
Can Advanced Type Systems Be Usable? An Empirical Study
of Ownership, Assets, and Typestate in Obsidian

MICHAEL COBLENZ, Carnegie Mellon University, USA
JONATHAN ALDRICH, Carnegie Mellon University, USA
BRAD A. MYERS, Carnegie Mellon University, USA
JOSHUA SUNSHINE, Carnegie Mellon University, USA

Some blockchain programs (smart contracts) have included serious security vulnerabilities. Obsidian is a
new typestate-oriented programming language that uses a strong type system to rule out some of these
vulnerabilities. Although Obsidian was designed to promote usability to make it as easy as possible to write
programs, strong type systems can cause a language to be difcult to use. In particular, ownership, typestate,
and assets, which Obsidian uses to provide safety guarantees, have not seen broad adoption together in popular
languages and result in signifcant usability challenges. We performed an empirical study with 20 participants
comparing Obsidian to Solidity, which is the language most commonly used for writing smart contracts today.
We observed that Obsidian participants were able to successfully complete more of the programming tasks
than the Solidity participants. We also found that the Solidity participants commonly inserted asset-related
bugs, which Obsidian detects at compile time.

CCS Concepts: • Software and its engineering → Language features; Domain specifc languages; •
Security and privacy → Software and application security; • Human-centered computing → Empirical
studies in HCI .

Additional Key Words and Phrases: typestate, linear types, ownership, assets, permissions, blockchain, smart
contracts, empirical studies of programming languages

ACM Reference Format:
Michael Coblenz, Jonathan Aldrich, Brad A. Myers, and Joshua Sunshine. 2020. Can Advanced Type Systems
Be Usable? An Empirical Study of Ownership, Assets, and Typestate in Obsidian. Proc. ACM Program. Lang. 4,
OOPSLA, Article 132 (November 2020), 28 pages. https://doi.org/10.1145/3428200

1 INTRODUCTION
Obsidian [Coblenz et al. 2020b] is a new programming language for writing smart contracts [Szabo
1997], which are programs for blockchain platforms. Blockchains aim to provide a trusted computing
medium among users who have not necessarily established trust. By decentralizing computation,
system designers can obtain strong security properties. Unfortunately, these properties can only
be obtained when the smart contracts themselves implement the intended behavior. Through

132

Authors’ addresses: Michael Coblenz, Computer Science Department, Carnegie Mellon University, 5000 Forbes Ave.,
Pittsburgh, PA, 15213, USA, mcoblenz@cs.cmu.edu; Jonathan Aldrich, Institute for Software Research, Carnegie Mellon
University, 5000 Forbes Ave., Pittsburgh, PA, 15213, USA, jonathan.aldrich@cs.cmu.edu; Brad A. Myers, Human-Computer
Interaction Institute, Carnegie Mellon University, 5000 Forbes Ave., Pittsburgh, PA, 15213, USA, bam@cs.cmu.edu; Joshua
Sunshine, Institute for Software Research, Carnegie Mellon University, 5000 Forbes Ave., Pittsburgh, PA, 15213, USA,
joshua.sunshine@cs.cmu.edu.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for proft or commercial advantage and that copies bear this notice and
the full citation on the frst page. Copyrights for third-party components of this work must be honored. For all other uses,
contact the owner/author(s).
© 2020 Copyright held by the owner/author(s).
2475-1421/2020/11-ART132
https://doi.org/10.1145/3428200

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 132. Publication date: November 2020.

This work is licensed under a Creative Commons Attribution 4.0 International License.

http://creativecommons.org/licenses/by/4.0/
https://www.acm.org/publications/policies/artifact-review-badging
https://doi.org/10.1145/3428200
https://doi.org/10.1145/3428200
mailto:joshua.sunshine@cs.cmu.edu
mailto:bam@cs.cmu.edu
mailto:jonathan.aldrich@cs.cmu.edu
mailto:mcoblenz@cs.cmu.edu

132:2 Michael Coblenz, Jonathan Aldrich, Brad A. Myers, Joshua Sunshine

asset contract Medicine {}
asset contract Pharmacy
{

Medicine@ Owned med;
transaction getNewMedicine(Medicine@ Owned >> Unowned m)
{

med = m;
}

}

Fig. 1. An example practice question on assets from the Obsidian tutorial (showing the correct answer).

