
 

Software Development Practices, Barriers in the Field and 
the Relationship to Software Quality

Beth Yost1, Michael Coblenz2, Brad Myers2, Joshua Sunshine2, Jonathan Aldrich2, Sam Weber2,
Matthew Patron1, Melissa Heeren1, Shelley Krueger1, Mark Pfaff1

1The MITRE Corporation, Bedford, MA, 01730, United States
{bethyost, mpatron, mheeren, sekrueger, mpfaff}@mitre.org

2Carnegie Mellon University, Pittsburgh, PA 15213, United States
{mcoblenz, bam, sunshine, jonathan.aldrich}@cs.cmu.edu, samweber@cert.org

ABSTRACT
Context: Critical software systems developed for the government 
continue to be of lower quality than expected, despite extensive 
literature describing best practices in software engineering. Goal:
We wanted to better understand the extent of certain issues in the 
field and the relationship to software quality. Method: We
surveyed fifty software development professionals and asked about 
practices and barriers in the field and the resulting software quality. 
Results: There is evidence of certain problematic issues for 
developers and specific quality characteristics that seem to be 
affected. Conclusions: This motivates future work to address the 
most problematic barriers and issues impacting software quality.

CCS Concepts
• Software and its engineering • Software and its engineering~
Software development methods • Software and its engineering~
Software development techniques

Keywords
Software development; software quality; survey.

1. INTRODUCTION
Despite advances in software engineering, software systems being 
developed for the government continue to cost more, take longer to 
deliver, and be of lower quality than expected [1]. Critical 
infrastructure sectors such as healthcare, transportation, and energy
depend on that software. To better understand the issues in practice, 
we conducted an exploratory study.

Using a survey, we gathered data on practices in the field for the
requirements, design, build, and test phases of software 
development. As improving software quality in practice and 
improving the developer experience were key long term objectives, 
we asked about the barriers faced by developers and software 
quality. The key barriers identified motivate future work to better 
understand and address issues with task switching, getting enough 
time for development, missing documentation, understanding 
design rationale behind a piece of code, and finding code related to 

bugs and behaviors to be changed. The results provide evidence of 
the value of certain practices (e.g., having a clear architecture, unit
testing) on specific software quality characteristics such as 
maintainability and evolvability. The results can be used by 
researchers to focus their work and managers to improve their 
workplaces and the quality of software produced.

2. RELATED WORK
Software quality and productivity of software engineers have been 
studied since at least the 1968 NATO conference [2]. Since then, 
researchers have attempted to understand the relationships between 
software engineering practices and the outcomes of software 
projects. In spite of this work, however, large software projects 
continue to fail [3, 4]. 

Dybå et al. argued that the context of software development is 
critical when evaluating the success of software development 
practices [5]. For example, the US government commonly acquires 
software via a contracting process that differs from how companies 
buy software. The Software Engineering Institute conducts 
independent technical assessments of software projects. One study 
of recurring problems across twelve US Air Force acquisition 
programs reported inadequate project management office (PMO) 
expertise and staff; high PMO staff turnover; requirements scope 
creep; inadequate requirements; and lack of functional 
requirements baseline [6]. The results of this study report the 
relationship of practices for which others have argued such as clear 
and stable requirements with specific quality characteristics such as 
software maintainability and reliability in the field.

Cleland-Huang argued that often the problem is one of 
requirements [7]. On the basis of experience with large software 
projects, Jones argued for a large number of best practices in 
software engineering in many areas, including requirements,
architecture, and testing [8]. In addition, some experience reports 
exist regarding certain software development practices in 
government-related contexts. For example, Upender’s experience 
report describes the difficulty of using agile methodologies over a 
period of time [9]. The results of this study relate practices such as 
unit testing with multiple software quality characteristics including 
evolvability and maintainability.

Of course, the causes of poor software project outcomes are 
typically multifaceted, which is why our survey took a broad 
perspective regarding causes of software project outcomes. Rather 
than basing recommendations on an individual’s experience, our 
work focused on gathering data on practices in the field and 
correlating these with the respondents’ subjective ratings of 
specific software quality characteristics. 

