
Language Support for Distributed Proxies

Darpan Saini
School of Computer Science
Carnegie Mellon University

dsaini@andrew.cmu.edu

Joshua Sunshine
School of Computer Science
Carnegie Mellon University
sunshine@cs.cmu.edu

Jonathan Aldrich
School of Computer Science
Carnegie Mellon University
aldrich@cs.cmu.edu

ABSTRACT
Proxies are ubiquitous in distributed systems. They are
mainly used to provide transparent access to server objects,
and in some cases for additional functions such as caching,
message routing, marshalling, and un-marshalling of data.
In this paper, we discuss several software engineering prob-
lems associated with using proxies in a distributed system.
We believe that proxies in distributed systems suffer from:
1) redundant code 2) multiple data transformations that
have to be written before data is marshalled for transfer
over the wire, and 3) in the case when proxies are automati-
cally generated, there is no universal or generic mapping (to
date) from XML types to Object types and vice versa. We
describe these problems using an example, and discuss the
partial solutions provided by prior research. A better under-
standing of these problems may help show the way towards
a future solution.

1. INTRODUCTION
Proxies are ubiquitous in distributed systems. The proxy
principal as introduced in [4] is an object-oriented way to
structure a distributed system. However, this is not limited
only to object-oriented designs but applicable to other kinds
of systems as well. In its most basic form, a proxy shields
a client from the complexities of accessing the server and
its internals by providing the same interface as the server.
This way the client deals with the proxy as if it was the
server object itself and calls the required services. In addi-
tion to providing transparent access to the server, a proxy
may sometimes perform additional duties such as caching,
maintaining a connection pool, and message routing. Never-
theless, there are certain responsibilities that a proxy must
fulfill in almost all circumstances. Depending on the under-
lying technology used, these may come for free or otherwise
have to be encoded by developers themselves. These are

1. Creating and closing connections to the server.

2. The marshalling and unmarshalling of method param-

eters.

3. The actual sending to and receiving messages from the
server.

We discuss problems with proxies with respect to a web ap-
plication that uses several external web services. It is com-
mon practice for a server to publish its web services in a
WSDL1 file and for a client to create proxies by looking at
this WSDL description. However, our claim is that these
proxies contain redundant code since for each method in the
WSDL, a corresponding delegate method is written in the
proxy. All these delegate methods essentially perform the
same duties and contain the same code except for a few
parameters. In addition, data that is passed to these meth-
ods needs to be transformed so that the proxy can marshal
it appropriately for the server. If the same service is pro-
vided by different servers then this transformation has to
be done differently for each of them. A number of tools
exist, mostly IDE plugins such as the Web Tools Platform
(WTP)2 for Eclipse and web services plugins for the Net-
Beans IDE3, that automatically generate proxies by looking
at the WSDL description of a web service. Not only do
these tools suffer from the problems mentioned above but
from another called the X/O impedance mismatch[3]. The
X/O impedance mismatch is the lack of a generic mapping
from XML types to object types and vice versa. Because of
this often the generated code does not accurately represent
design intent in the XML.

This paper illustrates these problems in more detail through
a running example of a web application.

2. EXAMPLES
In this section, we describe a typical web application that
uses web services to accomplish the task of verifying and
charging a credit card. Our example web application is
an online bookstore that offers features such as 1) brows-
ing through a book catalog, 2) creating a shopping cart, 3)
adding and removing items from the cart, and 4) checking
out items from the cart. For our purposes, we only concen-
trate on part 4 in which a user can check out items from
the shopping cart using their credit card. The bookstore
in this case has to first verify the authenticity of the credit

1http://www.w3.org/TR/wsdl20/
2http://www.eclipse.org/webtools/
3http://www.netbeans.org/



1 <xs:element name=‘‘chargeCreditCard”>
2 <xs:complexType>
3 <xs:sequence>
4 <xs:element minOccurs=‘‘0” name=‘‘card” nillable=‘‘true” type=‘‘ax22:CreditCard”/>
5 <xs:element minOccurs=‘‘0” name=‘‘amount” type=‘‘xs:float”/>
6 </xs:sequence>
7 </xs:complexType>
8 </xs:element>

Figure 1: WSDL description of the chargeCreditCard service

card, and then make the charge. We implemented our ser-
vices and the client using the Java programming language.
The application server used is Apache Tomcat4, and the ser-
vice runtime is Apache Axis 2.05. We chose this platform
because of the popularity of these two runtimes.