What is the error (if one exists) with the getNewMedicine transaction?

med becomes Unowned, although it should be Owned at the end of the transaction

m is stated as becoming an Unowned reference, but actually stays Owned

The owning reference to m is lost

The owning reference to the original Medicine object (med) is lost

There is no error

bugs and security vulnerabilities in blockchains, attackers have stolen millions of dollars worth of
cryptocurrencies [Graham 2017; Sirer 2016].

To improve safety and prevent vulnerabilities, researchers have developed new languages with
stronger safety properties. In this work, we focus on Obsidian, which stands for Overhauling
Blockchains with States to Improve Development of Interactive Application Notation. Obsidian was
based on a requirements analysis for smart contract tools [Coblenz et al. 2019b] to provide safety
properties that would be relevant to many blockchain applications. In addition, Obsidian was
designed to be usable through iterative user testing with 44 participants [Coblenz et al. 2019a] so
that programmers would be able to use it efectively. In prior work, we showed that most of the
participants in a six-participant qualitative study were able to complete relevant programming
tasks [Coblenz et al. 2019a]. However, that small study did not compare Obsidian to any other
languages.

Ours is the frst quantitative user study (of which we are aware) of a type system that supports
linear types, ownership, or typestate, or any combination of these together. Earlier formative
studies of Obsidian isolated particular language features, sometimes by adapting those features
in the context of a language with which participants were already familiar. In contrast, in this
summative study we studied the full Obsidian language, including the compiler and editor. Our study
compares Obsidian to the most widely-used language for writing smart contracts, Solidity [Ethereum
Foundation 2020b].
Although Solidity and Obsidian target diferent blockchain platforms (Ethereum [Ethereum

Foundation 2020a] and Hyperledger Fabric [The Linux Foundation 2020b], respectively), we chose
Solidity for comparison because it is the dominant programming language used in public smart
contract development and because it is the language that was used to develop popular smart
contracts that had serious security vulnerabilities [Graham 2017; Sirer 2016].
Considering Obsidian’s design goal to improve safety with a novel type system, we identifed

three high-level research questions for our study:

RQ1: Could we obtain actionable data about the usability of a novel programming language
(that uses a type system that would be unfamiliar to our participants) in a short-duration

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 132. Publication date: November 2020.

Can Advanced Type Systems Be Usable? An Empirical Study of Ownership, Assets, and Typestate in Obsidian 132:3

user study (less than one day), which would be representative of real-world smart contract
development?

RQ2: Do programmers using Solidity insert more of the kinds of bugs that Obsidian is designed
to catch?

RQ3: Strong type systems can impose a usability burden on programmers because the compiler
forces programmers to write code so that the compiler can verify various safety properties.
Can programmers who were previously familiar with object-oriented programming (but
not with Obsidian, typestate, ownership, or linear type systems in general) successfully use
Obsidian to complete relevant smart contract programming tasks? If so, is there a signifcant
impact on task completion times?

In RQ1, actionable data refers to data that inform programming language designers about their
designs in ways that have implications on language design or language training. We used these
three research questions to develop task criteria (ğ 7). Then, we developed three tasks according
to the criteria: Auction (ğ 8), Prescription (ğ 9), and Casino (ğ 10). In each task, we refned these
high-level research questions into task-relevant ones.

In summary, after the training period (about 90 minutes), seven of the ten Obsidian participants
were able to successfully use Obsidian to fnish implementing the required small program in our
Auction task. In contrast, only two of the ten Solidity participants fnished the task correctly. In the
Prescription task, seven of the ten Obsidian participants were able to fx a security vulnerability
in the program, whereas only two of the ten Solidity participants were able to do so. Six of the
Obsidian participants used ownership to do the task, suggesting that ownership is teachable in a
relatively short training period.
Five of the Obsidian participants had enough time remaining to do the Casino task (meaning

