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ABSTRACT

Temporal consistency is ubiquitous in video data, where
temporally adjacent video shots usually share similar vi-
sual and semantic content. This paper presents a thorough
study of temporal consistency defined with respect to se-
mantic concepts and query topics using quantitative mea-
sures, and discusses its implications to video analysis and
retrieval tasks. We further show that, in interactive set-
tings, using temporal consistency leads to considerable im-
provement on the performance of semantic concept detection
and retrieval of video data. Specifically, an active learn-
ing method with temporal sampling strategy is proposed
for building classifiers of semantic concepts, and a temporal
reranking method is proposed for improving the efficiency
of interactive video search. Both methods outperform ex-
isting methods by considerable margins on the TRECVID
dataset.

Categories and Subject Descriptors

H.3.1 [Information Storage and Retrieval]: Content
Analysis and Indexing—indexing methods

General Terms

Algorithm, Performance, Experimentations

Keywords

Video retrieval, Semantic concept detection, Temporal con-
sistency, Active learning, Interactive search

1. INTRODUCTION

Video analysis and retrieval has become an active and
challenging research area in recent years. Various approaches
have been proposed for detecting semantic video concepts,
i.e., finding video shots that match generic concepts such
as anchor, outdoor, and sports, or video retrieval, i.e., find-
ing shots that answer specific query topics such as “Find
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President Bush speaking in front of a U.S. flag”. A gen-
eral approach to such tasks is to study the pattern in the
textual and/or image features of sample data (i.e., labeled
examples of concepts or query examples), typically using
a machine learning method, which finds more data in the
collection that match such pattern. Related research issues
such as the fusion of multi-modal features [15, 11], inter-
concept relationships[7], and query semantics [8, 15], have
been extensively studied. However, an equally important
issue, the temporal consistency of video data, has not been
well studied in the context of semantic concept detection
and retrieval despite its potential value to such tasks.

Video data exhibit strong consistency along the tempo-
ral domain, which ensures the footage is visually smooth
and semantically coherent. In this paper, temporal con-
sistency refers to the observation that temporally adjacent
video shots have similar visual and semantic content. This
implies that the relevant shots matching a specific semantic
concept or a query topic tend to gather in temporal neigh-
borhoods or even appear next to each other consecutively.
As shown in Figure 1, if a shot in broadcast news video
matches the concept “sports”, chance is high that the pre-
vious and next few shots are also about sports.

Temporal consistency provides valuable contextual clues
to video analysis and retrieval tasks. In most existing ap-
proaches, the relevance of a given shot with respect to a
semantic concept or query topic is determined based on its
own content and independently from its neighboring shots.
With temporal consistency, one can make more informed
prediction as to the relevance of the shot by considering the
relevance of its neighboring shots, thus enhancing the over-
all performance of the predictions. This poses the question
of how to quantitatively measure the strength of temporal
consistency w.r.t different concepts or query topics, as well
as how to design approaches that make use of such temporal
consistency.

However, the potential value of temporal consistency is
shadowed by the high variance of video data. It is common
that the video shots relevant to the same concept (or query)
are visually dissimilar, posing difficulties to machine learn-
ing methods due to the discrepancy of distribution between
training examples and testing data. For example, in Figure
1 the first 4 sports shots are about basketball, which are
visually similar with yellow as their dominant color, while
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classifier trained from the basketball shots are likely to mis-
classify the baseball shots as irrelevant since visually they
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Figure 1: A sequence of example shots in news video

respect to a semantic concept “sports” .

look very different. While this data variance issue is a gen-
eral problem of machine learning, it is particularly severe
in video data because, due to the consistency of adjacent
shots, the classifier tends to miss not a few individual out-
liers but a whole sequence of relevant shots. Furthermore,
one can hardly rely on temporal consistency to correct the
(mis)prediction on one shot from its adjacent shots, because
the adjacent predictions also tend to be wrong.

To exploit temporal consistency for better video analysis
and retrieval while circumventing the data variance prob-
lem is an important and challenging task. In this paper, we
present a thorough study of temporal consistency in video
data with ample statistics on a benchmark dataset, and dis-
cuss its relationship with the data variance problem and
implications to video analysis and retrieval tasks. We then
propose two simple but effective methods that utilize tem-
poral consistency to improve the performance of semantic
concept detection and retrieval in interactive settings. The
major contributions of this paper includes:

1. We provide quantitative measures of temporal consis-
tency defined in terms of semantic concepts or query topics
in a benchmark video collection. We also discuss the rela-
tionship between temporal consistency and data variance,
as well as their implications to video analysis and retrieval
tasks.

2. We propose an active learning method with tempo-
ral sampling strategy, which exploits temporal consistency
to build high-quality classifiers for semantic video concepts
with minimum user efforts.

3. We propose a computationally efficient temporal rerank-
ing method for incremental improvement of the ranking list
of relevant shots during interactive search.

