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Abstract

Content providers are increasingly using data-driven
mechanisms to optimize quality of experience (QoE).
Many existing approaches formulate this process as a
prediction problem of learning optimal decisions (e.g.,
server, bitrate, relay) based on observed QoE of re-
cent sessions. While prediction-based mechanisms have
shown promising QoE improvements, they are necessar-
ily incomplete as they: (1) suffer from many known bi-
ases (e.g., incomplete visibility) and (2) cannot respond
to sudden changes (e.g., load changes). Drawing a par-
allel from machine learning, we argue that data-driven
QoE optimization should instead be cast as a real-time
exploration and exploitation (E2) process rather than as
a prediction problem. Adopting E2 in network applica-
tions, however, introduces key architectural (e.g., how
to update decisions in real time with fresh data) and al-
gorithmic (e.g., capturing complex interactions between
session features vs. QoE) challenges. We present Pyth-
eas, a framework which addresses these challenges using
a group-based E2 mechanism. The insight is that appli-
cation sessions sharing the same features (e.g., IP pre-
fix, location) can be grouped so that we can run E2 al-
gorithms at a per-group granularity. This naturally cap-
tures the complex interactions and is amenable to real-
time control with fresh measurements. Using an end-
to-end implementation and a proof-of-concept deploy-
ment in CloudLab, we show that Pytheas improves video
QoE over a state-of-the-art prediction-based system by
up to 31% on average and 78% on 90th percentile of per-
session QoE.

1 Introduction

We observe an increasing trend toward the adoption
of data-driven approaches to optimize application-level
quality of experience (QoE) (e.g., [26, 19, 36]). Atahigh
level, these approaches use the observed QoE of recent
application sessions to proactively improve the QoE for
future sessions. Many previous and ongoing efforts have
demonstrated the potential of such data-driven optimiza-
tion for applications such as video streaming [25, 19],
Internet telephony [24] and web performance [30, 39].
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Figure 1: Prediction-oriented designs vs. Real-time E2.
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Existing frameworks typically formulate data-driven
optimization as a prediction problem (e.g., [25, 39]).
As depicted in Figure 1, they use passive measurements
from application sessions to periodically update a predic-
tion model, which captures the interaction between pos-
sible “decisions” (e.g., server, relay, CDN, or bitrate),
different network- and application-layer features (e.g.,
client AS, content type), and QoE metrics. The predic-
tion model is then used to make decisions for future ses-
sions that yield the best (predicted) QoE.

While previous work has shown considerable QoE im-
provement using this prediction-based workflow, it has
key limitations. First, QoE measurements are collected
passively by a process independently of the prediction
process. As a result, quality predictions could easily be
biased if the measurement collection does not present
the representative view across sessions. Furthermore,
predictions could be inaccurate if quality measurements
have high variance [39]. Second, the predictions and
decisions are updated periodically on coarse timescales
of minutes or even hours. This means that they cannot
detect and adapt to sudden events such as load-induced
quality degradation.

To address these concerns, we argue that data-driven
optimization should instead be viewed through the lens
of real-time exploration and exploitation (E2) frame-
works [43] from the machine learning community rather
than as prediction problems. At a high level (Fig-
ure 1), E2 formulates measurement collection and deci-
sion making as a joint process with real-time QoE mea-
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surements. The intuition is to continuously strike a dy-

namic balance between exploring suboptimal decisions

and exploiting currently optimal decisions, thus funda-
mentally addressing the aforementioned shortcomings of
prediction-based approaches.

While E2 is arguably the right abstraction for data-
driven QoE optimization, realizing it in practice in a net-
working context is challenging on two fronts:

o Challenge 1: How to run real-time E2 over mil-
lions of globally distributed sessions with fresh data?
E2 techniques require a fresh and global view of
QoE measurements. Unfortunately, existing solutions
pose fundamental tradeoffs between data freshness
and global views. While some (e.g., [19, 25]) only
update the global view on timescales of minutes, oth-
ers (e.g., [16]) assume that a fresh global view can be
maintained by a single cluster in a centralized man-
ner, which may not be possible for geo-distributed ser-
vices [34, 33].

o Challenge 2: How to capture complex relations be-
tween sessions in E2? Traditional E2 techniques as-
sume that the outcome of using some decision fol-
lows a static (but unknown) distribution, but applica-
tion QoE often varies across sessions, depending on
complex network- and application-specific “contexts”
(e.g., last-mile link, client devices) and over time.

We observe an opportunity to address them in a net-
working context by leveraging the notion of group-
based E2. This is driven by the domain-specific in-
sight that network sessions sharing the same network-
and application-level features intuitively will exhibit
the same QOE behavior across different possible deci-
sions [25, 24, 19]. This enables us to: (1) decompose the
global E2 process into separate per-group E2 processes,
which can then be independently run in geo-distributed
clusters (offered by many application providers [33]);
and (2) reuse well-known E2 algorithms (e.g., [14]) and
run them at a coarser per-group granularity.

Building on this insight, we have designed and im-
plemented Pytheas', a framework for enabling E2-
based data-driven QoE optimization of networked ap-
plications. Our implementation [9] synthesizes and ex-
tends industry-standard data processing platforms (e.g.,
Spark [10], Kafka [2]). It provides interfaces through
which application sessions can send QoE measurement
to update the real-time global view and receive con-
trol decisions (e.g., CDN and bitrate selection) made by
Pytheas. We demonstrate the practical benefit of Pytheas
by using video streaming as a concrete use case. We ex-
tended an open source video player [5], and used a trace-
driven evaluation methodology in a CloudLab-based de-
ployment [4]. We show that (1) Pytheas improves video

IPytheas was an early explorer who is claimed to be the first person
to record seeing the Midnight Sun.

QoE over a state-of-the-art prediction-based baseline by
6-31% on average, and 24-78% on 90th percentile, and
(2) Pytheas is horizontally scalable and resilient to vari-
ous failure modes.

2 Background

Drawing on prior work, we discuss several applications
that have benefited (and could benefit) from data-driven
QoE optimization (§2.1). Then, we highlight key limita-
tions of existing prediction-based approaches (§2.2).