that the other participants felt that their solutions were incomplete when their four-hour time
expired). Although four of these wrote solutions that compiled, all four abused the disown operator,
resulting in asset loss. Among the eight Solidity participants who had enough time for this task, half
inserted bugs that resulted in improper asset fabrication or loss, showing that it is still important to
pursue approaches to prevent asset abuse. Only one participant, who was in the Solidity condition,
fnished the task correctly.
After the tasks had ended, we gave participants a post-study survey asking for their opinions

about the language they had used. We found that Obsidian participants felt that ownership was
useful. They also observed that the tutorial and exercises were efective tools for learning the
language.
We come to three conclusions in this paper. First, the methodology we used, in which we

include practice-based training in a traditional quantitative study, is efective for evaluating a novel
programming language. Second, despite the strong, unfamiliar restrictions it imposes, Obsidian’s
ownership and permissions system can be taught to some kinds of programmers in a short period
of time in a way that results in many of them being able to use it efectively. That is, for some tasks,
Obsidian enables people to be more successful at writing code that is free of the serious bugs that
Obsidian detects. Third, without using techniques to detect or prevent asset-loss bugs, when doing
some kinds of smart contract programming tasks, programmers will accidentally insert these kinds
of bugs.

2 THE OBSIDIAN LANGUAGE
Obsidian uses ownership to express in the type system that each asset (an object that has value and
therefore should not be lost) has exactly one owning reference. Ownership represents a form of
linear types [Wadler 1990]. Ownership may be transferred between references, but if the owning

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 132. Publication date: November 2020.

132:4 Michael Coblenz, Jonathan Aldrich, Brad A. Myers, Joshua Sunshine

reference goes out of scope, then the compiler reports an error. This ensures that owning references
to assets cannot be lost unless they are explicitly disowned by the programmer. This design was
motivated by Delmolino et al. [2016], who found in a user study that programmers of smart contracts
inserted bugs that lost assets.
Obsidian extends ownership with typestate [Strom and Yemini 1986] because blockchain pro-

grams are typically stateful with objects supporting diferent operations depending on their state
[Ethereum Foundation 2020c]. Thus, owning references can also specify what state the referenced
object is in. For example, Auction@Open is the type of a reference to an Auction object that is in
state Open. Because only owning references can specify typestate in Obsidian, ownership is implied
by the presence of a typestate specifcation. Alternatively, Auction@Owned is the type of an owned
reference to an Auction object, which may be in any state. Ownership is one example of linear
types [Wadler 1990]: types that are consumed when used rather than being duplicated, and which
must be consumed rather than merely dropped.
To improve fexibility, Obsidian also allows Shared references, which can refer to an object

that has no owner, and Unowned references, which refer to an object that may have an owner.
These additional options allow users to avoid establishing ownership structures when none are
needed. Unlike Owned and Shared references, Unowned references cannot be used to change which
of the various named states the object is in. This is required for soundness, since a change in state
through an Unowned reference might violate a typestate specifcation on the owning reference.
These annotations (Owned, Shared, and Unowned) are referred to as permissions because they denote
what operations can be done via references with those annotations.

Obsidian is a class-based object-oriented language that uses a syntax similar to Java. Obsidian
uses the keyword contract instead of class due to conventions of blockchain platforms, and
calls methods transactions because invocations of blockchain code from outside the blockchain
have transactional semantics: either the execution fnishes successfully and new state is stored in
the blockchain, or the transaction is reverted and any state changes are not preserved. Currently,
Obsidian supports the Hyperledger Fabric blockchain platform [The Linux Foundation 2020a].

We provided a full description and formal treatment of Obsidian [Coblenz et al. 2020b]; here, we
explain Obsidian by example. The left column of Figure 2 shows part of an Auction contract. An
Auction instance is always in one of three states: Open, BidsMade, or Closed. A feld, seller, is
always in scope, but when the object is in state BidsMade, felds maxBidder and maxBid are also in
scope. Transactions specify types for their parameters, but in addition to the normal parameters,
when this is specifed as the frst parameter, the program can specify a type for the this reference.
The bid transaction, for example, can only be invoked via a Shared reference to the receiver. Formal
parameters use » to denote changes in permission or state. For example, the money parameter of
bid is specifed with permission Owned » Unowned, meaning that the caller must pass an Owned
reference, and when bid returns, from the perspective of the caller, the money is now Unowned. In
other words, ownership was passed from the caller to the transaction.
Dynamic state tests, via the in operator, check the dynamic state of a referenced object. For

example, line 20 checks to see if this is in state Open. If the test passes, lines 23-24 initialize the
maxBidder and maxBid felds of the BidsMade state, to which the object transitions on line 25. Line
24 transfers ownership of an object initially referenced by money to the maxBid feld, leaving money
with type Money@Unowned.

