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ABSTRACT 
An important trend in Web information processing is the support 
of multimedia retrieval. However, the most prevailing paradigm 
for multimedia retrieval, content-based retrieval (CBR), is a rather 
conservative one whose performance depends on a set of 
specifically defined low-level features and a carefully chosen 
sample object. In this paper, an aggressive search mechanism 
called Octopus is proposed which addresses the retrieval of multi-
modality data using multifaceted knowledge. In particular, 
Octopus promotes a novel scenario in which the user supplies 
seed objects of arbitrary modality as the hint of his information 
need, and receives a set of multi-modality objects satisfying his 
need. The foundation of Octopus is a multifaceted knowledge 
base constructed on a layered graph model (LGM), which 
describes the relevance between media objects from various 
perspectives. Link analysis based retrieval algorithm is proposed 
based on the LGM. A unique relevance feedback technique is 
developed to update the knowledge base by learning from user 
behaviors, and to enhance the retrieval performance in a 
progressive manner. A prototype implementing the proposed 
approach has been developed to demonstrate its feasibility and 
capability through illustrative examples. 

Categories and Subject Descriptors 
H.3.3 [Information Storage and Retrieval]: Information Search 
and Retrieval – query formulation, relevance feedback, query 
models, search process.  

General Terms 
Algorithms, Management, Design.  
Keywords 
Multi-modality, multimedia retrieval, multifaceted knowledge 
base, layered graph model, link analysis, relevance feedback. 

1. INTRODUCTION 
A close examination of content-based multimedia retrieval (CBR) 
systems reveals one of their common implications—the sample 
object used to formulate a query is virtually an eligible result of 
the query, usually the most relevant one. This observation leads to 
the following paradox. Suppose the user needs only one result, if 
he is able to find a good sample, he needs not bother to input it 
into the retrieval system, because the sample is exactly what he is 

looking for. If that is not the case, the users of CBR systems are 
still plagued by the task of finding representative samples to 
formulate effective queries. Quite often, the user has only a vague 
idea about the desired results in some details. On the other hand, 
even if the user has clear mind about what he would like to find, 
he may not be able to clarify it to the system due to the lack of a 
“right-to-target” sample object at hand. 

The difficulty of finding good samples reveals a recognized 
problem in CBR systems—the lack of data semantics, which is of 
essential importance in judging the quality of retrieval results. 
However, what are used by most CBR systems are low-level 
features of media objects1, such as color histogram for images, 
motion vectors for videos. Although these features reflect the data 
semantics to a certain degree, it is no doubt that they are 
inadequate to capture precisely the semantics of media objects. 
Providing good samples is a natural requirement of using low-
level features: the system relies on the representative features of 
the sample to approximate the underlying semantics desired by 
the user. (There are also CBIR systems that use stretches or 
templates to formulate queries [5], which can be generally 
regarded as samples.) Moreover, since the low-level features are 
also media-specific, the sample object must be of the same 
modality as the desired results. The media objects retrieved by 
CBR systems are perceptually similar to (looks like or sounds like) 
the sample, but may not satisfy the requirement of the user who 
judges the relevance of an object at the semantic level. 

Therefore, we regard the CBR systems as conservative systems, 
whose performance depends on a set of specifically defined 
features and carefully chosen sample object. Table 1 provides a 
summary of the CBR approaches vis-à-vis their drawbacks. In 
particular, to remedy these drawbacks, we propose a more 
aggressive mechanism—Octopus—for search of multi-modality 
data. It is characterized as aggressive based on the following two 
properties:  

1. It exploits the knowledge on multiple aspects regarding the 
relevance between media objects. Based on such 
multifaceted knowledge, the retrieval results are not 
necessarily similar to the sample perceptually, but related to 
it in a more sophisticated and semantics-flavored manner. 

                                                                 
 

Copyright is held by the author/owner(s). 
WWW 2002, May 7-11, 2002, Honolulu, Hawaii, USA. 
ACM 1-58113-449-5/02/0005. 

1 In this paper, a media object is an object of any modality, such 
as an image, video, text, etc. Meanwhile, if not indicated 
explicitly, we use “object” and “media object” interchangeably.  
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Table 1: CBR paradigm, drawbacks, and suggested remedies to multimedia retrieval 
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from user-system interactions, such that Octopus has a hill-
climbing nature (indicated by the loop in Figure 1) that allows its 
performance to be progressively enhanced based on the 
knowledge learned from previous queries and feedbacks.  

We do not provide any quantitative performance evaluation in this 
paper, mainly due to the lack of benchmark for such multi-
modality search. Actually, the main contribution of this paper is 
not on the performance improvement, but to bring out a novel 
retrieval scenario that is not even possible with previous retrieval 
approaches. Some characteristic queries and their results obtained 
using our prototype system are displayed to demonstrate the 
variety and flexibility of search in this scenario. 