2.1 Use cases

We begin by describing several application settings to
highlight the types of “decisions” and the improvements
that data-driven QoE optimization can provide.
Video on demand and live streaming: VoD providers
(e.g., YouTube, Vevo) have the flexibility to stream con-
tent from multiple servers or CDNs [41] and in dif-
ferent bitrates [23], and already have real-time visibil-
ity into video quality through client-side instrumenta-
tion [17]. Prior work has shown that compared with tra-
ditional approaches that operate on a single-session ba-
sis, data-driven approaches for bitrate and CDN selec-
tion could improve video quality (e.g., 50% less buffer-
ing time) [19, 25, 40]. Similarly, the QoE of live stream-
ing (e.g., ESPN, twitch.tv) depends on the overlay path
between source and edge servers [27]. There could be
room for improvement when these overlay paths are dy-
namically chosen to cope with workload and quality fluc-
tuation [32].
Internet telephony: Today, VoIP applications (e.g.,
Hangouts and Skype) use managed relays to optimize
network performance between clients [24]. Prior work
shows that compared with Anycast-based relay selection,
a data-driven relay selection algorithm can reduce the
number of poor-quality calls (e.g., 42% fewer calls with
over 1.2% packet loss) [24, 21].
File sharing: File sharing applications (e.g., Dropbox)
have the flexibility to allow each client to fetch files [18]
from a chosen server or data center. By using data-driven
approaches to predict the throughput between a client
and a server [40, 39, 44], we could potentially improve
the QoE for these applications.
Social, search, and web services: Social network ap-
plications try to optimize server selection, so that rele-
vant information (e.g., friends’ feeds) is co-located. Prior
work shows that optimal caching and server selection
can reduce Facebook query time by 50% [37]. Online
services (e.g., search) can also benefit from data-driven
techniques. For instance, data-driven edge sever selec-
tion can reduce search latency by 60% compared to Any-
cast, while serving 2 x more queries [30].

Drawing on these use cases, we see that data-driven
QoE optimization can be applied to a broad class of net-



4000 T T T T T T T
53500 | B
£ 3000 [
< 2500 _\—\/\/\_
£2000 - 1
= 1500 =
5 1000 - Random data collection ]
= 500 [ OPtimaI .

0 1 1 1 1 1
0 20 40 60 80 100 120 140 160
Time (sec)

(a) Example A: Suboptimal quality due to fixed random
data collection.

4500 Pleriodic plredictio Iupdate I
ptimal

JoinTime (ms)

1 1 1 1
0 100 200 300 400 500
Time (sec)

(b) Example B: Overload and oscillations between decisions
due to periodic prediction.
Figure 2: Limitations of prediction-oriented abstrac-
tion (e.g., CFA [25]) manifested in two real examples.

worked applications that meet two requirements: (i) ap-
plication providers can make decisions (e.g., server, bi-
trate, relay) that impact QoE of individual application
sessions; and (ii) each session can measure its QoE and
report it to application provider in near real time. Note
that this decision-making process can either be run by the
application provider itself (e.g., Skype [24]) or by some
third-party services (e.g., Conviva [19]).

2.2 Limitations of predictive approaches

Many prior approaches (e.g., [19, 25, 40, 24]) for data-
driven QoE optimization use a prediction-based work-
flow. That is, they periodically train a quality predic-
tion model based on passive measurements to inform
decisions for future sessions; e.g., using history data to
decide what will be the best relay server for a Skype
call or the best CDN for a video session? While such
prediction-based approaches have proved useful, they
suffer from well-known limitations, namely, prediction
bias and slow reaction [22, 39]. Next, we highlight these
issues using CDN selection in video streaming as a con-
crete use case.

2.2.1 Limitation 1: Prediction bias

A well-known problem of prediction-based workflows is
that the prediction can be biased by prior decisions. Be-
cause the input measurement data are based on previous
set of best decisions, we will not have a reliable way to
estimate the potential quality improvements of other de-
cisions in the future [39]. A simple solution is to use
a fixed percentage of sessions to explore different deci-
sions. This could eliminate the above prediction bias.
However, it can still be suboptimal, since it might ei-

ther let too many sessions use suboptimal decisions when
quality is stable, or collect insufficient data in presence of
higher variance.

Example A: Figure 2a shows a trace-driven evaluation to
highlight such prediction biases. We use a trace of one
of the major video providers in US. As a baseline, we
consider prior work called CFA [25], which uses a fixed
fraction of 10% sessions to randomly explore suboptimal
decisions.”> We see that it leads to worse average video
startup latency, or join time, than an optimal strategy
that always picks the CDN with the best average quality
in each minute. Each video session can pick CDN1 or
CDN2, and in the hindsight, CDNI1 is on average better
CDN2, except between t=40 and t=120, when CDN?2 has
a large variance. Even when CDNI1 is consistently better
than CDN2, CFA is worse than optimal, since it always
assigns 10% of sessions to use CDN2. At the same time,
when CDN2 becomes a better choice, CFA cannot de-
tect this change in a timely fashion as 10% is too small a
fraction to reliably estimate quality of CDN2.

2.2.2 Limitation 2: Slow reaction

Due to the time taken to aggregate sufficient data for
model building, today’s prediction-based systems update
quality predictions periodically on coarse timescales;
e.g., CFA updates models every tens of seconds [25], and
VIA updates its models every several hours [24]. This
means that they cannot quickly adapt to changes in op-
erating conditions which can cause model drifts. First,
if there are sudden quality changes (e.g., network con-
gestion and service outage), prediction-based approaches
might result in suboptimal quality due to its slow reac-
tion. Furthermore, such model shifts might indeed be a
consequence of the slow periodic predictions; e.g., the
best predicted server or CDN will receive more requests
and its performance may degrade as its load increases.

