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ABSTRACT

Deep-learning-based recommendation models (DLRMs) are widely
deployed to serve personalized content. In addition to using neural
networks, DLRMs have large, sparsely-accessed embedding tables,
which map categorical features to a learned dense representation.
Due to the large sizes of embedding tables, DLRM training is typi-
cally distributed across the memory of tens or hundreds of nodes.
Node failures are common in such large systems and must be miti-
gated to enable training to complete within production deadlines.
Checkpointing is the primary approach used for fault tolerance in
these systems, but incurs significant time overhead both during
normal operation and when recovering from failures. As these over-
heads increase with DLRM size, checkpointing is slated to become
an even larger overhead for future DLRMs, which are expected to
grow. This calls for rethinking fault tolerance in DLRM training.

We present ECRec, a DLRM training system that achieves effi-
cient fault tolerance by coupling erasure coding with the unique
characteristics of DLRM training. ECRec takes a hybrid approach
between erasure coding and replicating different DLRM parame-
ters, correctly and efficiently updates redundant parameters, and
enables training to proceed without pauses, while maintaining the
consistency of the recovered parameters. We implement ECRec
atop XDL, an open-source, industrial-scale DLRM training system.
Compared to checkpointing, ECRec reduces training-time overhead
on large DLRMs by up to 66%, recovers from failure up to 9.8× faster,
and continues training during recovery with only a 7–13% drop in
throughput (whereas checkpointing must pause).
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1 INTRODUCTION

Deep-learning-based recommendation models (DLRMs) are key
tools in serving personalized content at Internet scale [10, 35]. As
the value generated by DLRMs relies on the ability to reflect recent
data, production DLRMs are frequently retrained [2]. Due to their
widespread use, DLRM training occupies a large fraction of compute
cycles, such as over 50% of the training demand at Facebook [34].
Reducing DLRM training time is thus critical to maintaining an
accurate and up-to-date model [33], and reducing resource usage.

DLRMs consist of embedding tables and neural networks (NNs).
Embedding tables map sparse categorical features (e.g., city name)
to a learned dense vector. Embedding tables resemble lookup tables
in which millions or billions [17, 21] of sparse features each map to
a small dense vector of 10s/100s of floating-point values. A small NN
processes dense vectors resulting from embedding table “lookups”
to produce a prediction.We refer to a single dense embedding vector
as an “embedding table entry,” or “entry” for short.

Embedding tables are typically large, ranging from hundreds of
gigabytes to terabytes in size [21]. Such large models are trained
in a distributed fashion across tens/hundreds of nodes [6, 21], as
depicted (at a small scale) in Fig. 1a. Embedding tables and NN
parameters are sharded across servers and kept in memory for
fast access. Workers operate in a data-parallel fashion by accessing
model parameters from servers and sending gradients to servers to
update parameters via an optimizer (e.g., Adam [12]).

Since model parameters are stored in memory, any server failure
requires training to restart from scratch. Given that DLRM training
is resource and time intensive and that failures are common in large-
scale settings, DLRM training must be fault tolerant [16, 29]. For
example, Facebook reported the median and mean times between
failure for production-scale DLRM training to be 8–17 hours and 14–
30 hours, respectively [29]. Fault tolerance is particularly important
for DLRMs, which are frequently retrained on tight deadlines for
deployment [33]. In this work, we focus on tolerating server failures.
Server failures are critical to handle because they result in the loss
of a fraction of the DLRM parameters. In contrast, worker failures
are less critical because workers do not contain training state.
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(a) Example of the distributed setup used to train DLRMs.
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(b) Naive erasure-coded DLRM with 𝑘 = 3 and 𝑟 = 1.

Figure 1: Example of (a) normal and (b) (naive) erasure-coded training with parameters 𝑒0, 𝑒1, and 𝑒2, and gradients ∇0 and ∇1.

For simplicity, only accesses and updates for embedding table entries are shown.

Checkpointing is the main approach used for fault tolerance in
DLRM training [16, 29]. This involves periodically pausing training
and writing the current parameters and optimizer state to stable
storage, such as a distributed file system. If a failure occurs, the
entire system resets to the most recent checkpoint and restarts train-
ing from that point. While simple, checkpointing frequently pauses
training to save DLRM state and has to redo work after failure.
Thus, checkpointing has been shown to add significant overhead to
training production DLRMs, such as at Facebook [29]. Checkpoint-
ing also consumes significant network and storage bandwidth in
datacenters and has a large storage footprint [16]. Even more con-
cerning, these overheads increase with DLRM size. Given the trend
of increasing model size [43, 48] (described in §2.2), checkpointing
is slated to incur even larger overhead for training future DLRMs.

An alternative to checkpointing that does not require a lengthy
recovery process is to replicate DLRM parameters on separate
servers. However, replication requires at least twice as much mem-
ory as a checkpointing-based system, which is impractical given
the large sizes of DLRMs.

An ideal approach to fault-tolerant DLRM training would (1) op-
erate with low training-time and memory overhead, and (2) recover
quickly from failures, while (3) not introducing potential accuracy
loss (and the associated uncertainty). Finally, such a solution should
scale well with increases in DLRM size so as to support emerging
DLRMs. Designing a system that meets these requirements is the
goal of this paper.

Erasure codes are coding-theoretic tools that leverage proactive
redundancy (like replication) but with significantly less memory
overhead, and have been widely employed in storage and commu-
nication systems (e.g., [37, 41]). Like replication and traditional
checkpointing, erasure coding would not alter training accuracy.
Due to their low memory overhead, erasure codes offer the po-
tential for efficient fault tolerance in DLRM training. As shown in
Fig. 1b, a DLRM training system could potentially construct “parity
parameters” by encoding 𝑘 parameters from separate servers. In
this example, a parity 𝑝 is formed from parameters 𝑒0, 𝑒1, and 𝑒2
via the encoding function 𝑝 = 𝑒0 + 𝑒1 + 𝑒2, and placed on a separate
server. If a server fails, lost parameters can be recovered by read-
ing the 𝑘 available parameters and performing the erasure code’s
decoding process (e.g., 𝑒1 = 𝑝 − 𝑒0 − 𝑒2).

While leveraging erasure codes inDLRM training appears promis-
ing, this setting comes with challenges due to the interaction be-
tween erasure codes and unique aspects of DLRMs. In this work, we

thoroughly investigate the use of erasure codes in DLRM training
systems and uncover these challenges and solutions to overcome
them. The result is ECRec,a DLRM training system that achieves
efficient fault tolerance through careful system design based on in-
sights into the unique characteristics of DLRM training.We describe
these challenges and how ECRec overcomes them below.

Hybrid redundancy. We show in §3.2 that correctly using era-
sure codes in DLRM training necessitates more communication
than replication. Thus, ECRec must determine which parameters
should be erasure coded to straddle a tradeoff between memory
and network overhead. ECRec approaches this decision based on
unique characteristics of DLRMs: while embedding tables account
for the vast majority of the memory use of DLRMs, gradients for
NN parameters dominate the network bandwidth used in updates.
For example, for the DLRM trained on the Criteo dataset [1] in
MLPerf [30], embedding tables account for 99% of the DLRM pa-
rameters, but their gradients only take up 35% of the network band-
width, while NNs account for 1% of all parameters, but 65% of the
network bandwidth (similar for other datasets/models; see §3.3).

Based on this asymmetry, ECRec takes a hybrid approach to
redundancy by erasure coding embedding tables and replicating NN

parameters. Erasure coding embedding tables maintains low mem-
ory overhead, while replicating NN parameters reduces the network
bandwidth consumed without adding much memory overhead.

Maintaining correctness. Redundant parameters in ECRec
must be kept synchronizedwith DLRMparameters to ensure correct
recovery. We show in §3 that correctly updating parities when
using optimizers that store internal state (e.g., Adagrad, Adam)
without incurring large memory overhead is challenging. ECRec
circumvents these challenges by delegating the responsibility for
updating parities to servers, rather than workers, via an approach
we call “difference propagation,” and by using two-phase commit.

Pause-free recovery. An erasure code’s recovery process can
be resource intensive because it involves reading all available data
to a single server and performing decoding [40, 42]. This can lead to
long recovery times duringwhich training is stalled. ECRec recovers
quickly by enabling training to continue during recovery. ECRec
leverages on-demand reconstruction of lost DLRM parameters to
service new training iterations while full recovery proceeds in the
background. Meanwhile, ECRec carefully ensures that new training
updates do not conflict with the background recovery process.

We implement ECRec atop XDL [21], an open-source, industrial-
scale DLRM training system, and evaluate using variants of the
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Criteo DLRM in MLPerf [30]. ECRec recovers faster than check-
pointing and with lower training-time overhead for large DLRMs.
For example, ECRec recovers from failure up to 9.8× faster than
the average case for checkpointing and enables training to con-
tinue during recovery with only a 7–13% drop in throughput, while
checkpointing pauses training during recovery. This is critical for
ensuring that DLRM training completes within the tight deadlines
needed for frequent production deployment, even when failures oc-
cur. ECRec reduces training-time overhead for a large DLRM by up
to 66% compared to checkpointing. ECRec’s benefits increase with
DLRM size, showing its promise to enable efficient fault tolerance
for current and future DLRMs.

The primary contributions of this work are:

• Investigating how fault-tolerance mechanisms interact with the
unique characteristics of DLRMs.

• Designing ECRec, a fault-tolerant DLRM training system that ju-
diciously uses erasure codes and replication, enables training to
continue during recovery and keeps the consistency guarantees
of the underlying system.

