
This paper has been accepted by the 4th International Workshop on Multimedia Information Retrieval, in conjunction with ACM
Multimedia 2002, Juan-les-Pins, France, Dec., 2002.

FLAME: A Generic Framework for Content-based Flash Retrieval
Jun Yang1,3 Qing Li1 Liu Wenyin2 Yueting Zhuang3

1Dept. of Computer Engineering and Information Technology
2Dept. of Computer Science

City University of Hong Kong, Kowloon, HKSAR, China
yangjun@acm.org {itqli, csliuwy} @cityu.edu.hk

3Dept. of Computer Science
Zhejiang University

Hangzhou, China, 310027
yzhuang@cs.zju.edu.cn

ABSTRACT
Flash™ is undergoing an explosive growth and has become a
prevailing media format on the Web. Unfortunately, no research
effort has been dedicated to the retrieval of Flash movies based on
content, which is essential to the utilization of the enormous Flash
resource. In this paper, we conduct a close investigation of Flash
movies and reveal that a typical movie is semantically
characterized by means of its heterogeneous media components,
the dynamic effects of the components, and the user interactions
involved. As the first endeavor in the area of content-based Flash
retrieval (CBFR), we propose a generic framework termed as
FLAME (FLash Access and Management Environment) to address
the representation, indexing, and retrieval of Flash movies at
different levels of details, including (1) object level, which
describes the heterogeneous media components in a movie, (2)
event level, which depicts the movie’s dynamic effects, and (3)
interaction level, which models the relationships between user
behaviors and the consequential events.

Keywords
Flash movie, content-based Flash retrieval, multimedia retrieval

1. INTRODUCTION
Flash™ is a new format of vector-based interactive movie
proposed by Macromedia Inc. [4], which can be embedded into
web pages and efficiently delivered over the Web. Since its advent
in 1997, Flash has experienced a phenomenal growth and become
one of the most prevalent media formats on the Web. According
to statistics [5], by August, 2002 there are over 468 million
Internet users that can view Flash movies in Macromedia Flash
Player, the presentation tool of Flash. Flash movies are primarily
used to enhance the interactive and multimedia feature of web
pages, but they are also created as cartoons, commercial
advertisements, e-postcards, MTVs, or games, each of which has
huge market potentials. The unique features of Flash that
contribute to its huge success mainly include its compactness (for
fast delivery), ease of authoring, rich semantics (due to its vector-
based format), and powerful interactivity, which predict its even
greater popularity in the near future.
Due to the popularity of Flash and its promising future, it becomes
an imperative task of the multimedia research community to
develop effective and efficient retrieval tools for Flash movies. It
is foreseeable that Flash retrieval tools will be useful to a variety
of user groups, ranging from teenagers looking for Flash games,
music fans seeking for MTVs, to Flash developers reviewing the
designs of existing movies, and customers searching for Flash
advertisements. Some online Flash repositories, such as Flash Kit
[1], have provided users with simple search functions by matching

user queries against the manual keyword annotation associated
with each movie1. However, this approach does not investigate the
rich content of movies, which contains semantic clues
indispensable for evaluating user queries. In the research
community, the dilemma is that although extensive work has
dedicated to the retrieval of various types of media (text document,
image, video, etc), to the best of our knowledge, there is no related
work on the content-based indexing and retrieval of Flash movies,
despite the fact that nowadays Flash is equally favored as, or even
more popular than, other medias on the Web. Therefore, we are
motivated to present FLAME, a generic framework for content-
based Flash retrieval (CBFR), as the first piece of work in this
unexplored area.
A close examination reveals that a typical Flash movie is
characterized from three major aspects: (1) heterogeneous media
components contained in it, such as texts, graphics, sounds, video
clips, (2) dynamic effects constituted by the spatio-temporal
features of these components, and (3) user interactions that
interfere with the movie presentation. This intrinsic complexity of
Flash, as discussed in Section 2, poses a number of nontrivial
research issues that are not fully addressed by existing work. As
the main contribution of this paper, a generic framework termed as
FLAME (FLash Access and Management Environment) is
proposed to facilitate users to access Flash movies based on their
content. As described in Section 3, FLAME features a 3-tier
architecture that addresses the representation, indexing, and
retrieval of Flash movies at different levels of details, including (1)
object level, which describes the heterogeneous media
components in a movie, (2) event level, which depicts the movie’s
dynamic effects, and (3) interaction level, which models the
relationships between user behaviors and the consequential events.
In fact, the main objective of FLAME is not on providing a “total
solution” of CBFR, but to define a comprehensive “skeleton” so
that follow-up works in this area can fill into this skeleton as its
components. The conclusion of the paper and the future works are
presented in Section 4.