The rest of this paper is organized as follows. In Section 2, we 
present a formal description of the layered graph model as the 
core of the multifaceted knowledge base. The link analysis based 
algorithms for multi-modality data retrieval and relevance 
feedback are elaborated in Section 3. In Section 4, we introduce a 
prototype implementing the proposed approach and demonstrate 
its retrieval capability by illustrative examples. In Section 5, we 
discuss how our approach relates to the previous works on 
multimedia retrieval and link structure analysis. Finally we give 
the conclusion and suggest the future work in Section 6. 

2. MULTIFACETED KNOWLEDGE BASE 
In this section, we introduce a layered graph model as the core of 
the multifaceted knowledge base, along with a description of the 
knowledge acquisition process. 

2.1 Layered Graph Model (LGM) 
As the foundation of the retrieval functionality, the multifaceted 
knowledge base accommodates a broad range of knowledge 
regarding the relevance between media objects. In this paper, we 
use the term “media object” to refer to an object of various 
modalities, such as an image, a video clip, and a textual document. 
Some media objects can be regarded as composite objects that are 
composed from many “primitive” objects, e.g., a video clip is 
essentially a sequence of images.  

In our approach, the relevance between two media objects can be 
evaluated mainly from three different perspectives: (1) Users’ 
interpretation of the two objects, which can be deduced from user 
interactions, e.g., designating them as the positive examples of the 
same query. (2) Structural relationships between them, e.g., there 
is a hyperlink between them. (3) The similarity between two 
objects in terms of their content, which can be estimated based on 
their low-level features. To accommodate the knowledge on the 
three aspects, we develop a layered graph model (LGM) as the 
core of the multifaceted knowledge base, with each layer 
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modeling knowledge on one aspect. The formal definition of 
LGM is given as follows.  

Definition. The layered graph model (LGM) consists of three 
superimposed knowledge layers, which from top to bottom are 
user layer, structure layer, and content layer. A knowledge layer 
is an undirected graph G=(V, E), where V is a finite set of 
vertices and E is a finite set of edges. Each element in V 
corresponds to a media object Oi ∈ O, where O is the collection of 
media objects in the database. E is a ternary relation defined on 
V×V×R, where R represents real numbers. Each edge in E has 
the form of <Oi, Oj, r>, denoting a link between Oi and Oj with r 
as the weight of the link. The graph corresponds to a |V|×|V| 
adjacency matrix2 M=[mij], where each element mij=r if there is 
an edge <Oi, Oj, r> between Oi and Oj, and mij=0 if there is no 
edge between them. Obviously, M is a symmetric matrix (mij= mji), 
and its elements on the diagonal are set to zero (mii=0). The 
vertices of the three layers correspond to the same set of media 
objects, while the links in each layer denote the relevance 
between two media objects defined from one of the three 
perspectives mentioned above.  

Figure 2 illustrates the LGM. Note that the order of the three 
layers is fixed, which reflects the degree of reliability of the inter-
object relevance suggested by the links in each layer. The user 
layer is on the top, because user judgment is very reliable (not 
always reliable considering the subjective errors and biases) in 
suggesting the relevance between media objects. Structure link is 
also a strong indicator of the relevance between objects, but is not 
as reliable as user links. The content layer is at the bottom, since 
the similarity calculated based on low-level features does not have 
any well-defined mapping with object relevance perceived at 
semantic level. 
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Figure 2: The layered graph model (LGM) 

Different from the convention of storing the index of each object 
with itself, the LGM stores the knowledge as the links between 
media objects. An advantage of such link-based knowledge 
representation is that the retrieval can be restricted in a relatively 
small locality connected via links instead of in the whole database, 
and therefore it can effectively reduce the search space and afford 
more sophisticated retrieval algorithms. However, the graphic 

structure is also expensive in computation and storage, especially 
when the number of nodes and links get large.  

                                                                 

2 The adjacency matrix defined here is slightly different from its 
mathematical definition, in which each component is a binary 
value indicating the existence of the corresponding edge. 

2.2 Knowledge Acquisition 
In the following, we describe the knowledge acquisition process 
on each knowledge layer, i.e., how to construct the three types of 
links in LGM.  

• User Layer. User link reflects the user belief that two media 
objects are relevant in some sense, and the weight of a user link 
indicates the degree of confidence of such belief. A 
straightforward way of obtaining user links is to let the user create 
all the links manually, which is nevertheless a time-consuming 
and labor-intensive process. Alternatively, the links can be 
acquired implicitly by learning from user-system interactions in 
the retrieval process, specifically, relevance feedback. Consider a 
typical scenario in CBR systems: a user starts a query with object 
A as the sample object, and among the results returned by the 
system he designates objects B and C as relevant examples to the 
query. In this case, we may create new links between A and B, A 
and C, or even B and C. As the user interactions proceed, the 
coverage and the quality of user links are progressively improved. 
The advantage of this strategy lies in that it exploits the 
interactions of the entire population of users for knowledge 
acquisition, and thereby relieves the significant human labors. A 
detailed algorithm for the updates of user links using the above 
strategy is presented in Section 3.4. 

