters are easy to estimate. Suppose z = f%(x) is the score that
auxiliary classifier f* produces on instance x. The scores of positive instances follow
distribution p(z|ly = 1) = N (uy, 012)), where u, and O‘I% are the mean and variance. Sim-
ilarly, p(z|ly = —1) = N (un,0,) is the distribution of the scores of negative instances.
We assume the prior of labels to be P(y = 1) = 7 and P(y = —1) = 1 — . The overall
score distribution is therefore a Gaussian mixture model with two components:

p(z) = 7N (up, 0p) + (1 — m)N (up, 04) (31)

The parameters (7, uy, 0p, upn,0y) are estimated from the outputs of f*(x) on all
(labeled and unlabeled) the data in the target domain using the EM algorithm. It
iteratively improves the model parameters until two Gaussian components that best fit
the scores are found. Figure 9 shows the estimated score distributions of two “studio”
classifiers, one trained from a NTDTV news program and the other from a NBC news
program in TRECVID 2005 corpus, being applied to another NTDTV program (see
details of these data in Section 3.1). We find that the Gaussian mixture models esti-
mated by EM fit the score distributions well. Moreover, it shows a strong relationship
between the score distribution and the classifier performance, because the classifier
with larger between-class score separation has much higher performance.

We extract various features from the estimated score distributions. Suppose (7, iy, 6y, tin, 67,)
are the parameters estimated by EM. One feature describing the score separation is
the distance between the mean of the positive and negative data as 4, — i,. A slightly
different feature, which is proven to be effective in previous work [51], is the distance

between the mean of the positive 7, to the middle point 2™ at which the two Gaussian
densities intersect (i.e., p(z™|y = 1) = p(z™|y = —1)).
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Feature Description

sample_ap average precision of f on the labeled subset D! of the primary data

maz_score the maximum score produced by f® on the primary data

pos_neq_dist distance b/w the estimated mean scores of positive data and of
negative data

pos_mid_dist distance b/w the mean score of positive data to the point where
the positive and negative score distribution intersects

pseudo_ap average precision of f* computed on pseudo labels derived from

score aggregation

Table 5: Domain features for predicting the performance of an auxiliary classifier f*(x).

5.2.3 Pseudo Performance

Although most data in the target domain are unlabeled, we can evaluate auxiliary
classifiers based on the “pseudo labels” on the target data. One way to compute the
pseudo labels is based on the notion that the “average” of multiple classifiers is usually
better than any individual classifier. Therefore, we aggregate the outputs of multiple
auxiliary classifiers to predict the labels of the primary data, and then use these pseudo
labels to evaluate each classifier. Assuming zil, ...,le are the scores on instance x;
produced by a set of M auxiliary classifiers, a principled way to aggregate these scores is
to compute the posterior distribution as P(y; = 1|21, ..., 2M). If the outputs of different
classifiers are independent given an instance and its label, we have the following based
on Baye’s rule:

Py = D) Il p(2Flyi = 1)
Syie11 Pwi) Ty (i)

where p(2F|y; = 1) and p(zF|y; = —1) are Gaussian distributions fit by the EM algo-
rithm described above, and the prior P(y;) is set to the ratio of positive (or negative)
instances in the training data of these classifiers.

P(y; = 1|zi1,...,zM) =

i

(32)

Each individual classifier is evaluated by measuring the agreement between its out-
put and the estimated posterior probability. One way is to convert the posteriors into
the pseudo labels as §; = sgn(P(y; = 1|2}, ..., 2M) —0.5), and compute a certain perfor-
mance metric (e.g., average precision (AP)) of the classifier based on the pseudo labels.
Another way is to convert the posteriors into ranks and measure the consistency be-
tween this aggregated rank and the rank generated by a classifier using the Kendall
tau distance. Empirically we find the measure based on pseudo labels is better.

5.2.4 Predicting Classifier Performance

We build a regression model to predict an auxiliary classifier’s performance on the
target domain based on the domain features. Table 5 summarizes the domain features
used as input to the regression model, including domain metadata, features computed
from score distribution and pseudo performance. The input also includes the classifier’s
performance on the labeled examples measured by average precision (AP). The output
of the regression model is the predicted performance (also in terms of AP) of this
classifier on the whole target domain. The regression model is trained using support
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Figure 10: The probability of selecting optimal auxiliary channel for channel CNN on 39 concepts.

vector regression (SVR) [26]. We then select and weight the auxiliary classifiers based
on their performed predicted by this model.