Publication rights licensed to ACM. ACM acknowledges that this
contribution was authored or co-authored by an employee, contractor
or affiliate of the United States government. As such, the United States
Government retains a nonexclusive, royalty-free right to publish or
reproduce this article, or to allow others to do so, for Government
purposes only.
ESEM '16, September 08 - 09, 2016, Ciudad Real, Spain
Copyright is held by the owner/author(s). Publication rights licensed to
ACM.
ACM 978-1-4503-4427-2/16/09…$15.00
DOI: http://dx.doi.org/10.1145/2961111.2962614



 
 

3. METHOD 
3.1 Participants 
We distributed the survey through software development related 
mailing lists and contacts at various companies. Fifty participants 
voluntarily responded to the anonymous online survey. Instructions 
requested that all participants be over 18 years old and be involved 
in software development professionally. Participants had the option 
to participate in a raffle for an Amazon Fire tablet upon completion.  
The primary job of most respondents was software developer or 
project lead (36 out of 50), but also included architects, designers, 
managers, and testers. All but one had a college degree and most 
had degrees in computer science, electrical engineering, and/or 
software engineering. Most were experienced developers, with 19 
involved with software development for more than 20 years, and 
only 3 less than 5 years.  
The participants represented developers of both government and 
commercial software. Thirty-seven of the participants currently 
work for a federally funded research and development center 
(FFRDC), 10 for a commercial company, and 3 for other types of 
companies or the government. FFRDCs operate in the public 
interest, free from conflicts of interest, providing objective 
guidance to U.S. government sponsors. Software developed by 
FFRDCs is often prototype software to show a proof-of-concept. 
Many government agencies do little software development of their 
own, hiring contractors to develop many software systems. 

3.2 Materials 
We constructed an online survey that contained 46 main questions, 
many with sub-questions. These were organized into three sections: 
background (job function, gender, age, education, years involved 
with development, number of programming languages, codebases 
used in career, category of employer), current project (customer 
category, domain, product category, people on project, developers 
on project, clear intended architecture, how often requirements 
change, process used, tools used, software quality characteristics), 
and barriers, described as “barriers or problems that you personally 
have in performing your job”. Standard Likert scales were used to 
measure the extent to which tools or processes were used and for 
rating software quality characteristics. The software quality 
characteristics came from ISO/IEC 25010:2011, with evolvability 
and overall quality in general added. The survey was piloted with 
eight volunteers and updated as appropriate.  

3.3 Procedure 
The online survey took approximately 30 minutes to complete. The 
instructions requested help understanding and assessing how tools 
and processes impact project execution and the resultant software. 
The participants were instructed to answer questions based on their 
current or most recently finished significant software development 
project, for which they had good working knowledge and, if 
possible, to select a project that was being developed for the 
government. 
The independent variables were the customer for the current 
software project, software category, clarity of requirements and 
design, extent of code for testing and error handling, the software 
processes used, the software development tools used, and the 
barriers. The main dependent variables related to software quality.  

4. RESULTS 
4.1 Software Quality 
We measured quality according to subjective self-reported ratings. 
The first question asked: “Considering the code developed as part 

of this project by the whole team, please rate the following 
attributes:” 

 Number of Software Defects (design or code errors, bad fixes) 
 Severity of Known Software Defects 

The second question asked: “Considering the code developed as 
part of this project by the whole team, please rate the following 
software quality characteristics:”  

 Functional Suitability (functionality is complete and correct)  
 Performance Efficiency (time, resource use, and capacity)  
 Compatibility (software interoperability) 
 Usability by users (ease of learning and use, error prevention) 
 Reliability (maturity, availability, fault tolerance) 
 Security 
 Maintainability (modular, re-usable, modifiable, testable) 
 Portability (ease of migration to new platform) 
 Evolvability (ease of changing code) 
 Overall Quality in general 

Participants were asked to rate each on a 5-point Likert scale that 
went from “Very Low” to “Very High”. There were also options 
for “Not relevant to this project” and “Don’t know”. Significant 
correlations are shown in Table 1 and are summarized next. 

4.1.1 Overall Quality 
The overall software quality ratings are shown in Figure 1. 
Responses of “Not relevant to this project”, “Don’t know”, and 
blank are not shown. Functional suitability had the most “High” 
and “Very high” responses (34) while security had the least (13). 
The code defect responses are shown in Figure 2. 

  
Figure 1. Software quality overall (# responses out of 50) 

 
Figure 2. Code defects overall (# responses out of 50) 

4.1.2 Quality by Software Customer  
We compared the ratings for software developed specifically for 
government customers versus for commercial customers. The 
options allowed participants to select all customer classifications 
that applied and included: Internal to your company or 
organization, commercial company, non-profit company, military, 
non-military government, consumers, and other. To compare 
between groups, a category for Government (n=27) was created by 
combining “military”, “non-military government”, and one “other” 
response listing a civilian government agency. A category for 
Commercial (n=6) was created by combining “Commercial 
company” and “Consumer”. We did not include responses of 
internal (n=7) or any that were combinations of categories (n=10).   
 