To accomplish these tasks the bookstore uses three web ser-
vices provided by an external banking system. It is common
practice for a banking server to publish its web services us-
ing a WSDL description. The WSDL in this case provides
three services. The chargeCreditCard service is defined in
Figure 1. The WSDL contains similar descriptions for an-
other service called isValidCreditCard. All the services
mentioned here require a complex type CreditCard as a pa-
rameter, defined in Figure 2. For brevity, we have reduced
the CreditCard type to only contain the name and number.
In a more realistic example, the CreditCard would contain
many other attributes such as address, and an expiration
date.

2.1 Writing the proxy
Inside the bookstore application, the most obvious way of
accessing the bank’s web services is through a proxy. This
proxy can be hand-written, but the current state of the art
(e.g WTP, Netbeans) is to automatically generate proxies
from the WSDL descriptions. The exact classes generated
by the proxy generator or if written by hand may vary, but
the following classes are illustrative:

1. BankServerStub. This class contains java methods
that are counterparts of services that the server pro-
vides. It may contain methods that return service end-
points or ports that are in turn used to call the dele-
gate methods. The stub is responsible for marshalling
the parameters and un-marshalling the results. In the
case of web services, the marshal operation creates a
SOAP6 message and passes it to the service, and reads
the result from the returned SOAP envelope. Gener-
ally creating and reading from the SOAP envelope are
library functions.

2. CreditCard. This is the type of parameter that the
methods defined in the WSDL expect. The stub de-
fined above should be capable of marshalling an object
of this type into a SOAP message. For our example,
the return types of all services are simply booleans and

4http://tomcat.apache.org/
5http://ws.apache.org/axis2/
6http://www.w3.org/TR/soap12-part1/

so no other types need to be created. If code is gen-
erated, then this type is likely to suffer from the X/O
impedance mismatch (described in Section 2.4).

3. ObjectFactory. The ObjectFactory contains factory
methods that can be used code to create objects of
type CreditCard. This is optional, but is good pro-
gramming practice and tools usually generate it.

In the following sections we describe some of the problems
associated with such proxies.

2.2 Code redundancy
Proxies have redundant code because for each method de-
fined in the WSDL there is a corresponding delegating method
in the proxy. It turns out that all these delegate methods
basically perform the same functions. These are

1. marshal the method parameters for sending them over
the wire,

2. send a message to the server and receive the result,
and

3. un-marshal the result and return it to the client.

Although the code in our example was written to work with
the Axis 2.0 runtime (which takes care of opening and clos-
ing connections to the server), the steps for delegation in
the proxy would be same across all runtimes. These involve
first creating a SOAP message out of the passed parameters,
creating an OperationClient7 to invoke a web service and re-
ceive the result, and read the return value from the resulting
SOAP envelope. Since these operations are common to all
the methods in the proxy, the result is a tremendous amount
of redundant code. Writing a proxy using static reflection
or class morphing[2] can remove such redundancy.

Huang et al. [2] describe a technique call class morphing that
can be used to statically generate type safe implementations
of the Proxy design pattern [1]. In their language MorphJ,
it is possible to reflect over the methods and fields of a type
and generate another type. This generated type delegates all
method calls to the original but with some added functional-
ity. Methods and fields of a type can be matched using fairly

7This class, in the org.apache.axis2.client package of Axis
2.0, provides an execute() method that is used to invoke a
web service. Other runtimes would have a similar mecha-
nism.



1 <xs:complexType name=‘‘CreditCard”>
2 <xs:sequence>
3 <xs:element minOccurs=‘‘0” name=‘‘name” nillable=‘‘true” type=‘‘xs:string” />
4 <xs:element minOccurs=‘‘0” name=‘‘number” type=‘‘xs:long” />
5 </xs:sequence>
6 </xs:complexType>

Figure 2: WSDL description of the CreditCard type

1 public class ClientProxy<T> {
2

3 <R,A∗>[m] for(public R m(A) : T.methods)
4 public R m (A a) {
5 OperationClient service = createClient(m.name);
6 SOAPEnvelope env = marshal((List<Object>) a.asList());
7 service.addMessageContext(
8 new MessageContext().setEnvelope(env));
9 service.execute(true);

10 SOAPEnvelope returnedEnv = // extract returned envelope
11 R result = unmarshal(returnedEnv);
12 return result;
13 }
14

15 //constructor
16 //createClient
17 //unmarshal, getObjectModelElementFromType, getObjectModelElementFromXML
18

19 public static SOAPEnvelope marshal(List<Object> args) {
20 SOAPEnvelope env = new SOAPEnvelope();
21 for (Object arg : args) {
22 //getObjectModelElementFromType actual marshals the argument
23 //into an Axis 2.0 Object Model element that can be packed
24 //into a SOAP envelope
25 env.add(getObjectModelElementFromType(arg));
26 }
27 return env;
28 }
29 }

Figure 3: Proxy code using static reflection

expressive nested patterns. Although MorphJ supports the
Proxy design pattern well in a non-distributed setting, ad-
ditional engineering is needed to effectively apply MorphJ
to typical distributed proxies. Challenges that need to be
overcome include:

1. Reflection over the WSDL. Our static reflection
mechanism must reflect over the WSDL description.
Since the WSDL description is in XML, either MorphJ
must be extended to reflect over WSDL, or the WSDL
must be converted to a Java interface so MorphJ can
operate over it. And it is not clear how type safe such
reflection would be.