Example B: We consider an AS and two CDNSs. For each
CDN, if it receives most sessions from the AS, it will be
overloaded, and the sessions served by it will have bad
quality. Figure 2b shows that CFA, which always picks
the CDN that has the best quality in the last minute, has
worse quality than another strategy which assigns half of
sessions to each CDN. This is because CFA always over-
loads the CDN that has the best historical performance
by assigning most sessions to it, and CFA will switch de-
cisions only after quality degradation occurs, leading to
oscillations and suboptimal quality.

At a high level, these limitations of prediction-based
approaches arise from the logical separation between
measurement collection and decision making. Next, we

2The process begins by assigning sessions uniformly at random to
all decisions in the first minute, and after that, it assigns 90% sessions
to the optimal decisions based on the last minute.



discuss what the right abstraction for data-driven QoE
optimization should be to avoid these limitations.

3 QoE optimization as an
Exploration-Exploitation process

To avoid these aforementioned limitations of prediction-
based approaches, ideally we want a framework where
decisions are updated in concert with measurement col-
lection in real time. There is indeed a well-known
abstraction in the machine learning community that
captures this—exploration and exploitation (E2) pro-
cesses [43]. Drawing on this parallel, we argue why data-
driven QoE optimization should be cast instead as a real-
time E2 process rather than a prediction-based workflow.

Background on exploration and exploitation: An in-
tuitive way to visualize the exploration and exploitation
(E2) process is through the lens of a multi-armed ban-
dit problem [43]. Here, a gambler pulls several slot ma-
chines, each associated with an unknown reward distri-
bution. The goal of the gambler is to optimize the mean
rewards over a sequence of pulls. Thus, there is some in-
trinsic exploration phase where the gambler tries to learn
these hidden reward functions, and subsequent exploita-
tion phase to maximize the reward. Note that the reward
functions could change over time, and thus this is a con-
tinuous process rather than a one-time shot.

QoE optimization as E2 (Figure 3): Given this frame-
work, we can see a natural mapping between E2 and
data-driven QoE optimization. Like E2, data-driven QoE
optimization observes the QoE (i.e., reward) of a deci-
sion every time the decision is used (i.e., pulled) by a
session. Our goal is to maximize the overall QoE after a
sequence of sessions.

Casting data-driven optimization as E2 not only pro-
vides a systematic framework for data-driven QoE opti-
mization, but also allows us to leverage well-known al-
gorithms (e.g., [14]) from the machine learning litera-
ture. As E2 integrates the measurement collection (ex-
ploration) and decision making (exploitation) in a joint
process, we can dynamically explore decisions whose
quality estimation has high uncertainty, and exploit deci-
sions that are clearly better. For instance, in Example A,
an E2 process could reduce traffic for exploration when
QoE is stable (before 40 second and after 120 seconds),
and raise it when QoE changes (between 40 second and
120 second). By running E2 in real time with the most
up-to-date measurement data, we could detect QoE drift
as soon as some sessions have experienced them, and
adapt to them faster than prediction-based approaches.
For instance, in Example B, real-time E2 would detect
load-induced QoE degradation on CDN1 as soon as its
QoE is worse than CDN2, and start switching sessions to
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Figure 3: Casting data-driven QoE optimization into
formulation of exploration and exploitation (E2).

CDN2 before overloading CDN1.3

Challenges: While E2 offers the right abstraction in

contrast to prediction-based approaches, applying it in

network applications raises practical challenges:

e Traditional E2 techniques (e.g., [43, 29, 16]) need
fresh measurements of all sessions, but getting such
a fresh and global view is challenging, because ap-
plication providers store fresh data in geo-distributed
clusters, called frontend clusters, which only have a
partial view across sessions. Existing analytics frame-
work for such geo-distributed infrastructure, however,
either trade global view for data freshness (e.g., [19]),
or target query patterns of a traditional database
(e.g., [33]), not millions of concurrent queries from
geo-distributed clients, as in our case.

e Traditional E2 techniques also make strong assump-
tions about the context that affects the reward of a de-
cisions, but they may not hold in network settings. For
instance, they often assume some notion of continu-
ity in context (e.g., [38]), but even when some video
sessions match on all aspects of ISP, location, CDN
resource availability, they may still see very different
QOoE, if they differ on certain key feature (e.g., last-
hop connection) [25].

4 Pytheas system overview

To address the practical challenges of applying E2 in net-
work applications, we observe a key domain-specific in-
sight in networked applications that enables us to address
both challenges in practice. We highlight the intuition
behind our insight, which we refer to as group-based
E2, and then provide an overview of the Pytheas system
which builds on this insight.

Insight of Group-based E2: Our insight is that the “net-
work context” of application sessions is often aligned
with their “network locality”. That is, if two sessions
share the context that determines their E2 decisions, they
will be likely to match on some network-specific fea-

3Note that we do not need to know the capacity of each CDN, which
is often unknown to content providers.
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tures. We see manifestations of this insight in many
settings. For instance, video sessions with similar QoE
from the same CDN/server tend to match on client IP
prefix [25, 40]. Similarly, VoIP calls between the same
ASes are likely to share the best relays [24], and clients
from same /24 IP prefix will have similar web load time
from the same edge proxy [30]. In §6.2, we validate this
insight with a real-world dataset.

This insight inspires the notion of group-based E2,
which can address the above challenges by enabling an
effective decomposition of the E2 process (Figure 4a).
Specifically, instead of a global E2 process over all ses-
sions, we group together sessions with similar context
by network locality and other key features (such as de-
vice and location), and use one E2 process for each
group. Since sessions within a group share network lo-
cality (e.g., in the same locations and IP prefixes), they
are likely to be mapped to the same frontend cluster. By
running the per-group E2 logic in this frontend cluster,
we can update decisions with fresh data from other ses-
sions in the group received by this frontend cluster. Fur-
thermore, as each group consists of sessions with sim-
ilar context, it is sufficient to use traditional E2 tech-
niques based on the data of sessions in one group, with-
out needing a global view of all sessions. It is important
to note that sessions are not grouped entirely based on
IP prefixes. The sessions in the same network locality
could have very different QoE, depending on the device,
last-hop connectivity, and other features. Therefore, we
group sessions on a finer granularity than IP prefix.