 
 

  

Number of 
Defects 

Severity of 
Known Defects 

Functional 
Suitability 

Performance 
Efficiency 

Compatibility 

Usability 

Reliability 

Security 

Maintainability 

Portability 

Evolvability 

Overall 

Rqmts C
le

ar
 re

qu
ire

m
en

ts
 

 
 

 
 

 
 

.3
0,

.0
37

,4
8 

 
 

 
 

 
Fr

eq
ue

nt
ly

 c
ha

ng
in

g 
re

qu
ire

m
en

ts
 

 
 

 
 

 
 

 
 

-.3
2,

.0
25

,4
9 

 
 

 
C

le
ar

 a
rc

hi
te

ct
ur

e 
-.3

1,
.0

4,
45

  
 

 
.3

3,
.0

33
,4

1 
 

.3
1,

.0
3,

48
 

 
.4

1,
.0

03
,4

9 
.3

8,
.0

12
,4

4 
 

.4
1,

.0
03

,4
9 

Processes W
at

er
fa

ll 
 

 
 

 
-.3

5,
.0

34
,3

8 
 

 
 

 
 

 
 

Te
st

-d
riv

en
 d

ev
el

op
m

en
t 

 
 

 
.3

2,
.0

35
,4

5 
 

 
 

 
 

 
.4

1,
.0

05
,4

7 
.3

3,
.0

25
,4

7 
C

od
e 

re
vi

ew
s 

 
 

 
 

 
 

 
.3

1,
.0

48
,4

2 
 

 
 

 
U

ni
t t

es
tin

g 
 

-.3
2.

,.0
34

,4
4 

 
.3

0,
.0

42
,4

7 
 

.3
9,

.0
05

,5
0 

 
.3

1,
.0

43
,4

4 
.4

5,
.0

01
,4

9 
.3

5,
.0

2,
44

 
.5

0,
.0

00
,4

9 
.4

7,
.0

01
,4

9 
Sy

st
em

 te
st

in
g 

 
 

 
.3

6,
.0

14
,4

7 
 

 
 

 
 

 
 

 
Ite

ra
tiv

e 
de

si
gn

 
 

 
 

 
.3

2,
.0

41
,4

1 
 

 
 

 
.3

5,
.0

2,
44

 
 

 
U

sa
bi

lit
y 

ev
al

ua
tio

ns
 

 
 

 
 

.4
5,

.0
03

,4
1 

.5
9,

.0
00

,4
9 

.3
2,

.0
27

,4
8 

 
 

.3
1,

.0
42

,4
4 

 
.3

8,
.0

07
,4

8 
Q

A
 te

st
in

g 
 

 
 

 
 

 
 

.3
3,

.0
35

,4
2 

 
 

 
 

W
rit

in
g 

do
w

n 
de

si
gn

 d
ec

is
io

ns
 

 
 

 
.3

1,
.0

39
,4

6 
 

.2
9,

.0
42

,4
9 

 
 

.3
0,

.0
41

,4
8 

 
.3

2,
.0

26
,4

8 
.2

9,
.0

49
,4

8 

Tools ID
Es

 
 

 
 

 
 

 
 

.3
1,

.0
47

,4
3 

 
 

 
.4

0,
.0

05
,4

7 
So

ur
ce

 v
er

si
on

 c
on

tro
l 

 
 

 
 

.4
6,

.0
03

,4
0 

 
 

 
 

.3
6,

.0
19

,4
3 

 
 

D
eb

ug
ge

rs
 

 
 

 
 

 
.2

9,
.0

41
,4

9 
 

 
 

 
 

.3
0,

.0
39

,4
8 

B
ug

 tr
ac

ki
ng

 d
at

ab
as

e 
 

 
 

.3
3,

.0
24

,4
6 

 
 

.3
0,

.0
44

,4
7 

 
 

 
 

 
Pr

oj
ec

t m
an

ag
em

en
t t

oo
ls

 
 

 
 

 
 

 
.3

5,
.0

19
,4

5 
 

 
 

 
 

Se
cu

rit
y 

as
se

ss
m

en
t t

oo
ls

 
 

.4
0,

.0
09

,4
1 

 
 

 
 

 
 

 
-.3

2,
.0

43
,4

1 
 

 
St

at
ic

 c
od

e 
an

al
ys

is 
to

ol
s 

 
 

 
 

 
.3

5,
.0

15
,4

7 
 

 
 

 
 

 
D

yn
am

ic
 a

na
ly

si
s t

oo
ls

 
 

 
 

.3
3,

.0
32

,4
4 

 
 

 
 

 
 

 
 

A
ut

om
at

ed
 te

st
in

g 
fra

m
ew

or
ks

 
 

 
 

 
 

 
 

 
 

.3
4,

.0
27

,4
3 

 
 

Barriers Sw
itc

hi
ng

 ta
sk

s o
fte

n 
du

e 
to

 o
th

er
 re

qu
es

ts
 

 
 

 
 

 
 

 
 

 
 

-.3
2.