Fields can temporarily have types that difer from their declarations as long as by the end of the
transaction, all felds have types consistent with their declarations. For example, line 31 returns
the money from the previous maxBidder which causes feld maxBid to temporarily have type
Money@Unowned; this is corrected on line 33, which transfers ownership from money to maxBid.

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 132. Publication date: November 2020.

Fig. 2. A side-by-side example comparing Obsidian code to Solidity code, taken from the two conditions of
the Auction task (with minor changes to fit on this page). Code highlighted in yellow represents a correct
solution; the rest was given to participants as starter code. In the Obsidian code, line 33 transfers ownership
of the object referenced by maxBid to the receivePayment parameter. The new type of maxBid from then
until line 35 is Money@Unowned. Line 35 re-establishes ownership in maxBid by transferring ownership from
money to maxBid.

Participant@ Unowned seller;

state Open;
state BidsMade {

// the bidder who made the highest bid so far
Participant@ Unowned maxBidder;
Money@ Owned maxBid;

}
state Closed;

. . .

transaction bid(Auction@ Shared this ,
Money@ Owned >> Unowned money ,
Participant@ Unowned bidder) {

if (this in Open) {
// Initialize destination state ,
// and then transition to it.
BidsMade :: maxBidder = bidder;
BidsMade :: maxBid = money;
->BidsMade;

}
else {

if (this in BidsMade) {
//if the new bid > current Bid
if (money.getAmt () > maxBid.getAmt ()) {

//1. TODO: fill this in.
//Can call other transactions.
maxBidder.receivePayment(maxBid);
maxBidder = bidder;
maxBid = money;

}

else {
//2. TODO: return money to the bidder ,
// since the new bid was too low.
//Can call other transactions.
bidder.receivePayment(money);

}

}

else {
revert ("Can 't bid on closed auctions.");

}

}

}

Obsidian condition.

2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49 }

1 main asset contract Auction {
// the bidder who made the highest bid so far
address maxBidder;
uint maxBidAmount;

// 'payable ' indicates we can transfer money
// to this address
address payable seller;

// Allow withdrawing previous money
// for bids that were outbid
mapping (address => uint) pendingReturns;

enum State { Open , BidsMade , Closed }
State state;
. . .
function bid() public payable {

if (state == State.Open) {
maxBidder = msg . sender ;
maxBidAmount = msg . value ;
state = State.BidsMade;

}

else {
if (state == State.BidsMade) {

//if the new bid > current Bid
if (msg . value > maxBidAmount) {

//1. TODO: fill this in.
//Can call other functions as needed.
pendingReturns[maxBidder] += maxBidAmount

maxBidder = msg.sender;
maxBidAmount = msg.value;

}
else {

//2. TODO: return money to the bidder ,
// since the new bid was too low.
//Can call other functions as needed.
pendingReturns[msg.sender] += msg.value;

}
}
else {

revert ("Can 't bid on closed auctions.");
}

}
}

}

Solidity condition.

;

contract Auction {

Can Advanced Type Systems Be Usable? An Empirical Study of Ownership, Assets, and Typestate in Obsidian 132:5

The revert statement (line 45) discards all changes that have been made to state in the transaction
and reports an error.

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 132. Publication date: November 2020.