2. Treating method arguments individually. The
current version of MorphJ does not support treating
method arguments individually at run time. To under-
stand this better, consider the code in Figure 3 writ-
ten in an imaginary extension of MorphJ. The pattern

<R,A*>[m] for(public R m(A) : T.methods) basically
selects all public methods in the type T. In the code
block that follows we initialize the OperationClient

using m. Currently in MorphJ, it is not possible to it-
erate over individual method arguments that are con-
tained in a at runtime. In order to overcome this
we added a utility asList() that returns individual
method arguments in a List for the marshal() method.
This gives us the ability of writing just one marshal()

method and not have to overload it to match the sig-
nature of every method in type T8.

But what about the type T? This type T is the representa-
tion of the WSDL description in our language. In Figure 5
(again the language is an imaginary extension of MorphJ),

8The types MessageContext and OperationClient are spe-
cific to the Axis 2.0 implementation and don’t play any role
in what we are trying to achieve here.



1 ObjectFactory factory = new ObjectFactory();
2 service = new BankServer();
3 BankServerPortType port =
4 service.getBankServerHttpSoap12Endpoint();
5 CreditCard cc = factory.createCreditCard();
6 cc.setName(factory.createCreditCardName(card.getName()));
7 cc.setNumber(card.getNumber());
8 if (port.isValidCreditCard(cc)) {
9 port.chargeCreditCard(cc, order.getAmount);

10 } else {
11 // handle invalid credit card
12 }

Figure 4: Client code that calls the web service

1 type BankServer = load ‘‘http://www.bank.com/services/bankserver?wsdl”;
2 ClientProxy<BankServer> service =
3 new ClientProxy<BankServer>();
4

5 if (service.isValidCreditCard(card)) {
6 service.chargeCreditCard(card, order.getAmount());
7 } else {
8 // handle invalid credit card
9 }

Figure 5: Ideal client code to call the web service

line 1 creates a new type BankServer from the WSDL de-
scription at the given address. This type BankServer is then
used to instantiate a ClientProxy.

2.3 Multiple data translations
In addition to code redundancy mentioned above, clients in
a distributed system suffer from multiple data translations.
Since the bookstore is a comprehensive application, it has its
own internal CreditCard type. It uses this to persist credit
card information in a user profile, so that a user doesn’t
have to input it each time they login to the system. This
means that a translation must be made from the bookstore’s
CreditCard to the CreditCard the proxy expects. Figure 4
contains code in which the ObjectFactory is used to create
an object of type CreditCard, but its name and number
are set using an object card, which is of type CreditCard

internal to the bookstore.

This translation of data is a problem because it has to be
performed multiple times in the system and every time it is
different enough that it can’t be refactored into a method.
For instance, if the bookstore deals with multiple banks then
each bank publishes it own WSDL description and has its
own type similar to CreditCard. To communicate with any
of these banks a similar translation of data has to be done.
We believe that proxy developers should not have to write
translations of data and should be taken care of by the proxy
as part of its marshalling mechanism. So ideally the code in
Figure 4 should be as simple as described in Figure 5. Here
the language takes care of making the translation between
the bookstore’s internal card object to the one that the proxy
expects. One possible but simple implementation strategy
is to statically compare the names and types of attributes.

2.4 X/O impedance mismatch
The X/O impedance mismatch has to mainly do with gen-
eration of Java code from XML schemas and vice versa.
When designing web service interfaces can choose between
the Java-to-WSDL or the WSDL-to-Java approach [5]. In
the Java-to-WSDL approach, we start by creating Java in-
terfaces for the web service and then the WSDL description
by looking at these interfaces. The steps are reversed in
the case of WSDL-to-Java. Existing tools (e.g. WTP, Net-
beans) generate code in either direction but often due to the
lack of a generic mapping between XML and Object types
fail to capture design intent accurately.