03
 4

7 
 

G
et

tin
g 

en
ou

gh
 ti

m
e 

fo
r s

of
tw

ar
e 

de
ve

lo
pm

en
t 

 
 

 
-.4

2,
.0

04
,4

5 
 

 
 

 
-.3

0,
.0

38
,4

7 
 

-.3
8,

.0
09

,4
7 

-.3
1,

.0
33

,4
7 

D
oc

um
en

ta
tio

n 
th

at
 is

 m
iss

in
g 

in
fo

rm
at

io
n 

 
.5

0,
.0

01
,4

1 
-.4

8,
.0

01
,4

7 
 

 
-.4

2,
.0

04
,4

7 
-.3

4,
.0

23
,4

5 
 

-.3
9,

.0
07

,4
6 

-.4
0,

.0
1,

41
 

 
-.4

1,
 .0

05
, 4

6 
U

nd
er

st
an

di
ng

 th
e 

de
si

gn
 ra

tio
na

le
 b

eh
in

d 
a 

pi
ec

e 
of

 c
od

e 
 

 
 

 
 

 
-.3

0,
.0

49
,4

4 
 

-.3
2,

.0
34

,4
5 

 
 

 
U

nd
er

st
an

di
ng

 c
od

e 
th

at
 I 

or
 so

m
eo

ne
 e

lse
 w

ro
te

 a
 w

hi
le

 a
go

 
.3

2,
.0

42
,4

1 
 

-.4
2,

.0
04

,4
6 

 
-.3

4,
.0

41
,3

7 
 

-.4
0,

.0
08

,4
4 

 
-.4

0,
.0

07
,4

5 
 

 
 

C
on

vi
nc

in
g 

m
an

ag
er

s t
ha

t I
 s

ho
ul

d 
sp

en
d 

tim
e 

re
fa

ct
or

in
g 

co
de

 
 

 
 

 
 

 
 

 
-.4

2,
.0

04
,4

5 
-.3

4,
.0

33
,4

0 
-.3

8,
.0

11
,4

5 
 

D
oc

um
en

ta
tio

n 
th

at
 is

 o
ut

 o
f d

at
e 

 
 

-.4
0,

.0
05

,4
8 

 
-.3

3,
.0

42
,3

9 
-.3

1,
.0

34
,4

8 
 

 
 

-.3
5,

.0
23

,4
2 

 
-.3

3,
.0

22
, 4

7 
Fi

nd
in

g 
w

hi
ch

 c
od

e 
is 

re
la

te
d 

to
 a

 b
ug

 o
r b

eh
av

io
r t

o 
be

 c
ha

ng
ed

 .4
5,

.0
03

,4
1 

.3
5,

.0
28

,4
0 

 
-.4

4,
.0

03
,4

3 
 

 
 

 
-.5

8,
.0

00
,4

5 
-.3

9,
.0

12
,4

0 
-.4

4,
.0

02
,4

5 
-.5

6,
 .0

00
,4

5 
U

nd
er

st
an

di
ng

 th
e 

im
pa

ct
 o

f c
ha

ng
es

 I 
m

ak
e 

on
 c

od
e 

el
se

w
he

re
 .

38
,.0

16
,4

0 
.3

3,
.0

39
,3

9 
-.3

3.
02

7,
45

 -
.4

4,
.0

03
,4

2 
-.3

6,
.0

3,
36

 
 

 
 

-.3
1,

.0
39

,4
4 

 
 

 
D

et
er

m
in

in
g 

w
he

n 
th

e 
co

de
 h

as
 re

ac
he

d 
su

ff
ic

ie
nt

 q
ua

lit
y 

 
 

 
 

 
 

 
 

 
 

-.4
3,

.0
03

, 4
5 

 
Be

in
g 

aw
ar

e 
of

 c
ha

ng
es

 to
 c

od
e 

el
se

w
he

re
 th

at
 im

pa
ct

 m
y 

co
de

 
.3

7,
.0

18
,4

0 
 

 
 

 
 

 
 

-.3
1,

.0
43

,4
4 

 
 

 
Fi

nd
in

g 
du

pl
ic

at
e 

co
de

 
 

 
 

-.3
7,

.0
15

,4
2 

 
 

 
 

 
 

 
 

Tu
rn

ov
er

 - 
ha

vi
ng

 p
eo

pl
e 

im
po

rta
nt

 to
 th

e 
pr

oj
ec

t l
ea

ve
 

 
.3

8,
.0

17
,4

0 
-.3

3,
.0

27
,4

6 
 

 
 

 
 

-.3
3,

.0
29

,4
5 

 
 

 
U

sa
bi

lit
y 

of
 li

br
ar

ie
s, 

SD
K

s, 
or

 o
th

er
 A

PI
s 

 
.3

4,
.0

31
,4

1 
 

 
 

 
 

.3
2,

.0
41

,4
2 

-.3
6,

.0
15

,4
6 

 
 