2. FLASH MOVIES: AN ANATOMY
By examining the structure of many typical Flash movies, we find
that the semantics of a typical movie is mainly synthesized and
conveyed through the following three types of devices:

• Heterogeneous components. A typical Flash movie usually
consists of component media objects in a variety of types. Texts
and graphics (i.e., drawings) of arbitrary complexity can be easily
created as components using authoring tools of Flash (e.g.,

1 If not explicitly designated, “movie” is referred to “Flash movie”
in this paper.

Page 1

Macromedia Flash v.4.0). Bitmap or JPEG images and QuickTime
video clips can be imported into the movie as well. Compressed
audios are embedded into movies in one of the two forms: event
sound, which is played in response to a certain event (e.g., mouse-
click), and streaming sound, which is played in synchronization
with the advance of a movie. All these components are encoded
separately, such that they can be easily extracted from Flash data
files. This differs fundamentally from pixel-level media formats
such as image and video.

Flash Parser

Multi-Level Query Engine

Tag TagHeader End Tag...

XML Representations of Flash movies
Representation

 Layer

Indexing
 Layer

Retr ieval
 Layer

User Interface (Query specif ication & Result Display)

Flash
movies

Object Retrieval
Module

IR CBR

Tag

Object
(text , graphic,

image, video .. .)

 Interaction
 (<mouse-click,
motion>, ?

 Event
 (motion, play,
morph, show...)

DB

Event Retrieval
Module

...DB ...

Interaction
Retrieval Module

. ..DB ...

Figure 1: The 4-tier architecture of FLAME

• Dynamic effect. A Flash movie is composed of a sequence
of frames that are played in an order subject to user interactions.
With the progression of frames, components can be placed on the
current frame, removed from it, or changed in terms of their
positions, sizes, shapes, and angles of rotation. The spatio-
temporal features of the components, as well as the spatio-
temporal relationships among them, make up of some high-level
dynamic effects (morphing, motion, rotation, etc), which suggest
the semantic meaning of a movie.

• User interactivity. Rather than a passive media like
streaming video, Flash is an interactive movie format in the sense
that a user can interfere with the presentation of a Flash movie. As
an example, by clicking a button in a movie the user can let the
movie “jump” to a frame prior to or behind the current frame.
Thus, an interactive movie has multiple presentations, with each
of them resulted from a specific series of user behaviors.
From the above discussion, it is clear that the intrinsic complexity
of Flash greatly surpasses that of any traditional media format,
such as text document, still images, video clips, to which the
extensive multimedia (including text) information retrieval
techniques are devoted. Hence, CBFR cannot be simply addressed
by any of these existing retrieval techniques. For example, the
indexing of dynamic effects (or spatio-temporal features) still has
many open issues to be investigated, while the modeling of user
interaction is almost an untouched area. Therefore, a set of brand-
new techniques needs to be devised under CBFR to index and
retrieve Flash movies by their heterogeneous components,
dynamic effects, and user interactions. From another perspective,
however, since a Flash movie can be viewed as an organic
collection of diverse traditional media objects, many existing
retrieval methods can serve as the “enabling technologies” of
CBFR. For example, text-based information retrieval (IR)
techniques [7] can be applied to deal with text components in a
movie, and various content-based retrieval (CBR) techniques
[2,6,8] can be applied to image, sound, or video components. In
conclusion, the framework of CBFR is likely to be a skeleton
constituted by a variety of existing techniques together with many
new techniques to be developed.