132:6 Michael Coblenz, Jonathan Aldrich, Brad A. Myers, Joshua Sunshine

3 THE SOLIDITY LANGUAGE
Solidity [Ethereum Foundation 2020b], like Obsidian, is a class-based object-oriented language.
Solidity targets the Ethereum blockchain platform [Ethereum Foundation 2020a]. The function
keyword denotes methods, though methods have transactional semantics. It has no built-in notion
of states, but programs can declare enums and use them to represent states. Solidity supports a
built-in cryptocurrency called ether. Functions that are annotated payable can receive quantities
of ether; the ether is conceptually sent with the invocation, and the amount is stored in the variable
msg.value. Each contract instance can own a quantity of ether; this quantity is automatically
updated by the runtime when a function receives a payment. Every contract instance is stored on
the blockchain at a particular address. The language has a built-in type called address to represent
these addresses.
Restricting only functions annotated payable to receive ether may prevent some kinds of lost-

ether bugs, in which clients accidentally send ether to the wrong function. However, this approach
does not apply to other kinds of resources, and only covers whether the function can receive
ether, not whether the function body accounts for it correctly. Likewise, although Solidity includes
support for permission modifers, such as private, to protect sensitive functions from being called
externally, these modifers do not prevent the bodies of methods from abusing assets or from being
invoked when the receiving contract is in an inappropriate state.

Programs typically implement their own fne-grained accounting mechanism. For example, the
pendingReturns structure records how much money is owed to each of a number of addresses.
Without this mapping, although the contract would still record how much ether it held, the
implementation would not be able to track for whom it is being kept.
The pendingReturns mapping supports the withdrawal pattern [Ethereum Foundation 2020d],

which is an Ethereum coding convention that protects against re-entrancy attacks. The possibility of
attacks arises because sending ether to a contract can cause the recipient to execute arbitrary code:
the recipient can invoke a function on the sender, to which there is already an invocation on the
stack. This is dangerous if the funds were sent while the sender was in an inconsistent state. Instead,
it is recommended that contracts merely record that they owe ether to the intended recipient
and provide a withdraw function that recipients can call to retrieve their money. The withdrawal
pattern is not used in Obsidian, since Obsidian targets Hyperledger Fabric, which does not have
this vulnerability. Because this was a summative study of the programming environments that
users would encounter when using each language, we expected participants to use the withdrawal
pattern with Solidity and not with Obsidian. This introduced the risk that the use of the withdrawal
pattern would cause additional complexity relative to Obsidian.

In Solidity, using the withdrawal pattern typically results in the programmer writing code with
arithmetic operations to update balances. In contrast, an Obsidian implementation of the withdrawal
pattern would be expected to use linear assets, which the compiler could check for abuse Ð making
the withdrawal pattern safer on Obsidian than Solidity. Although relevant to this study, if Obsidian
were used with Ethereum, we expect Obsidian’s asset-based approach would guard against bugs in
using the withdrawal pattern, regardless whether the opportunity for it arises from the platform
design or from the particular API being used.

4 STUDY DESIGN
Our experimental protocol was approved by our university IRB. The experiment began with
obtaining informed consent. Participants (ğ 5), whom we recruited from the university community,
were randomly assigned to use either Obsidian or Solidity (using a block size of two) and given a
tutorial (ğ 6) on their assigned language, during which an experimenter answered any questions

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 132. Publication date: November 2020.

Can Advanced Type Systems Be Usable? An Empirical Study of Ownership, Assets, and Typestate in Obsidian 132:7

they had. Then, the study proceeded with three tasks: Auction (ğ 8), Prescription (ğ 9), and Casino
(ğ 10). After the tasks had ended, we gave participants a post-study survey (ğ 11) asking for their
opinions about the language they had used. We compensated participants with a $75 Amazon gift
card.
Our participants had a variety of levels of programming skill and were new at programming

in Obsidian and mostly new at programming in Solidity. To make it more likely that they would
complete at least some tasks and to leverage the skills that participants would acquire by doing
the tasks, we gave the tasks to the participants in order of increasing difculty (according to our
experience with pilot studies). All participants worked on the tasks in the same order.
Prior empirical work in programming language evaluation found that testing and debugging