 
Fi

nd
in

g 
w

ho
 is

 c
ur

re
nt

ly
 re

sp
on

si
bl

e 
fo

r a
 p

ie
ce

 o
f c

od
e 

 
.4

2,
.0

08
,3

9 
 

 
 

 
 

 
-.3

1,
.0

41
,4

4 
 

 
 

C
oo

rd
in

at
in

g 
w

ith
 d

ev
el

op
er

s f
ar

aw
ay

 g
eo

gr
ap

hi
ca

lly
 

.3
3,

.0
41

,3
9 

 
-.3

4,
.0

25
.4

3 
 

 
 

 
 

 
 

 
-.3

7,
 .0

15
, 4

2 
Fi

nd
in

g 
th

e 
be

st
 g

ui
da

nc
e 

on
lin

e 
fo

r d
ev

el
op

m
en

t q
ue

st
io

ns
 

 
.3

1,
.0

47
,4

2 
 

 
 

 
 

 
 

 
 

 
La

ck
 o

f t
oo

ls 
to

 a
ut

om
at

e 
co

m
m

on
 ta

sk
s 

.3
3,

.0
34

,4
2 

.5
6,

.0
00

,4
1 

 
 

 
 

 
 

-.3
6,

.0
15

,4
6 

 
 

 
Le

ar
na

bi
lit

y 
of

 d
eb

ug
ge

rs
 

 
 

-.4
2,

.0
05

,4
4 

 
 

 
 

 
 

 
 

 
G

et
tin

g 
en

ou
gh

 ti
m

e 
w

ith
 d

ev
el

op
er

s k
no

w
le

dg
ea

bl
e 

of
 c

od
e 

 
.4

7,
.0

05
,3

5 
 

 
 

 
 

 
 

 
 

 
Le

ar
na

bi
lit

y 
of

 p
ro

gr
am

m
in

g 
la

ng
ua

ge
s 

 
.4

2,
.0

06
,4

1 
-.3

7,
.0

1,
47

 
 

 
 

 
 

 
 

 
 

Fi
nd

in
g 

w
ho

 is
 c

ur
re

nt
ly

 m
od

ify
in

g 
a 

pi
ec

e 
of

 c
od

e 
 

 
 

 
 

 
 

 
-.4

3,
.0

04
,4

4 
 

-.3
9,

 .0
09

, 4
4 

 
T

ab
le

 1
. S

ta
tis

tic
al

ly
 si

gn
ifi

ca
nt

 (p
< 

.0
5)

 c
or

re
la

tio
ns

 b
et

w
ee

n 
de

si
gn

, t
oo

ls
, p

ro
ce

ss
es

, b
ar

ri
er

s a
nd

 so
ft

w
ar

e 
qu

al
ity

 c
ha

ra
ct

er
is

tic
s. 

 
E

ac
h 

ce
ll 

co
nt

ai
ns

 S
pe

ar
m

an
’s

 c
or

re
la

tio
n 

co
ef

fic
ie

nt
 (r

s) ,
 p

 v
al

ue
 (p

), 
an

d 
th

e 
nu

m
be

r 
of

 r
es

po
ns

es
 (n

). 
 



 
 

Because of the small size of the Commercial group and the 
exploratory nature of the study, the p values were relaxed to .2 for 
this comparison only. We treated cases where the participant did 
not respond to a question as missing data. Given that relaxed 
threshold and corresponding tolerance of possible false positives, a 
Mann-Whitney test indicated that the: Severity of Known Software 
Defects was reported to be lower for software developed for 
Government customers (n=24, median= 2/Low) than for 
Commercial customers (n=5, median=3/Medium), U=35.0, 
p=.162. Portability was higher for software developed for 
Government (n=23, median=3, mean=3.14) than for Commercial 
(n=6, median=3, mean=2.67), U=94.5, p=.174. Usability was lower 
for software developed for Government (n=27, median=3) than 
Commercial (n=6, median=4/High), U=52.5, p=.189.  

4.1.3 Quality by Software Category 
We asked participants, “In which of the following categories does 
your product fall (the intended use of your system)?” The options 
were prototype, intended to be used, reference implementation, or 
other. Twenty-five were intended to be used and 19 were 
prototypes. The reference implementation (4) and other (2) 
responses were excluded from our analysis. Given the potential for 
major difference in quality between these groups, we compared the 
reported quality of software between them. A Mann-Whitney test 
indicated that the: Security was higher for software that was 
intended to be used (n=21, median=3, mean=3.43) than for 
prototypes (n=19, median=3, mean=2.44), U=95.0, p=.005. 