Eric Meijer et al. [3] in their paper on X/O impedance mis-
match describe a number of mismatches between XML and
Object types. In our simplistic example, we choose to de-
scribe only one but important mismatch that occurs when
proxies are automatically generated. The scenario under
consideration is the automatic generation of the WSDL de-
scription on the server side of the web service. On the server
we have a CreditCard} type in Java that has only one con-
structor that takes two parameters and no setters. The de-
sign intent here is to always have a well-defined CreditCard

object. The WSDL in Figure 2 was generated and has both
the elements name and number of the CreditCard complex
type with attribute minOccurs=0. The minOccurs attribute
specifies if the particular element is optional in valid XML
document that conforms to this schema. This means that it
is ok to send a message with an ill-formed CreditCard type.
Checking the validity of the CreditCard object that is read
from the SOAP message is now up to the service implemen-
tation. This is burdensome and can easily be neglected. We
can see that the design intent was lost when we generated



the WSDL description from the Java class.

We could of course go the other way round, i.e. first create
the WSDL description by hand and from that generate the
Java code. This time we make the attribute minOccurs=1

for both the name and number and set nillable=false for
name. In this case too the design intent is lost because in
the generated Java code this constraint is not enforced.

Both WSDL and Java have multiple ways in which the de-
sign constraint can be expressed but there is no obvious
method to figure out one from the other. Technologies such
as JAXB9 for Java, and xsd.exe10 for .NET that are current
state of the art in industry, to our knowledge fail to capture
this kind of information.

3. PLAUSIBLE LANGUAGE BASED SOLU-
TION

We feel that native support for proxies from the program-
ming language can help alleviate the problems mentioned
above. In this following points, we sketch the high-level re-
quirements of such a language:

1. Support type safe static reflection as a delega-
tion mechanism. We feel that static reflection en-
ables us to write succinct and elegant proxies. In the
example mentioned above we restricted ourselves to a
WSDL description but ideally we should be able to do
this over a remote interface described in any language.
The language must have in built support for common
interface description languages and protocols.

2. Support for automatic translation of data. No-
tice that in Figure 5 the arguments passed on lines 5
and 6 are of type CreditCard which is internal to the
bookstore and not what the ClientProxy expects. In a
conventional programming language this code will fail
to typecheck. In a realistic setting, the data may not
be as simple as the CreditCard type described here
but a complicated tree data structure. The goal of the
new language is to not only support such automatic
translations but also guarantee type safety.

3. Provide better mapping between XML and Ob-
ject types. [3] describes many problems that need to
be overcome for better mapping between XML and
Object types. In our new language we shun the idea
of automatically transforming from XML to Objects
and vice versa. Instead, we require the user to pro-
vide both the XML and Object models but leave the
mapping between the two to the language. This ap-
proach provides the user with tremendous flexibility
and the ability to capture the same design intent in
both the data models. However, it requires a great
level of sophistication from the language. The map-
ping algorithm could take a pragmatic approach and
initially provide support for common programming id-
ioms like the data integrity constraint we defined in
our example.

9https://jaxb.dev.java.net/
10http://msdn.microsoft.com/en-
us/library/x6c1kb0s(VS.80).aspx

4. CONCLUSION
In this paper, we have shown that despite the ubiquity of
proxies in distributed systems they suffer from a number of
software engineering problems. Prior research in the area
and commercially available tools alleviate them to an ex-
tent but fail to address all issues. Finally, we sketched the
high level requirements of a programming language that na-
tively supports proxies for distributed system. This lan-
guage supports type safe static reflection, automatic trans-
lation of data and flexible approach for capturing design
intent in XML and Object types. These requirements pose
implementation challenges, but when overcome can help us
design more elegant proxies.

5. REFERENCES
[1] Erich Gamma, Richard Helm, Ralph Johnson, and

John Vlissides. Design Patterns: Elements of Reusable
Object-Oriented Software. Addison-Wesley, 1995.

[2] Shan Shan Huang and Yannis Smaragdakis. Class
morphing: Expressive and safe static reflection. In
Conf. on Programming Language Design and
Implementation (PLDI). ACM, Jun 2008.

[3] R. Lämmel and E. Meijer. Revealing the X/O
impedance mismatch (Changing lead into gold).
06 June 2007. 80 pages. To appear.

[4] Marc Shapiro. Structure and encapsulation in
distributed systems: the proxy principle. In Proc. 6th
Intl. Conf. on Distributed Computing Systems, pages
198–204, Cambridge, Mass, United States, 1986. IEEE.

[5] Inderjeet Singh, Sean Brydon, Greg Murray, Vijay
Ramachandran, Thierry Violleau, and Beth Stearns.
Designing Web Services with the J2EE 1.4 Platform:
JAX-RPC, XML Services, and Clients. Pearson
Education, 2004.