• Evaluating ECRec in a variety of settings to show its superior
recovery performance compared to checkpointing and its ability
to gracefully scale training-time overhead for future DLRMs,
which are expected to increase in size

• To the best of our knowledge, ECRec is the first DLRM system
that employs erasure codes to provide fault tolerance.

2 CHALLENGES IN FAULT-TOLERANT DLRMS

2.1 DLRM training systems

Recall from §1 that DLRMs are large in size due to their use of
embedding tables and that DLRM training is typically distributed
across a set of servers and workers (Fig. 1a). Model parameters
(embedding tables and NNs) are sharded across server memory. In
a training iteration over a batch of data, a worker reads embedding
table entries relevant to that batch and all NN parameters, performs
a forward and backward pass to generate gradients (for NN param-
eters and embedding table entries), and sends gradients back to
the servers hosting the parameters that were read. An optimizer
(e.g., Adam) on each server uses gradients to update parameters.
Many systems use asynchronous training when training DLRMs
(e.g., Facebook [6], Alibaba [21]). We thus focus on asynchronous
training, but our work could extend to synchronous training.

Stateful optimizers.Many popular optimizers use per-parameter
state in updating parameters (e.g., Adam [12], Adagrad [13], momen-
tum SGD). We refer to such optimizers as “stateful.” For example,
Adagrad tracks the sum of squared gradients for each parameter
over time and uses this when updating the parameter. Optimizer
state is kept in memory on servers and is updated when the cor-
responding parameter is updated. As this state grows with DLRM
size, it can consume a large amount of memory.

2.2 Unique characteristics of DLRMs

DLRMs contain unique characteristics compared to other deep
networks. First, while many deep networks today leverage large
NNs, DLRMs typically leverage small NNs but large embedding
tables [20]. For example, a DLRM commonly used to train on the

Criteo dataset [1] contains over 100 GB of embedding tables, but less
than 1 GB of NN parameters. Second, components of DLRMs have
diverse access patterns. Each training sample typically accesses
only a few embedding table entries, but all NN parameters. For
example, the average number of embedding table entries accessed
by a batch of 2048 training samples is only 8900 on the Criteo
dataset. This is a small fraction of the roughly 200 million entries
in the DLRM. Thus, embedding table entries are updated sparsely,
while all NN parameters are updated on every training batch.

Scaling trends. Similar to other deep models, increasing param-
eter count in DLRMs has led to increased accuracy. Thus, DLRMs
have drastically increased in size over the years: whereas in 2020,
Facebook used DLRMs with 100s of billions of parameters, today’s
DLRMs now use well over one trillion parameters [33]. This scal-
ing is heavily driven by the increased number of embedding table
entries in DLRMs: Facebook reports that the number of embedding
table entries in DLRMs increased by 17.5× from 2017–2021 [43].
This scaling trend is expected to increase in the future [48].

2.3 Checkpointing and its downsides

Recall from §1 that maintaining fault tolerance for servers is critical
for large-scale DLRM training, and that fault tolerance for workers
is not as much of a concern. Recall also from §1 that checkpointing
is the primary approach used for fault tolerance in DLRM training.

Recently, Facebook reported that overheads from checkpointing

account for, on average, 12% of DLRM training time, and that these
overheads add up to over 1000 machine-years of computation [29].
Checkpointing has two primary time penalties:

1. Time penalty during normal operation. Writing check-
points to stable storage is a slow process given the large sizes of
DLRMs, and training is paused during this time so that the saved
model is consistent. Intuitively, the overhead of checkpointing un-
der normal operation increases with the frequency of checkpointing
and the size of the DLRM). This is illustrated empirically in §5.2.

2. Time penalty during recovery. Upon failure, a system using
checkpointing must roll back the DLRM to the state of the most
recent checkpoint by reading it from storage and redo all training it-
erations that occurred between this checkpoint and the failure. New
training iterations are paused during this time. The time needed to
read checkpoints from storage can be significant [29] and grows
with DLRM size. The expected time to redo iterations grows with
the time between checkpoints: if checkpoints are written every 𝑇
time units, this time will be 0 at best (failing just after writing a
checkpoint), 𝑇 at worst (failing just before writing a checkpoint),

and 𝑇
2 on average. We show this recovery performance in §5.3.

Takeaway. Checkpointing suffers a fundamental tradeoff be-
tween time overhead in normal operation and that in recovery.
Increasing the time between checkpoints reduces the fraction of
time paused when saving checkpoints, but increases the expected
work to be redone in recovery. Low training-time overhead in both

normal mode and during recovery is needed to meet the tight dead-
lines for deploying DLRMs in production applications [33] even
when failures occur. Facebook has also noted that reducing the
storage and network bandwidth used in checkpointing DLRMs is
critical for reducing load on these shared resources [16]. These
overheads increase with model size. Given the trends of increasing
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model size noted in §2.2 checkpointing is slated to become an even

larger overhead in training future DLRMs.

This calls for alternatives for fault tolerance in DLRM train-
ing that scale to large DLRMs without a severe tradeoff between
training-time overhead and recovery performance.

2.4 Reducing the overhead of checkpointing

There are multiple classes of techniques for reducing the overhead
of checkpointing. We next discuss these at a high level, as well as
the challenges of applying them to DLRM training.

Approximation. Several recent approaches aim to reduce the
overheads of checkpointing by taking approximate checkpoints
or via approximate recovery [9, 16, 29, 38]. However, upon failure,
such techniques roll back an approximation of the true DLRM,
which can alter convergence and final accuracy. Given the major
business value generated by DLRMs, prior work has noted that
even small drops in accuracy must be avoided [52]. Furthermore,
our personal conversations with multiple practitioners working
on large-scale DLRM training indicate that this potential accuracy
drop introduces a source of uncertainty that makes debugging
production DLRMs difficult. Hence, ideally, one would reduce the
overhead of checkpointing without compromising accuracy.

Asynchronous checkpointing. Another way to reduce the
overhead of checkpointing is by taking asynchronous checkpoint [5].
Here, training continues while the model state is written to stable
storage. However, this results in the model state stored in check-
points being inconsistent since some parameters in the checkpoint
will reflect updates from more recent iterations than others. This
can lead to accuracy degradation in the recovered model.

Logging. One may also question whether the overhead of check-
pointing could be reduced by logging updates to stable storage as
they are generated. This is feasible only if writing to storage can
keep pace with the rate at which gradients are generated. As DLRM
training systems have many workers operating asynchronously,
gradients are generated at a high rate that storage cannot keep pace
with. In fact, if storage could keep pace, then DLRM parameters
could be kept in storage, rather than in memory. Thus, logging to
stable storage is not viable for DLRM training.

2.5 In-memory redundancy

An alternative to checkpointing is to provision extra memory in
the system to redundantly store DLRM parameters and optimizer
state in memory in a fault-tolerant manner.

Replication. As described in §1, one approach to redundantly
keeping parameters in memory is to replicate each parameter on
separate servers. However, this requires at least twice as much
memory as a non-replicated system, which is impractical given the
large and growing sizes of DLRMs.

Erasure codes. Erasure codes are coding-theoretic tools that
enable redundancy with significantly less overhead than replica-
tion [37, 41, 45]. An erasure code encodes 𝑘 data units to generate
𝑟 redundant “parity units” such that any 𝑘 out of the total (𝑘 + 𝑟 )
data and parity units suffice for a decoder to recover the original

𝑘 data units. Erasure codes operate with overhead of 𝑘+𝑟
𝑘 , which

is less than that of replication by setting 𝑟 < 𝑘 . These proper-
ties have led to wide adoption of erasure codes in many domains
(e.g., [23, 37, 39, 41, 45, 47, 49]).

For example, consider the naive erasure-coded DLRM training
system in Fig. 1b in which parameters 𝑒0, 𝑒1, and 𝑒2 are stored on
three separate servers. Suppose the system must tolerate one server
failure. An erasure code with parameters 𝑘 = 3 and 𝑟 = 1 could do
so by encoding a parity unit as 𝑝 = 𝑒0 + 𝑒1 + 𝑒2 and storing this
parity unit on a fourth server. Suppose the server holding 𝑒1 fails.
The system could recover 𝑒1 using the erasure code’s subtraction
decoder: 𝑒1 = 𝑝−𝑒0−𝑒2. This setup can recover from any one of the
servers failing by using only 33% more memory, while replication
would require 100% more memory.

Takeaway. An ideal approach to fault-tolerant DLRM training
would (1) avoid pauses during both normal operation and recov-
ery, (2) have low memory overhead, (3) introduce no potential for
accuracy loss, and (4) scale to large DLRMs. Erasure codes offer
promising potential for achieving these goals. However, there are
several challenges in using erasure codes for DLRM training. We
describe these and how they can be overcome in the next section.

3 ECREC: ERASURE-CODED DLRM TRAINING

We propose ECRec, a fault-tolerant DLRM training system that re-
quires no pausing during training nor rolling back during recovery
and provides the same accuracy guarantees as the underlying train-
ing system. ECRec is designed based on investigating the interplay
between erasure codes and unique properties of DLRM training.

3.1 Overview of ECRec

Fig. 2 shows a toy example of the high-level operation of traditional
DLRM training systems and that of ECRec, as well as the detailed
contents of an individual server in each system. Arrows show the
flow of data when performing an update from a single worker.

In the original system (Fig. 2a), a worker sends gradients for NN
parameters (∇𝑛0, ∇𝑛2) and for embedding table entries (∇𝑒0, ∇𝑒2)
to the servers hosting these parameters. As shown in the inset, the
optimizer on a server reads optimizer state for the corresponding
entries and NN parameters and uses this with the received gradients
to compute updates, which are applied to relevant parameters.