System overview: Figure 4b shows how the group-
based E2 is realized in the Pytheas architecture. Each
session group is managed by one per-group E2 process
run by one frontend cluster. When a session comes in, it
sends a request for its control decisions, which includes
its features, to the Pytheas system. The request will be
received by a frontend cluster, which maps the session to
a group based on its features, then gets the most up-to-
date decision from the local per-group E2 process, and
returns the decision to the session. Each session mea-
sures its QoE and reports it to the same frontend clus-
ter. When this frontend receives the QoE measurement,
it again maps the session to a group, and updates the E2

logic of the group with the new measurement. In most
cases, the E2 logic of a group is run by the same cluster
that receives the requests and measurements of its ses-
sions, so E2 logic can be updated in real time.

The backend cluster has a global, but slightly stale,
view of QoE of all sessions, and it determines the ses-
sion groups — which group each session belongs to and
which frontend should run the per-group logic for each
group. Normally, such grouping is updated periodically
on a timescale of minutes. During sudden changes such
as frontend cluster failures, it can also be triggered on
demand to re-assign groups to frontend clusters.

The following sections will present the algorithms (§5)
and system design (§6) of Pytheas, and how we imple-
mented it (§7) in more details.

S Pytheas algorithms

Using group-based E2, Pytheas decouples real-time E2
into two parts: a session-grouping logic to partition ses-
sions into groups, and a per-group E2 logic that makes
per-session decisions. This section presents the design
of these two core algorithmic pieces and how we address
two issues:* (i) Grouping drift: the session-grouping
logic should dynamically regroup sessions based on the
context that determines their QoE; and (ii) QoE drift:
the per-group control logic should switch decisions when
QoE of some decisions change.

5.1 Session-grouping logic

Recall that sessions of the same group share the same
factors on which their QoE and best decisions depend.
As a concrete example, let us consider CDN selection
for video. Video sessions in the same AS whose QoE
depends on the local servers of different CDNs should
be in the same group. However, video sessions whose
QoE is bottlenecked by home wireless and thus is inde-
pendent to CDNs should not be in the same group. In
other words, sessions in the same group share not only
the best decision, but also the factors that determine the
best decisions.

A natural starting point for this grouping decision is
using the notion of critical features proposed in prior
work [25]. At a high level, if session A and B have the
same values of critical features, they will have similar
QoE. Let S(s,F,A) denote the set of sessions that occur
within the last A time interval and share the same feature
values as s on the set of features F', and let Q(X) denote
the QoE distribution of a session set X. Then, the critical
feature set F'* of a session s:

argminpgpau"s(&pﬁ)bn|Q(S(s,F“”,A)) —0(S(s,F,A))|

4We assume in this section that the per-group control logic is up-
dated in real time (which will be made possible in the next section).



That is, the historical session who match values on crit-
ical features F* with s have very similar QoE distribu-
tion to those matching on all features with s on a long
timescale of A (say last hour). The clause |S(s,F, )| > n
ensures that there is sufficient mass in that set to get a
statistically significant estimate even on small timescales
0 (e.g., minutes). Such a notion of critical features has
also been (implicitly) used in many other applications;
e.g., AS pairs in VoIP [24] and /24 prefixes for web page
load time [30]. Thus, a natural strawman for grouping al-
gorithm is to groups sessions who match on their critical
features, i.e., they have similar QoE.

However, we observe two problems inherent to criti-
cal features, which make it unsuitable to directly group
sessions based on critical features: (1) First, grouping
sessions based on critical features may result in groups
that consist of only sessions using similar decisions, so
their measurement will be biased towards a subset of de-
cisions. (2) Second, grouping sessions based on criti-
cal features will also create overlaps between groups, so
E2 logic of different groups could make conflicting de-
cisions on these overlapping sessions. For instance, con-
sider two Comcast sessions, s1 and s», if the critical fea-
ture of 51 is ISP, and the critical feature of s, is its local
WiFi connection, s, will be in both the “WiFi” group and
the “Comcast” group.

To address these issues, we formulate the goal of
session grouping as following. Given a session set,
the session-grouping logic should output any non-
overlapping partition of sessions so that if two sessions s;
and s; are in the same group, s and s, should match val-
ues on s1 or s»’s non-decision-specific critical features.
Non-decision-specific features are the features indepen-
dent of decisions; e.g., “device” is a feature independent
of decisions, since video sessions of the same device can
make any decisions regarding CDN and bitrate.

Operationally, we use the following approach to
achieve such a grouping. First, for each session, we learn
its critical features, and then ignore decision-specific fea-
tures from the set of critical features of each session.
Then, we recursively group sessions based on the re-
maining critical features in a way that avoids overlaps
between groups. We start with any session s, and create
a group consisting of all sessions that match with s; on
s1’s critical features. We then recursively do the two fol-
lowing steps until every session is in some group. We
find a session sp, who is not included in any existing
group, and create a new group of all sessions that match
with s on s,’s critical features. If the new group does
not overlap with any existing group, it will be a new in-
dividual group, otherwise, we will add it to the existing
groups in the way illustrated in Figure 5. We organize
the existing groups in a graph, where each node is split
by values of a certain feature, and each group includes
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(a) Existing groups organized in a graph

(b) After insertion of a group with
critical feature {Content="Super Bow!”}
Figure 5: An illustrative example of session groups or-
ganized in a graph and how to a new group is added.

multiple leaf nodes. For instance, if we want to add a
new group that consists of sessions whose “content” is
“Super Bowl” to a graph of existing groups as shown in
Figure 5a, we will fork a path to create a new leaf node
whenever the new group overlap with a existing group.
Note that, this means multiple leaf nodes may be belong
to the same group (e.g., “Group 3” in Figure 5b contains
two different leaf nodes).

5.2 Per-group E2 logic

To run E2 in presence of QoE drift, we use Dis-
counted UCB algorithm [20], a variant of the UCB al-
gorithm [14], as the per-group E2 logic. UCB (Upper
Confidence Bound) algorithms [14] are a family of al-
gorithms to solve the multi-armed bandits problem. The
core idea is to always opportunistically choose the arm
that has the highest upper confidence bound of reward,
and therefore, it will naturally tend to use arms with high
expected rewards or high uncertainty. Note that the UCB
algorithms do not explicitly assign sessions for “explo-
ration” and “exploitation”.