programs in the context of empirical studies substantially increases variance. For example, we
previously found that diferent participants have diferent levels of thoroughness in writing tests
and diferent levels of debugging skill [Coblenz et al. 2017]. When allowed to test and debug,
participants frequently spend large amounts of time debugging issues that are not relevant to the
experiment. To focus our participants’ time on work related to our research questions, we allowed
them to edit their code until they were satisfed, but did not give them an opportunity to test their
code. Then, instead of assessing programs on the basis of tests, we inspected their code. We looked
both for specifc bugs that corresponded to the research questions we were interested in as well as
for unrelated bugs. To do this, we developed a rubric for each task, which listed particular bugs to
look for; we iterated on this rubric to add bugs that were present in the programs. This approach
was made feasible by the relatively small codebases (see Table 11). Although it is possible that we
missed particular bugs in the code, the same would be true even if we provided unit tests. However,
by evaluating by inspection rather than unit tests, we were able to assess code with signifcant
functional problems, similar to how one might grade a student exam by using a rubric rather than
by executing unit tests. By using a rubric, partial credit can be awarded and specifc mistakes can
be identifed even when the solution contains signifcant faws.
Our decision to allow compilation but not testing was also motivated by our desire to evaluate

the ability of Obsidian’s type system to detect bugs that might otherwise be introduced. In many
cases, it is cheaper to fnd bugs earlier in the software development process than later, so we focused
on whether the kinds of bugs that Obsidian can detect at compile time are ones that are introduced
at all and how successfully Obsidian programmers can complete tasks. In Delmolino et al. [2016],
the programmers had access to a blockchain and still fnished their work with code that lost assets;
nonetheless, this does refect a limitation in the study design. Because Obsidian’s design is focused
on identifying more bugs at compile time, allowing compilation but not testing allowed us to focus
on our research questions about the usability and efectiveness of the type system while using our
participants’ time as efectively as possible. However, this may have introduced a kind of bias, since
the Solidity participants might have found some of their bugs through testing if that had been
permitted.
Another approach that could improve external validity is adding code review to the process.

We did not include an explicit code review step in which peers inspected the code; although this
might more-realistically represent some settings, studies have found that code reviews only fnd
bugs infrequently [Czerwonka et al. 2015]. Also, adding code reviews to the process would have
substantially increased time requirements as well as variance, since the quality of the feedback
would necessarily have varied.

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 132. Publication date: November 2020.

132:8 Michael Coblenz, Jonathan Aldrich, Brad A. Myers, Joshua Sunshine

5 PARTICIPANTS
We recruited participants to our four-hour study with posters at our university, with emails to lists
of appropriate degree programs (such as the Master of Software Engineering program), and by
advertising to students in relevant courses (e.g., a software engineering course).
Because we advertised the study broadly (the posters were visible to anyone on campus), and

because the study assumed that participants already knew an object-oriented programming lan-
guage, we wanted to make sure that all participants had appropriate preparation. Therefore, we
pre-screened participants with an online survey that asked them basic Java questions; we invited
respondents who answered fve of six questions correctly to participate in the study. The complete
pre-screening instrument is in the supplement as well as in the replication package [Coblenz
et al. 2020a]. The six questions concerned: Java constructor syntax; the defnition of encapsula-
tion; whether changes to a list through a reference would be visible through another reference;
whether methods in interfaces may include bodies; whether abstract classes may be instantiated;
and whether concrete subclasses of abstract classes must implement methods that were abstract in
the superclass.
The same pre-screening instrument was used for earlier Obsidian studies in addition to this

experiment. Over the period during which the instrument was used, 53 people completed it. Scores
on the łbasic Javaž portion were out of six. Of the 53 respondents, seven scored below fve, 13
scored fve, and 33 scored six. Of those who participated in the RCT described in this paper, six
scored fve and the remaining participants scored six. Of the respondents who were not recruited
in earlier studies, we contacted those with scores of at least fve in the order in which they flled
out the instrument. Those who responded to our requests were scheduled according to their and
the experimenters’ schedule requirements. No participants left the study early.
Table 1 summarizes the previous experience of the experiment participants in each condition.

We excluded an additional participant who took so long on the training phase that not enough
time was available for more than one programming task1. This left 20 participants; 14 of them
identifed as male, and six as female. Only two participants, both in the Obsidian condition, had no
professional experience. Blockchains are targeted at enabling general software engineers in a wide
variety of industries to build applications in contexts that lack mutual trust. Since our participants
had substantial programming experience and 18 of them had some professional experience, we
argue that our participants were representative of at least some kinds of programmers in industry
who might be interested in writing smart contracts.