Hybrid redundancy. Fig. 2b shows that ECRec maintains redun-
dant versions (hashed boxes) of embedding tables, NN parameters,
and optimizer state. ECRec selects the type of redundancy to use
for each type of parameter based on its size in memory and the
network bandwidth it uses for updates.

To minimize memory overhead, all parameters in a DLRMwould
ideally be erasure coded. However, as we show in §3.3, correctly
updating parities during training requires more communication
than updating a replica. Thus, erasure coding parameters that have a
high network-bandwidth footprint may add considerable overhead.

ECRec balances this tradeoff by observing the asymmetry be-
tween memory and network-bandwidth footprints for DLRM pa-
rameters: embedding tables (and their optimizer state) account for
the majority of the memory in DLRMs, while NN parameters (and
their optimizer state) account for a minor fraction [20]. On the
other hand, gradients for NN parameters account for the majority
of network traffic during updates. We discuss this in detail in §3.3.
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Figure 2: Example of an update from one worker with 4 servers (a) in a traditional DLRM training system and (b) in ECRec with

𝑘 = 3 and 𝑟 = 1 (including replication of NN parameters). A detailed view of a single server is shown in the insets to the left.

Based on this asymmetry and the additional network traffic
needed for updating erasure-coded parameters, ECRec erasure codes
embedding tables and their optimizer state, and replicates NN param-

eter and their optimizer state. Doing so enables ECRec to operate
with low memory overhead, as the vast majority of the DLRM’s
memory footprint is erasure coded, while reducing network band-
width overhead. We describe specifically how ECRec overcomes
challenges in using erasure codes for embedding tables in §3.2, and
why ECRec leverages replication for NNs in §3.3.

Updating redundant parameters. Fig. 2b also shows how
ECRec keeps redundant parameters up-to-date. Workers send gra-
dients for NN parameters (∇𝑛0, ∇𝑛2) to each server hosting a replica
of a NN parameter. However, as will be described in §3.2, this same
process is insufficient for correctly updating parities of embed-
ding table entries and their optimizer state. To overcome this issue,
ECRec leverages “difference propagation” in §3.2 (dashed lines in
Fig. 2b), in which a server hosting an embedding table entry for-
wards the differences resulting from an update for that entry and
its optimizer state to the server holding the corresponding parity.

Recovery and consistency. Finally, ECRec enables training
to continue during recovery from a server failure, and maintains
the same consistency guarantees as the underlying DLRM training
system. Low-overhead recovery is critical for meeting the tight
deadlines for deploying DLRMs in production even when failures
occur. We describe how ECRec enables each of these features in
§3.4 and §3.5, respectively.

We next describe each of ECRec’s components in detail.

3.2 Erasure-coded embedding table entries

As described in §2.1, embedding tables and optimizer state are
sharded across servers. ECRec encodes 𝑘 embedding table entries
from different shards to produce a “parity entry,” and places the par-
ity entry on a separate server. Optimizer state is similarly encoded
to form “parity optimizer state,” and placed on the same server as
the corresponding parity entry.

Parities in ECRec are updated whenever any of the 𝑘 correspond-
ing embedding table entries are updated. Hence, parities are updated
more frequently than the original entries, and must be placed care-
fully so as not to introduce load imbalance among servers. ECRec
uses rotating parity placement to distribute parities among servers,
resulting in an equal number of parities per server. An example of
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Figure 3: Example of rotating parity placement and difference

propagation with 𝑘 = 3, 𝑟 = 1.

this is shown in Fig. 3 with 𝑘 = 3: each server is chosen to host a
parity in a rotating fashion, and the entries used to encode the par-
ity are hosted on the three other servers. This approach is inspired
by parity placement in RAID-5 systems [37].

Encoder and decoder.We focus on using erasure codes with
parameter 𝑟 = 1 (i.e., one parity per 𝑘 entries, and recovering from a
single failure) since it represents the most common failure scenario
in datacenters [40]. However, we describe in §4 how ECRec can
toleratemultiple failures.Within the setting of 𝑟 = 1, ECRec uses the
simple summation encoder shown in Fig. 3, and the corresponding
subtraction decoder: with 𝑘 = 3, embedding table entries 𝑒0, 𝑒1, and
𝑒2 are encoded to form parity 𝑝 = 𝑒0 + 𝑒1 + 𝑒2. If the server holding
𝑒1 fails, 𝑒1 will be recovered as 𝑒1 = 𝑝 − 𝑒0 − 𝑒2.

3.2.1 Correctly updating parities. The naive approach to erasure-
coded DLRM training in Fig. 1b cannot correctly update parity
entries when using a stateful optimizer (e.g., Adam, Adagrad).

Consider the system in Fig. 1b with the Adagrad [13] optimizer.
Let 𝑒𝑖,𝑡 denote the value of embedding table entry 𝑒𝑖 after 𝑡 updates,
and ∇𝑖,𝑡 denote the gradient for 𝑒𝑖,𝑡 . The update performed by
Adagrad for 𝑒0,𝑡 with gradient ∇0,𝑡 is:

𝑒0,𝑡+1 = 𝑒0,𝑡 −
𝛼

√
𝐺0,𝑡 + 𝜖

∇0,𝑡 (1)

where 𝐺0,𝑡 = ∇2
0,0 + ∇2

0,1 + . . . + ∇2
0,𝑡 , 𝛼 is a constant learning rate,

and 𝜖 is a small constant. 𝐺0,𝑡 , which we call 𝑒0’s “accumulator,” is
an example of per-parameter optimizer state.

As described in §3.1, ECRec maintains one “parity optimizer pa-
rameter” for every 𝑘 original optimizer parameters. In the example
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above, a “parity accumulator” would be 𝐺𝑝 = 𝐺0 +𝐺1 +𝐺2. This is
easily kept up-to-date by adding to 𝐺𝑝 the squared gradients for

updates to each of the 𝑘 original entries (e.g.,𝐺𝑝,𝑡+1 = 𝐺𝑝,𝑡 +∇
2
0,𝑡+1

after an update to 𝑒0 that produces ∇0,𝑡+1). However, using this
parity accumulator to update the parity entry based on ∇0,𝑡 (i.e.,
replacing 𝑒0 with 𝑒𝑝 and 𝐺0 with 𝐺𝑝 in Eqn. 1) would result in an
incorrect parity entry, since 𝐺0,𝑡 ≠ 𝐺𝑝,𝑡 .

This issue arises for any stateful optimizer, such as the popu-
lar Adagrad, Adam, and momentum SGD. Therefore, ECRec must
employ some means of maintaining correct parities when using
stateful optimizers. This could be overcome by replicating the 𝑘
original optimizer parameters on the server hosting the parity. How-
ever, optimizer state for embedding tables is large and grows with
embedding tables, making such replication impractical.

Difference propagation. The challenge described above stems
from sending gradients directly to the servers hosting parities:
servers holding parities receive only the gradient for the original
entry andmust correctly update the parity entry and optimizer state.
At the same time, an alternative of sending embedding table entries
from the original server hosting them to the server hosting the cor-
responding parity entry would not enable one to correctly update
the parity entry because the server hosting the parity entry would
need access to the previous version of the embedding table entry to
generate a gradient. To overcome this challenge, ECRec leverages
difference propagation. Under difference propagation, workers send
gradients only to the servers holding embedding table entries for
that gradient. After applying the optimizer to entries and updating
optimizer state, the server sends the differences in entry and opti-
mizer state to the server holding the corresponding parity entry.
The receiving server adds these differences to the parity entry and
optimizer state. This is shown in Fig. 2b, with the worker sending
gradients for entries (∇𝑒0, ∇𝑒2) to Servers 0 and 2, which then send
differences in entries (𝛿𝑒0, 𝛿𝑒2) and optimizer state (𝛿𝑒0_𝑜𝑝𝑡 , 𝛿𝑒2_𝑜𝑝𝑡 )
to servers hosting the corresponding parity. By sending differences
to servers, rather than sending gradients, difference propagation
updates parity entries correctly when using stateful optimizers.

3.3 Replicated neural network parameters

We next describe how ECRec applies fault tolerance to neural net-
work parameters and their optimizer state.

Why additional fault tolerance is needed for NNs. Recall
from §2.1 that workers in DLRM training pull all NN parameters
from servers on each training iteration. Thus, each worker con-
tains an approximate replica of the current NN parameters.1 This
may lead one to question whether ECRec can simply leverage the
NN parameters pulled by workers as “natural” replicas of the NN
sharded across servers. While this approach could recover NN pa-
rameters, it does not provide fault tolerance for optimizer state used
for NN parameters. Because optimizer state is kept on servers and
is not read by workers, optimizer state for NNs is lost if a server
fails. Thus, an alternative that keeps both NN parameters and their
optimizer state redundant is needed.

Erasure coding NN parameters results in high overhead.

One could keep NN parameters and their optimizer state fault

1This replica is only approximate because workers operate asynchronously. Thus, the
NN that one worker has may not reflect the latest updates from other workers.

tolerant via erasure coding in a similar fashion to that in §3.2. After
all, these parameters are sharded across servers just like embedding
tables, so the same technique could be applied.

However, we find that using erasure coding as described in §3.2
for NN parameters leads to significant performance overhead. Recall
from §2.2 that, while embedding tables are updated sparsely, all
NN parameters and their optimizer state are updated on every
training iteration. This leads to an imbalance in the amount of
network bandwidth consumed for updating embedding table entries
and NN parameters, with NN parameters consuming significantly
more bandwidth. For example, for the DLRM used for the Criteo
dataset [1], we find that the network bandwidth consumed in a given

training iteration for updating NN parameters is over 1.8× higher than

that for embedding table entries. Similarly, for two variants [7, 8] of a
DLRM trained on the Avazu dataset [3], we find that NNs consume
80–90% of the network bandwidth for updating parameters.