Note that we do not solve or intend to solve the general
problem caused by high data variance. We discuss high vari-
ance problem because it compromises the value of tempo-
ral consistency especially in a non-interactive setting. The
methods to be presented in this paper negotiate a way of ex-
ploiting temporal consistency while going around the high
variance problem in interactive settings.

2. RELATED WORK

For video concept detection and retrieval, a general frame-
work is to build a supervised classifier from sample shots,
such as query examples or manually labeled shots, and use
the classifier to find more relevant shots whose features match
those of the samples. Some important issues have been ex-
plored within this framework, such as the fusion of multi-
modality information [15], the relationships between differ-
ent semantic concepts [7], the modeling of query types and
semantics [15, 8]. Given the relatively low performance of
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footage, with their true and predicted labels with

the automatic approaches, there has been also research on
video analysis and retrieval in interactive settings. Active
learning has been a popular method in this area, which is
used in [3] and [11] for iteratively building better classifiers
of semantic concepts by choosing the most informative shots
for user feedbacks. The methods to be presented in this pa-
per also consider the interactive setting of video analysis and
retrieval, but with a focus on the temporal consistency issue
which has not been much explored in existing work.

There have been many works on using the temporal in-
formation of video data. Visual content continuity (and dis-
continuity) has been the primary clue for both shot bound-
ary detection methods [6] and story segmentation methods
[16, 9]. Recently, hidden Markov model (HMM) and its
variants have been used to discover meaningful patterns or
events in soccer video [13] and news video [14, 4]. More-
over, motion trajectory which can be seen as microscopic
temporal dynamics has been used for retrieving video ob-
jects [2]. The computer vision community has also used
temporal constraint in video data to improve the tracking
of people and physical objects, such as the work in [5]. More
relevant to our work is that from Song et al. [11], which con-
siders video temporal consistency when classifying semantic
concepts such as indoor/outdoor. The idea is to cluster ad-
jacent video shots with similar content into groups in order
to avoid labeling (near-)duplicate shots, which improves the
classifier with fewer manually labeled shots.

3. MEASURING TEMPORAL CONSISTENCY

In this paper, we examine the temporal consistency with
respect to a given semantic concept or query topic, mea-
sured by the tendency that the relevant shots of this con-
cept/query appear in temporal proximity. As different con-
cepts and queries may exhibit varying levels of temporal
consistency, providing a quantitative measurement is criti-
cal as to whether and how to use the temporal information
for better video analysis and retrieval. In this section, we
present two measurements of temporal consistency, namely
transitional probability and pointwise mutual information,
and apply them to a large number of concepts and queries
on the TRECVID video collection [10]. This is to our knowl-
edge the first work reporting quantitative measures of video
temporal consistency on a benchmark dataset.

Transitional probability: Suppose C; € {0,1} is a bi-
nary variable indicating whether shot ¢ is relevant to se-
mantic concept C. The transitional probability P(C; =
1|C¢—1 = 1) is defined as the conditional probability of shot
t being relevant to C given that its previous shot ¢ — 1 is
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Figure 2: The distribution of transitional probability, marginal probability, and pointwise mutual information
of 194 LSCOM concepts computed on the TRECVID 2005 development set. Note the scale difference.
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Figure 3: The distribution of transitional probability, marginal probability, and pointwise mutual information
of 96 query topics from TRECVID 2002 to 2005 on the respective test set. Note the scale difference.

relevant to C, which is calculated as:

#(Cr =1,Ci1 = 1)
#(Cim1 =1)

where #(Cy—1 = 1) is the total number of relevant shots
in the collection, and #(C¢ = 1,C¢—1 = 1) is the total
number of consecutive shot pairs that are both relevant to
C'. Clearly, transitional probability provides a quantitative
measure of the strength of the temporal consistency w.r.t a
semantic concept.

We examine the transitional probability of the semantic
concepts defined in LSCOM [1], or large scale concept ontol-
ogy for multimedia, based on the TRECVID 2005 develop-
ment set which contains over 74,000 shots. Among the 320
LSCOM concepts, we filter out the extremely rare concepts
(with < 0.1% relevant shots), and compute the transitional
probability of the remaining 194 concepts using the provided
true labels. For comparison purpose, we also compute the
(marginal) probability P(C; = 1) of each concept, which is
equal to the ratio of its relevant shots in the whole collection.

We plot the distribution of the transitional and marginal
probability of the 194 concepts in Figure 2 (a) and (b). We
see that while the marginal probability of most concepts are
below 0.1 with an average of 0.038, their transitional prob-
ability is distributed in much higher range with an average
of 0.452. This means that once the label of the previous
shot is known, one can improve the prediction on the label
of the current shot from hopeless guess (0.038) to a coin-
flip chance (0.452). This sharp contrast reveals the strong
temporal consistency of most semantic concepts.