We use Discounted UCB algorithm to adapt to QoE
drift, because it automatically gives more weight to more
recent measurements by exponentially discounting his-
torical measurements. Therefore, unlike other UCB al-
gorithms which will (almost) converge to one decision,
Discounted UCB is more likely to revisit suboptimal de-
cisions to retain visibility across all decisions. We re-
fer readers to [20] for more details. Given a session s,
it returns a decision that has not been tried, if there is
any. Otherwise, it calculates a score for each potential
decision d by adding up an exponentially weighted mov-
ing average of d’s history QoE and an estimation on the
uncertainty of reward of d, and picks the decision with
highest score.

6 Pytheas system architecture

Given the algorithmic pieces from the previous section,
next we discuss how we map them into a system architec-
ture. At a high level, the E2 logic of each group is inde-
pendently run by frontend clusters, while the session-to-
group mapping is continuously updated by the backend.



6.1 Requirements

The Pytheas system design must meet four goals:

1. Fresh data: The per-group E2 logic should be updated
every second with newest QoE measurements.

2. Global scale: 1t should handle millions of geo-
distributed sessions per second.

3. Responsiveness: It should respond to requests for de-
cisions from sessions within a few milliseconds.

4. Fault tolerance: QoE should not be significantly im-
pacted when parts of the system fail.

A natural starting point to achieve this goals might be
to adopt a “split control plane” approach advocated by
prior work for prediction-based approaches [19, 25]. At
a high level, this split control plane has two parts: (1)
a backend cluster that generates centralized predictions
based on global but stale data, and (2) a set of geodis-
tributed frontend servers that use these predictions from
the backend to make decisions on a per-session basis.
This split control architecture achieves global scale and
high responsiveness, but fundamentally sacrifices data
freshness.

Pytheas preserves the scale and responsiveness of the
split control approach, but extends in two key ways to
run group-based E2 with fresh data. First, each frontend
cluster runs an active E2 algorithm rather than merely ex-
ecuting the (stale) prediction decisions as in prior work.
Second, the frontend clusters now run per-group logic,
not per-session logic. This is inspired by the insight that
sessions in the same group are very likely to be received
by the same frontend cluster. Thus, group-based E2
could achieve high data freshness on the session group
granularity, while having the same scale and responsive-
ness to split control. Next, we discuss the detailed design
of the frontend and backend systems.

6.2 Per-group control by frontends

The best case for group-based E2 is when all sessions of
the same group are received by the same frontend clus-
ter. When this is true, we can run the per-group E2 logic
(85.2) in real time with fresh measurements of the same
group. In fact, this also is the common case. To show
this, we ran session-grouping logic (§5.1) on 8.5 million
video sessions in a real-world trace, and found around
200 groups each minute. Among these groups, we found
that (in Figure 6) for 95% of groups, all sessions are in
the same AS, and for 88% of groups, all sessions are even
in the same AS and same city. Since existing session-to-
frontend mappings (e.g., DNS or Anycast-based mech-
nisms) are often based on AS and geographical location,
this means that for most groups, their sessions will be
verly likely to be received in the same frontend clusters.

In practice, however, it is possible that sessions of one
group are spread across frontend clusters. We have two
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Figure 6: For most groups, the sessions are in the same
ASN and even same city.

options in this case:

1. Pick one cluster as the leader cluster of this group and
let it run the E2 logic of the group based on the mea-
surements received by this cluster. Meanwhile, other
clusters, called proxy clusters of the group, simply re-
ceive decisions periodically from the leader cluster.

2. Keep the leader cluster and proxy clusters, but let

proxy clusters not only receive decisions from the

leader, but also forward QoE measurements to the

leader cluster.
We see a tradeoff between the two options. While Op-
tion 1 is less complex to implement than Option 2, the
leader proxy in Option 1 runs per-group logic based on
only a subset of sessions, especially when the sessions
of a group are evenly spread across many frontend clus-
ters. We pick Option 2, because it is cleaner in that the
per-group logic is based on all sessions in a group. In
fact, implementing Option 2 does not add much com-
plexity. Finally, Option 2 can easily fall back to Option
1 by stop forwarding measurements from proxy clusters
to the leader cluster.

6.3 Updating session groups in backend

The backend cluster uses a global, stale view of measure-
ments to update two tables, which are sent to the frontend
to regroup sessions.

e First, the backend runs the session-grouping logic
(85.1) to decide which group each session belongs to,
and outputs a session-to-group table.

e Second, it decides which frontend should be the leader
cluster of each group and outputs a group-to-leader
table. For each group, we select the frontend cluster
that receives most sessions in the group as the leader.

The backend periodically (by default, every ten minutes)

updates the frontend clusters with these two maps. The

only exception for the maps to be updated in near real
time is when one or more frontend clusters fail, which
we discuss next.

6.4 Fault tolerance

As we rely on fault-tolerant components for the individ-
ual components of Pytheas within each cluster (see §7),
the residual failure mode of Pytheas is when some clus-
ters are not available. Next, we discuss how we tackle



three potential concerns in this setting.

First, if a failed frontend is the leader cluster of a
group, the states of the E2 logic of the group will be lost,
and we will not be able to update decisions for sessions
of the group. To detect frontend failures and minimize
their impact, each frontend sends frequent heartbeat mes-
sages through a “fast channel” every few seconds (by de-
fault, every five seconds) to the backend, so backend can
detect frontend failures based on these heartbeat mes-
sages. Once the backend detects a frontend failure, it
will select a new leader clusters for any group whose
leader cluster has been the failed one, and recover the
per-group logic in the new leader cluster. To recover
the per-group states, each leader always shares the per-
group states with its proxy clusters in the decision update
messages, so that when a proxy cluster is selected as the
new leader, it can recover the per-group states as they are
cached locally. Note that even without a leader cluster, a
proxy cluster can still respond requests with the cached
decisions made by the leader cluster before it fails.