Erasure coding with difference propagation requires 200% net-
work bandwidth overhead for a given update, as differences for
both the original parameter and its optimizer state (each of which
are the same size as the gradient) must be forwarded to the server
hosting the parity. Given the dominance of NN parameters on net-
work bandwidth, performing difference propagation for NNs adds
considerable training-time overhead. However, as described in §3.2,
difference propagation is necessary for correctly updating parities.

Replicating NN parameters. ECRec exploits the asymmetry
between the network bandwidth consumed by gradients for NN
parameters and the size of NN parameters. While gradients for NNs
account for the majority of network bandwidth during updates, NN
parameters represent a minor portion of the overall DLRM size:
for the DLRMs used for Criteo [1] and Avazu [3], NN parameters
and their optimizer state account for less than 1% of the overall
DLRM size. Thus, NN parameters and their optimizer state can be
replicated with little memory overhead added to the overall system.

Replicating NN parameters and their optimizer state allows
ECRec to avoid difference propagation (and its associated network-
bandwidth overhead) for updating NNs. In ECRec, gradients for a
given NN parameter are sent from workers to both servers hosting
replicas of the given parameter. Each server with a replica locally
updates the parameter and its replica of the optimizer state. In this
way, ECRec incurs half of the network bandwidth overhead for
NN parameters as that incurred by erasure coding NN parameters
with difference propagation: whereas difference propagation addi-
tionally sends both the difference for the NN parameter and the
difference for its optimizer state, replication sends only the gradient
for the NN parameters an additional time.

3.4 Pause-free recovery from failure

We now detail how ECRec recovers without pausing training.
Due to the property of erasure codes used in ECRec that any𝑘 out

of the (𝑘 +1) original and parity units suffice to recover the original
𝑘 units, ECRec can continue training even if one server fails. For
example, a worker in ECRec could access embedding table entry 𝑒1
in Fig. 3 even if Server 2 fails by reading 𝑒0, 𝑒2, and 𝑝 , and decoding
𝑒1 = 𝑝 − 𝑒0 − 𝑒2. Such read operations that require decoding are
referred to as “degraded reads” in erasure-coded systems. Similarly,
NN parameters can be accessed via replicas on another server.
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Challenges in erasure-coded recovery. Despite the ability
to perform degraded reads, ECRec must still fully recover failed
servers to tolerate future failures. This is simple and efficient for NN
parameters, as they are copied from a replica server and are small
in size. However, prior work on erasure-coded storage has shown
that full recovery can be time-intensive [40, 42]. Full recovery in
ECRec requires decoding all embedding table entries and optimizer
state held by the failed server. This consumes significant network
bandwidth in transferring entries for decoding, and server CPU in
performing decoding. Given the large sizes of embedding tables
and their optimizer state, fully recovering before resuming training
can significantly pause training, making it challenging to meet
production training deadlines for deployment when failures occur.

Training during recovery via granular locking. Rather than
solely performing degraded reads after a failure or pausing until full
recovery is complete, ECRec enables training to continue while full
recovery takes place. Upon failure, ECRec begins full recovery of lost
embedding table entries and optimizer state. In the meantime, the
system continues to perform new training iterations, with workers
performing degraded reads to access entries from the failed server.

ECRec must avoid updating an entry while the entry is used for
recovery. If the recovery process reads the new value of the entry,
but the old value of the parity (e.g., because the update has not
yet reached the parity), then the recovered entry will be incorrect.
ECRec uses granular locking to avoid this. The recovery process
locks a set of the lost entries that it will decode. While this lock
is held, updates to entries that will be used in recovery for the
locked entries are buffered in memory on servers. Workers access
updated, but locked entries via the buffer. When a lock is released,
buffered updates are applied to the embedding tables, and the next
set of entries is locked. The number of entries covered by each lock
introduces a tradeoff between time spent switching locks and server
memory overhead for buffering, which can be navigated based on
deployment-level requirements.

3.5 Recovering a consistent DLRM

As discussed in §2.4, ECRec aims not to introduce new sources of
accuracy loss to the DLRM training system. We next describe how
ECRec maintains the consistency guarantees of the asynchronous
DLRM training system it builds upon.

Under asynchronous training, concurrent updates to parameters
from different workers can occur in an arbitrary order and can
potentially overwrite one another. The same can occur with the re-
dundant parameters employed by ECRec, matching the consistency
guarantees of the original system.

However, one case requires care: server failure while an update
is in flight. To better illustrate this, first note that each training iter-
ation updates parameters on different servers. Suppose one server
holding an embedding table entry used in the current iteration
fails during the update step. The erasure code’s decoding function
would correctly recover if the corresponding parity entry was up-
dated through difference propagation before the failure occurred.
However, if the server failed before propagating its difference, the
recovered DLRM would be inconsistent: other parameters would
be recovered to the state including the iteration’s update, while the
recovered entry in question would not reflect the update.

The issue underlying this example is a lack of knowledge of
whether a parity entry has been updated through difference propa-
gation before a failure occurs.

Two-phase commit. ECRec uses two-phase commit (2PC) when
updating parameters to avoid this inconsistency. The 2PC protocol
is coordinated by individual workers on each training iteration
they perform. 2PC in ECRec splits the process of updating a set of
parameters on separate servers into two phases. In the first phase,
updates for parameters (original and redundant) are computed and
staged. In the second phase, staged updates are applied to parame-
ters (original and redundant). This ensures that DLRM parameters
are in a consistent state before recovery begins.

Example of 2PC.We next walk through a simple example of
how it would be applied in ECRec with 𝑘 = 2 and 𝑟 = 1 in Fig. 4.

Fig. 4a shows the first phase of the protocol. (1) The worker sends
gradients to servers hosting relevant parameters for a given update.
(2) Receiving servers compute the update using the optimizer and
stage the updated parameters temporarily, rather than applying
the update directly. (3) Receiving servers perform difference prop-
agation, which results in staged versions of the corresponding p
parameters. (4) Servers that received updates via difference propa-
gation send an acknowledgment back to the server that sent the
difference to acknowledge that the update to the p has been staged.
(5) Servers that received the original gradient in step 1 send an ac-
knowledgement back to the worker. Once the worker has received
acknowledgments from all servers to which it sent gradients, the
first phase is complete and it is safe to begin the second phase.

Fig. 4b shows the second phase of the protocol. (1) The worker
coordinating the protocol sends a “commit” message to all servers
that staged updates in the previous phase. (2) Receiving servers
apply the staged update to the corresponding parameter. (3) Receiv-
ing servers send an acknowledgment to the coordinating worker
once they have applied the staged update.

Handling failures in 2PC. If a failure happens in the first phase
of 2PC, the coordinating worker aborts and restarts the protocol, as
is standard. If a failure happens in the second phase, the protocol
continues, but with the coordinating worker waiting for acknowl-
edgments only from the non-failed servers involved in the protocol.
This is safe because the update for the iteration will have been com-
mitted to enough parity/replica and original parameters to enable
the recovery process to reconstruct parameters on the failed server.

Tradeoffs. 2PC in ECRec adds an extra round of communication
for updating parameters. As will be shown in §5, this adds training-
time overhead. Given that ECRec uses 2PC solely to protect against
losing portions of an update when a failure occurs, a reader may
question how important it is to preserve these full updates. After all,
the training system on top of which ECRec is built is asynchronous,
which means that concurrent updates from workers can overwrite
one another. Nevertheless, we have implemented 2PC in ECRec
to adhere to the design goal in §2.4 of introducing no additional
sources of inaccuracy in training. While potentially a heavy-handed
solution, 2PC ensures that the fault-tolerance technique used in
training does not open additional sources of inconsistency (and the
related uncertainty when debugging accuracy). We show in §5.2
that the overhead of ECRec can be reduced if one is willing to forgo
these guarantees by turning off 2PC.
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Figure 4: Toy example of the 2PC protocol used in ECRec with 𝑘 = 2 and 𝑟 = 1.

4 DISCUSSION

Tradeoffs in ECRec. ECRec encodes 𝑘 embedding table entries
into a single parity entry (for 𝑟 = 1)). Parameter 𝑘 results in the
following tradeoffs in ECRec:

Increasing 𝑘 decreases memory overhead and fault tolerance. As
ECRec encodes one parity entry for every 𝑘 entries, less memory is
required with increased 𝑘 . However, since the erasure codes used by
ECRec can recover from any one out of (𝑘 + 1) failures, increasing
𝑘 decreases the fraction of failed servers ECRec can tolerate.

Increasing 𝑘 does not change load during normal operation. As
each embedding table entry in ECRec is encoded to produce one
parity entry, each update applied to an entry is also be applied to
one parity. Thus, the total increase in load in terms of the number
of updates performed is 2×, regardless of 𝑘 . We also show in §5.2
that ECRec balances the overall load for updates across servers.

Increasing 𝑘 increases the time to fully recover. Recovering em-
bedding tables in ECRec involves reading 𝑘 entries from separate
servers and decoding. Thus, the network traffic used in recovery
increases with 𝑘 , which increases the time to fully recover. However,
as described in §3.4, ECRec continues training during this time.

Tolerating multiple failures Recall from §3 that ECRec uses
erasure codes with 𝑟 = 1, that is, which can recover from a single
server failure. This choice was informed by prior studies of cluster
failures that showed that single-node failures are the most common
failure scenarios among groups of nodes [40].

