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ABSTRACT

In the context of multimedia retrieval, the goal of accuracy is to a certain extent contradictory with that of efficiency.
The former relies on exploiting sophisticated features, whereas the latter favors using simple features with reduced
dimensionality. As an endeavor to strike the balance between these two goals, this paper presents a self-adaptive
semantic schema mechanism (SSM) for multimedia databases. The SSM is implemented based on an object-oriented
data model, with classes being organized into a semantic hierarchy. As its most distinguishable feature, when the
conditions of certain ECA-rules are satisfied, SSM supports adaptive evolution of a schema in the form of expansion
with new classes and/or compaction by removing inefficient ones. This self-adaptive evolution strategy allows a schema
to optimize for the requirements of each specific application, thereby achieving a dynamic, application-specific balance
between accuracy and efficiency. A prototype system for multimedia retrieval, 2M2Net, has been built based on this
mechanism and validated for its feasibility.
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1. INTRODUCTION

In recent years, the Computer Vision community and the Database community are working towards the common goal
of multimedia retrieval. Nevertheless, the specific interests of these two communities, as well as their fundamental
approaches, are significantly divergent, or to a certain extent mutually exclusive. The primary concern of the Computer
Vision researchers is high retrieval accuracy, usually defined in terms of precision and recall. To this end, a great
number of sophisticated data features, which are proven to be more descriptive and discriminative than simple ones,
have been extensively used in retrieval approaches. The efficiency issue, however, is seldom within their consideration.
Most multimedia systems from this community, to the knowledge of the authors, employ many ‘“non-database”
approaches, such as using file system for storage, conducting sequential search, etc.

Even if enough attention is paid to the efficiency issue, it is unlikely to be well addressed, since the sophisticated
features for multimedia data processing pose the real obstacle of scalability. While the dimension of features can be as
high as a few hundreds (e.g. the renowned QBIC system [2] uses at least a 256-D color histogram for image retrieval),
the most powerful multi-dimensional indexing techniques, such as R-tree and its variants, are not scalable to dimension
higher than 20. Keyword features are not less sophisticated in this regard, since the dimension of a keyword vector
virtually equals to the size of the vocabulary. This sharp contrast implies that the search space cannot be effectively
partitioned, and in the worst cases, the search is degraded to a sequential scan [18]. The drawback of inefficiency, which
is currently somewhat underestimated due to the use of small- or medium-scale databases, will become extremely
critical when dealing with large-scale data collections.

The Database people, on the other hand, are mainly concerned with the efficiency aspect of a multimedia system. For
this purpose, they have investigated a broad range of techniques regarding storage (e.g. [3]), data modeling (e.g. [11])
and multi-dimensional indexing (e.g. [6][12]) for multimedia, all of which unanimously suggest the use of simple,
uniform, and low-dimensional features that allow economical and efficient storage, indexing and access. The feature
effectiveness in terms of retrieval accuracy, however, is in most cases taken for granted due to the traditional way of
exact matching in conventional databases.

The analysis presented above gives insight into the relationship between accuracy and efficiency with regard to
multimedia retrieval, which is to a great extent a tradeoff, reflected in the choices between sophisticated (but inefficient)
features and simple (but less powerful) ones. On the other hand, both issues are so essential to a multimedia system, that
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Fig.1: Relationship between self-adaptive semantic schema and conventional approaches

failure to address either of them will make the system impractical. Therefore, a fundamental question any multimedia
system designer has to confront is: what is the optimal balance point between the two extremes? Unfortunately, to this
question there does not seem to exist a uniform answer that can be applied to all the applications, nor does there exist a
fixed answer even for a specific application. Rather, the “optimal” balance point should be tuned based on the
characteristics of a specific application from time to time (i.e., snapshots of the application), mainly in the following
aspects:

1. Data volume. Greater amount of data naturally imply more expensive storage and computation. Consequently,
applications manipulating of a large volume of data are inclined to use highly efficient features, and vice versa.

2. Distribution of data. Data that are evenly scattered in the feature space can be easily distinguished through simple
and coarse features. By contrast, if the data are concentrated in a dense region of the feature space, more
discriminative and sophisticated features become indispensable in order to differentiate among them.