The transitional probability P(Q: = 1|Qi—1 = 1) of a
query topic @ and its marginal probability P(Q: = 1) can
be computed in exactly the same way. We repeat the above

P(Cy =1|Ci_r = 1) =

(1)

experiments using the 96 benchmark query topics collected
from the TRECVID 2002 through 2005 data, for which the
true labels are available on the respective test set. The dis-
tribution of their transitional and marginal probability are
plotted in Figure 3(a) and (b). We observe even stronger
temporal consistency among most of the query topics, with
the average transitional probability (0.353) much larger than
the average marginal probability (0.0043).

Pointwise mutual information: The transitional prob-
ability can be biased, because for a frequent concept (i.e.,
a concept with many relevant shots) the probability that
we see two relevant shots being consecutive due to sheer
chance is higher than a rare concept. A better metric of
temporal consistency is the ratio of transitional probability
against marginal probability. The logarithm of this ratio is
the point-wise mutual information (PMI) metric, defined as:

P(Ct - 1|Ct_1 - 1) P(Ct - 17015_1 - 1)

PMI = log =log

P(Cy=1) P(Cy =1)P(Ct-1 (:)1)
2

The distribution of PMIs of the 193 concepts and 96 query
topics is shown in Figure 2(c) and 3(c), respectively. We see
that 163 out of 194 concepts, and all the 96 query topics,
have PMI larger than 2, implying that their transitional
probability is at least 7 times (e?) of its marginal probability.
In average, the transitional probability is 90.5 times larger
than its corresponding marginal probability for a semantic
concept, and 271.2 times larger for a query. These statistics
show that, for most semantic concepts and query topics,
knowing the relevance label of a shot is tremendously useful
for predicting the label of the next shot.

The statistics of transitional probability and PMI shows
strong temporal consistency in video data. Given that the
transitional probability is way larger than the marginal prob-



Table 1: Prediction results of 40 LSCOM-freq con-
cepts on the TRECVID 2005 development set

Prediction type Average # of shots

Hit 785.4
Miss 1836
False positive 413.2
Correct reject 33653

Table 2: Transitional probability between hit and
miss of 40 LSCOM-freq concepts on the TRECVID
2005 development set

Transitional probability
P(Hute|Hiti—1)
P(M’iSSt |Hitt_1)
P(Misst|Misst—1)
P(H’Ltz |M’i88t_1)

mean (+standard deviation)
0.654 (£0.112)
0.346 (+£0.112)
0.869 (+0.068)
0.131 (£0.068)

ability, we can significantly improve the prediction on the
(relevance) label of a shot by consulting the prediction on
the previous shot, and therefore boost the overall perfor-
mance of concept detection or retrieval. As will be shown
in the next section, however, this is not necessarily the case
due to the high variance of video data.

4. TEMPORAL CONSISTENCY AND DATA
VARIANCE

An intuitive idea of using temporal consistency is to “smooth”

the prediction of a shot w.r.t to a concept or query using the
predictions of the neighboring shots. However, the effective-
ness of this approach is compromised by another common
property of video data — high variance. Here, high vari-
ance is reflected in the fact that video shots relevant to the
same semantic concept or query topic have dissimilar con-
tent. This poses a difficulty to the machine learning meth-
ods used for classifying this concept/topic, since the relevant
shots in the testing set can be very different from those in
training set, as exemplified in Figure 1.

High data variance is a general issue in machine learn-
ing and exists in various types of data. However, we argue
that it is more severe in video data. Because of tempo-
ral consistency, there exist not a few individual outliers but
sequences of dissimilar relevant shots along the temporal do-
main in the testing data (e.g., the sequence of baseball shots
in Figure 1). As the classifier makes continuous mistakes
on the whole sequence of outliers, the performance suffers.
Moreover, we can hardly correct such a misclassification by
smoothing with the predictions on neighboring shots, since
most of the neighboring predictions tend to be wrong. The
temporal consistency is of little help if majority of the pre-
dictions in the temporal neighborhood are wrong. In the
following, we provide evidence on this argument by exam-
ining the distribution of concept classification errors, and
demonstrate that simple “smoothing” methods can hardly
achieve consistent improvement on video concept detection.

Distribution of concept classifier errors. We build
SVM classifiers based on 256-d HSV color histogram feature

Relevance score

State (label
"RM‘ ‘ Rr ‘ ‘Rtﬂ

)
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(b) HMM smoothing

(a) Linear smoothing

Figure 4: Smooth the relevance score of a shot by (a)
linear combination of neighbors’ scores (b) hidden
Markov model

for 40 frequently-used LSCOM concepts (called LSCOM-
freq concepts), whose labels are available on the TRECVID
2005 development set. These 40 concepts vary from those
related to genre (e.g., sports, entertainment) and scene (e.g.
studio, outdoor, waterscape), to those related to object (e.g.,
airplane, car) and people (e.g., political leader, prisoner).
We believe they form a faithful representation of the video
concept space.