Second, the sessions who are assigned to the failed
frontend will not receive control decisions. To minimize
this impact, Pytheas will fall back to the native control
logic. Take video streaming as an example, when Pyth-
eas is not available, the client-side video player can fall
back to the control logic built into the client-side appli-
cation (e.g., local bitrate adaptation) to achieve graceful
QoE degradation, rather than crash [19].

Finally, if the backend cluster is not available, Pyth-
eas will not be able to update groups. However, Pytheas
does not rely on backend to makde decisions, so clients
will still receive (albeit suboptimal) decisions made by
Pytheas’s frontend clusters.

7 Implementation and optimization

Pytheas is open source (=~ 10K lines of code across Java,
python, and PHP) and can be accessed at [9]. Next, we
describe the APIs for applications to integrate with Pyth-
eas, and then describe the implementation of frontend
and backend, as well as optimizations we used to remove
Pytheas’s performance bottlenecks.

Pytheas APIs: Application sessions communicate with
Pytheas through two APIs (Figure 7b): One for request-
ing control decisions, one for uploading measurement
data. Both are implemented as standard HTTP POST
messages. The session features are encoded in the data
field of the POST message. Pytheas also needs content
providers to provide the schema of the message that ses-
sions send to the Pytheas frontend, as well as a list of
potential decisions. Content providers may also provide
QoE models that compute QoE metrics from the raw
quality measurements sent by sessions.

Frontend: Figure 7b shows the key components and
interfaces of a frontend cluster. When a session sends

a control request to Pytheas, the request will be re-
ceived by one of the client-facing servers run by Apache
httpd [1]. The server processes the request with a PHP
script, which first maps the session to a group and its
leader cluster by matching the session features with the
session-to-group and group-to-leader tables. Then the
server queries the E2 logic of the group (§5.2), for the
most up-to-date decision of the group, and finally returns
the decision to the session. The script to process the mea-
surement data uploaded by a session is similar; a client-
facing server maps it to a group, and then forwards it

to the per-group E2 logic. The per-group E2 logic is a

Spark Streaming [3] program. It maintains a key-value

map (a Spark RDD) between group identification and the

per-group E2 states (e.g., most recent decisions), and up-
dates the states every second by the most recent measure-
ment data in one MapReduce operation. The communi-

cation between these processes is through Kafka [2], a

distributed publish/subscribe service. We used Apache

httpd, Spark Streaming, and Kafka, mainly because they
are horizontally scalable and highly resilient to failures
of individual machines.

While the above implementation is functionally suffi-
cient, we observed that the frontend throughput if imple-
mented as-is is low. Next, we discuss the optimizations
to overcome the performance bottlenecks.

e Separating logic from client-facing servers: When
a client-facing server queries the per-group control
logic, the client-facing server is effectively blocked,
which significantly reduces the throughput of client-
facing servers. To remove this bottleneck, we add
an intermediate process in each client-facing server to
decouple querying control logic from responding re-
quests. It frequently (by default every half second)
pulls the fresh decision of each group from per-group
logic and writes the decision in a local file of the
client-facing server. Thus, the client-facing server can
find the most up-to-date decisions from local cache
without directly querying the control logic.

e Replacing features with group identifier: We found
that when the number of session features increases,
Spark Streaming has significantly lower throughput as
it takes too long to copy the new measurement data
from client-facing servers to Kafka and from Kafka
to RDDs of Spark Streaming. This is avoidable, be-
cause once the features are mapped to a group by the
client-facing servers, the remaining operations (up-
dating and querying per-group logic) are completely
feature-agnostic, so we can use group ID as the group
identifier and remove all features from messages.

Backend: Figure 7c shows the key components and
interfaces of the backend cluster. Once client-facing
servers receive the measurement data from sessions, they
will forward the measurement data to the backend clus-
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Figure 7: Key components and interfaces of Pytheas implementation.

ter. On receiving these measurement data, the backend
stores them in an HDFS for history data, and periodically
(by default every 10 minutes) runs the session-grouping
logic (§5.1) as a Spark [10] job to learn the session-group
mapping and group-cluster mapping from the stored his-
tory data. These tables are sent to each frontend through
Kafka, so that the future messages (requests and mea-
surement data) from sessions will be matched against
new tables. In addition, to detect failures of frontend
clusters, each frontend cluster sends a small heartbeat
message to the backend cluster every 5 seconds.

8 Evaluation

To evaluate Pytheas, we run our prototype [9] across

multiple instances in CloudLab [4]. Each instance is a

physical machine that has 8 cores (2.4 GHz) and 64GB

RAM. These instances are grouped to form two frontend

clusters and one backend cluster (each includes 5 to 35

instances). This testbed is an end-to-end implementation

of Pytheas described in §7°.
By running trace-driven evaluation and microbench-
marks on this testbed deployment, we show that:

o In the use case of video streaming, Pytheas improves
the mean QoE by up to 6-31% and the 90th per-
centile QoE by 24-78%, compared to a prediction-
based baseline (§8.1).

e Pytheas is horizontally scalable and has similar low
response delay to existing prediction-based systems
(§8.2).

e Pytheas can tolerate failures on frontend clusters by
letting clients fall back to local logic and rapidly re-
covering lost states from other frontends (§8.3).

8.1 End-to-end evaluation

Methodology: To demonstrate the benefit of Pytheas on
improving QoE, we use a real-world trace of 8.5 million
video sessions collected from a major video streaming
sites in US over a 24-hour period. Each video session
can choose one of two CDNSs. The sessions are replayed

SPytheas can use standard solutions such as DNS redirection to map
clients to frontend clusters, and existing load balancing mechanisms
provided by the host cloud service to select a frontend server instance
for each client.

in the same chronological order as in the trace. We call a
group of sessions a unit if they match values on AS, city,
connection type, player type and content name.® We as-
sume that when a video session is assigned to a CDN, its
QoE would be the same to the QoE of a session that is
randomly sampled from the same unit who use the same
CDN in the same one-minute time window. For statisti-
cal confidence, we focus on the units which have at least
10 sessions on each CDN in each one-minute time win-
dows for at least ten minutes. We acknowledge that our
trace-driven evaluation has constraints similar to the re-
lated work, such as the assumption that QoE in a small
time window is relatively stable in each unit (e.g., [24])
and a small decision space (e.g., [25]).