4.2 Requirements and Architecture 
Requirements: The survey asked participants whether their 
projects had clear requirements and how often requirements 
changed. For having clear requirements, 19 agreed or strongly 
agreed, 10 were neutral, and 21 disagreed or strongly disagreed.  
Having clearer requirements correlated with higher levels of 
software reliability, (rs =.30, p=.037). Six said the requirements 
rarely, very rarely, or never changed; 19 said they occasionally 
changed; and 25 reported requirements frequently or very 
frequently changed. Having frequently changing requirements 
correlated with lower levels of maintainability (rs=-.32, p=.025).  
Architecture: The survey asked participants the extent to which 
they agreed that: “The codebase for this project has a clear intended 
architecture.” As participants more strongly agreed with this, the 
number of software defects decreased (rs=-.31, p=.04) and 
maintainability (rs=.41, p=.003), portability (rs=.38, p=.012), 
compatibility (rs=.33, p=.033), reliability (rs=.31, p=.03), and 
overall quality (rs=.41, p=.003) all increased.  

4.3 Processes 
We asked participants to rate the extent to which they used various 
processes on a 5-point Likert scale that we then treated as scalar 
variables with values from 1 to 5. The question permitted a 
response of “Don’t Know,” which we treated as a missing value.  
Overall Processes Used: Iterative design and system testing were 
used by more than half of respondents, while the waterfall model 
was used the least. The extent to which each type of process was 
used in shown in Figure 3. 
Correlation with Software Quality: More extensive use of unit 
testing correlated with higher quality along eight software quality 
characteristics. The strongest correlations were between unit testing 
and evolvability and between usability evaluations and usability. 
There were no significant correlations between quality and agile 
methods, but waterfall resulted in lower levels of compatibility 

(rs=-.35, p=.034). There were more people using agile almost every 
time or always (22) than waterfall (5). 
Other Process-Related Factors: As the number of people on the 
project increased, so did the number of software defects (rs=.32, 
p=.03) and the severity of known defects (rs=.38, p=.011), though 
the security weakly increased (rs=.31, p=.039). Likewise, we asked 
specifically about developers on the project, and as that number 
increased, so did the number of software defects (rs=.30, p=.043) 
and their severity (rs=.35, p=.019). 
Given the distribution in lines of code (LOC) responses (<10K n=9, 
10K-100K n=22, 100K-1M n=13, 1M-10M n=4, >10M n=1), we 
regrouped the data into <100K (n=31) and >100K (n=17); we 
omitted the single >10M response as an anomaly. In comparing 
groups, there was a significant difference at p<.05 using the Mann 
Whitney U test: portability was higher when there were less than 
100K LOC (n=29, median=3/Medium) compared to >100K LOC 
(n=13, median=2/Low), U=99.0, p=.014. 

 
Figure 3. Extent of process use. 

4.4 Developer Tools 
Although adoption of version control was nearly universal, security 
assessment tools and program analysis tools were used 
infrequently. The extent to which each type of tool was used is 
shown in Figure 4. We also analyzed the correlation between tool 
usage and software quality (significant correlations are in Table 1). 
The strongest relationships were: use of source control was 
positively correlated with compatibility (rs=.46, p=.003); use of 
IDEs was positively correlated with overall quality (rs=.40, 
p=.005). Use of security assessment tools was positively correlated 
with severity of known software defects (rs=-.40, p=.009). Perhaps 
these tools result in more knowledge of defects or these tools are 
being applied to systems that are known to have defects. 
We asked about the criteria for selecting tools, who selected them, 
and how well they worked. To the extent that respondents more 
strongly agreed that their tools were modern and up-to-date, that 
significantly correlated with increases in functional suitability 
(rs=.40, p=.004), usability (rs=.38, p=.006), portability (rs=.42, 
p=.005), and overall quality (rs=.35, p=.014). 

 
Figure 4. Extent of tool use 

4.5 Testing and Error Handling 
We asked, “Approximately what percent of the code is for error 
handling and recovery?” and “If there is extra code to test this 



 
 

project, for example a separate test harness or unit test, 
approximately what percent of the code is for that?”  
On average 11% of code was for error handling and recovery, with 
a range from 1%-60%. On average, 14% of code was extra code to 
test, ranging from 0%-50% of total code. As the percent of code for 
error handling and recovery increased, so did the performance 
(rs=.32, p=.045). As the percent of code to test the project 
increased, so did the maintainability (rs=.35, p=.023). 

4.6 Barriers 
Participants rated how serious a problem each of the following was 
for them when performing their job. Figure 5 shows a sorted list of 
barriers across all survey respondents. 

 
Figure 5. Barriers. 

4.6.1 Barriers by Software Customer 
The top four barriers for the government-only participants (n=27) 
were: getting enough time for software development, switching 
tasks often due to other requests from my manager or teammates, 
documentation that is missing information, and specifications that 
lacked information about what the product should do.  