• Structure Layer. Structure links can be interpreted as 
spatial neighborhood, hyperlink, or composition relationships 
between two objects, depending on the physical environment 
where the data are collected. For example, for a typical 
organization of web pages in Figure 3(a), we can create the 
structure links as shown in (b). The textual content of a page is 
regarded as a single text object. An image or a video clip is 
regarded as in the page either if it is embedded in the page or if it 
is pointed by a hyperlink on it. All the media objects within a 
page are interconnected by structure links (e.g., objects A, B, and 
C are connected to each other). A hyperlink is mapped to 
structure links from the source object to all the objects in the 
destination page (e.g., A is linked with D and E, while E is linked 
with A, B, and C). For simplicity, the weights of all structure links 
are set to 1. The same strategy for structure link construction can 
be applied to other forms of hypermedia (e.g., a digital 
encyclopedia). Further, it can be even adapted to non-hypermedia 
data collections (e.g., e-books), by interpreting the spatial vicinity 
as a hyperlink. Note that compared with the previous link analysis 
approaches, here we adopt a simplification of representing all the 
structure links as undirected links, in order to be consistent with 
user links and content links.  
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Figure 3: Structure links construction in a web environment 
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• Content Layer. A content link reveals the similarity 
between the content of two objects, defined on primitive3 and 
media-specific features, such as color histogram for images, 
motion vector for video clips, with a weight indicating the degree 
of similarity. Obviously, content links only exist between objects 
of the same modality, and if no restriction is imposed, they can 
exist between any pair of such objects, which are interconnected 
into several complete sub-graphs (one for each modality). 
However, since the content links with low similarity are 
unreliable and noisy, we apply a cut-off threshold on the link 
weights to remove the low-weighted links. In practice, when a 
new object is registered into the database, it is compared with all 
other objects of the same modality with it, and links are created 
between it and those that have a content similarity above the 
threshold with it. 

3. LINK ANALYSIS BASED RETRIEVAL 
AND RELEVANCE FEEDBACK 
As illustrated in Figure 4, the retrieval process of Octopus can be 
described as a circle: the desired objects are retrieved through the 
upper half-circle, and the user evaluations are collected and 
incorporated into the knowledge base though the lower half-circle, 
which initiates a new circle to refine the previously retrieved 
results based on the updated knowledge. Consequently, this 
process has a hill-climbing nature in the sense that the retrieval 
performance is enhanced incrementally as the loop is repeated. 
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Figure 4: Overview of link analysis based retrieval algorithm 

In this section, we describe the whole retrieval process in five 
steps (see Figure 4): (1) generating the seed objects as the hints of 
the user’s information need, (2) spanning the seeds to a collection 
of candidate objects via the links in the LGM, (3) distilling the 
results by ranking the candidates based on link structure analysis, 
(4) updating the LGM by incorporating the user evaluations on 
the current results, and (5) refining the retrieval results based on 
the updated LGM and the user evaluations.  

                                                                 

3 We use the term “primitive” instead of “low-level”, since the 
primitive feature for text object is keyword, which is not 
traditionally considered as low-level features. 

3.1 Seed Generation 
Seed objects play the similar role as query examples in the CBR 
paradigm—formulating user queries. Nevertheless, the 
differences between them are fundamental. On one hand, seed 
objects are not necessarily eligible results of the query, and 
therefore they need not to be highly representative; on the other 
hand, seed objects can be of any modality, which may not be the 
same as that of the desired objects. 

The user generates the seed objects either by selecting them from 
the database or by introducing (creating) new objects. In the latter 
case, the new object is automatically registered into the database 
with its content links and structure links (if any) with existing 
objects created (see Section 2.2). Obviously, there are no user 
links connected to the new object before it is involved in any user 
interactions. Note that this query formulation paradigm naturally 
subsumes the query-by-example and query-by-keyword 
paradigms, since the seed can be a media object (e.g., an image) 
or a piece of text consisting of several keywords. 

3.2 Candidates Spanning 
Since the seed objects provide the hints to the user’s need, it is 
reasonable to assume that the desired objects are related to the 
seeds in a certain manner, specifically, through a path in the LGM. 
The path can be made up of links belonging to different layers in 
the LGM. Based on this assumption, we identify a collection of 
candidate objects by spanning from the seed objects through the 
links in the LGM. This operation equals to the construction of a 
small sub-graph around the seeds in the LGM. The candidate set 
C must satisfy the following two criteria: 

(1) C must be rich in containing the objects that are highly 
relevant to the seed objects. 

(2) C is relatively small, so that it can afford the computational 
cost of the distillation and feedback algorithms applied on it 
subsequently. 

Both requirements favor the use of short paths in spanning, since 
short paths imply high relevance between the seeds and the 
candidates, and are less probable to produce large candidate set. 
Consequently, we place a threshold on the maximum length of the 
path (viz. number of links) between a seed and a candidate. The 
threshold is usually very small (e.g., 2 or 3), depending on the 
scale of the data collection and density of links. Only the objects 
that are reachable from the seeds through links less than the 
threshold are identified as the candidates for further processing. 