3. THE FLAME FRAMEWORK FOR
CONTENT-BASED FLASH RETRIEVAL
FLAME is proposed as a generic framework for indexing and
retrieval of Flash movies based on their content. As illustrated in
Figure 1, it has a 3-tier architecture constituted by the
representation layer, indexing layer, and retrieval layer from
bottom to top, whose details are described in this section.

3.1 XML-based Movie Representation
Flash movies are delivered over the Internet in the form of
Macromedia Flash data (SWF) files. Each Flash file is composed
of a series of tagged data blocks, which belong to different types

with each type having its own structure. In essence, a Flash file
can be regarded as an encoded XML [3] file (a Flash file is binary
while a XML file is in ASCII format), and it can be converted into
an XML file using tools such as JavaSWF [3]. Each tagged data
block in a Flash file is mapped to an XML tag, which usually has
attributes and embedded tags to represent the content of the data
block. There are two categories of tags in a Flash file: definition
tags, which are used to define various components in a movie, and
control tags, which are used to manipulate these components to
create the dynamic and interactive effect of the movie. For
example, DefineShape and DefineText are definition tags, while
PlaceObject (placing a component on a frame) and ShowFrame
(showing the current frame) are control tags. In the representation
layer of FLAME, we convert Flash files into XML formats mainly
because they are readable and thus convenient for us to understand
the structure of Flash.

3.2 Multi-level Movie Indexing
As discussed in Section 2, a typical Flash movie is semantically
synthesized and conveyed through its heterogeneous media
components, dynamic effects, and user interactions, which in the
indexing layer of FLAME are modeled using the concepts of
object, event, and interaction respectively. Specifically, object
represents movie components such as texts, videos, images,
graphics, and sounds; event describes the dynamic effect of an
object or multiple objects with certain spatio-temporal features;
interaction models the relationships between user behaviors and
events resulted from the behaviors. Naturally, these three concepts
are at different levels: an event involves object(s) as the “role(s)”
playing the event, and an interaction includes event(s) as the
consequence of user behaviors. The features describing the objects,

Page 2

events, and interactions in a Flash movie are extracted by the
Flash Parser from the XML representation of the movie (see
Figure 1). The formal description of each concept and its features
are presented below:

• Objects. A component object in Flash is represented by a
tuple, given as:

object = <oid, o-type, o-feature>
where oid is a unique identifier of the object, o-type ∈ {Text,
Graphic, Image, Video, Sound} denotes the type of the object, and
o-feature represents its features. Obviously, the particular types of
feature vary from one type of object to another. Table 1
summarizes the most commonly used features for each type of
object, which are extracted from the corresponding definition tags
in Flash files either directly or through some calculations.

• Events. An event is a high-level summarization of the spatio-
temporal features of object(s), denoted as:

event = < eid, {action}n >
 action = <object, a-type, a-feature> (n=1, …, N)

where eid is a unique identifier of the event, followed by a series
of actions. Each action is a tuple consisting of an object involved
as the “role” of the action, a-type as the type of the action, and a-
feature as the attributes of the action. Each type of action can be
applied to certain type(s) of objects (e.g., morph action is

applicable only to graphic objects) and is described by a particular
set of features extracted mainly from control tags, as listed in
Table 1. This representation of dynamic effects is very powerful
in terms of expressiveness, as it supports multiple actions in a
single event. For example, a graphic object that is moving and
resizing simultaneously over frames can be modeled by an event
consisting of two actions describing the motion and resizing of the
object respectively.