3. Requirement on retrieval. Some applications demand very precise retrieval results but can accept a moderately
long time for processing (e.g. image-based automated medical diagnosis system), while others prefer queries to be
responded quickly but can tolerate certain level of impreciseness (e.g. a Web-based image search engine).
Obviously, the features for the applications of the first type must be sufficiently rich and powerful, while those for
the second type must be efficient to access and process.

As illustrated in Fig.1, the self-adaptive semantic schema mechanism (SSM) for multimedia database, the main
contribution of this paper, is a “middle way” approach between the conventional Computer Vision approaches and the
Database approaches. The SSM is implemented based on an object-oriented data model, with classes being organized
into a semantic hierarchy. Driven by predefined ECA-rules, the SSM supports adaptive evolution of a schema in the
form of either expansion by including requested classes or compaction by removing inefficient ones. In this way, it
optimizes the schema for the requirements of each application, thereby achieving a dynamic, application-specific
optimal balance between accuracy and efficiency with regard to multimedia retrieval.

The rest of the paper is organized as follows. In Section 2, we present a brief review of the related techniques that
contribute to our work. The self-adaptive semantic schema mechanism is proposed in two steps. Firstly, we define a
schema template and describe its construction approach in Section 3. By following this template, self-adaptive schemata
can be constructed in the second step using a self-adaptive schema evolution strategy. This strategy, interpreted in the
form of ECA-rules governing the evolution process, is elaborated in Section 4, along with a case study demonstrating
how this strategy works in an application scenario. We introduce a prototype system built upon the proposed
mechanism in Section5. Summary and future works are given in the last section.

2. RELATED WORK

The work presented in this paper can be regarded as an effort to address the key issues of multimedia retrieval from a
database perspective. For this purpose, we investigate the advantages of several database techniques, including object-
oriented modeling, schema evolution with object migration, and active capability via ECA-rules. In this section, we
present a brief review of these relevant techniques.



Multimedia data in the form of image, video, and audio possess properties that are not adequately supported by
traditional database systems, such as huge data size, time-dependent nature, content-based retrieval, etc. To address
these limitations, multimedia database has been proposed and received an extensive study on its related techniques
during the last decade. The objective is to provide reliable and efficient storage, maintenance, and access of different
types of media. Substantial modifications and extensions can be found in both relational databases (e.g. STARBURST
system [4]) and object-oriented databases (e.g. [10][12]), as an effort to accommodate “multimedia features”. Some
emerging multimedia systems, such as QBIC [2] and Informedia [5], manifest certain characteristics of a multimedia
database. Nevertheless, even till now there is no widely accepted definition of multimedia database and its architecture,
and many relevant problems have not been successfully addressed.

Object-oriented data modeling is an established technique developed to meet the advanced modeling requirements of
complex applications. In an object-oriented model, each real-world entity is modeled as an object (alternatively called
as an instance) of a certain class, which can have some attributes (properties) and methods (operations) that are
applicable to its objects. The fundamental modeling techniques of an object data model include instantiation (creating
an instance of a class), inheritance (defining a new class by inheriting attributes and methods from other classes), and
aggregation (a class subsuming other classes as its components). An object-oriented model has advantages over its
relational counterpart in modeling capability of complex objects, type reusability, economical schema evolution,
polymorphism, and extensibility, etc. This can account for the general understanding that an object-oriented model,
amongst other data models, is most suitable to be used for a multimedia database [1][10][12].

Active databases, as opposed to passive ones, are the database systems augmented with reactive behaviors that allow
them to respond independently to certain events. Typically this reactive behavior is implemented in the form of either
"triggers" or event-condition-action (ECA) rules'. A survey on active databases has been conducted in [14].

As will be seen later, we exploit the power of the above database techniques in a synergic manner to propose a self-
adaptive semantic data schema for multimedia databases. Notice that we do not intend to (also impossible to) address,
in the scope of this paper, all the open issues in the area of multimedia databases. Our main interest resides in the
retrieval aspect, especially in how to get a good tradeoff between accuracy and efficiency through mechanisms
enforceable by the database system.