To evaluate the classifiers of the 40 concepts, we partition
the TRECVID 2005 development data into 3 sets: 40% as a
training set, 20% as a held-out set, and the rest 40% as a test
set. Each classifier is built from the training set and applied
to predict the (binary) label of each shot in the test set.
Comparing the predicted label with the true label results
in one of the four cases, namely hit (relevant shot labeled
as relevant), miss (relevant shot labeled as irrelevant), false
positive (irrelevant shot labeled as relevant), and correct
reject (irrelevant shots labeled as irrelevant). Among them,
miss and false positive are errors. Table 1 summarizes the
average frequency of these 4 cases in the classification results
of the 40 LSCOM-freq concepts. We see that the number
of misses is about four times of the number of the false
positives, showing that miss is the primary type of error a
concept classifier makes. This is a partial evidence on the
high variance of video data.

Further, we look at the temporal distribution of the misses
by computing the transitional probability between hits and
misses. As shown in Table 2, the average transitional proba-
bility of miss is as high as 0.87, indicating that if the classifier
just misses a relevant shot, it is very likely to miss the next
relevant shot. On the other hand, if the classifier (correctly)
finds a relevant shot, it has a fairly good chance (0.65) to
find the next one. This shows a pattern of “find all, or miss
all”, which confirms our conjecture about the continuous
misclassifications caused by temporal consistency and data
variance.

Temporal Smoothing for concept detection. The
idea behind temporal smoothing is to “smooth” the pre-
dicted relevance score of a shot w.r.t to a concept using
the scores of its adjacent shots, in the hope that it corrects
misclassifications using the correct predictions in the adja-
cency. We implement two smoothing methods as illustrated
in Figure 4, both of which try to improve the relevance score
R, of shot ¢ generated by the SVM classifier trained earlier
(denoted as baseline classifier). Linear smoothing computes
the updated score R; as a weighted combination of the old
scores of itself and its neighboring shots in a window (R¢—1,
R¢, and Ryy1), with the weights learned by logistic regres-



. Smoothing
Concept Baseline 52 Te | Linear | AMM
Basketball 0.358 0.741 0.360 0.317
Building 0.314 0.455 0.311 0.311
Car 0.307 0.514 0.306 0.305
Commercials 0.830 0.991 0.836 0.836
Computers 0.387 0.458 0.427 0.402
Explosion 0.149 0.318 0.131 0.142
Sports 0.603 0.872 0.608 0.614
Still image 0.119 0.341 0.107 0.097
Studio 0.721 0.767 0.752 0.698
Text only 0.662 0.678 0.668 0.636
Urban 0.178 0.434 0.179 0.178
Vegetation 0.310 0.491 0.314 0.302
Waterscape 0.388 0.554 0.374 0.396
Weapons 0.378 0.676 0.380 0.384
Weather 0.196 0.774 0.201 0.213
average (MAP) | 0.399 | 0.567 | 0.403 | 0.397

Table 3: Average precision (AP) of 40 LSCOM-freq
concepts by smoothing methods

sion on the held-out set. Hidden Markov model (HMM)
models the concept label of a shot L; € {0,1} as hidden
state generating its score R; as the observation, and uses
the posterior probability of positive label as the new rele-
vance score, i.e., Rf = P(L; = 1|R) . The parameters of
HMM is also trained on the held-out set, and the Viterbi
algorithm is used to compute P(L; = 1|R).

Table 3 summarizes the average precision (AP) of the
40 concepts on the test set achieved by the two smoothing
methods as well as the baseline classifiers. For comparison
purpose, we also include an (unrealistic) oracle method as
a variant of linear smoothing which takes true labels of the
neighboring shots as input. That is, it combines L;_1, Ry,
and L:y1 to compute R;. This oracle represents the per-
formance upper bound one can possibly reach by using the
temporal knowledge. As we can see, the oracle method out-
performs the baseline on almost every concept, resulting in
a 17% improvement on mean average precision (MAP). This
shows that the labels of the neighboring shots are tremen-
dously useful for predicting the label of the current shot.
When using the real scores instead of true labels, however,
the linear smoothing method does not significantly outper-
form the baseline, with less than 1% improvement on MAP.
Comparing it with the baseline classifiers, we find that linear
smoothing helps on some concepts (e.g., Computers, Studio)
but hurts on some others (e.g., Explosion). The same situa-
tion is observed on results of the HMM smoothing method.

Since the only difference between Oracle and Linear Smooth-

ing is the use of true labels or predicted scores, it is odd
to see the large difference of their performance, especially
on concepts with high baseline AP (e.g. “Commercials”)
where the predictions are almost as good as the true la-
bels. This can be explained by the distribution of classifi-
cation errors. Temporal smoothing improves performance
by correcting the misclassification on a shot using the pre-
dictions on its neighbors. Its success is therefore based on
the assumption that the majority of the predictions in that

neighborhood are correct. However, as we observed in Table
2, misclassifications (e.g., misses) tend to appear in a row,
which makes temporal smoothing method unable to correct
any of the mistakes.