• Interactions. The concept of interaction describes the
relationship between a user behavior and event(s) caused by
this behavior. Its formal definition is given as:

interaction = <iid, i-type, {event}n, i-feature> (n=1,…,N)

where iid, i-type, and i-feature represent the identifier, type, and
features of the interaction respectively, and {event}n is a set of
events triggered by the interaction. The type of interaction
indicates the device through which user behavior is conducted,
such as button, mouse, and keyboard. Button is a special
component in Flash movies for the purpose of interaction, and it
responses to mouse and keyword operation as a normal button
control does. Interactions involving buttons are classified as
“button” interaction, although they may also involve keyboard and
mouse operations. The features for each type of interaction are
given in Table 1.
So far, the index of a Flash movie can be represented as a
collection of objects, events, and interactions in it, given as:

movie = <{object}m, {event}n, {interaction}t >

The retrieval of Flash movies is conducted based on such multi-
level features, as described in the next subsection.

3.3 Multi-level Query Processing
As shown in Figure 1, the retrieval layer of FLAME consists of
three individual retrieval modules that are responsible for
matching movie features at the object, event, and interaction level
respectively. Since user queries usually involve movie features at
multiple levels, a multi-level query engine is designed to
decompose user queries into a series of sub-queries for objects,
events, and interactions that can be processed by underlying
retrieval modules, and then integrate and translate the results
returned from these modules into a list of relevant movies. The
functionality of each retrieval module and the multi-level query
engine are summarized below:

Table 1. Features for objects, events, and interactions

 Name Feature

Text Keywords, font size

Graphic Shape, color, number of
borders

Image Size, color, texture

Sound MFCCs (mel-frequency
cepstral coefficients)

Object

Video Features of a set of key-
frames, motion vectors

Motion Trail, start/end frame

Rotate Angle of rotation, location,
start/end frame

Resize Start/end size, location,
start/end frame

Morph Start/end shape, number of
frame

Play (for sound and
video objects) Current frame

Trace (following the
mouse point) Closeness to mouse

Event

Navigate (going to
a specific URL) Target URL

Button Event (press, release, mouse-
over, mouse-out), position

Keyboard Key code Inter-
action Mouse Action (drag, move, click, up),

position

• Object retrieval module. This module accepts the type and
features of object as input, and returns a list of objects of the
specified type that are ranked by their similarity to the given
features. The retrieval process is summarized by the following
function:

object-list: SearchObject (o-type, o-feature)
where object-list is a list of <oid, score> pairs, with score
indicating the similarity of each object to the feature specified by
parameter o-feature. If o-feature is not specified, all objects of the
given type are returned. The “search space” of this function covers
all the objects of every movie in the database and thus the returned
objects may belong to different movies. The type of features
specified as search condition differs from one type of object to
another, and even for the same type of object, it may differ from
one query to another. Moreover, different retrieval techniques are
needed to cope with different object features. For example, IR
approach is used for the keyword feature of text components, and

Page 3

CBR approach is used for the low-level features of video, image,
and sound components.

• Event retrieval module. To search events, we need to
specify search conditions for both actions and the objects serving
as the “roles” of the actions, as illustrated by the function below:

event-list: SearchEvent (a-type, a-feature, object-list)
This function returns a list of events having at least one action that
satisfies all the following three conditions: (1) the type of the
action is equal to a-type, (2) the feature of the action is similar to
a-feature, and (3) the object involved in the action is within
object-list. If a-feature, object-list, or both of them are not given,
the returned events are those with at least one action satisfying
conditions, respectively, (1) and (3), (1) and (2), or only condition
(1). Since only one action can be specified in SearchEvent, the
query for multi-action events is handled by firstly performing
SearchEvent based on each desired action and then finding the
events containing all the desired actions by intersecting multiple
event-list returned from SearchEvent.

• Interaction retrieval module. The retrieval of interactions is
conducted by the following function:

interaction-list: SearchInteraction (i-type, i-feature, event-list)
The semantics of this function is similar to that of SearchEvent.
The event-list specifies the scope of events, among which at least
one must be triggered in every interaction returned by this
function. Similarly, to search for an interaction that causes
multiple events, we need to perform this function for each desired
event and integrating the results to find the interactions causing all
the desired events.