3. SCHEMA TEMPLATE

As the first step towards the self-adaptive schema, a schema template is created, which from definition is exactly an
object-oriented schema. However, it is not a schema by itself, since it is never stored in the database catalog or used for
data typing in real applications. Rather, it provides the background knowledge (template) based on which the self-
adaptive schema is constructed in a later stage. In this section, we firstly describe the template from an object-oriented
perspective, and then suggest a method to create the template automatically from a lexical thesaurus.

3.1 Template Definition

As illustrated in Fig.2(a), the schema template is defined based on an object-oriented data model, with classes organized
into a hierarchical structure. The link between two classes denotes the inheritance relationship between them, by means
of which a class (subclass) can inherit common attributes and methods from a more generalized class (superclass). Each
class can also define local attributes and methods that do not appear in its superclass. As shown in Fig.2(b), the class
Bird inherits from its superclass Animal attributes Habitat, Age, ScientificName, and method SimilarTo. It also defines
new attribute FeatherColor and method 4bleToFly, which are unique of its semantics. The template is constructed by
recursively using subclasses to derive more specialized classes, and therefore, it is in essence an inheritance (or "is-a")
hierarchy of an object-oriented data model.

' The meaning of an ECA rule states that “when a specified event occurs, evaluate the given condition and if it holds true, execute

the action” [14].
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Fig.2: Definition of the schema template

The schema template can be also interpreted from a semantic perspective: each class in the schema corresponds to a
semantic concept, and the inheritance relationship indicates that one concept is a specialization of another. Viewed as a
whole, the template starts with generic concepts at higher layers and extends downwards to more specialized concepts
at lower layers, which forms an intuitive classification (or taxonomy) that captures the human being's commonsense. In
fact, what is revealed in Fig.2 (a) is only a small fraction of the whole template, which, starting with root class
Everything, is supposed to cover all the semantic concepts that are assignable to media objects.

In practice, media objects of various types, such as still images, graphics, video clips, audios, are attached to different
classes in the template (or the schema created from the template) as their instances, like the decorations hung on a
Christmas tree. For each data type, there exists a foundation class (not shown explicitly in Fig.2(a)), such as Image,
Graphic, or Video, which is named as type class as opposed to semantic class that is shown explicitly in Fig.2(a). Each
media object must be at the same time an instance of a semantic class as well as of a type class, e.g., an image showing
a horse is an instance of both class Horse and class Image. This lends considerable flexibility and convenience to the
programming task, since each object can inherit attributes and methods that are characteristic either of its data type or of
its semantic meaning. However, currently such multiple inheritances exist only between a semantic class and a type
class, rather than between two semantic classes. Put it in another way, multiple inheritance is not allowed in the scope
of the hierarchy shown in Fig.2(a), which is therefore a tree structure in the strict sense.

In our preliminary implementation, aggregation relationship between classes is not currently included in the schema,
i.e., a class can neither subsume nor refer to other classes in its definition. Although this admittedly undermines the
modeling capacity of the schema for composite objects, it can be explained in the context of multimedia retrieval: each
media object (e.g., a photograph) is an integral semantic unit which makes sense to users only when it is retrieved as a
whole instead of as bits-and-pieces components.

By definition, there is no difference between the schema template and an object-oriented schema. In practice, however,
the template is only used as guidelines for the definition and organization of classes, which are followed by the self-
adaptive schema during its construction and evolution. The template is stored as background knowledge in some places
other than the database catalog.

3.2 Template Construction Approach
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Fig.3: Self-adaptive schema evolution strategy

It is naturally followed by the question of how to define the structure of the schema template, i.e., why we organize
classes in such a structure rather than another, which is actually the issue of semantic modeling. In many applications,
the structure of data schema exists as a kind of ontology, which can be acquired by consulting domain knowledge. To
avoid this time-consuming process, in our approach a lexical thesaurus, WordNet, is utilized to construct the structure
of the schema template.