4.6.2 Correlation with Software Quality 
Table 1 shows statistically significant correlations between barriers 
and software quality. The strongest relationships were between 
challenges with finding which code was related to a bug or behavior 
and low maintainability and overall quality.  
A Mann-Whitney test was done to compare the groups that were 
and were not experiencing each barrier. We eliminated from the 
analysis the groups that were lopsided, where there were more than 
twice as many in the not/minor problem group or the 
moderate/serious problem group. For the remaining quality 
characteristics, there were three barriers where multiple 
characteristics were significantly different between groups: 
Finding code related to a bug or behavior to be changed:  

 Overall reported quality was higher when this was a minor 
problem (n=13, median=4) than when it was a serious 
problem (n=16, median=3), U=41.0, p=.005, effect size r=.55.  

 Maintainability was higher when this was a minor problem 
(n=13, median=4) than when it was a serious problem (n=16, 
median=3), U=40.50, p=.004, r=.54.  

 Evolvability was higher when this was a minor problem 
(n=13, median=4) than when it was a serious problem (n=16, 
median=4), U=44.00, p=.008, r=.51. 

Understanding code that I or someone else wrote a while ago. 
 Maintainability was higher when this was a minor problem 

(n=14, median=4) than when it was a serious problem (n=15, 
median=3), U=51.50, p=.02, r=.46.  

 Functional suitability was higher when this was a minor 
problem (n=14, median=4) then when it was a serious 
problem (n=15, median=3), U=54.50, p=.03, r=.43. 

 Reliability was higher when this was a minor problem (n=14, 
median=4) than when it was a serious problem (n=15, 
median=3), U=57.50, p=.04, r=.40. 

Understanding the design rationale behind a piece of code. 
 Maintainability was higher when this was a minor problem 

(n=15, median=4) than when it was a serious problem (n=14, 
median=3), U=55.00, p=.03, r=.43. 

 Evolvability was higher when this was a minor problem 
(n=15, median=4) than when it was a serious problem (n=14, 
median=3), U=59.00, p=.046, r=.39. 

Given that maintainability is impacted by all of these barriers, it 
appears that it is the characteristic that is most vulnerable overall.    

5. DISCUSSION 
The goal of taking a broad approach in this study was to identify 
promising areas on which to focus future research to improve the 
quality of government software, based on practices in the field and 
barriers faced. Follow-on studies should address specific barriers 
or measure increased adoption of certain best practices. The most 
problematic barriers require future work to address them. The 
results can be used by researchers to focus their work and by 
managers to identify changes to processes and tools that could 
improve the lives of developers and the quality of software being 
produced.  
The data provide an indication of which of the many barriers we 
should focus on if we want to improve software quality: those 
problematic for the most developers or correlated most strongly 
with specific quality characteristics we want to improve. The most 
problematic barriers can generally be grouped into two categories: 
task-switching and getting enough time for software development; 
and documentation-related issues. Task-switching occurs when 
developers must switch among development tasks or when they 
work on multiple projects in an interlaced fashion. Task switching 
should be avoided where practical. Where not practical, switching 
tasks often can lead to difficulty in schedule estimates and lost time 
due to getting back into the zone [10]. Tools that help developers 
pick up where they left off and better deal with task switching may 
help mitigate these issues. Further study is needed to understand 
how to address time requirements for development. The second 
group of barriers had to do with missing documentation, 
understanding design rationale in code, or understanding code 
written a while ago. Tools that can generate documentation for 
legacy code, that encourage developers to document design 
rationale especially for unusual or complex modules, and that can 
keep the architecture models up to date as code is being written 
could prove particularly beneficial. Addressing these 
documentation-related barriers would address some of the largest 
reported problems and could help improve maintainability, 
functionality, reliability, and evolvability of the software. 



 
 

We also saw the extent to which certain practices are used in the 
field. These correspond to opportunities to improve practice and the 
resulting software quality. While factors such as clarity and 
stability of requirements and architecture have long been known to 
be beneficial, our survey has tied these practices to the extent to 
which they are problematic in the field. We also tied them to the 
specific quality characteristics that may benefit from improvements 
in practice. Similarly, we saw the average amount of code dedicated 
to error handling and recovery and that the greater the percentage 
of code for that, the better the performance of the software, and the 
greater the percent of code for testing, the more maintainable. We 
found evidence of a move away from waterfall, especially for the 
development of government software: waterfall was the least-used 
process. Though agile methods did not appear to correlate with any 
increases in quality characteristics in this study, waterfall had a 
negative impact on quality. 
We did not find evidence in favor of the hypothesis that commercial 
software would be rated higher quality than government software; 
in fact, government software was reported to have fewer known 
severe defects and be more portable. Commercial software was 
reported to be more usable. This may be because commercial 
companies have recognized the importance of usable systems while 
the government is only starting to recognize the importance. The 
government likely has greater need for enhanced security. In 
software intended for public use, there may also be greater need for 
more portable software given the variety of platforms used by the 
public. In general, the perception that government software is lower 
quality than commercial may not be accurate and may be a 
reflection of increased transparency and publicity when 
government software fails. Further study is needed to investigate.  