The high variance of video data poses a serious challenge
for using temporal consistency for tasks like concept detec-
tion in an automatic setting. In the following, we propose
two methods that can effectively exploit temporal consis-
tency for better concept detection and retrieval in interac-
tive settings while going around the problem caused by high
data variance. To be specific, the idea is to rely on users
to spot misclassified relevant shots, and then use heuristics
based on temporal consistency to find more relevant shots
in the neighborhoods around these “seed” shots.

5. ACTIVELEARNINGWITH TEMPORAL
SAMPLING STRATEGY FOR CONCEPT
DETECTION

Active learning technique [12] has been used to build high-
quality classifiers for semantic video concepts [3, 11]. The
idea is to improve the current classifier by asking users to
label informative shots and adding the labeled shots into
the training set of the classifier. The major difference be-
tween conventional relevance feedback and active learning
is that the former only selects top-ranked examples for user
labeling, while the latter adopts more intelligent sampling
strategies to choose informative examples from which the
classifier can learn the most. A general assumption on the
informativeness of examples is that an example is more use-
ful if the classifier’s prediction on it is more uncertain. Based
on this assumption, active learning methods typically sam-
ple examples close to the classification hyperplane. Another
general belief is that a relevant example is more useful than
an irrelevant one especially when the number of relevant
examples is small compared with that of the irrelevant ones.

Based on our discussion in Section 4, the shots most use-
ful for improving a video concept classifier are those from
the sequences of relevant shots misclassified by the current
classifier. However, we have no idea on what these shots
are (otherwise we would be able to build a better classi-
fier from the very beginning) and thus cannot sample from
them. Nevertheless, we find that these misclassified rele-
vant shots are more likely to appear close to the classifica-
tion hyperplane than anywhere else in the feature space. To
see this, we examine the distribution of the missed relevant
shots at different distances to the classification hyperplane,
and find that an average of 31.3% of the missed shots are
distributed among the 5% of shots closest to the classifica-
tion hyperplane of the SVM classifiers used. Therefore, an
active learning method that samples data close to the classi-
fication hyperplane has a good chance of finding the missed
shots and building a better classifier.

Adding only a few missed relevant shots to the training
data is not sufficient to largely improve a classifier. Since
the relevant shots of a concept are usually rare compared
with the irrelevant ones, we hope that the sampled data
contain as many relevant shots as possible. Given that rele-
vant shots are likely to appear consecutively due to temporal
consistency, a simple way of finding more relevant shots is to
choose the shots close the those already labeled as relevant
in the previous iterations of active feedbacks. Therefore, our
sampling strategy needs to balance between two factors on



Algorithm 1 Temporal sampling strategy

Input: labeled set L, unlabeled set U, set of relevant shots R, the
number of samples N;
Output: sample set S;
Functions: f() is the distance to SVM classification hayperplane,
dist() is temporal distance between shots, D() is the density factor

1:T+— o
2: For each s; € U,
F(si) = alf(si)|+ Bmin,, ¢ (ry dist(si, s;) + (1 —a—B)D(s:)
3: While (|S] < N),
sk —— argming, ey F(s;)
S — SU{sx}
U«—— U — {sx}

each unlabeled shot, namely 1) its distance to the classifi-
cation hyperplane in the feature space, and 2) its temporal
distance to the closest relevant shot. The informativeness
score F'(s;) of a shot s; is computed as a linear combination
of these two distance factors:

F(s;) =alf(si)|+ (1 —«) m}n} dist(si, s5) (3)

s;E{R

where |f(s;)] is the distance function of shot s; to the clas-
sification hyperplane in the feature space, R is the set of
relevant shots labeled so far, and dist(s;, s;) is the distance
between two shots measured by the number of shots in be-
tween. Here « is a constant that balances the contribution
of the two factors, and its value needs to be determined ex-
perimentally. In our active learning method, the shots with
the smallest F' scores are chosen as samples to be labeled
by users and added into the current training data to up-
date the classifier. Unlike the temporal smoothing methods
described in Section 4, this method is not as vulnerable to
the high data variance problem since its close-to-hyperplane
sampling strategy helps discover missed relevant shots, while
using temporal consistency heuristics expedites the improve-
ment of the classifier by finding as many relevant shots as
possible.

According to Eq.3, once a relevant shot is labeled, this
temporal sampling strategy quickly “grows” into the neigh-
borhood around this shot and labels more relevant shots in
it. While this strategy is efficient in terms of quickly sam-
pling a large number of relevant shots, it has a potential
weakness that its samples concentrate in only a few tem-
poral neighborhoods. When the total number of samples is
fixed, this strategy may result in excessive samples from the
same neighborhoods, which carry little additional informa-
tion as they are all similar to each other, and meanwhile
leave many other temporal neighborhoods unexplored. To
remedy this problem, we introduce a density factor D(s;) to
penalize samples from highly sampled temporal neighbor-
hoods, where D(s;) is defined as the ratio of labeled shots
among all the shots in a window around s;. The informa-
tiveness score of an unlabeled shot s; is now computed as:

F(si) = a|f(5i)\+5sjnelg} dist(si, 5;)+(1—a—B)D(si) (4)

where a and 3 are trade-off factors to be determined. The

density factor D(s;) favors shots from less sampled neigh-
borhoods and therefore achieves a wider temporal spread
of the samples. The procedure of this sampling strategy is
described in Algorithm 1.