WordNet [8] is an electronic thesaurus that is organized around the concept of synset as a class of closely related words
with the same sense. There exist various types of semantic links among synsets, which interconnect them into a huge
network. The noun portion of WordNet, in particular, has two major types of semantic links between synsets:
hypernym/hyponym (“is_a”) relationship, and meronym/holonym (“is_part of’) relationship. If only the first type is
taken into account, all the noun synsets constitute a hierarchical structure, which is otherwise an acylic graph.

In our work, we map the hierarchy embodied in WordNet to the hierarchical structure of the template, with each synset
corresponding to a class. This mapping can be explained based on the following observations: firstly, the hierarchy of
WordNet is so comprehensive that it covers all nouns; secondly, the definition of synset is compatible with that of a
class in that both of them represent a semantic concept; last but not the least, the WordNet hierarchy is built upon the
“is_a” relationship, which corresponds to the inheritance relationship among classes. Some adjustments are performed
during the mapping of the WordNet hierarchy to the template, e.g. pruning out some “big words” that rarely appear in
ordinary documents. Interested readers can refer to [13] and [15] for further details of this mapping.

4. SELF-ADAPTIVE SCHEMA EVOLUTION STRATEGY

A key observation made on the schema template (or schemas with the similar structure) is that, the complexity of a
schema, defined as the number of classes in it, is closely related to the tradeoff between accuracy and efficiency
discussed in Section 1. When the schema is complicated, it contains a vast number of classes, most of which are
specialized classes at the bottom of the inheritance hierarchy. As a result, there are more specialized and consequently
more descriptive attributes and methods available for modeling multimedia data. In this case, however, there will be a
substantial maintenance cost for an increasing number of classes in the database catalog, and the efficiency of query
processing will also decline due to the involvement of more classes and longer inheritance path. On the contrary, if the
schema is simple and has only a few generic classes, efficiency will definitively improve. However, the efficiency yield
comes at the cost of descriptive power, since in a simple schema specialized objects have to be fit into generic classes
with coarse attributes (e.g. a Parrot object having only the attributes and methods as an Animal object).

Therefore, the tradeoff between accuracy and efficiency can be interpreted as the tradeoff between a descriptive schema
and an efficient one. The optimal schema in this tradeoff, like the optimal balance discussed in Section 1, is again
determined by the requirement of a specific application. Applications manipulating large-scale, widely distributed data
would prefer efficient and simple schema, and vice versa. Within each schema, applications focusing on a specific
domain require the corresponding part of the schema to be fully developed, but does not need other parts. Typically, it is



Notation:
S -- self-adaptive schema  C -- class to be inserted or deleted  Cp, Cy -- variables that can used to denote any class

Procedure: Pre-Processing:
Step 1: Set Cp to C Set Cp to the parent node of C
while Cp does not exist in S then Migrate all the instances of C to Cp
Set Cp to the superclass of Cp
wend Procedure:
Step 2: Set {C],...,CM} as the children nodes of Cp Step 1:if C is not a leaf node in S then
fori=1to M Set {C},...,Cm} as the children nodes of C
Set Cq as the lowest common ancestor class of Cij and C for i=1 to M
if Cq = C, then go to Step 4 Connect Cj to Cp as its child node
if Cq <> Cp, then go to Step 5 end for
end for end if
Step 3: Insert Cinto S as a child node of Cp Step2: Remove C from S
exit

Step 4: Insert C into S as a child node of Cp and parent node of C
exit

Step5: Insert Cq into S as a child node of Cp (b) Schema compaction by removing class C
Insert Cinto S as a child node of Cg
Reconnect Ci as a child node of Cgq
exit

(a) Schema expansion with class C

Fig.4: Schema evolution algorithms

the responsibility of the schema designer to recognize such requirements and optimize the schema accordingly. As an
alternative approach, the self-adaptive schema evolution strategy allows an application to autonomously adapt (expand
or compact) its underlying schema to its requirement through a set of predefined ECA-rules, without the need for any
human supervision and intervention. The basic principle of the strategy is clearly illustrated in Fig.3, which is another
version of Fig.1 interpreted in terms of schema complexity. In this section, we start by describing the schema expansion
and compaction algorithm, proceed with formulating the ECA-rules that govern the evolution, and end up with a case
study demonstrating the functioning of the strategy.