• Multi-level query engine. The results returned by individual
retrieval modules are objects, events, and interactions, whereas the
target of user queries is Flash movies. Thus, a primary task of the
multi-level query engine is to translate the retrieved objects (or
events, interactions) into a list of relevant movies, as defined by
the following function:

movie-list: Rank (object-list / event-list / interaction-list)
The movies in movie-list are those containing the objects in

object-list, and their similarity scores (and therefore ranks) are
identical to their corresponding objects in object-list. The
semantics of Rank taking event-list or interaction-list as
parameters is similar. Furthermore, since a user query may specify
multiple search conditions, a Merge function is devised to
combine multiple lists of movies retrieved based on each search
condition into a single list giving the final ranking of relevant
movies, defined as:

movie-list: Merge ({movie-list}n , {weight}n)
where {movie-list}n denotes n movie lists that are obtained based
on different search conditions, and {weight}n contains the weight
indicating the relative importance of each condition, which is
preferably specified by users. Each movie in the returned movie
list must appear in at least one input list, and the similarity score
of the movie is determined by the weighted sum of its similarity
score in each input list.

The usage of these functions can be demonstrated by
processing sample user queries. Consider, for example, a query for
Flash movies as commercial advertisement of BMW cars. Since a

Flash advertisement usually contains the hyperlink to the company
website, a likely interpretation of this query is: Find all movies
that have keyword ‘BMW’ and a button by clicking which the
BMW website will be opened in a Web browser. This can be
processed by a combination of all the aforementioned functions:

Merge ({Rank (SearchObject (text, ‘BMW’),
Rank(SearchInteraction (button, ‘mouse-click’,
SearchEvent(navigate,‘www.bmw.com’))))}

4. CONCLUDING REMARKS
 This paper has investigated the problem of content-based Flash
retrieval (CBFR), which is essential to better utilization of the
proliferating Flash resource but unfortunately overlooked by the
research community. As the major contribution of this paper, we
have proposed a generic framework for CBFR, FLAME, which
addresses the representation, indexing, and retrieval of Flash
movies through their heterogeneous media components, dynamic
effects, and the forms of user interactions.
Although FLAME may appear to be comprehensive, there remains
much room for future research regarding Flash retrieval and
management. One interesting direction is to investigate human-
computer interaction for better retrieval effectiveness, e.g.,
applying relevance feedback technique to enhance the retrieval
performance. Moreover, the storage, navigation, classification of
Flash movies are equally important and promising research
directions. On the other hand, the framework of FLAME can be
generalized to support the retrieval of other types of multimedia
representations, such as PowerPoint, etc.

5. ACKNOWLEDGMENTS
This work has been supported, in part, by Hong Kong UGC
Research Grants Council under grant CityU 1038/02E, and
partially by a grant from the Doctorate Research Foundation of the
State Education Commission of China.

6. REFERENCES
1. Flash Kit. http://www.flashkit.com/index.shtml
2. Foote, J. An overview of audio information retrieval.

ACM Multimedia Systems, 7: 2-10, 1999.
3. JavaSWF. http://www.anotherbigidea.com/javaswf/
4. Macromedia, Inc. www.macromedia.com.
5. Macromedia Flash Player adoption statistics.

www.macromedia.com/software/player_census
6. Rui, Y., et al., Image retrieval: current techniques,

promising directions and open issues. J. of Visual
Communi. and Image Represent., 10: 1-23, 1999.

7. Salton, G., et al., Introduction to modern information
retrieval. McGraw-Hill Book Company, 1983.

8. Smoliar, S., Zhang, H., Content-based Video Indexing
and Retrieval. IEEE Multimedia, 1: 62-72, 1994.

Page 4

http://www.flashkit.com/index.shtml
http://www.anotherbigidea.com/javaswf/
http://www.macromedia.com/
http://www.macromedia.com/software/player_census