6. TEMPORAL RERANKING FOR INTER-
ACTIVE SEARCH

We can improve the performance of interactive video search
by exploiting the temporal consistency using a similar idea.
The common scenario of interactive video search is as fol-
lows: given a query topic, a user sends manually formulated
and reformulated queries to a retrieval system, the system
returns a list of shots ranked in descending order of their
(predicted) relevance score, and the user browses through
this list to label relevant shots. The effectiveness of interac-
tive search is measured by the number of relevant shots la-
beled by the user within a fixed time interval. The methods
used for TRECVID interactive search vary in terms of the
query type(text query, image query), the number of queries
used, and the visualization and interaction techniques. Nev-
ertheless, the basic scenario shared by these methods is that
a user goes down a ranking list and labels relevant shots from
it. Therefore, the success of interactive search is largely in-
fluenced by, among many factors, the quality of the ranking
list, or more specifically, the number of relevant shots within
a certain depth of the ranking list.

The initial ranking list of a query is determined by the
retrieval system and its quality is not the focus of this pa-
per. As user goes down the ranking list and starts to la-
bel relevant shots, valuable knowledge can be learned from
the labels and used to change on the fly the ranking of the
remaining shots in the list. A well-studied solution is to
perform incremental relevance feedback, where one expands
the current query with shots that have just been labeled as
relevant and rerank the remaining shots according to the
expanded query. In the following, we describe a compu-
tationally efficient method for improving the ranking list
on the fly by pushing the neighbors of the labeled relevant
shots to high ranks, which is orthogonal to existing relevance
feedback methods. This idea is related to the local brows-
ing/expansion technique used in interactive video search,
which allows users to conveniently examine the temporally
neighboring shots of any given shot. The major difference
is that in our method such expansion is done automatically
and based on user’s previous labels.

In our method, when a shot is labeled as relevant by user
during the labeling process, we push its temporally neigh-
boring shots into high ranks up to the position of the current
shot, provided that they have not seen by the user. The as-
sumption behind is that the neighbors of a relevant shot are
likely to be relevant too. A straightforward implementation
of this idea is to push all the unseen neighboring shots in
a temporal window of fixed size around the current shot
(which is just labeled relevant) into the next a few slots fol-
lowing the current shot in the ranking list. This reranking
method is illustrated in Figure 5, which shows the list be-
fore and after the reranking triggered by labeling shot ¢ as
relevant. We call this method fized-window temporal rerank-
ing. The choice of window size reflects how aggressive the
method is in terms of exploiting the temporal consistency
of the query topic. Using a large window brings more rele-
vant shots into the front but meanwhile can also brings in
more irrelevant ones. Hence, one needs to experiment with
multiple window sizes to find the best tradeoff. As an advan-
tage essential for interactive search, this reranking method
requires basically no extra computation.

Using the same window size for all the query topics is
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Figure 5: The shot ranking list before and after
temporal reranking with window size of 4, triggered
when the current shot ¢ is labeled as relevant. The
unlabeled temporal neighbors of ¢, including ¢ — 1,
t+ 2, and t — 2, are moved forward into the next a
few slots under ¢, ranked by their distance to t.

sub-optimal since it ignores the difference on the strength
of temporal consistency of different topics. It is intuitive to
use larger windows for topics whose relevant shots exhibit
stronger temporal consistency, and vice versa. However, one
has no clue as to the strength of temporal consistency of each
query topic before the search process, and it is illegitimate
in the search paradigm to acquire such knowledge from, say,
labeled training data. Nevertheless, we suggest to estimate
this information on the fly as the user browses the rank-
ing list and labels relevant and irrelevant shots. Following
this idea, we propose an adaptive-window temporal rerank-
ing scheme, in which the window size is dynamically deter-
mined by the transitional probability P(Q: = 1|Qi—1 = 1)
estimated from the pool of shots that have been labeled so
far. We estimate P(Q; = 1|Q¢—1 = 1) in the same way sug-
gested in Section 3, except that here we only use the shots
that are labeled. The window size is given as

windowg = maz_window x P(Q: =1|Q:—1 =1)  (5)

As our estimation of P(Q¢ = 1|Q¢—1 = 1) improves as the
user labels more data, the window size used for reranking
gradually reflects the strength of temporal consistency of
this topic, so it is expected to perform better than the fixed-
window method. In terms of efficiency, this method involves
slightly more computation for updating the estimate of tran-
sitional probability, but is still much faster than necessary
for interactive search.