However, even after this threshold is applied, the size of the 
candidate set is still very unpredictable, mainly because of the 
varying number of links each object has, especially the structure 
links and content links. Some web pages may have hundreds or 
even thousands of hyperlinks pointing to it (e.g., the official site 
of ACM), which may result in high density of structure links. 
Moreover, the number of content links is likely to be high when 
the corresponding object has many similar objects, and vice versa. 
Sometimes the number of candidates is so large that the 
subsequent processing is unaffordable and meaningless due to the 
low quality of the candidates.  
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Consequently, we put a second threshold on the total number of 
candidates. If the candidates generated by spanning go beyond the 
threshold, the exceeding ones are discarded. But, what are the 
criteria to choose the appropriate victims? Put in other words, 
how to rank the candidates so that the most promising ones will 
not be discarded? In our algorithm, the ranking of candidates is 
determined by the shortest path through which the candidate is 
reached from the seed. In particular, two factors of the path are 
considered: the length of the path as well as the type of links that 
constitute that path. The first factor captures the intuition that the 
closer two objects are, the more relevant their relationship is. The 
second factor takes into account of the priorities of the three types 
of links. Consider two paths of the same length. If one path goes 
through the user layer while the other is at the content layer, it is 
natural to conclude that the two objects connected by the first 
path are more relevant than those by the second path. From this 
observation, we formulate the following three heuristic rules for 
ranking: 

Candidates set

Seed set

d
c

d

d
b

c

b

b

a

e

e

e

e

f

f

f

f

Structure
Layer

Content
 Layer

User
Layer

seed

(a)  Vertical perspective (b)  Horizontal perspective

Figure 5: Candidates spanning 

(1) A candidate c1 reached through a path shorter than that of 
another candidate c2 is ranked higher than c2.  

(2) If two candidates are reached through two paths of the same 
length, they are ranked according to the lexicographic order. 

(3) The candidates whose relative order cannot be decided by (1) 
and (2) are ranked randomly. 

Suppose we use U, S, and C to denote user link, structure link, 
and content link respectively (with the order U precedes S which, 
in turn, precedes C), and represent a path by the types of its links. 
Then, the rank of paths determined by the above heuristic rules is 
as follows:  

U — S — C — UU — US — UC — SU — … — CS — CC —UUU 
— UUS… 

Figure 5 gives a vertical view and a horizontal view of the 
candidates spanning process. From the horizontal view, one can 
see how the spanning goes through different paths and jumps 
between layers: path a is of pattern ‘U’, path b is ‘C’, path c is 
‘UU’, path d is ‘US’, path e is ‘SU’, and path f is ‘SC’. (The 
objects shown in a column represent the same object at different 
layers.)  

The algorithm for candidates spanning together with the ranking 
is shown as follows: 

Spanning (S, l, t) 
S: the seed set 
l: the maximum length of the path 
t: the upper bound on the number of candidates 
p: the string representing the pattern of a path 
nextpath(p): subroutine that returns the path that lexicographically 

succeeds the path p, e.g., nextpath(‘US’) = ‘UC’. 
return: the candidate set 
 
Set C to empty set 
For i=1 to l 
 Set p to the first path of length i in lexicographical order 

While p is not the last path of length i in lexicographic order 
Let L as the set of objects reachable from the objects in 

S through path p 
If |C∪L| < t, Then  
     C := C∪L 
Else 

Randomly select (t-|C|) objects from L and add 
them into C 

Return C 
      End If 

 p := nextpath(p) 
Next 
Return C 

Algorithm 1. Spanning from seed set to candidate set 

Although the candidates are ranked by the heuristic rules, the 
ranking is rather tentative and rough. For example, it is very 
arguable to rank the candidates with path ‘C’ higher than the 
candidates with path ‘UU’. Moreover, the weights of links are not 
considered in ranking these candidate objects. In the distillation 
process, this tentative ranking is discarded and all the candidates 
are re-sorted by analyzing the link structure using a more 
sophisticated algorithm. 

3.3 Results Distillation 
In this phase, the link structure of the sub-graph that corresponds 
to the candidate objects is analyzed, in order to determine the 
relevance of each candidate object to the query. Based on our 
basic premise that a link conveys relevance between two objects, 
we make a further assumption that a candidate object is more 
relevant to the query, if (1) it connects with a larger number of 
relevant candidates, or (2) it connects with relevant candidates 
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through links of higher weights, and (3) it connects to candidates 
that are more relevant to the query.  

Since the LGM has three layers, the distillation is performed in 
two steps: firstly, the candidates are ranked by analyzing the link 
structure at each single layer, and then, the ranking of different 
layers are merged to give the final ranking. The single-layer 
ranking algorithm works iteratively. Suppose each candidate 
object Oi has a relevance score ri, which is initialized to 1.0. In 
each round, we update ri by setting it to the sum of the product of 
the link weight and the relevance scores of the objects linking 
with Oi and then normalizing it. Note that such an update nicely 
captures our assumption—the object with a large number of links, 
high-weighted links, and links with relevant objects will get a 
high relevance score. The process repeats until every ri converges 
to a fixed value, which gives the final relevance scores of the 
corresponding object. The detailed algorithm is shown as follows: 