For each video session in the dataset, we run a
DASH.js video player [5], which communicates with
Pytheas using the API described in Figure 7a. To esti-
mate the QoE of a video session, the video player does
not stream video content from the selected CDN. In-
stead, it gets the QoE measurement from the dataset as
described above.

We use CFA [25] as the prediction-based baseline. It
is implemented based on [25]. CFA updates QoE pre-
diction in the backend every minute, and trains critical
features every hour. The frontend clusters run a simple
decision-making algorithm — for 90% sessions, it picks
the decision that has the best predicted QoE, and for the
rest sessions, it randomly assigns them to a CDN.

We consider two widely used video QoE metrics [17,
25]: join time (the start-up delay of a video session),
and buffering ratio (the fraction of session duration spent
on rebuffering). We define improvement of Pytheas for
a particular unit at r-th minute by Improvep,,,..(t) =

Q t _Q ytheas t
%’8;’(), where Opyieas(t) and Qcpa(t) are the

average QoE of Pytheas in #-th minute and that of the
baseline, respectively. Since we prefer smaller values on
both metrics, a positive value means Pytheas has better
QoE.

Overall improvement: Figure 8 shows the distribution
of improvement of Pytheas across all sessions. We can

5The notion of unit is used to ensure statistical confidence of QoE
evaluation, and is not used in Pytheas.
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Figure 9: Improvement in presence of load effect.

see that the mean improvement is 6% for join time and
31% for buffering ratio, and the 90th percentile improve-
ment is 24% for join time and 78% for buffering ratio.
To put these numbers in context, prior studies show a 1%
decrease in buffering can lead to more than a 3-minute
increase in expected viewing time [17]. Note that Pyth-
eas is not better than the baseline on every single session,
because the E2 process inherently uses a (dynamic) frac-
tion of traffic to explore suboptimal decisions.

Impact of load-induced QoE degradation: We con-
sider the units where QoE of a CDN could significantly
degrade when most sessions of the unit are assigned to
use the same CDN. We assume that the QoE of a session
when using a CDN under a given load (defined by the
number of sessions assigned to the CDN in one minute)
is the same to the QoE of a session randomly chosen in
the dataset which uses the same CDN when the CDN is
under a similar load. Figure 9 shows that the improve-
ment of Pytheas when the number of sessions is large
enough to overload a CDN is greater than the improve-
ment when the number of sessions is not large enough
to overload any CDN. This is because the prediction-
based baseline could overload a CDN when too many
sessions are assigned to the same CDN before CFA up-
dates the QoE prediction, whereas Pytheas avoids over-
loading CDNss by updating its decisions in real time.

Contribution of Pytheas ideas: Having shown the
overall benefit of Pytheas, we now evaluate the contribu-
tion of different components of Pytheas: (1) E2; (2) real-
time update; and (3) grouping. We replace certain pieces
of Pytheas by baseline solutions and compare their QoE
with Pytheas’s QoE. Specifically, for (1), we replace the
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Figure 10: Factor analysis of Pytheas ideas

per-group E2 logic by CFA’s decision-making logic; for
(2), we run Pytheas with data of one-minute staleness;
and for (3), we run the same E2 process over all sessions,
rather than on per-group basis. Figure 10 shows the im-
provement of Pytheas over each baseline, and it shows
that each of these ideas contributes a nontrivial improve-
ment to Pytheas; about 10-20% improvement on average
QoE and 15-80% on the 90th percentiles.

8.2 Microbenchmarks

We create micro-benchmarks to evaluate the scalability
and bandwidth consumption of Pytheas, as well as the
benefits of various performance optimizations (§7).

8.2.1 Scalability

Frontend: Figure 11a shows the maximum number of
sessions that can be served in one second, while keeping
the update interval of per-group logic to be one second.
Each session makes one control request and uploads QoE
measurement once. Each group has the same amount of
sessions. The size of control request message is 100B.
We run Apache Benchmark [6] for 20 times and report
the average throughput. We can see that the throughput
is almost horizontally scalable to more frontend server
instances. While the number of groups does impact the
performance of frontend cluster, it is only to a limited
extent; throughput of handling 10K groups is about 10%
worse than that of handling one group.

Next, we evaluate the performance optimizations de-
scribed in §7. We use a frontend cluster of 32 instances.
Figure 12 shows that by separating E2 logic from client-
facing servers, we can achieve 8x higher throughput, be-
cause each request reads cached decisions, which are still
frequently updated. By replacing features by group iden-
tifiers, we can further increase throughput by 120%, be-
cause we can copy less data from client-facing servers to
the servers running E2 logic. Note these results do not
merely show the scalability of Spark Streaming or web
servers; they show that our implementation of Pytheas
introduces minimal additional cost, and can fully utilize
existing data analytics platforms.

Backend: Figure 11b shows the maximum number of
sessions that can be served in each second by a backend
cluster, while keeping the completion time of session-
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grouping logic within 5 minutes or 10 minutes. We
see that the throughput is also horizontally scalable with
more instances in the backend cluster.

To put the scalability numbers of both frontend and
backend in context, let us consider a content provider
like YouTube which has 5 billion sessions per day [11]
(i.e., 57K sessions per second). Pytheas can achieve this
throughput using one frontend cluster of 18 instances and
a backend cluster of 8 instances, which is a tiny portion
compared to the sheer number of video servers (at least
on the magnitude of hundreds of thousands [7]). This
might make Spark Streaming and Kafka an overkill for
Pytheas, but the scale of data rate can easily increase by
one to two magnitudes in real world, e.g., tens of GB/s;
for instance, each video session can request tens of mid-
stream decisions during an hour-long video, instead of
an initial request.