5.2.5 Preliminary experiment

We evaluate the use of domain features for selecting auxiliary classifiers (domains)
in cross-channel video concept detection. Specifically, we use CNN to be the target
channel, and rank the other 5 channels (CCTV, NBC, MSNBC, NTDTV, and LBC)
as candidate auxiliary channels in terms of their utility using the following criteria:

e Random ranks the auxiliary channels randomly.

e Sample performance ranks the auxiliary channels by the performance of their
corresponding classifiers based on the labeled examples in the target channel.

e Domain feature ranks the auxiliary channels according to the predicted perfor-
mance based on the domain features, with the approach described in the previous
subsection.

For each of the 38 concepts, we rank the 5 channels using one of the above criteria,
and choose the top-ranked one to be the only auxiliary channel. On the other hand, we
evaluate the classifiers of these 5 channels based on the labels of CNN data, and the one
with the highest actual performance is the optimal choice. We evaluate each selection
criterion in terms of the probability that the top-ranked channel is indeed the optimal
one. Figure 10 summarizes the evaluation results at different sample size. It shows
that using domain features significantly outperforms the selection made according to
the performance on labeled examples. Also, the selection of both methods improves as
more labeled examples are available.
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5.3 Proposed Work: Adaptation with Domain Features

Section 5.1 introduces an extended framework capable of automatic weighting of auxil-
iary classifiers, where the weights are associated with their performance on the labeled
examples. Section 5.2 presents a set of domain features which indicate domain relat-
edness and utility of auxiliary classifiers. Since both approaches exploit orthogonal
knowledge, it is advantageous to combine them.

We plan to further extend the adaptation approach in section 5.1 such that the
weights of auxiliary classifiers are influenced by the domain features. Suppose the
domain features of domain k are denoted as z, € R! where [ is the dimension, and
z = [z1,..,2%,]7 is a | x M matrix stacked from the domain feature vectors. We
assume the weight of auxiliary classifier follows a Gaussian distribution with mean
parameterized by a linear combination of domain features, i.e., t;, ~ N(ulz,0?),
where u = {uk}f,czl is a set of [ parameters, and o is the predefined standard deviation.

We modify the regularized loss function as:

in 37 L £000)) + XA ) + B[t = 572 (33)

Under the hinge loss function of SVM, we derive adaptive SVM with domain feature
based weighting (aSVM-DFW) from this general framework. The objective function
of aSVM-DFW is written as:

N
1 B
nin, 2||W||2+2||13—11TZH2+CZ§_;(1 — yif (%i))+ (34)

where f(x) = ZQ/LI trfi(x) + Af(x). aSVM-DFW can be seen as a step further
beyond aSVM-DW by integrating the domain features z;. The learning algorithm of
aSVM-DFW and its performance will be explored in this thesis.
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6 Sample Selection for Domain Adaptation

The previous sections have covered the problems of adapting auxiliary classifiers to a
target domain as well as the selection and weighting of auxiliary classifiers. One key
problem that is raised in Section 1.3 but has not been addressed is how to select training
examples from the target domain to help the adaptation process. So far the training
examples have been randomly, which is clearly suboptimal. We assume that adaptation
based on informative samples will either lead to better classifiers for the target domain,
or require fewer examples to reach the same classification accuracy. So effective sample
selection methods are important to improving classification performance and reducing
labeling effort.

The problem of sample selection has been extensively studied in research on active
learning [19], but no methods are devoted to the context of adaptation. In previous
work, a number of methods have been proposed for selecting informative samples for
large-margin classifiers, especially SVM [12, 70, 83, 93]. However, all these methods
consider building new classifiers from the selected examples, while we consider adapt-
ing emisting classifiers based on these samples. The difference on context makes a
difference in sample selection strategy. Instead of selecting samples that are informa-
tive for building classifiers from scratch, we select samples that provide information
complementary to auxiliary classifiers so that they can be adapted to target classifiers
with better performance using fewer examples. Said in another way, we need to make
sure the information provided by examples is not redundant with the information of
auxiliary classifiers.