ECRec can be easily adapted to tolerate additional faults by using
erasure codes with parameter 𝑟 > 1. An alternative to this that still
leverages 𝑟 = 1 is to partition the overall cluster used in training
into smaller groups of servers over which erasure coding with 𝑟 = 1
is performed, such that more than a single failure within each group
is unlikely. Finally, ECRec could also be adapted to take checkpoints
at a much lower frequency than normal checkpointing schemes
as a second layer of defense against concurrent failures. This final
approach bears similarity to multi-level checkpointing [32].

Leveraging fine-grained access frequency Prior works have
shown that embedding table entries are accessed with varying fre-
quency during training, with a small number of entries accounting
for the vast majority of overall access (e.g., [7]). One could consider
adapting ECRec to consider the frequency of access of individ-
ual embedding table entries. For example, it could potentially be
beneficial to replicate a fraction of the most-frequently-accessed
embedding table entries to reduce the network bandwidth overhead
of performing difference propagation for these entries. Leveraging

such finer-grained access frequencymetrics is a promising direction
for future work, but outside the scope of the present work due to
the additional tradeoffs and system complexity it would introduce.

5 EVALUATION

We next evaluate ECRec. The highlights are as follows:

• ECRec recovers from failure up to 9.8× faster than the average
time for checkpointing. Fast recovery is critical for meeting
the tight deadlines of production applications that frequently
retrain and deploy DLRMs [33].

• ECRec enables training to proceed during recovery with only a
7%–13% drop in throughput, whereas checkpointing requires
training to completely pause.

• ECRec reduces training-time overhead on large DLRMs by up to
66% compared to checkpointing. ECRec scales well with DLRM
size, showing promise for training current and future DLRMs.

• While ECRec introduces additional load for updating parities,
the impact of increased load on training throughput is alleviated
by improved cluster load balance.

5.1 Evaluation setup

We implement ECRec in C++ on XDL, an open-source DLRM train-
ing system from Alibaba [21].

Datasets and models.We evaluate primarily with the Criteo
Terabyte dataset [1], which is commonly used for evaluating DLRM
training systems. We randomly draw one day of samples from the

dataset by picking each sample with probability 1
24 in one pass

through the dataset, and use this subset in evaluation to reduce
storage requirements. This random sampling results in a sampled
dataset that mimics the full dataset.

We focus on the Criteo Terabyte dataset because it is one of the
most-commonly used public datasets for DLRMs and because its
large size more closely emulates production-scale datasets. While
other public datasets are available, many leverage small embedding
tables (e.g., less than 1 GB), making them impractical for large-
scale experimentation. Furthermore, the Criteo Terabyte dataset
has similar characteristics to many other public datasets, as shown
by Adnan et al. [7]. Our analysis of the memory and network use
of DLRM training in §3.3 also reflected this similarity.

We evaluate on various DLRMs based on the DLRM for the Criteo
dataset fromMLPerf [35], which has 13 embedding tables, for a total
of around 200M entries each with 128 dense features. We use SGD
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Figure 5: Training-time overhead.

with momentum as the optimizer, which adds one floating point
value of optimizer state per parameter. Any other optimizer can
also be used. The total size of the embedding tables and optimizer
state is 220 GB. The DLRM uses a seven-layer multilayer perceptron
with 128–1024 features per layer as a NN [4].

We evaluate on DLRMs of different size. First, we increase the
number of embedding table entries in the DLRM (i.e., sparse di-
mension). This increases the memory required per server and the
amount of data that must be checkpointed/kept redundant and
recovered. We consider variants of the original Criteo DLRM de-
scribed above, with one- , two- , four- , and eight-times more entries.
We refer to each of these as Criteo-Original, Criteo-2S, Criteo-4S, and
Criteo-8S, which have size 220, 440, 880, and 1760 GB, respectively.
We primarily focus on scaling the sparse dimension of embedding

tables, as this reflects a prominent scaling trend observed today: Face-
book reports that from 2017 to 2021, the number of embedding
table entries in DLRMs has increased by 17.5× [43].

For completeness, we also evaluate on a DLRM in which we
increase the size of embedding table entries (i.e., dense dimension).
This increases the memory required per server, the amount of data
that must be checkpointed/kept redundant, the network bandwidth
in transferring entries/gradients, and the work done by workers
and servers. Thus, this form of scaling complements model scaling
in the sparse dimension. We consider a variant of the original
Criteo-2S DLRM described above but in which each entry is twice
as large. The width of the input layer of the NN is also increased
to accommodate the larger entry size. We refer to this DLRM as
Criteo-2S-2D, and it has a total size of 880 GB.

Coding parameters and baselines.We evaluate ECRec with
𝑘 of 2 and 4, which have 50%, 25% memory overhead, respectively.
Though we focus on 𝑟 = 1, these experiments also provide insight
into the performance of the technique described in §4 in which one
can tolerate multiple failures by partitioning a set of servers into
groups in which erasure coding with 𝑟 = 1 is performed within
each group. We use one lock during recovery by default (see §3.4),
but also evaluate finer locking granularity.

We compare ECRec to checkpointing to HDFS (1) every 30 min-
utes (Ckpt-30) and (2) every 60 minutes (Ckpt-60). We also compare
to running (3) without any checkpointing or fault tolerance at all
(No FT). As recovery time for checkpointing depends on when a
failure occurs (see §2.3), we also compare against the best-, average-,
and worst-case scenarios for checkpointing when evaluating recov-
ery. Checkpointing to HDFS is representative of production DLRM
training, which often uses HDFS-like distributed file systems [6, 16].
Furthermore, the checkpointing baselines we use have competitive

Figure 6: Throughput of training Criteo-8S vs. Ckpt-30.

performance: we find that checkpointing via HDFS is only 7%–27%
slower than a (purposely unrealistic) baseline of writing directly to
a local SSD. In addition, for Criteo-Original, which is representative
of current DLRMs, the checkpoint-writing overhead we report is
similar to that reported in production by Facebook [29].

We also compare with approaches that use approximation in
checkpointing (and thus, which can result in accuracy loss), in
§5.4. Existing works on approximate checkpointing for training
do not have open-source code releases (e.g., [9, 16, 29, 38]), so
we model their performance analytically and compare it to real
system performance of ECRec. Because analytical modeling does
not include any system overheads from these approximation-based
baselines, this evaluation favors the approximation-based baselines.

We do not compare against replicating embedding tables because,
as described in §1, the 2×memory overhead of replicating large em-
bedding tables makes it a non-starter in large-scale settings. In cases
in which one is willing to pay the 2× memory overhead of replica-
tion, replication is naturally expected to exceed the performance of
both ECRec and checkpointing-based approaches.

Cluster setup. We evaluate on AWS with 5 servers of type
r5n.8xlarge, each with 32 vCPUs, 256 GB of memory, and 25 Gbps
network bandwidth (due to memory requirements, r5n.12xlarge
and r5n.24xlarge are used for DLRMs larger than 440 GB and 880
GB). We use 15 workers of type p3.2xlarge, each with a V100 GPU,
8 vCPUs, and 10 Gbps of network bandwidth. While we are unable
to scale cluster size even further due to cost, we have chosen the
ratio of worker to server nodes inspired by real-world deployments
(e.g., XDL [21]), thus capturing the relevant tradeoffs. Workers use
batch size of 2048. For checkpointing, we use 15 additional HDFS
nodes of type i3en.xlarge, each with NVMe SSDs and 25 Gbps of
network bandwidth. All instances use AWS ENA networking.

Metrics. For performance during normal operation, we measure
training throughput (samples/second) and training-time overhead,
which is the percent increase in the time to train a certain number
of samples. For recovery, we measure the time to fully recover a
failed server and training throughput during recovery.

5.2 Performance during normal operation

Fig. 5 shows the training-time overhead of ECRec and checkpoint-
ing compared to a system with no fault tolerance (and thus no
overhead) in a two-hour training run. As DLRM size increases,
ECRec’s training-time overhead grows very slightly, while that
of checkpointing increases significantly. For example, going from
Criteo-Original to Criteo-8S, ECRec’s training-time overhead with
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Figure 7: Progress of training Criteo-8S vs. Ckpt-30.

Figure 8: Throughput of training Criteo-8S vs. Ckpt-60.

𝑘 = 4 increases by only 1.2×, while those of Ckpt-30 and Ckpt-60
increase by 7.2× and 7×, respectively. This leads to ECRec sig-
nificantly reducing training-time overhead for large DLRMs: for
Criteo-8S, ECRec has training-time overhead with 𝑘 = 4 of 22%,
while Ckpt-30 and Ckpt-60 have overheads of 65% and 31%, re-
spectively. While one could checkpoint less frequently for such
large DLRMs, doing so comes with the adverse effect of prolonged
recovery times (as will be shown in §5.3).

ECRec does have higher training-time overhead than check-
pointing for smaller DLRMs. However, it is important to note that
DLRMs are expected to increase in size [43] (see §2.2). Furthermore,
as will be shown in §5.3, ECRec significantly improves performance
during recovery compared to checkpointing. Thus, ECRec is poised
to remain a scalable solution for future DLRMs, without requiring
one to severely trade normal-mode and recovery performance.

Fig. 6 shows that ECRec has slightly lower throughput than No
FT, while the throughput of Ckpt-30 fluctuates from that of No
FT, to 0 when checkpointing. This makes the mean throughput
of Ckpt-30 (dashed line) lower than that of ECRec. This is further
shown in Fig. 7: Ckpt-30 progresses slower than ECRec. Figs. 8
and 9 show that the throughput of Ckpt-60 is closer to that of
ECRec during normal operation as compared to Ckpt-30 due to
the reduced checkpointing frequency. However, this comes at the
expense of prolonged recovery times, as will be shown in §5.3.