7. EXPERIMENTS

7.1 Active learning with temporal sampling
for concept detection

The proposed active learning method is evaluated by ex-

periments on 40 LSCOM-freq concepts and the TRECVID

2005 development set, which contains diversified news video

footage from 13 programs in 3 different languages. The
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Figure 6: MAP of 40 LSCOM-freq concepts on test
set T in 8 feedback iterations. The methods com-
pared are conventional active learning (AL), and ac-
tive learning with two temporal sampling strategies
(TempAL1l and TempAL2).

whole data set is split into 3 sets in temporal order, in-
cluding an initial set I of 3050 shots, a test set T of 31686
shots, and a held-out set H of the remaining 39787 shots.
These three sets have no overlap on temporal domain. For
each of the 40 concept, we manually label the relevant shots
in set I and train a SVM classifier with RBF kernel for this
concept based on 256-d HSV color histogram. The classifier
is then applied to predict the relevance scores of the shots in
set T and H, and we perform active learning to improve this
classifier by choosing unlabeled shots from T for user feed-
back (The feedback is simulated using computer programs.)
To be close to the real case, only 100 shots are chosen for
feedback in each iteration, and only 8 feedback iterations
are performed. We test three sampling strategies of active
learning, namely the conventional strategy AL [3] which
samples unlabeled shots closest to classification hyperplane,
and the proposed temporal sampling strategy TempAL1l
(Eq.3) and its variant TempAL2 (Eq.4) with the additional
density factor. We also experiment with different tradeoff
factor a and 3, and choose the ones giving the best perfor-
mance.

We first examine the mean average precision (MAP) of
the 40 concepts on set T during the 8 feedback iterations.
It is still an open question whether the shots that have been
labeled in feedbacks should be included for evaluation. Here
we decide to include them (and thus use the whole T' set
for evaluation) for two reasons. First, excluding the labeled
shots from T result in different test set for different meth-
ods, because they may choose different shots for feedback.
Second, even after 8 iterations only 800 shots are labeled,
which is a very small portion of the 31686 shots in T'. The
performance on 7' is a meaningful metric as it shows how
much we can improve an existing concept classifier on a large
set with limited user intervention.

As shown in Figure 6, active learning methods based on
the two proposed temporal sampling strategies outperforms
that based on conventional method by large margins. The
improvements are consistent across the iterations, which
means that we can benefit from the temporal sampling strat-
egy no matter how many iterations are performed. It is a
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Figure 7: The relative improvement of TempAL2
over AL on the 40 LSCOM-freq concepts after 8 it-
erations against their pointwise mutual information.

bit surprising to see that TempAL2 does not perform sig-
nificantly better than TempAL1l. A possible explanation
is that while TempAL2 achieves a wider temporal spread
of labeled shots, it may not label as many relevant shots as
TempAL1 does.

It is also interesting to explore the relationship between
the strength of temporal consistency of each concept and
the improvement achieved by temporal sampling. For each
concept, we compute the relative improvement (in percent-
age) of TempAL2 over AL on the final AP achieved after
8 feedback iterations, and plot it in Figure 7 against the
pointwise mutual information of this concept. From their
distributions, we see that all the concepts on which Tem-
pAL2 produces an 20+% improvement satisfy PMI > 2,
and for the concepts with PM T < 2 using temporal strategy
is not very helpful. This is intuitive because temporal sam-
pling strategy is expected to be more effective for concepts
with stronger temporal consistency. However, the dots in
the bottom-right corner of Figure 7 shows that it is unable
to significantly improve the performance of every concept
with high PMI. Viable explanations of this include the com-
plexity of the concept and the limitation of color histogram
feature.

A more challenging evaluation metric is to examine the
performance on a unpolluted held-out set H, which shows
how much the improvement on 7" can be generalized to the
future data. Figure 8 has the performance comparison be-
tween the three methods on H. We see that while the
two temporal sampling methods still outperform the con-
ventional method, the gap is not as impressive. Here Tem-
PAL?2 is clearly better than TempAL1, which can be con-
tributed to the wide temporal spread of its samples due to
the introduction of the density factor.

7.2 Temporal reranking for interactive search

The temporal reranking method is evaluated by how much
it improves a ranking list of relevant shots for a query topic.
We follow the paradigm of TRECVID interactive search
where a user is given a fixed time interval (15 minute) for
each topic to find as many relevant shots as possible. For
simplicity, we make three assumptions in our experiment.
First, we assume that a user issues only one query for each
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Figure 8: The MAP of the three methods on 40
LSCOM-freq concepts evaluated on held-out set H
in 8 feedback iterations.

topic, and spends all the time examining, in a top-down
manner, the ranking list of shots retrieved by a retrieval
system and labeling the relevant shots in it. Even if in re-
ality a user may try multiple queries for each topic, he/she
merely repeats the above process for many times, so the
improvement within one iteration carries over to the whole
process. Second, all users are assumed to be equally effi-
cient, meaning that everyone examines the same number of
shots in the fixed time interval. Finally, we assume users are
error-free, i.e., a user makes no mistake as to the judgment
on the relevance of a shot.