We describe two sample selection methods in the context of classifier adaptation,
which represent two different ways of finding examples with complementary informa-
tion. The first method selects examples to achieve the largest loss reduction on aux-
iliary classifiers, while the second one selects examples causing maximal disagreement
between auxiliary classifiers. We describe their details and evaluate their performance
in this section.

6.1 Sample Selection based on Loss Minimization
6.1.1 The Theoretical Model

Formally, let P be a pool of data in the target domain, and D be the set of examples
selected from P to label. Also, let P(y|x) be the conditional probability of the label
of an example x in P, and P(x) be the marginal probability of x. Following the
formulation of regularized loss in previous sections, we use L(y, f(x)) to denote the
loss of the target classifier f on instance x , and Reg(f) as the regularization term that
is related to the complexity of f(x). For example, the regularizer is Q(||Af]|#) in the
adaptation framework in Section 4.2. We express the expected risk function as follows:

R(f) = ExEy,x(L(y, f(x))+ Reg(f)
= [ 3 L Fx) P Pix)x -+ Reg(1) (35)

yey
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Given the difficulty of computing the expected risk over the distribution P(x), it is
more feasible to measure this risk over the pool of available data P:

1

R(f)ZW

> Eyx(L(y, f(x)) + Reg(f) (36)

xeP

For simplicity, we assume there is only one auxiliary classifier f*. Suppose f is the
target classifier adapted from f® based on labeled examples in D using any adaptation
method proposed in Section 4. During the adaptation process, fP is initially equal to
f* when D = @, and it gradually deviates from f® when more examples are included
in D. In this case, the optimal set of samples D,,; are those that minimize the expected
risk of the target classifier P, i.e., Doy = argming R(fP). This is equivalent to the
sample set that achieves the largest risk reduction from the auxiliary classifier f%:

D = arguax (R - 7)) (37)

= angmax 3 By L0 266) — L0 £700) ) + (Reas*) ~ Rea(7))

xeP

6.1.2 Computationally Tractable Methods

Theoretically, directly maximizing Eq.(37) leads to the optimal sample set. In practice,
however, this is prohibitively expensive because there is 2/7! possible choices for D and
for each choice fP needs to be re-trained to update the estimate of the expected loss
function. In the following, we introduce several simplifying assumptions which lead to
two computationally tractable sample selection methods.

First, we use the risk reduction over the sample set D to approximate the risk
reduction over the whole collection P. This can be done by replacing the range of
the sum in Eq.(37) from x € P with x € D. The underlying assumption is that the
expected loss for any x € P\ D has an equal influence. The same approximation was
made in previous active learning methods such as [12] and [93].

Moreover, we assume that the target classifier fP can correctly predict the labels
of any x € D. This suggests the risk » 5, Fy | L(y, fP(x)) is negligible compared with
> p ByxL(y, f*(x)) so that it can be dropped. This is a reasonable approximation
because a kernel machine such as (adaptive) SVM can easily find a non-linear decision
boundary to separate a small number of training examples by their classes. Based on
these two assumptions, we rewrite the expression of D, as follows:

Dope = angana 3 By (110 + (Rea(*) = Reg(7))

xeD

Compared with Eq.(37), this has simplified the problem, yet it is still computa-
tionally intractable because fP needs to be trained for every choice of D. So we make
two further assumptions. First, we assume the samples are picked in a “greedy” man-
ner. That is, we repeatedly pick the single best sample from the pool of un-sampled
instances, and accumulate them into a sample set. This will not lead to the optimal
sample set, but it reduces the number of choices of D from 2/7| to |P| in each itera-
tion. Based on this strategy, we further assume that the change of regularization term
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as Reg(f®) — Reg(fP) after each sample is included into D does not depend on the
choice of this sample. This certainly not true, because fP depends on the choice of
samples. However, the change of the regularizer for one sample is typically very small
and hard to estimate directly from the sample without re-training P, which we want
to avoid. With these further assumptions, our sample selection strategy is equivalent
to repeatedly choosing the best sample x,,; using the following criterion and add it to
the existing sample set, i.e., D = D | J{xopt }:

Xopt = argmax Y P(y|x)L(y, [*(x)) (38)
x€P\D y={—1,1}

Eq.(38) eliminates the computationally intensive step of re-training fP for every
choice of D, and reduces the search space from 2/P| to |P|. This allows the best sample
to be found very efficiently. The rationale behind Eq.(38) is simple and intuitive: find
the example with the largest loss under ¢ so that by including it into training set we
can reduce the overall loss the most. In another words, if an example is the one that
f% is least likely to correctly classify, then it provides knowledge most complementary
to the auxiliary classifiers.