Effect of parameter k. ECRec has constant network bandwidth
and CPU overhead during normal operation regardless of the value
of parameter 𝑘 (see §4). This is shown in Figs. 5, 6, and 7: ECRec
has equal performance with 𝑘 of 2 and 4.

Effect of ECRec on load imbalance. We next evaluate the
effect of parity placement in ECRec on cluster load imbalance. We
measure load by counting the number of updates that occur on
each server when training Criteo-Original.

Figure 9: Progress of training Criteo-8S vs. Ckpt-60.

Figure 10: Training throughput (top) and progress (bottom)

after a failure at 15 min. on Criteo-4S, compared to Ckpt-30.

Without erasure coding, the most-loaded server performs 2.28×
more updates than the least-loaded server. In contrast, in ECRec
with 𝑘 = 2 and 𝑘 = 4, this difference in load is 1.64× and 1.58×,
respectively. Thus, the increased load introduced by ECRec is allevi-
ated by improved load balance. In ECRec, parities corresponding to
the embedding table entries of a given server are distributed among
all other servers. Thus, the same amount of load that one server
experiences for non-parity updates will also be distributed among
the other servers to update parities. While all servers experience
increased load, the most-loaded server in the absence of erasure
coding will likely have the smallest increase in load due to the
addition of erasure coding because all other servers for whom it
hosts parities have lower load. Hence, the expected difference in
load between the most- and least-loaded servers decreases. Thus,
while ECRec doubles the total number of updates on the servers,
its impact is alleviated by improved load balancing.

Effect of entrywidth.We now evaluate ECRec with an increase
in the size of each embedding table entry (i.e., the dense dimension).
We compare ECRec with 𝑘 = 4 on Criteo-4S and Criteo-2S-2D,
which have the same total size, but with Criteo-2S-2D having half
of the entries as Criteo-4S, and with each entry being twice as large.

While ECRec’s training-time overhead with 𝑘 = 4 on Criteo-
4S is 22%, that on Criteo-2S-2D is 27%. The higher overhead on
Criteo-2S-2D can be explained by the increased network traffic
when training Criteo-2S-2D: because each entry in Criteo-2S-2D is
twice as large as each in Criteo-4S, transmitting embedding table
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Figure 11: Training throughput after a failure at 15 min. on

Criteo-4S, compared to Ckpt-60.

Figure 12: Time to fully recover a failed server. “ECRec con-

tinue” shows the time between a failure occurring and ECRec

continuing training during recovery. This value is small

enough to be imperceptible, so we also indicate it in text.

entries (and their gradients) with difference propagation consumes
twice as much network bandwidth in Criteo-2S-2D as in Criteo-4S.

Ablation study.Wenext investigate the contributions to training-
time overhead of ECRec’s components.

We first consider the training-time overhead incurred for repli-
cating NN parameters in ECRec. We compare ECRec with 𝑘 = 4
to ECRec-NoRep, a version of ECRec that does not replicate NNs.
On Criteo-Original, ECRec has training-time overhead of 18.2%,
while that of ECRec-NoRep is only 5.2%. This indicates that the
extra network traffic of keeping NN replicas up-to-date in ECRec
adds considerable training-time overhead. Recall from §3.3, that
replication of NN parameters could be avoided if one uses a state-
less optimizer (e.g., SGD). Users leveraging such optimizers can
potentially reduce overhead by turning off NN replication in ECRec.

We next consider the training-time overhead incurred by using
two-phase commit (2PC) in ECRec (see §3.5). On Criteo-Original,
we find that the training-time overhead of ECRec-NoRep in the
absence of 2PC further reduces from 5.2% to only 2.6%. As described
in §3.5, 2PC is used in ECRec to avoid losing updates that were
in-flight when a failure occurs. Applications that are willing to
forgo this (likely small) potential hit in accuracy can turn off 2PC.

5.3 Performance during recovery

We next evaluate ECRec and checkpointing in recovering from fail-
ure. Recovery is best compared in Fig. 10, which plots the through-
put and training progress of ECRec and Ckpt-30 on Criteo-4S after a

Figure 13: Training time overhead of ECRec (𝑘 = 4; similar

for 𝑘 = 2) and approximate checkpointing-based approaches.

server failure at time 15 minutes.2 ECRec fully recovers faster than
the average case for Ckpt-30, and, critically, maintains throughput
within 7%–13% of that during normal operation during recovery. In
contrast, Ckpt-30 cannot perform new iterations during recovery.
As shown in the bottom of Fig. 10, ECRec’s high throughput during
recovery enables it to progress faster than the average case for
Ckpt-30. Fig. 11 shows that ECRec’s improvement in recovery time
and throughput over Ckpt-60 is even larger.

Fig. 12 shows the time it takes for ECRec, Ckpt-30, and Ckpt-60
to recover a failed server. ECRec with 𝑘 = 4 recovers 1.2–6.7×
and 0.8–3.5× faster than the average case for Ckpt-60 and Ckpt-30,
respectively (and up to 9.8× faster with 𝑘 = 2). More importantly,
unlike checkpointing, ECRec enables training to continue with high

throughput during recovery within 30 sec. of the failure occurring.

Effect of parameter k and DLRM size. Fig. 12 shows that
it takes longer for ECRec to fully recover with higher value of
parameter 𝑘 . However, ECRec maintains high throughput during
recovery for each value of 𝑘 : after a failure occurs, ECRec resumes
training with high throughput within 30 seconds (also see Fig. 10).

Fig. 12 also shows that the time to fully recover increases with
DLRM size for both ECRec and checkpointing, as expected (see
§2.3 and §4). ECRec’s recovery time increases more quickly with
DLRM size than checkpointing due to the 𝑘-fold increase in data
read and compute performed by a single server in ECRec when
decoding. This does not significantly affect training because ECRec
can continue training during recovery with high throughput.

Effect of lock granularity. We next compare the full recovery
time of ECRec with 𝑘 = 4 when using one and ten locks (see §3.4).
Using ten locks increases recovery time by 6.5% for Criteo-8S and
24.8% for Criteo-Original. Even when employing locks with finer
granularity, and thus having longer recovery time, ECRec continues
to provide high training throughput during recovery, unlike check-
pointing. Switching locks involves (1) momentarily synchronizing
workers and servers, and (2) copying updated embedding table en-
tries from buffers to the original entries. Synchronization time is
constant regardless of DLRM size, whereas the time to copy buffers
grows with DLRM size. Thus, synchronization time is better amor-
tized on larger DLRMs, reducing the overhead of lock switching.

5.4 Comparison to approximate checkpointing

We now compare to approaches that use approximation to reduce
the overhead of checkpointing. As described previously, ECRec dif-
fers from these approaches in that it maintains the same accuracy

2This can be thought of as 15 minutes after the last checkpoint has occurred, since the
checkpointing intervals considered are longer than 15 minutes.
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guarantees as the underlying training system, whereas approximate
approaches can degrade accuracy. This potential accuracy degra-
dation can require training for a longer period of time to reach a
target accuracy, and makes it challenging to debug model perfor-
mance. Existing works on approximate checkpointing do not have
open-source code releases (e.g., [9, 16, 29, 38]), so we model their
performance analytically and compare to real system performance
of ECRec (thus favoring approximation-based baselines).

Compressed checkpointing.We first compare ECRec to ap-
proaches that compress checkpoints (e.g., by using lower precision,
such as in Check-N-Run [16]). Fig. 13 shows the training-time over-
head of ECRec and the checkpointing baselines on Criteo-8S for
various degrees of compression. Because ECRec does not use check-
pointing, its overhead is constant regardless of the compression
factor. The overhead of the checkpointing baselines decreases lin-
early with increased compression factor (though this analytical
model does not account for time overhead to perform compression
and hence is more favorable to these approaches). Fig. 13 shows
that Ckpt-30 requires a compression factor of over 60% to match the
training-time overhead of ECRec. Even when this level of compres-
sion can be achieved, checkpointing still requires a lengthy recovery
process, and the recovered DLRM from approximate versions may
not match the accuracy of the original DLRM.

Partial recovery. Other techniques performs partial recovery,
in which only the parameters hosted on a failed server are rolled
back to a checkpoint upon failure (e.g., CPR [29]). It is difficult to
model the performance of partial recovery. On one hand, recovery
time for partial recovery could potentially be modelled as only that
required to load the checkpoint for the lost portion of the DLRM. On
the other hand, due to the inconsistent state of the recovered DLRM,
the total time to reach a particular accuracy using partial recovery
may differ from that of ECRec or a non-approximate checkpointing-
based system. Because this added training time depends on many
factors (e.g., dataset, neural network, when failure occurs, which
parameters are lost), it is challenging to model and for practition-
ers to reason about. In contrast, ECRec does not introduce such
questions and has more straightforward recovery semantics.

6 RELATED WORK

DLRM systems. System support for DLRM training and infer-
ence has received recent attention. Works on improving DLRM
inference range from workload/system analysis [20, 28], model-
system codesign [17, 19], and specialized hardware [22, 46]. Work
related to training DLRMs includes systems from large-scale or-
ganizations (e.g., [6–8, 21, 24, 33, 35, 43, 52]), and model-system
codesign [18, 48, 50]. ECRec differs from these works by its focus
on fault tolerance for DLRM training and its use of erasure codes
therein. ECRec could operate atop many of these works.

Checkpointing. Computer systems have long used checkpoint-
ing for fault tolerance (e.g., [11, 25, 32]). Recent works optimize
checkpointing in NN training [31, 36], but do not focus on DLRMs.
In contrast, ECRec leverages unique characteristics of DLRM train-
ing to use erasure codes for fault tolerance. Other works develop
approximation-based techniques to reduce the overhead of check-
pointing in training [9, 38]. In contrast, ECRec does not change the
accuracy guarantees of the underlying training system.