8.2.2 Bandwidth consumption

Since the inter-cluster bandwidth could be costly [42,
33], we now evaluate the inter-cluster bandwidth con-
sumption of Pytheas. We consider one session group that
has one proxy cluster and one leader cluster.

First, we evaluate the impact of message size. We set
the fraction of sessions received by the proxy cluster to
be 5% of the group, and increase the request message
size by adding more features. Figure 13a shows that
the bandwidth consumption between the frontend clus-
ters does not grow with larger message size, because the
session features are replaced by group identifiers by the
client-facing servers. Only the bandwidth consumption
between frontend and backend grows proportionally with
the message size but such overhead is inherent in existing
data collection systems and is not caused by Pytheas.
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ter by falling back to player native logic gracefully, and
recovering the logic states in a new cluster.

Next, we evaluate the impact of fraction of sessions
received by the proxy cluster. We set the message size
to be 400B, and change the fraction of sessions received
by each proxy cluster. Figure 13a shows that the band-
width consumption between frontend clusters raises as
more measurement data need to be forwarded from proxy
to the leader cluster, but it is much smaller than the band-
width consumption between frontend and backend.

8.3 Fault tolerance

Finally, we stress test the prototype under the condi-
tion that a leader frontend cluster fails. We set up 10
video players, each of which can stream content from
two CDNs. CDNI has 5000ms join time and CDN2 has
1000ms join time. By default, the player’s native logic
chooses CDN1. There are two frontend clusters, f1 and
f2. The experiment begins with f1 being the leader clus-
ter, and it loses connection at t = 25.

Figure 14 shows the time-series of QoE of sessions
that are mapped to each frontend clusters. First, we see
that the sessions mapped to fl can fall back to the CDN
chosen by the player’s native logic, rather than crash-
ing. Second, right after f1 fails, f2 should still be able
to give cached decision (made by fl before it fails) to
its sessions. At t = 30, the backend selects f2 as the
new leader for the group. At the point, a naive way
to restart per-group logic in the new leader is to start it
from scratch, but this will lead to suboptimal QoE at the
beginning (the dotted line between ¢ = 30 and 7 = 35).
Pytheas avoids this cold-start problem by keeping a copy
of the per-group states in the proxy cluster. This allows
the proxy cluster to recover the per-group control states



without QoE degradation.
9 Related work

Data-driven QoE optimization: There is a large liter-
ature on using data-driven techniques to optimize QoE
for a variety of applications, such as video streaming
(e.g., [19, 25]), web service (e.g., [30, 39]), Internet tele-
phony [21, 24], cloud services (e.g., [28]), and resource
allocation (e.g., [15]). Some recent work also shows the
possibility of using measurement traces to extrapolate
the outcome of new system configurations [12]. Unlike
these prediction-based approaches, we formulate QoE
optimization as an real-time E2 process, and show that
by avoiding measurement bias and enabling real-time
updates, this new formulation achieves better QoE than
prediction-based approaches.

Related machine learning techniques: E2 is closely
related to reinforcement learning [43], where most tech-
niques, including the per-group E2 logic used in Pytheas,
are variants of the UCBI algorithm [14], though other
approaches (e.g., [13]) have been studied as well. Be-
sides E2, Pytheas also shares the similar idea of clus-
tering with linear mixed models [31], where a separate
model is trained for each cluster of data points. While
we borrow techniques from this rich literature [20, 35],
our contribution is to shed light on the link between QoE
optimization and the techniques of E2 and clustering,
to highlight the practical challenges of adopting E2 in
network applications, and to show group-based E2 as a
practical way to solve these challenges. Though there
have been prior attempts to cast data-driven optimization
as multi-armed bandit processes in specific applications
(e.g., [24]), they fall short of a practical system design.
Geo-distributed data analytics: Like Pytheas, recent
work [33, 34, 42] also observes that for cost and legal
considerations, many geo-distributed applications store
client-generated data in globally distributed data cen-
ters. However, they focus on geo-distributed data ana-
Iytics platforms that can handle general-purpose queries
received by the centralized backend cluster. In contrast,
Pytheas targets a different workload: data-driven QoE
optimization uses a specific type of logic (i.e., E2), but
has to handle requests from millions of geo-distributed
sessions in real time.

10 Discussion

Handling flash crowds: Flash crowds happen when
many sessions join at the same time and cause part of
the resources (decisions) to be overloaded. While Pyth-
eas can handle load-induced QoE fluctuations that occur
in individual groups, overloads caused by flash crowds
are different, in that they could affect sessions in mul-
tiple groups. Therefore, those affected sessions need to
be regrouped immediately, but Pytheas does not support

such real-time group learning. To handle flash crowds,
Pytheas needs a mechanism to detect flash crowds and
create groups for the affected sessions in real time.

Cost of switching decisions: The current design of
Pytheas assumes there is little cost to switch the decision
during the course of a session. While such assumption
applies to today’s DASH-based video streaming proto-
cols [8], other applications (e.g., VoIP) may have sig-
nificant cost when switching decisions in the middle of
a session, so the control logic should not too sensitive
to QoE fluctuations. Moreover, a content provider pays
CDNs by 95th percentile traffic, so Pytheas must care-
fully take the traffic distribution into account as well. We
intend to explore decision-making logic that is aware of
these costs of switching decisions in the future.

11 Conclusions

With increasing demands of user QoE and diverse op-
erating conditions, application providers are on an in-
evitable trajectory to adopt data-driven techniques. How-
ever, existing prediction-based approaches have key lim-
itations that curtail the potential of data-driven optimiza-
tion. Drawing on a parallel from machine learning, we
argue that real-time exploration and exploitation is a bet-
ter abstraction for this domain. In designing Pytheas, we
addressed key practical challenges in applying real-time
E2 to network applications. Our key insight is a group-
based E2 mechanism, where application sessions shar-
ing the same features can be grouped so that we can run
E2 at a coarser per-group granularity. Using an end-to-
end implementation and proof-of-concept deployment of
Pytheas in CloudLab, we showed that Pytheas improves
video quality over state-of-the-art prediction-based sys-
tem by 6-31% on mean, and 24-78% on tail QoE.
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