6. LIMITATIONS 
The study was a relatively small survey with only fifty participants. 
The large number of FFRDC participants may pose a threat to 
validity, which may be mitigated somewhat by the variety of 
domains represented.  
Due to the small number who had a primary job function other than 
developer, no analysis was done to compare based on job function. 
While most of the responses would likely remain the same across 
groups (e.g., software quality), it is possible an architect or tester 
may use different tools or encounter slightly different barriers. 
The software quality ratings were subjective and therefore may not 
agree with objective quality assessments. Further study should 
compare developers’ subjective assessments to objective software 
quality measurements to evaluate these possibilities. 
We performed a large number of statistical tests. With correlations 
there is no need to correct alpha because the correlation coefficient 
itself is an effect size. For comparisons between two groups, no 
correction is needed. Given the significance threshold of p<.05, 
however, it is likely that some of the results are random 
occurrences. These tests do not account for the interaction between 
factors. While we did exploratory regression and multi-factor 
analysis, we do not report the results here because more responses 
would be needed to produce a reliable model. 
Conceptually, it is likely that development practices and barriers 
precede and therefore affect the software quality. However, 
inferring causality becomes a problem in cases where software 
quality may have caused the developers to use a particular approach 
or encounter a barrier.  
For the exploratory comparison between government and 
commercial software quality, the small number of commercial 
product developers may cause a failure to detect important 

differences. Related, each group may have a systematic bias in how 
they see software quality. Further comparison between groups 
should include more developers and objective measures. 

7. CONCLUSION 
Our survey gathered data on development practices, barriers in the 
field, and their relationship to software quality. These results 
provide motivation for future research to address the key barriers 
and evidence of the extent of use and value of certain practices and 
tools in the field.   

8. ACKNOWLEDGEMENTS 
The authors would like to thank the respondents to the survey. 
Funding for this work comes from grants from MITRE, NSF under 
grant CNS-1423054 and the Air Force under Contract #FA8750-
15-2-0075. This material is based upon work funded and supported 
by the Department of Defense under Contract No. FA8721-05-C-
0003 with Carnegie Mellon University for the operation of the 
Software Engineering Institute, a federally funded research and 
development center. Any opinions, findings and conclusions or 
recommendations expressed in this material are those of the authors 
and do not necessarily reflect those of the US Government.  
Approved for Public Release; Distribution Unlimited. MITRE Case 
Number 16-1649. SEI Document Marking Number DM-0003591. 

9. REFERENCES 
[1] U.S. Government Accountability Office. (2013). Major 

automated information systems: Selected defense programs 
need to implement key acquisitions practices. (GAO 
Publication No. 13-311). Washington, D.C.: U.S. 
Government Printing Office.  

[2] Software Engineering: Report of a Conference Sponsored by 
the NATO Science Committee, Garmisch, Germany, 7-11 
Oct. 1968, Brussels, Scientific Affairs Division, NATO. 
Peter Naur and Brian Randell (Eds.). 

[3] Goldstein, Harry. "Who killed the virtual case file?" IEEE 
SPECTRUM 42(9) (2005):18. 

[4] Ford, Paul. The Obamacare Website Didn't Have to Fail. 
How to Do Better Next Time. Bloomberg Businessweek. 
October 17, 2013. 

[5] Tore Dybå, Dag I.K. Sjøberg, and Daniela S. Cruzes. What 
works for whom, where, when, and why? on the role of 
context in empirical software engineering. In Proceedings of 
the ACM-IEEE international symposium on Empirical 
software engineering and measurement (ESEM '12). ACM, 
New York, NY, USA, 19-28.  

[6] Novak, William and Williams, Ray. We Have All Been Here 
Before: Recurring Patterns Across 12 U.S. Air Force 
Acquisition Programs. Presentation at 2010 Systems and 
Software Technology Conference (SSTC). April 29, 2010. 

[7] Cleland-Huang, Jane. IEEE Software. Don’t Fire the 
Architect! Where Were the Requirements? IEEE Software 

[8] Jones, Capers. Software Engineering Best Practices. 
McGraw-Hill, 2010. 

[9] Upender, Barg. Staying agile in government software 
projects. Agile Conference, 2005, pp. 153-159. 

[10] Parnin, Chris and Rugaber, Spencer. “Resumption strategies 
for interrupted programming tasks.” Software Quality 
Journal, 2011. 19(1): pp. 5-34.  