Two works focus on reducing the overhead of checkpointing in
DLRM training. Maeng et al. [29] use partial recovery to reduce
the overhead of rolling back after failure: only the failed node rolls
back to its most recent checkpoint. Eisenman et al. [16] use incre-
mental checkpointing and reducing the precision of checkpointed
parameters. Both of these works potentially reduce the accuracy
of DLRM training upon recovering from failure. While both works
empirically demonstrate only small accuracy drops, they cannot
provide the same accuracy guarantees as the underlying training
system. ECRec differs from these works in two regards: (1) ECRec
maintains the same accuracy guarantees as the underlying training
system. This avoids uncertainty about whether the fault tolerance
approach will deliver a model with the accuracy needed for deploy-
ment, and reduces effort in debugging model accuracy when there
are multiple sources of inaccuracy present. (2) ECRec leverages
in-memory redundancy to reduce the overhead of fault tolerance.

Erasure-coded systems. Erasure codes are widely used in var-
ious domains for fault tolerance, load balancing, and alleviating
slowdowns (e.g., [37, 39, 41, 47]). Recent work has also applied
coding-theoretic ideas to NN inference [26] and in training certain
classes of models (e.g., [15, 27, 44, 51]). In contrast, ECRec focuses
on DLRM training, which differs significantly from the settings
considered in these works.

7 CONCLUSION

ECRec is a fault-tolerant DLRM training system that employs era-
sure coding to overcome the downsides of checkpointing. ECRec
exploits unique characteristics of DLRM training to take a hybrid
approach to in-memory redundancy by erasure coding the embed-
ding tables of DLRMs, while replicating the NN parameters. ECRec
maintains up-to-date redundant parameters with low overhead and
enables training to continue during recovery, while maintaining
the accuracy guarantees as the underlying training system. Com-
pared to checkpointing, ECRec reduces training-time overhead
by up to 66%, recovers from failures up to 9.8× faster, and allows
training to proceed without pauses. ECRec scales gracefully with
increased DLRM size without enforcing a severe tradeoff between
training-time overhead and recovery performance. While ECRec’s
benefits come with additional memory requirements and load on
servers, memory overhead is only fractional and load gets evenly
distributed. ECRec shows the potential of erasure coding as a su-
perior alternative to checkpointing for fault tolerance in training
current and future DLRMs. Exploring the applicability of ECRec to
other learning systems is an exciting future direction to pursue.

ACKNOWLEDGMENTS

This work was funded in part by an NSF Graduate Research Fellow-
ship (DGE-1745016 and DGE-1252522), in part by a TCS Presidential
Fellowship, in part by Amazon Web Services, in part by a VMware
Systems Research Award, and in part by the AIDA project (POCI-
01-0247- FEDER-045907) co-financed by the European Regional
Development Fund through the Operational Program for Competi-
tiveness and Internationalisation 2020.We also thank CloudLab [14]
for providing computational resources used in carrying out part of
this research.

3148



REFERENCES
[1] Criteo Labs: Download Terabyte Click Logs https://labs.criteo.com/2013/12/

download-terabyte-click-logs/. Last accessed 10 July 2023.
[2] Introducing NVIDIA Merlin HugeCTR: A Training Framework Dedicated to

Recommender Systems. https://tinyurl.com/yy82pd2l. Last accessed 10 July
2023.

[3] Kaggle Avazu CTR Prediction Contest. https://www.kaggle.com/c/avazu-ctr-
prediction. Last accessed 10 July 2023.

[4] MLPerf Inference Github Repository. https://github.com/mlperf/inference. Last
accessed 10 July 2023.

[5] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey
Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, Man-
junath Kudlur, Josh Levenberg, Rajat Monga, Sherry Moore, Derek G. Murray,
Benoit Steiner, Paul Tucker, Vijay Vasudevan, Pete Warden, Martin Wicke, Yuan
Yu, and Xiaoqiang Zheng. TensorFlow: A System for Large-Scale Machine Learn-
ing. In 12th USENIX Symposium on Operating Systems Design and Implementation
(OSDI 16), 2016.

[6] Bilge Acun, Matthew Murphy, Xiaodong Wang, Jade Nie, Carole-Jean Wu, and
Kim Hazelwood. Understanding Training Efficiency of Deep Learning Rec-
ommendation Models at Scale. In 2021 IEEE International Symposium on High
Performance Computer Architecture (HPCA 21), 2021.

[7] Muhammad Adnan, Yassaman Ebrahimzadeh Maboud, Divya Mahajan, and
Prashant J. Nair. Accelerating Recommendation System Training by Leveraging
Popular Choices, 2022.

[8] Saurabh Agarwal, Ziyi Zhang, and Shivaram Venkataraman. BagPipe: Acceler-
ating Deep Recommendation Model Training. arXiv preprint arXiv:2202.12429,
2022.

[9] Yu Chen, Zhenming Liu, Bin Ren, and Xin Jin. On Efficient Constructions of
Checkpoints. In Proceedings of the International Conference on Machine Learning
(ICML 20), 2020.

[10] Paul Covington, JayAdams, and Emre Sargin. DeepNeural Networks for YouTube
Recommendations. In Proceedings of the 10th ACM Conference on Recommender
Systems, 2016.

[11] John T Daly. A Higher Order Estimate of the Optimum Checkpoint Interval for
Restart Dumps. Future Generation Computer Systems, 22(3):303–312, 2006.

[12] Diederik P. Kingma and Jimmy Ba. Adam: A Method for Stochastic Optimization.
In International Conference on Learning Representations (ICLR 15), 2015.

[13] John Duchi, Elad Hazan, and Yoram Singer. Adaptive Subgradient Methods
for Online Learning and Stochastic Optimization. Journal of Machine Learning
Research, 12(7), 2011.

[14] Dmitry Duplyakin, Robert Ricci, Aleksander Maricq, Gary Wong, Jonathon
Duerig, Eric Eide, Leigh Stoller, Mike Hibler, David Johnson, Kirk Webb, Aditya
Akella, Kuangching Wang, Glenn Ricart, Larry Landweber, Chip Elliott, Michael
Zink, Emmanuel Cecchet, Snigdhaswin Kar, and PrabodhMishra. The Design and
Operation of CloudLab. In 2019 USENIX Annual Technical Conference (USENIX
ATC 19), 2019.

[15] Sanghamitra Dutta, Ziqian Bai, Haewon Jeong, Tze Meng Low, and Pulkit Grover.
A Unified Coded Deep Neural Network Training Strategy Based on General-
ized Polydot Codes for Matrix Multiplication. In Proceedings of the 2018 IEEE
International Symposium on Information Theory (ISIT 18), 2018.

[16] Assaf Eisenman, Kiran Kumar Matam, Steven Ingram, Dheevatsa Mudigere,
Raghuraman Krishnamoorthi, Krishnakumar Nair, Misha Smelyanskiy, and Mu-
rali Annavaram. Check-N-Run: A Checkpointing System for Training Deep
Learning Recommendation Models. In 19th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 22), 2022.

[17] Assaf Eisenman, Maxim Naumov, Darryl Gardner, Misha Smelyanskiy, Sergey
Pupyrev, Kim Hazelwood, Asaf Cidon, and Sachin Katti. Bandana: Using Non-
Volatile Memory for Storing Deep Learning Models. In The Second Conference on
Systems and Machine Learning (SysML 19), 2019.

[18] AA Ginart, Maxim Naumov, Dheevatsa Mudigere, Jiyan Yang, and James Zou.
Mixed Dimension Embeddings with Application to Memory-Efficient Recom-
mendation Systems. In 2021 IEEE International Symposium on Information Theory
(ISIT 21), 2021.

[19] Udit Gupta, Samuel Hsia, Vikram Saraph, Xiaodong Wang, Brandon Reagen, Gu-
Yeon Wei, Hsien-Hsin S Lee, David Brooks, and Carole-Jean Wu. DeepRecSys: A
System for Optimizing End-to-End At-Scale Neural Recommendation Inference.
In 2020 ACM/IEEE 47th Annual International Symposium on Computer Architecture
(ISCA 20), 2020.

[20] Udit Gupta, Carole-Jean Wu, Xiaodong Wang, Maxim Naumov, Brandon Reagen,
David Brooks, Bradford Cottel, Kim Hazelwood, Mark Hempstead, Bill Jia, et al.
The Architectural Implications of Facebook’s DNN-based Personalized Recom-
mendation. In 2020 IEEE International Symposium on High Performance Computer
Architecture (HPCA 20), 2020.

[21] Biye Jiang, Chao Deng, Huimin Yi, Zelin Hu, Guorui Zhou, Yang Zheng, Sui
Huang, Xinyang Guo, Dongyue Wang, Yue Song, et al. XDL: An Industrial Deep
Learning Framework for High-Dimensional Sparse Data. In Proceedings of the
1st International Workshop on Deep Learning Practice for High-Dimensional Sparse

Data, 2019.
[22] Wenqi Jiang, Zhenhao He, Shuai Zhang, Thomas B Preußer, Kai Zeng, Liang

Feng, Jiansong Zhang, Tongxuan Liu, Yong Li, Jingren Zhou, et al. MicroRec:
Accelerating Deep Recommendation Systems to Microseconds by Hardware and
Data Structure Solutions. In The Fourth Conference on Systems and Machine
Learning (MLSys 21), 2021.