Rank (C, s) 
C: the candidate set 
s={“user”, “structure”, “content”}: the knowledge layer 
r=[ri]: the relevance vector with each element ri as the relevance 

score of object Oi in C 
M=[mij]: the adjacency matrix of the sub-graph corresponding to 

C at the layer s 
return: the relevance vector for C 
 
Initialize all the elements of vector r to 1.0 
While the vector r has not been converged  

For each object Oi in C 
  ri := ∑{j=1,…,|C|} (rj · mij)  
 Next 
 Normalize R such that ∑ri

2=1  
Return r  

Algorithm 2. Ranking candidates at a single layer 

The above algorithm updates the vector r by repeating the 
operation M×r→r, until it converges. At that time, the elements 
of r give the final relevance score of each object to the query, 
according to which the candidates can be sorted. Many previous 
works on link analysis [13] [19] have proved the convergence of r 
(i.e., termination of the algorithm), and r is actually the principal 
eigenvector of the matrix M.  

After applying the above ranking algorithm on each of the three 
layers in the LGM, we need to merge the three ranking lists into a 
uniform one. However, since the three layers deal with the 
knowledge on different aspects, it is nearly impossible to design a 
“fair” strategy for the combination of results. We suggest a 
heuristic strategy for this task by linearly combining the relevance 
scores (of a candidate) obtained from different layers to compute 
the overall relevance score, which is shown in Algorithm 3. 
Intuitively, the three weights used in the algorithm has the 
relation of wU> wS> wC, which reflects the priorities of the three 
layers. The candidate objects are ranked according to their overall 
relevance scores generated by this algorithm before they are 
presented to the user. 

Distillation(C) 
C: the candidate set 
r = [ri]: the overall relevance vector with each element ri being 

the overall relevance score of object Oi in C 
wU, wS, wC: the weight for the user layer, the structure layer, and 

the content layer 
return: the overall relevance vector for C 
 
rU := Rank (C, “user”) 
rS := Rank (C, “structure”) 
rC := Rank (C, “content”) 
For each object Oi in C 

ri := wU·riU+ wS ·riS + wC ·riC 

Next 
Return r  

Algorithm 3. Ranking candidates by combing multiple layers 

3.4 Knowledge Update  
If the user is not fully satisfied with the results generated in the 
distillation phase, he can give further hints by labeling the current 
results as either relevant or irrelevant examples. Upon the 
acceptance of such user evaluations, the system initiates a two-
stage process: firstly, it incorporates the knowledge deduced from 
user evaluations into the LGM; and then, it refines the previous 
results based on the updated LGM and the user evaluations. The 
first stage has a long-term influence since it updates the 
knowledge base, while the second stage focuses on short-term 
effect as the user satisfaction in the current retrieval session. 

The user evaluations are incorporated into the LGM by updating 
the user links. The underlying principle of link update is rather 
intuitive: for a relevant example, we link it with every seed object, 
or increase the weight of the existing link between them; for 
irrelevant examples, we take the opposite action. The algorithm 
for user link update is presented as follows: 

Update (S, F+, F–) 
S: the original seed set 
F+: the set of relevant examples 
F–: the set of irrelevant examples 
MU =[mij]: the adjacency matrix of the user layer 
s, t: positive real numbers 
 
For each object Oi in S 

For each object Oj in P 
  mij := mij + s 
 Next 

For each object Ok in N 
mik := mik – t 
If mik < 0, then mik := 0 

Next 
Return  

Algorithm 4. Update knowledge base from user evaluations 

Note that mij not only defines the weight of a link, but also 
governs the existence of the link. When mij is increased from zero 
to a positive value, a link between Oi and Oj is created; when mij 
is decreased to zero, the link is removed. The parameter t is 
usually set to a value larger than s, so that a link on which users 
have contradictory opinions will not receive a confidence weight. 

Page 6 



 

By incorporating the up-to-date user evaluations into the LGM as 
user links, Octopus allows the future queries to benefit from these 
previously conducted user interactions, such that the retrieval 
performance can be progressively improved. Compared with the 
evolving user layer, the structure and content layer of the LGM 
are passive, which do not change after their initial construction.  

3.5 Result Refinement 
The objective of the refinement process is to refine the retrieval 
results based on the user’s evaluation made on the previous results. 
As shown in Figure 6, the refinement process undergoes the 
similar three steps (seed generation, spanning, and distilling) at 
two levels (positive and negative) in parallel, with the results 
finally merged. Firstly, the original set of seed objects is 
combined with the relevant examples, resulting in a set of positive 
seeds S+; meanwhile, the irrelevant examples are regarded as 
negative seeds S–. Then, the positive and negative seeds are 
spanned into two groups of candidate objects, called positive 
candidates C+ and negative candidates C–, respectively. Finally, 
both groups of candidates are ranked using link analysis in the 
distillation process, and the results are merged to give the final 
ranking list. (By merge, we mean the integration of the relevance 
scores instead of combination of objects.) 

distillation

Negative
candidates

negative seeds
(irrelevant examples)

positive seeds
(relevant examples +

original seeds)

merge

spanning

spanning

distillation

Refined
results

Positive
candidates

 
Figure 6: Result refinement process 

The algorithm for the refinement process is presented below. The 
idea behind this algorithm is very intuitive: the refined results 
should be closely linked with the relevant examples and at the 
same time far away from the irrelevant ones. Again, the refined 
results are ranked according to the relevance vector returned as 
the outcome of this algorithm.  