4.1 Schema Expansion and Compaction Algorithms

The self-adaptive semantic schema is defined based on the schema template by introducing the self-adaptive schema
evolution strategy. In the initial state, this schema has only the root class (i.e. Everything) or several generic classes
available; then, class definitions can be dynamically inserted into or removed from the schema, implemented as schema
evolution in the form of expansion or compaction. Both schema expansion and compaction must follow the structure of
the schema template, i.e., the self-adaptive schema conforms to the template in terms of structure. In fact, the self-
adaptive schema is a concise and dynamic subset of the schema template, tailored to a specific application. Its
conciseness is guaranteed by the evolution strategy, which only inserts requested (by the application) classes and
regularly gets ride of inefficient classes.

The algorithms® for schema evolution are shown in Fig.4. The expansion algorithm (Fig.4 (a)) focuses on seeking for
the appropriate position in the current schema to insert the new class. To illustrate this complicated algorithm, we

% In order to differentiate between the self-adaptive schema and schema template contexts, we use different notations when referring
to the relationships between classes in the algorithm and the rest of the paper: keywords “superclass”, “subclass”, “ancestor class”
and “descendent class” refer to the relationship between classes in the schema template, while “parent node/class” and “child

node/class” are used in the self-adaptive schema as the equivalent of superclass and subclass.
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provide an example of schema expansion process in Fig.5. Suppose we use the same notation as in the algorithm. In
Step 1, we locate class C’s nearest ancestor class that already exists in S and denote it as Cp. Then it comes with four
possibilities, each of which corresponds to one of the four transitions indicated in Fig.5(a). First, if Cp, has no child
node, we go to Step 3 to insert C into S as a child node of Cp, as exemplified by Transition A in Fig.(b)); Second, if one
of Cp’s child node C; is a descendent class of C, Step 4 is performed to insert C between Cp and C; (Transition B); In the
third case, if every child node of Cp is in different sub-trees under Cp (defined in the context of the schema template)
with C, we insert C as a child node of C; in Step 3 (Transition C); In the last possibility, one of Cp’s child node C;and C
are in the same sub-tree under Cp, we execute Step 5 to insert the root of this sub-tree into S as a child node of C;, , and
link C and C; as its children nodes (Transition D). Note that in this case, an additional class other than the user requested
one is inserted in order to balance the structure of the schema. For all the four cases, if the inserted class is not a
subclass of its parent node (but must be its descendent class), we convert its attributes and methods that are implicitly
inherited along the inheritance path (below its parent node) into explicitly defined attributes and methods.

Compared with expansion, schema compaction seems to be much more straightforward, which simply removes the
class and reconnect its children nodes (if any) to its parent. However, since there is a possibility that a class is deleted
even when it has several native objects (c.f. Section 0), housekeeping work is necessary to fit these objects into other
data types before their original class is removed, otherwise they will be purged with the original class. In this case, we
apply the object migration technique [7] to migrate these objects to the parent node (denoted as Cp) of their original
class (denoted as C). During migration, the object identity of a migrating object is preserved, and the values of the
attributes that are inherited from C, are also retained. However, the attributes that locally defined in class C can no
longer exist, since such attributes cannot be fit into the definition of C,. Moreover, the objects that are migrated to C,
will become instances of Cp, and completely “forget” their original class membership. As a result, even if class C is
reconstructed sometime later, there is no way for these objects to be reclaimed by C.

The compaction algorithm, although resulting in a more concise schema, causes the loss of information of the migrating
objects, in terms of their locally defined attributes and their class membership. However, there is no cost-effective
solution to either of these two drawbacks. On the one hand, the locally defined attributes cannot propagate to the
superclass (or parent class); otherwise, the schema consistency is in risk if the superclass has other subclasses besides
the one being removed. On the other hand, attempts made to memorize the original membership of a migrating object
might open up more problems, especially when the migration is transitive. Such information loss, which implies the loss
of descriptive power of the schema, is the cost of efficiency.