Finally, we need to estimate the conditional probability P(y|x). Although the
classifier outputs a confidence score f(x) which indicates the relevance of each x to
the target class, it is not a reliable estimation of the posterior probability, even if it
is normalized to [0, 1]. Therefore we develop two models for estimate P(y|x), both of
which are based on the hinge loss function of SVM, i.e., L(y, f(x)) = max(0, 1 —y f(x)),
because the same loss function is used in aSVM and its variations as well.

- Prior Model: We assume the class-conditional P(y|x) is completely unrelated to the
prediction made by f%; instead, we set it to the prior distribution of label y in the
data of auxiliary domain D® if available, i.e., P(y = £1|x) &~ Ppa(y = £1), where
Ppa(y = £1) is the ratio of positive or negative instances in D?, respectively. In
this case, the sample selection criterion in Eq.(38) is written as:

Xopt = argmax Z <P’Da (y) max(0,1 — yfa(x))> (39)

xeP\D y={1,—1}

This model is related to the “Uniform Guess” model in [93] and “Random Labels”
model in [12] since they both dissociate p(y|x) with f(x) and set it uniformly (to
1/2). Using the prior distribution in the old data, our model is more accurate
when the two classes are unbalanced, which is typical in multimedia problems.
When the positive data are rare, i.e., Ppa(y = 1) < Ppa(y = —1), the selection
criterion in Eq.(39) is biased towards selecting the examples considered “most
positive” by f®. This is desired since the examples from the rare class are more
useful in terms of training a classifier.

- Best Worst Model: This model has been suggested in several papers [12, 93] and
it leads to the well-known “uncertainty sampling” strategy [83]. In this model,
we approximate the expected loss with the smallest loss among all the possible
labels. Because the smallest loss always comes with the predicted label, this
model assumes that f correctly predicts the label of x, i.e., y = sgn(f*(x)). In
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this case, Eq.(38) is written as:

Xopt = argmax { ymin (max((), 1-— yfa(x))) }

xeP\D =-11

— argmax { max(0,1 - sgn(*(0) (0 |

xeP\D

= g mex(0.1 - 700}

xe€P\D

—  argmin|f*(x) (10)
xeP\D

Since |f*(x)| indicates how confidence the classifier is about the predicted label,
this sample selection strategy chooses the examples that f is least confident
about, i.e., the most ambiguous examples. They are also the examples that are
closest to the decision boundary which is specified by f%(x) = 0. This is similar
to the uncertainty sampling strategy in active learning [12, 83| except that the
decision is made based on the auxiliary classifier f¢.

6.1.3 Batch and Incremental Sample Selection

The sample selection methods described above can be used in two modes: batch mode
or incremental mode. In the batch model, we collect a set of samples by repeatedly
selecting the best sample, label all of them, and adapt the auxiliary classifier to the
target classifier based on the labeled samples. The learning (adaptation) is done only
once, i.e., after all the samples are collected and labeled. No learning takes place based
on part of the samples when they are still being collected. In this case, all the samples
are selected based on the risk function (see Eq.(38)) of f¢, which is efficient because
f¢ is given.

In contrast, the incremental mode requires the target classifier to be repeatedly
adapted whenever a new sample(s) arrives. The new classifier is adapted from the
classifier trained in the previous round based on the most recent sample(s). This
means the new classifier, once trained, immediately becomes the auxiliary classifier
for the next round of adaptation. In this mode, samples are selected based on the
loss function of the most recent target classifier f7, so they are supposed to be more
effective (in terms of risk reduction). This mode is useful in interactive systems where
there is a need to repeatedly update target classifiers and show updated results while
users are selecting and labeling new examples.