Refinement (S, F+, F–) 
S: the seed set 
F+: the set of relevant examples 
F–: the set of irrelevant examples 
return: the overall relevance vector for the refined results 
 
S+:= (S∪F+) –F– 
S -:= F– 
C+:= Spanning (S+, l+, t+) 
C -:= Spanning (S -, l -, t -) 
r+:= Distillation (C+) 
r-:= Distillation (C -) 
For each object Oi in C+ 

If Oi is in C -, then 
  r(Oi) := r+(Oi) - r-(Oi) 

Else 
  r(Oi) := r+(Oi) 
 End If 
Return r  

Algorithm 5. Results refinement based on user evaluations 

3.6 An Algorithmic Overview 
So far we have completed the whole loop of retrieval process 
shown in Figure 4. We integrate all the aforementioned 
algorithms into the following “main routine” to present an 
algorithmic overview of the main flow of the Octopus mechanism. 

Octopus (S): 
S: the set of seed objects 
sort(C, r): a subroutine that sorts the elements in set C according 

to vector r, which gives the relevance score of each 
element in C. 

return: R, the set of ranked results 
 
C := Spanning (S, l, t) 
r := Distillation (C) 
R := sort(C, r) 
While the user is not satisfied with R 

Let F+ and F– be relevant and irrelevant examples of the 
current session 

 Update (S, F+, F–) 
 r := Refinement (S, F+, F–) 
 S := (S∪F+) –F– 
 Let C+ be the set of objects corresponding to r 
 R := sort (r, C+)  

Algorithm 6. The main flow of Octopus mechanism 

4. PROTOTYPING AND ILLUSTRATIVE 
EXAMPLES 
A preliminary prototype system is implemented based on the 
Octopus mechanism. The modalities currently supported are text, 
image, and video; audio is left out simply because we do not have 
any audio processing algorithms at hand. The primitive features 
and similarity functions utilized for these media are shown in 
Table 2. To guarantee high efficiency, the maximum path length 
permitted for candidate spanning (see Algorithm 3) is set to 2, and 
the total number of candidates is restricted to 100. 

Table 2: Primitive features and similarity metric used in the 
prototype system 

 Primitive features Similarity metric 

Text keywords 
 (TF*IDF weighting) cosine distance 

Image 
256-d HSV color histogram, 
64-d LAB color coherence, 
32-d Tamura directionality. 

Euclidean distance 

Video 
shot boundary detection, 

using first frame of each shot 
as key-frame  

key-frame similarity as 
shot similarity, average 
pair-wise shot similarity 

as video similarity 
 

We do not conduct any quantitative evaluation on the retrieval 
performance mainly due to the lack of benchmark for such multi-
modality search. There does not exist, for example, a criterion to 
evaluate the quality of some text and images retrieved by a video 
clip as the seed. Moreover, there are too many human factors 
involved in this cooperative mechanism, such as the selection of 
seeds and evaluation of results, which further complicate the task 
of performance evaluation. In fact, providing performance 
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improvement over CBR approaches is not the main objective of 
Octopus; instead, its emphasis is on a novel scenario for multi-
modality retrieval, which is not possible with previous approaches. 
Some characteristic queries and results are shown below to 
demonstrate the variety and flexibility of the retrieval in this new 
scenario.   

Figure 7(a) shows some pages of a website about movies, whose 
content is rich in multimedia objects. There are two major types 
of pages in this site: page of movie stars such as Tom Hanks and 
Meg Ryan, as well as page for movies like “You’ve Got Mail” 
and “Cast Away”. The star’s page contains his/her photo and 
biography (text), while the movie’s page has an introduction to 
the movie, along with a picture showing one of the movie scenes. 
The page of each star points to the pages of the movies in which 
he/she had played a role, e.g., the pages of Tom Hanks and Meg 
Ryan both point to the movie “You’ve Got Mail”. Meanwhile, the 
page for a movie points to the pages of the stars who are in the 

cast. There is also a video clip of the movie “Cast Away” (object 
E) available in a separate page (it is not shown explicitly, but is 
pointed by a hyperlink on the page). All the hyperlinks are shown 
in Figure 7(a), based on which we can construct all the structure 
links using the strategy introduced in Section 2.2. 