[23] Saurabh Kadekodi, Francisco Maturana, Suhas Jayaram Subramanya, Juncheng
Yang, K. V. Rashmi, and Gregory R. Ganger. Pacemaker: Avoiding heart attacks
in storage clusters with disk-adaptive redundancy. In Proceedings of the 14th
USENIX Conference on Operating Systems Design and Implementation, OSDI’20,
USA, 2020. USENIX Association.

[24] Dhiraj Kalamkar, Evangelos Georganas, Sudarshan Srinivasan, Jianping Chen,
Mikhail Shiryaev, and Alexander Heinecke. Optimizing Deep Learning Recom-
mender Systems’ Training On CPU Cluster Architectures. In Proceedings of the
International Conference for High Performance Computing, Networking, Storage
and Analysis (SC 20), 2020.

[25] Richard Koo and Sam Toueg. Checkpointing and Rollback-Recovery for Dis-
tributed Systems. IEEE Transactions on software Engineering, (1):23–31, 1987.

[26] Jack Kosaian, K. V. Rashmi, and Shivaram Venkataraman. Parity Models: Erasure-
Coded Resilience for Prediction Serving Systems. In Proceedings of the 27th ACM
Symposium on Operating Systems Principles (SOSP 19), 2019.

[27] Kangwook Lee, Maximilian Lam, Ramtin Pedarsani, Dimitris Papailiopoulos, and
Kannan Ramchandran. Speeding Up Distributed Machine Learning Using Codes.
IEEE Transactions on Information Theory, July 2018.

[28] Michael Lui, Yavuz Yetim, Özgür Özkan, Zhuoran Zhao, Shin-Yeh Tsai, Carole-
Jean Wu, and Mark Hempstead. Understanding Capacity-Driven Scale-Out
Neural Recommendation Inference. In 2021 IEEE International Symposium on
Performance Analysis of Systems and Software (ISPASS 21), 2021.

[29] Kiwan Maeng, Shivam Bharuka, Isabel Gao, Mark C Jeffrey, Vikram Saraph,
Bor-Yiing Su, Caroline Trippel, Jiyan Yang, Mike Rabbat, Brandon Lucia, et al.
CPR: Understanding and Improving Failure Tolerant Training for Deep Learning
Recommendation with Partial Recovery. In The Fourth Conference on Systems
and Machine Learning (MLSys 21), 2021.

[30] Peter Mattson, Christine Cheng, Cody Coleman, Greg Diamos, Paulius Micike-
vicius, David Patterson, Hanlin Tang, Gu-Yeon Wei, Peter Bailis, Victor Bittorf,
et al. MLPerf Training Benchmark. In The Third Conference on Systems and
Machine Learning (MLSys 20), 2020.

[31] Jayashree Mohan, Amar Phanishayee, and Vijay Chidambaram. CheckFreq:
Frequent, Fine-Grained DNN Checkpointing. In 19th USENIX Conference on File
and Storage Technologies (FAST 21), 2021.

[32] Adam Moody, Greg Bronevetsky, Kathryn Mohror, and Bronis R De Supinski.
Design,Modeling, and Evaluation of a ScalableMulti-level Checkpointing System.
In Proceedings of the 2010 ACM/IEEE International Conference for High Performance
Computing, Networking, Storage and Analysis (SC 10), 2010.

[33] Dheevatsa Mudigere, Yuchen Hao, Jianyu Huang, Zhihao Jia, Andrew Tulloch,
Srinivas Sridharan, Xing Liu, Mustafa Ozdal, Jade Nie, Jongsoo Park, et al.
Software-Hardware Co-design for Fast and Scalable Training of Deep Learning
Recommendation Models. arXiv preprint arXiv:2104.05158, 2021.

[34] Maxim Naumov, John Kim, Dheevatsa Mudigere, Srinivas Sridharan, Xiaodong
Wang, Whitney Zhao, Serhat Yilmaz, Changkyu Kim, Hector Yuen, Mustafa
Ozdal, et al. Deep Learning Training in Facebook Data Centers: Design of
Scale-up and Scale-out Systems. arXiv preprint arXiv:2003.09518, 2020.

[35] Maxim Naumov, Dheevatsa Mudigere, Hao-Jun Michael Shi, Jianyu Huang,
Narayanan Sundaraman, Jongsoo Park, Xiaodong Wang, Udit Gupta, Carole-
Jean Wu, Alisson G Azzolini, et al. Deep Learning Recommendation Model for
Personalization and Recommendation Systems. arXiv preprint arXiv:1906.00091,
2019.

[36] Bogdan Nicolae, Jiali Li, Justin M Wozniak, George Bosilca, Matthieu Dorier, and
Franck Cappello. DeepFreeze: Towards Scalable Asynchronous Checkpointing
of Deep Learning Models. In 2020 20th IEEE/ACM International Symposium on
Cluster, Cloud and Internet Computing (CCGrid 20), 2020.

[37] David A. Patterson, Garth Gibson, and Randy H. Katz. A Case for Redundant
Arrays of Inexpensive Disks (RAID). In Proceedings of the ACM SIGMOD Interna-
tional Conference on Management of Data (SIGMOD 88), 1988.

[38] Aurick Qiao, Bryon Aragam, Bingjing Zhang, and Eric Xing. Fault Tolerance in
Iterative-Convergent Machine Learning. In International Conference on Machine
Learning, pages 5220–5230, 2019.

[39] K. V. Rashmi, Mosharaf Chowdhury, Jack Kosaian, Ion Stoica, and Kannan Ram-
chandran. EC-Cache: Load-Balanced, Low-Latency Cluster Caching with Online
Erasure Coding. In 12th USENIX Symposium on Operating Systems Design and
Implementation (OSDI 16), 2016.

[40] K. V. Rashmi, Nihar B Shah, Dikang Gu, Hairong Kuang, Dhruba Borthakur,
and Kannan Ramchandran. A Hitchhiker’s Guide to Fast and Efficient Data
Reconstruction in Erasure-Coded Data Centers. In Proceedings of the 2014 ACM
SIGCOMM Conference (SIGCOMM 14), 2014.

[41] Luigi Rizzo. Effective Erasure Codes for Reliable Computer Communication
Protocols. ACM SIGCOMM Computer Communication Review, 27(2):24–36, 1997.

3149



[42] Mahesh Sathiamoorthy, Megasthenis Asteris, Dimitris Papailiopoulos, Alexan-
dros G Dimakis, Ramkumar Vadali, Scott Chen, and Dhruba Borthakur. XORing
Elephants: Novel Erasure Codes for Big Data. Proceedings of the VLDB Endowment,
6(5), 2013.

[43] Geet Sethi, Bilge Acun, Niket Agarwal, Christos Kozyrakis, Caroline Trippel,
and Carole-Jean Wu. Recshard: Statistical feature-based memory optimization
for industry-scale neural recommendation. In Proceedings of the Twenty-Seventh
International Conference on Architectural Support for Programming Languages
and Operating Systems (ASPLOS 22), 2022.

[44] Rashish Tandon, Qi Lei, Alexandros G Dimakis, and Nikos Karampatziakis. Gra-
dient Coding: Avoiding Stragglers in Distributed Learning. In International
Conference on Machine Learning (ICML 17), 2017.

[45] Hakim Weatherspoon and John D Kubiatowicz. Erasure Coding vs. Replication:
A Quantitative Comparison. In International Workshop on Peer-to-Peer Systems
(IPTPS 2002), 2002.

[46] Mark Wilkening, Udit Gupta, Samuel Hsia, Caroline Trippel, Carole-Jean Wu,
David Brooks, and Gu-Yeon Wei. RecSSD: Near Data Processing for Solid State
Drive Based Recommendation Inference. In Proceedings of the Twenty-Sixth
International Conference on Architectural Support for Programming Languages
and Operating Systems (ASPLOS 21), 2021.

[47] Shiqin Yan, Huaicheng Li, Mingzhe Hao, Michael Hao Tong, Swaminathan Sun-
dararaman, Andrew A Chien, and Haryadi S Gunawi. Tiny-Tail Flash: Near-
Perfect Elimination of Garbage Collection Tail Latencies in NAND SSDs. In 15th

USENIX Conference on File and Storage Technologies (FAST 17), 2017.
[48] Jie Amy Yang, JianyuHuang, Jongsoo Park, Ping Tak Peter Tang, and Andrew Tul-

loch. Mixed-Precision Embedding Using a Cache. arXiv preprint arXiv:2010.11305,
2020.

[49] Juncheng Yang, Anirudh Sabnis, Daniel S. Berger, K. V. Rashmi, and Ramesh K.
Sitaraman. C2DN: How to harness erasure codes at the edge for efficient con-
tent delivery. In 19th USENIX Symposium on Networked Systems Design and
Implementation (NSDI 22), pages 1159–1177, Renton, WA, April 2022. USENIX
Association.

[50] Chunxing Yin, Bilge Acun, Xing Liu, and Carole-Jean Wu. TT-Rec: Tensor
Train Compression for Deep Learning Recommendation Models. In The Fourth
Conference on Systems and Machine Learning (MLSys 21), 2021.

[51] Qian Yu, Netanel Raviv, Jinhyun So, and A Salman Avestimehr. Lagrange Coded
Computing: Optimal Design for Resiliency, Security and Privacy. In Proceedings of
the 22nd International Conference on Artificial Intelligence and Statistics (AISTATS
19), 2019.

[52] Weijie Zhao, Jingyuan Zhang, Deping Xie, Yulei Qian, Ronglai Jia, and Ping Li.
AIBox: CTR Prediction Model Training on a Single Node. In Proceedings of the
28th ACM International Conference on Information and Knowledge Management
(CIKM 2019), 2019.

3150