6.1.4 Sample Selection with Multiple Auxiliary Classifiers

The aforementioned sample selection methods assume only one auxiliary classifier. To
extend it to the case of multiple auxiliary classifiers f{,..., f{;, we extend the sample
selection criterion in Eq.(38) to find the example with the largest average loss over
all the auxiliary classifiers, or the example with the largest mazimum loss over all the
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auxiliary classifiers:

Xopt = argmax Z Z y|X y7 fl? (X))

x€P\D _ 1y={-1,1}

or  xop = argmax max 3 Plylx)L(y, () (41)

The downside of this sample selection method is that it treats the auxiliary classifiers
equally while in reality they are not equally useful. Ideally, one should give emphasis
on the loss function of “useful” auxiliary classifiers. However, the weights indicating the
usefulness of auxiliary classifiers are not learned until the target classifier is trained.
Therefore, if we have the weights as the result of previous adaptation iterations, we
can exploit them in the sampling process. Otherwise, the best we can do is to treat
the auxiliary classifiers equally.

6.2 Proposed Work: Sample Selection based on Classifier
Disagreement

Another set of active learning methods [53, 71] seek to find examples that cause mazimal
disagreement across a set of classifiers on the same task, i.e., examples that half of
the existing classifiers classify as positive and the other half classify as negative. The
underlying theory is to find examples that help reduce the version space the most, where
version space is the subset of all hypotheses that are consistent with the current set of
labeled examples. Methods such as Query-by-Committee (QBC) by Seung et al. [71]
suggest to train a committee of classifier variants to represent the range of the version
space. Examples causing maximal disagreement can invalidate half of the classifiers
and thus reduce the version space approximately by half. Tong and Koller [82] also
show that the uncertainty sampling method in SVM has a theoretical foundation in
maximal reduction of version space.

We borrow the principle of maximal disagreement for identifying examples with
multiple auxiliary classifiers. Instead of training a set of classifiers using a random-
ized learning algorithm, we can use the set of existing auxiliary classifiers to identify
examples that cause maximal disagreement among them.

6.3 Preliminary Experiments on Sample Selection

We compare the two sample selection methods derived from loss minimization frame-
work 6.1, which are based on the Prior model and the Best-Word model, with random
sampling in cross-channel video concept detection. We use the same experiment setting
used in Section 4.5. To classify video shots in channel CNN, we adapt concept classi-
fiers trained from channel NBC using aSVM based on examples selected by different
selection methods.

Figure 11 compare the performance of aSVM using different sample selection meth-
ods in terms of MAP averaged from 38 concepts. We find that the two loss-reduction
sampling methods based on Prior model (prior) and based on Best-Word model (best-
worst) are considerably better than random sampling (random). This shows that using
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Figure 11: Comparison of sample selection methods based on aSVM.

informative samples instead of random samples does improve the performance of the
target classifier derived from adaptation. Between the two sample selection methods,
prior is slightly better than best-Worst except when there are only 50 samples. This
suggests the auxiliary classifier does not do a better job on predicting the data labels
than guessing according to the ratio of the two classes.
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7 Proposed Work: Domain Adaptation in Other
Applications

We have demonstrated that the success of the proposed adaptation approaches in solv-
ing the problem of cross-domain video concept detection. Nevertheless, our approach
is general enough to be applied to many other adaptations within and beyond the area
of multimedia, as long as they can be formulated as classification problems. We plan
to investigate two specific problems in the thesis work:

e Adaptation of retrieval models: Multimedia retrieval models combine the
scores of various “retrieval experts”, such as text retrieval score, image similarity,
as a weighted sum into a final score indicating the relevance of an image or
video shot to a user query. The combination weights are learned using a linear
classifier (e.g., logistic regression) trained from past queries with labeled results
for each query. A retrieval model can be built for a certain corpus (e.g., CNN
news video), a certain type of queries (e.g., queries for people), or even every
query, depending the availability of training data. There is a need to adapt the
retrieval model(s) when the underlying corpus changes, when the type of queries
changes, or even when there is a unseen query. In this work, we can treat existing
retrieval models as auxiliary classifiers, the new corpus or query type or query
as the target domain, and (pseudo) relevant examples obtained through implicit
or explicit user feedbacks as training examples. The goal is to build an effective
retrieval models by adapting from existing ones without having to label many
training examples or not labeling any at all.