(a) movie site

 

 

E

H

I

movie "You've Got Mail"

movie star Meg Ryan

movie star Tom Hanks

video segment of "Cast Away"

 

C

movie "Cast Away"

D

 

A
B

G

F

content link

structure link

user link seed
object

relevant
example

Legend

FA EDCB H IG

(c) query by Meg Ryan 's photo

FA EDCB H IG

(d) query by video segment of "Cast Away"

FA EDCB H IG"Tom
Hanks"

(b) query by keyword "Tom Hanks"

 

Figure 7: Illustrative examples 

Figures 7(b)-(d) illustrate how Octopus works for three different 
types of queries. In the first case, the user input Tom Hanks’ 
name as the query, intending to find some materials about him. 
Since the query is an isolated text object that does not previously 
exist in the LGM, it has neither user links nor structure links. 
Therefore, in the candidate spanning process, we firstly rely on 
the content links to find three text objects (introductions to “Cast 
Away” and “You’ve Got Mail”, and his biography) in which Tom 
Hanks’ name recurs several times. All the other objects are 
reached from these three text objects through structure links. So, 
although this query starts with a traditional “search-by-keyword” 
mode, it results in a rich collection of multimedia objects, 
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including his photo, the introductions to his movie, the movie 
scene and video clip, and even his partner Meg Ryan’s materials. 

In the second query (see Figure 7 (c)), the user chooses Meg 
Ryan’s photo as the seed object. Following the structure links 
from it, we reach her biography, the materials about her movie 
“You’ve Got Mail”, through which the Tom Hanks’ page is also 
retrieved. Note that this search is opposite to what CBR systems 
usually do, i.e., using images to search text rather than searching 
images by text. We suppose that in feedback, the user labels Tom 
Hanks’ biography as a relevant example, so that a user link is 
created between it and the Meg Ryan’s photo.  

The last query (see Figure 7(d)) is even more ambitious. Starting 
with a video clip, the user wants to find some related materials 
about the movie “Cast Away”. As the results of traversing along 
structure links, the content on the page of “Cast Away” and Tom 
Hanks are returned. In addition, the user link created in the 
previous session leads us to Meg Ryan’s photo via Tom Hanks’ 
biography. (It makes sense since Meg Ryan and Tom Hanks had 
cooperated in many famous movies.) 

5. RELATED WORK 
In this section, we discuss the connection of our model with the 
previous works on multimedia retrieval and link analysis, and 
demonstrate in some cases, how our model can be reduced or 
transformed to other approaches.  

5.1 Multimedia Retrieval 
Previous works addressing multimedia retrieval can be classified 
into two groups: approaches on single-modality as well as on 
multi-modality integration. 

• Single-modality retrieval. The retrieval approach in this 
group only deals with a single type of media, so that most 
content-based retrieval approaches (e.g., [4],[7],[12],[20],[21]) 
fall into this group. Among them, the QBIC system [7], MARS 
project [12], VisualSEEK system [20] focus on image retrieval, 
VideoQ system [4] is for video retrieval, and WebSEEK [21] 
system is a Web-oriented search engine that can retrieve both 
images and video clips. These approaches differ from each other 
in either the low-level features extracted from the data, as well as 
the distance functions used for similarity calculation. Despite the 
differences, all of them are similar in two fundamental aspects: (1) 
they all rely on low-level features; (2) they all use the query-by-
example paradigm. Since the content layer of our LGM is built 
based on the similarity among objects on low-level features, our 
approach can be reduced to other CBR approaches if we consider 
only the content layer during the retrieval process, and rank the 
candidates according to the weight of their content links to the 
seed.  

• Multi-modality integration. In the past few years, some 
works have investigated the integration of multi-modality data, 
usually between text and image, for better retrieval performance. 
For example, the iFind [17] system proposes a unified framework 
under which the semantic feature (text) and low-level features are 
combined for image retrieval, and the 2M2Net [23] system 
extends this framework to the retrieval of video and audio. 
WebSEEK system [21] extracts keywords from the surrounding 
text of image and videos, which is used as their indexes in the 
retrieval process. Although these systems involve more than one 
media, different medias are not actually integrated but are on 
different levels. Usually, text is only used as the annotation (index) 

of other medias. In this regard, our mechanism enables an 
extremely high degree of multi-modality integration, since it 
allows the interaction among objects of any modality in any 
possible ways (via different types of links).  

More recently, the MediaNet [1] and multimedia thesaurus (MMT) 
[22] are proposed, both of which seek to provide a multimedia 
representation of semantic concept—a concept described by 
various media objects including text, image, video, etc—and 
establish the relationships among these concepts. MediaNet 
extends the notion of relationships to include even perceptual 
relationships among media objects. Both approaches can be 
regarded as “concept-centric” approaches since they realize an 
organization of multi-modality objects around semantic concepts. 
From this view, our mechanism is “concept-less” since we make 
no attempt to identify explicitly the semantics of each object. 

5.2 Link Analysis 
There have been many successful previous works on link analysis, 
among which the most notable ones are the PageRank model and 
the notion of hubs & authorities. PageRank [3] is based on the 
random-walk model and is used to compute the probability that a 
Web surfer visits a certain page. The effectiveness of this model 
has been proved by its successful application in search engine 
Google [1]. In contrast, Kleinberg [13] suggested that each page 
has two scores: authority score, which describes how authoritative 
a page is to a certain topic, and hub score, which reflects how 
many authoritative pages it points to.  