Rule 1: (for schema expansion) Rule 2: (for schema compaction)

Event 1: Event 2:
A request is received to create an object O of class C. A certain time interval is elapsed.
Condition 1: Condition 2:
C does not exist in the current schema S. 2.1: Class C'is a leaf node.
Action 1: 2.2: The objects of C have not been manipulated during the last

Execute the schema expansion algorithm to insert C into §. | time interval.

2.3: The ratio of C’s cardinality against the cardinality of C’s
parent class is below a threshold.
Action 2:

Execute the schema compaction algorithm to remove C from
the current schema S.

Fig.6: Examples of ECA-rules

4.2 ECA-Rule Driven Schema Evolution

Schema evolution in our approach is not executed under the explicit requests of applications. Instead, it is controlled by
a set of ECA-rules, i.e., it is triggered when the condition holds true on occurrence of certain events. The ECA-rules are
defined by the system designers, which reflect the requirement of a specific application. Although the practical ECA-
rules can be very sophisticated and application-specific, we suggest two general and exemplary ECA-rules in Fig.6 to
convey the basic idea of the strategy.

The event that may induce schema expansion is the request to create an object O of a certain class C. In this case, if the
C already exists in the current schema S, we create O as an instance of C; otherwise, we execute the schema expansion
algorithm (c.f. Fig.4 (a)) to insert C into the schema, and then create O as an instance of C. On the other hand, we
consider schema compaction at certain time interval with predefined length (which can be as long as days). The
condition part for class C is the “intersection” of three conditions: (1) C is a leaf node, (2) objects of C have not been
manipulated (created, modified, accessed, deleted) in the last time interval, and (3) the ratio of C’s cardinality against
the cardinality of C’s parent class is below a threshold. (Cardinality of a class is defined as the total number of objects
belonging to this class and all its descendent classes.) If all conditions hold true, the schema compaction algorithm (c.f.
Fig.4 (b)) is called to remove C from the schema with its objects migrated to its parent class.

The aim of the exemplary ECA-rules is to maintain a concise set of classes in the schema with adequate descriptive
power, which is tailored to a specific application. For this purpose, schema expansion is executed in an “on demand”
manner, which augments the descriptive power of the schema by adding new classes requested by the application.
Schema compaction, on the other hand, is much like a “garbage collection” process performed regularly to remove the
inefficient classes, whose maintenance cost cannot be justified by its number of objects and frequency of access. It can
be expected that even more sophisticated ECA-rules will serve the same purpose, i.e., tailoring the schema towards the
requirements of the application.

Admittedly, ECA-rules entails significant performance overhead, which may partially offset the efficiency gained from
the strategy. However, due to the following reasons, we argue that using ECA-rules does bring more benefit that
justifies its cost. First of all, the ECA-rules approach automates the schema evolution process, which relieves
considerable human effort of monitoring database status and performing evolution. Such a task can be even impossible
for database administrators to accomplish when the database contains a large volume of data and accepts highly
frequent access requests. As another consequence of automation, our approach is free of subject errors, which may
become as serious as deleting necessary classes and objects. Further, the ECA-rules enforce the schema to conform to
the semantically structured template, which may otherwise be disordered by supervised evolution. Compared with
application-level mechanisms, ECA-rule has a broader access and greater control of the database, which allows the
implementation of more sophisticated and powerful rules.
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Fig.7: A Case Study

Since the particular object-oriented database management system (OODBMS) currently in use does not support active
capability, the ECA-rules are encoded using the persistent object programming language provided by the database
system as its additional function module. Rule management (creation, deletion, and modification) is not realized in this
preliminary implementation. There are also other critical issues related to ECA-rules [14], such as consistency, conflict
resolution, termination problem, which are not discussed in the scope of this paper.