With these assumptions, for each topic the number of rel-
evant shots a user labels is equal to the number of relevant
shots among top NN shots in the ranking list, where N is
the number of shots the user is able to examine within the
time interval. We evaluate the quality of the ranking list by
the recall of the top N shots, defined as Recy = Nyei/M,
where N, is the number of relevant shots within the top
N shots, and M is the total number of relevant shots in the
collection®. Obviously, whether we rerank the list or not,
Recn improves as N gets larger, but we expect that with
temporal reranking method it increases at a faster rate than
it does without reranking.

Our experiment is conducted on the TRECVID 2005 col-
lection using the 24 benchmark query topics. We gener-
ate the ranking list of candidate shots using two strategies,
one using only text retrieval (text-only run), and the other
based on the combination of multiple features including key-
words and image color histogram (multi-feature run) using
the method described in [15]. For each query topic, we trace
the recall (or AP) up to the top 4000 shots in the list, which
is the about the maximum number of shots a user can pos-
sibly see in the given 15 minute.

Figure 9(a) shows the performance comparison in the text-
only run using fixed-window temporal reranking with win-
dow size of 4, 10, and 20, as well as the baseline method
without reranking. We see that using the right window size,
the reranking method improves the baseline by about 7% at

! Although TRECVID uses average precision (AP) of the
user-sorted ranking list as evaluation metric, in our case the
recall approximates AP assuming that the user puts all the
relevant shots found at the top of the final list.
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Figure 9: Temporal reranking on 24 TRECVID 2005 query topics in text-only run
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Figure 10: Temporal reranking on 24 TRECVID 2005 query topics in multi-feature run

top 2000 shots and 8% at top 4000 shots. The optimal win-
dow size depends on the number of shots the user is able to
examine. The win20 outperforms winl0 after 2000 shots,
but it is slightly worse than winl0 within the first 1000
shots. Therefore, a quick user who can see over 2000 shots
in 15 mins would prefer win20, and vice versa. In Figure
9(b), we compare the performance of fixed-window rerank-
ing and adaptive-window reranking, both using (maximal)
window size of 20. The adaptive method is slightly better
within the top 1500 shots, after which its performance starts
to go below that of the fixed-window method. To show that
the improvement of temporal reranking is consistent across
different query topics, Figure 9(c) shows on a per query ba-
sis the recall of the baseline and of the reranking method.
We find that reranking method either outperforms the base-
line (204+% relative improvement in 14 out of 24 topics) or
performs as well as the baseline, but never hurts the perfor-
mance of any single query topic.

Figure 10 shows the comparison on multi-feature run,
where the baseline is higher than the baseline in text-only
run due to the integration of multimodal features. Despite a
higher baseline, the temporal reranking method generates in
a even larger improvement of about 12% at top 4000 shots
when using window of size 10. This means that our method
is orthogonal to the multimodal features used for generating
the ranking list, and the improvement is not sensitive to the
baseline. Similarly, the adaptive reranking is slightly better
than its fixed-window counterpart, especially within the top
2000 shots in the list. All the results show that temporal
reranking is an efficient approach for significantly improving
the performance of interactive video search.

8. CONCLUSION AND DISCUSSION

This paper has presented a thorough study on the tem-
poral consistency of video data and discussed its impacts to
semantic video concept detection and retrieval tasks. It has
proposed a temporal sampling strategy for active learning
method used to iteratively build classifiers of video semantic
concepts, and a temporal reranking method for interactive
video search. Extensive experiments on the TRECVID col-
lection have shown considerable improvements of the pro-
posed methods over the existing approaches.

This work is a rather preliminary exploration on the video
temporal consistency issue in terms of both data variety and
approach. The presented observations are mainly based on
broadcast news video, especially the TRECVID dataset, due
to its availability and popularity. Studying the temporal
consistency in non-news video, and comparing the observa-
tions with those of news video will be interesting future re-
search. While there have been works on using the temporal
information in home video [11] and surveillance video [5], a
thorough study of the issue has not been seen on these video
genres. Besides the data issue, a similar question can be
raised on whether the 40 LSCOM-freq concepts and the 96
TRECVID queries used in our analysis, despite the fact that
they are part of a benchmark dataset, constitute a faithful
representation of the real video concept/topic space. Analy-
sis based on different concept and/or query sets is desirable
to show whether our finding is generalizable.

On the other hand, our analysis focuses on the consistency
of adjacent shots rather than the shots in a neighborhood.
This is a limitation if the consistency of video data is beyond
the adjacent shots. For example, a typical news footage on



an interview consists of shots alternating between two sub-
jects (an interviewer and an interviewee), in which case our
method finds little temporal consistency as the shots con-
taining the same person are not consecutive. Moreover, our
method does not consider the length of consecutive shots
that are relevant to the same concept/query. Another type
of temporal information not addressed by our method is the
exclusive relationship between the relevant shots of a con-
cept or query. As an example, anchor shots rarely appear
consecutively; instead, a shot being an anchor shot usually
indicates that the previous and next few shots are NOT an-
chor shots. Both the long-term consistency and the exclusive
relationship deserve future research and may contribute to
further improvement on video analysis and retrieval tasks.
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