The link analysis technique has been successfully applied to a 
broad range of applications. The approaches of Bharat et al. [2], 
PageRank model [3], HITS [13] are used to search for most 
authoritative pages to a certain topic. The approach proposed by 
Rafiei et al. [19] identifies the topics of a designated page. Dean 
et al. [6] discusses how to find related pages to a certain page. 
There is also a group of works (e.g., Kumar et al. [14], Gibson et 
al. [8], Pirolli et al. [18]) that aim at inferring and analyzing web 
communities or other web structures from the hyperlinks. 
Henzinger et al. [10] suggested measuring link quality of a web 
page using the random-walking model. Very recently, Lempel et 
al. [15] proposes PicASHOW system, which employs link 
analysis to web-based image retrieval. 

Since the link analysis approach in Octopus is geared towards the 
goal of multimedia retrieval, it differs from conventional link 
analysis approaches in the following aspects: 

• Application: To our knowledge, Octopus is the first 
application of link analysis in the search of multi-modality data. 
(PicASHOW only deals with images.) 

• Link types: Our multifaceted knowledge base 
accommodates three types of links, while most previous 
approaches focus on only hyperlinks, which is actually a special 
form of our structure link. This implies that our approach can be 
reduced to other approaches if only the structure layer is 
addressed in the retrieval process. Some link analysis approaches 
(e.g., [2],[19]) also take into account the content (text) similarity. 
However, they usually combine the content similarity with the 
analysis of hyperlinks, rather than building another separate layer 
for it as is the case in the LGM.  

• Link analysis algorithm: In terms of algorithm, our link 
analysis algorithm is much closer to the PageRank model, since 
for each object we calculate only one score. However, we do not 
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use the random-walk model, since our LGM is fundamentally 
different from the world of hyperlinks in which the random-walk 
model makes sense. We do not adopt the hubs and authorities 
model because it is based on the observation that in the Web the 
relevance may propagate from one page to another via a totally 
irrelevant page through hyperlinks, which does not agree with our 
basic premise that relevance spreads between directly linked 
objects. 

• Link update: Most previous works on link analysis suggest 
static approaches in that they only analyze the link structure. In 
contrast, our mechanism is incremental as it permits user links to 
be enriched and updated by learning from user behaviors. 
Undoubtedly, our approach is more preferable since it allows self-
improvement of the retrieval performance. 

6. CONCLUSION AND FUTURE WORK  
In this paper, we have described the Octopus mechanism for 
aggressive search of multi-modality data based on a multifaceted 
knowledge base. Specifically, this mechanism applies link 
analysis techniques to search for multi-modality objects, the 
relevance between which is described by a layered graph model 
(LGM) as the core of the knowledge base. A unique relevance 
feedback technique is developed that can enhance the retrieval 
performance progressively by learning from user behaviors. The 
highlights of our mechanism are summarized as follows: 

• At the interface level, Octopus provides users with great 
convenience and flexibility. For example, the seed objects can be 
of any modality and are not necessarily representative samples. 
The retrieval results are also of multiple modalities, which can 
meet the variety of user requirements.  

• The LGM investigates a broad coverage of knowledge to 
evaluate the similarity between media objects. Therefore, the 
results retrieved based on it are more relevant (to the query) than 
those retrieved by the CBR systems, which rely on low-level 
features only.  

• The knowledge base is enriched by learning from user 
behaviors, such that the retrieval performance can be enhanced in 
a hill-climbing manner.  

• The LGM provides a solid and generic foundation for 
multimedia retrieval, which can be extended towards a number of 
directions. For example, a new type of media can be easily 
integrated into the model as long as its primitive features are 
specified. Moreover, a new class of knowledge (on the relevance 
between media objects) that is orthogonal with the existing 
knowledge can be introduced into the LGM as a new layer with 
only minor adjustment of the link analysis algorithms.  

Due to the generality and extensibility of the LGM, many 
potential applications can be implemented based on it. We 
identify some of them as our future works: 

• Navigation. The LGM provides abundant links through 
which the user can traverse from one object to its related objects. 
Therefore, it supports a natural navigation scenario: when a user 
is visiting (viewing) a media object, the system recommends him 
with the objects linked with it in the LGM, ranked according to 
the weights and types of links, from which he can select the next 
object to navigate.  

• Clustering. Clustering multi-modality objects into 
semantically meaningful groups is also an important and 

challenging task, which requires a similarity function (between 
media objects) as well as a clustering method. Our LGM provides 
knowledgeable links, based on which different similarity 
functions can be easily formulated. Meanwhile, many clustering 
methods have been proposed, such as the simulated and 
deterministic annealing algorithm [11]. Moreover, our model 
inherently allows the clustering of multi-modality objects, rather 
than single-modality objects that most existing classification 
approaches deal with. 

• Personalized retrieval. The user layer of the LGM 
characterizes the knowledge obtained from the behaviors of the 
whole population of users, and allows a query from a single user 
to benefit from such common knowledge. However, users also 
have personal interests and preferences that vary from one user to 
another. To provide personalized retrieval service, a mechanism 
need to be developed to model the user preferences and adapt the 
retrieval results towards such preferences. The 2-leveled “user 
profiling” mechanism proposed by us in [16] provides a viable 
solution in this regard. 
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