e Cross-corpora text categorization: There is a large variety in terms of the
text corpus used for text categorization. Popular corpora include the Wall Street
Journal (WSJ), 20-news group data, and so on. To our knowledge, no prior work
has been done on the problem of applying classifiers trained from one corpus to
other corpora. Through experiments, we will study how much corpus change
affects the performance of text classification, and how much our adaptation ap-
proaches help to alleviate the impact. This will show the effectiveness of our
approach high-dimensional but discrete term-vector features used in text docu-
ments.

In addition to these two applications, we will seek other opportunities of applying
our approaches to solve adaptation problems in various research areas.
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8 Summary of Proposed Thesis Work

8.1 Domain Impact to Video Concept Detection

We will conduct a comprehensive empirical study on the impact of domain change to
the performance of video concept detection. This can be realized by building concept
classifiers from one domain and examining their performance on the other domains.
The test data used include TRECVID corpus in 2005 through 2007, which include
broadcast news video and documentary video from different programs and channels.
By varying the choices of “training domain” and “test domain”, we will study how robust
the concept classifiers are over the change of programs, content providers (channels),
video types (news and documentary), by comparing the classification performance on
in-domain data and on out-of-domain data. This study will also provide insights on the
robustness or domain-dependency of different types of low-level features and different
concepts.

8.2 Domain Analysis

e We will implement adaptive SVM with domain weighting (aSVM-DW) based on
its formulation and learning algorithm presented in Section 5.1. This algorithm
is able to adapt a set of auxiliary classifiers to a single target classifier and auto-
matically learn the weights of these auxiliary classifiers in the same process.

e A limitation with aSVM-DW is that the weights of auxiliary classifiers are only
determined by their performance on classifying a small number of examples in
the target domain. To learn more reliable weights, we will further extend aSVM-
DW to integrate the domain features described in Section 5.3 which indicates the
relatedness of auxiliary classifiers (domains) to the target domain. The extended
algorithm will be named adaptive SVM with domain feature based weighting
(aSVM-DFW).

e We will evaluate the performance of various domain analysis approaches, including
aSVM-DW and aSVM-DFW| in cross-domain video concept detection. Besides
comparing different approaches, we plan to investigate several issues through the
experiment, including the difference between using “good” and “bad” auxiliary
classifiers, impact of the number of auxiliary classifiers, etc.

8.3 Sample Selection for Adaptation

e We will implement a sample selection method based on the “maximal disagree-
ment” principle, which intends to find examples in the target domain whose label
is predicted as positive by half of the auxiliary classifiers and negative by the
other half. The underlying idea is to find examples that help reduce the version
space the most.

e We plan to extend the current preliminary experiment on sample selection meth-
ods in video concept detection. The new experiment will include the maximal-
disagreement sample selection method besides the methods based on loss mini-
mization, and as well as settings with multiple auxiliary classifiers. In order to
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8.4

provide deeper insights of these sample selection methods, we will also closely ex-
amine the examples selected by each method, such as the percentage of positive
examples.

Domain Adaptation in Other Areas

We will extend the application of the proposed approaches form cross-domain video
concept detection to other adaptation problems within and beyond multimedia. We
identify several potential applications. One application is the adaptation of multimedia
retrieval models trained from a specific corpus, query type, or query to other corpora,
query types, and queries. Another application is the adaptation of classifiers for text
categorization across different text corpora, in order to evaluate our approach on high-
dimensional, discrete term-vector features of text documents.

8.5

Timeline
Nov.- Dec. 2007: Conduct an empirical survey on the impact of domain change
to video concept detection.
Jan. 2007 - Mar. 2008: Implement and evaluate domain analysis approaches.
Apr. 2008: Implement and evaluate disagreement based sample selection method.

May.2008 - Jul. 2008: Apply the proposed approaches to other adaptation
problems including multimedia retrieval model adaptation and cross-corpus text
categorization.

Aug. 2008 - Sep. 2008: Summarize and thesis write-up.
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