4.3 A Case Study

In this subsection, we present a simple case study to demonstrate the functioning of the strategy in the scenario of a
multimedia application, which focuses on managing animal pictures. Commonly, the application requests to insert
objects into or delete them from the underlying database during its operation. On occurrence of each request (Fig.7(b)
and (c)), as well as the expiration of a time interval (Fig.7(a) and (d)), the corresponding ECA-rules are evaluated, and
the appropriate schema evolution is performed when the condition is true. In the following, we go through the four steps
in Fig.7 with an analysis of the rule processing on each step®. We assume the threshold employed in Condition 2.3 is set
to 0.05.

(a) As the triggering event of Rule 2, expiration of a time interval causes C2 to be evaluated for both class Animal and
Elephant. At this moment, C2.1 is false for the non-leaf class Animal, while C2.3 is false for Elephant whose
cardinality ratio is above the threshold. Therefore, no action is performed in this stage.

(b) Creation of Animal objects leads up to the occurrence of E/. Consequently, we check CI for class Animal, which
holds false in this case since Animal is already in the schema. Again, no action is taken, except the requested
objects are created as instances of class Animal.

(c) At the moment when objects of Bird are to be created, Bird is absent from the schema, which satisfies CI.
Consequently, A7 is executed to insert the class definition of Bird into the schema using schema expansion
algorithm, and then the objects are created as instances of Bird.

(d) When another time interval is elapsed, class Animal, Bird, and Elephant are considered for C2. Non-leaf class
Animal fails to satisfy C2.1, while newly created class Bird fails on C2.2. However, class Elephant satisfies all
three conditions, because it locates at leaf node, stay untouched during last time interval, and occupies a too small
proportion of objects under its parent class. Therefore, it is removed by the schema compaction algorithm with its
objects migrated to class Animal.

3 In the case study, the initials £, C, and A4 stand for Event, Condition, and Action of an ECA-rule, respectively.



5. PROTOTYPE SYSTEM

The semantic schema mechanism (SSM) proposed in this paper has been implemented as the data model of our
prototype system, 2M2Net, a search engine for multi-modality data in digital libraries [16]. The details of the
architecture of 2M2Net system can be found in [17]. In 2M2Net, the proposed schema is built upon a small-scale
OODBMS (namely, NeoAccess [9]). Because our schema requires no modification to the kernel of an object model,
NeoAccess can take care of most of the issues as to modeling, storage, management and retrieval (using a SQL-like
language) of multimedia data. Furthermore, since NeoAccess interfaces with users through a persistent C++
programming language, we can easily encode additional functionalities such as ECA-rules into the schema.

All the experiments conducted on 2M2Net so far have demonstrated its effectiveness and efficiency [16], which show
that the proposed mechanism is at least feasible. A thorough study of the schema performance, evaluated in terms of its
descriptiveness and efficiency, is yet to be conducted. The primary difficulty is the lack of viable approaches to estimate
the descriptive power of the schema. Although retrieval accuracy is certainly an indication of descriptiveness, it is also
influenced by many other factors that can be hardly precluded. Another difficulty comes from the trouble of collecting
tremendous amount of data needed to examine the schema efficiency. Data collections of small or medium size are
unlikely to produce any discernible difference in efficiency as the result of using different schemas.

6. CONCLUSIONS

This paper has presented a self-adaptive semantic schema mechanism (SSM) for multimedia databases, which takes the
advantages of several database techniques including object-oriented data modeling, schema evolution with object
migration, and ECA-rules. This mechanism features a self-adaptive evolution strategy, which exploits a prototypical
schema template to automatically optimize towards the requirement of a specific application. Multimedia applications
built on the proposed schema are able to achieve a dynamic, application-specific optimal balance between accuracy and
efficiency with regard to data retrieval.

As a response to the shortcomings mentioned in Section 3, we plan to extend the modeling capacity of the current
schema to support aggregation relationship as well as multiple inheritance. Aggregation relation between objects can
help to construct composite objects and conduct complex queries, while multiple inheritance is used to model objects
with several applicable semantic concepts. Another possible direction of future work is to improve the rule-based
schema evolution strategy by including the rule management, analysis, and trace capabilities. Before these
modifications and extensions are carried out, their costs and gains will be thoroughly studied.
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