6 TRAINING
We provided a web-based tutorial (implemented with Qualtrics, and included in the supplement),
which stepped participants through web-based documentation and exercises for their assigned
language. Some of the exercises were to be completed in Visual Studio Code, which was confgured
with a compiler. Some of the questions were multiple-choice; for these, the tool automatically

Table 1. Participant experience (self-reported).

Solidity (� = 10) Obsidian (� = 10)

Median programming experience, years (range) 9.2 (3.3 ś 13) 5.0 (2.3 ś 8.5)
Median professional experience, years (range) 1 (0.5 ś 9.0) 0.92 (0.0 ś 5.0)
Median Java experience, years (range) 2.0 (0.67 ś 4.2) 1.5 (0.25 ś 6.0)

1That participant spent 3 hours and 11 minutes on the tutorial, which was three standard deviations above the mean.

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 132. Publication date: November 2020.

Can Advanced Type Systems Be Usable? An Empirical Study of Ownership, Assets, and Typestate in Obsidian 132:9

Fig. 3. An example from the web-based Obsidian tutorial.

showed participants if they had entered an incorrect answer. An experimenter was available to
answer questions. Participants were told that they should try to get all of their questions addressed
during the training phase, since no questions could be answered after training was completed.

We included practice questions in the tutorial to ensure that participants absorbed the material
(prior studies had found that without practice questions, participants skimmed the material without
mastering the concepts). Figure 1 shows an example practice question. Figure 3 shows a sample
from the Obsidian documentation.

To make the two experimental conditions as similar as possible, even though Solidity includes no
support for ownership, typestate, or assets, Solidity participants received a tutorial that explained
these concepts and recommended using comment-based annotations. If participants asked about the
utility of these annotations, we argued that this was similar to how one might write preconditions
or postconditions in comments. Table 2 summarizes the distribution of times participants spent on
the tutorial in the two conditions. If we had trained only the Obsidian participants in ownership,
for example, any diferences in behavior could have been attributed to the training and not to the
language they were using.
Solidity participants received training on the withdrawal pattern and its necessity for security

reasons, as well as language-specifc details such as the payable keyword and the concept of ether.

7 TASK SELECTION
Based on our research questions, we sought a collection of tasks for our study that met several
criteria. We selected criteria, shown in Table 3, to help us identify tasks that would address our
research questions.

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 132. Publication date: November 2020.

132:10 Michael Coblenz, Jonathan Aldrich, Brad A. Myers, Joshua Sunshine

Table 2. Training times in Solidity and Obsidian conditions.

Solidity (� = 10) Obsidian (� = 10)

Average (standard deviation) 86 (28) min. 98 (31) min.
Range 39 to 138 min. 50 to 148 min.

Table 3. Alignment between task design criteria and the tasks we designed.

Name Criterion RQs Tasks

C1 All tasks should refect smart contract use cases that have re- RQ1 Auction,
ceived some attention in the blockchain community. Prescription,

Casino
C2 At least one open-ended task that could be used to evaluate RQ3 Casino

whether Obsidian participants could create their own typestate-
oriented interfaces (rather than only implementing according
to a well-defned specifcation).

C3 At least one task should put Solidity participants in a position RQ2, Auction,
where they might accidentally lose an asset. For Obsidian par- RQ3 Casino
ticipants, the corresponding question is whether they are able
to complete the task in spite of the strictures of ownership.

C4 In a previous qualitative study of an early version of Obsid- RQ3 Prescription,
ian, participants found it very challenging to use ownership Casino
([Coblenz et al. 2019a]). Therefore, at least one task should as-
sess whether the changes to Obsidian since its original design
have addressed the difculty of using ownership to restrict the
use of assets.

The tasks and their results are described in detail in the following sections. Complete task
materials are included in the supplement. Although we told participants that we might interrupt
them eventually if they needed to move on to the next task, we reduced time pressure by not telling
them specifc per-task time limits.

8 AUCTION TASK
8.1 Auction Task Design
In the Auction task, we asked participants to fll in missing code in an implementation of an English
auction, in which bids are made openly and the highest bidder wins. To increase external validity
(criterion C1 in Table 3), we modeled the task after an example from a Solidity tutorial [Foundation
2020]. We required that all bids be accompanied by funds to ensure that the winning bidder will
pay for the item. When a bid is exceeded, the original bidder should receive a refund of their bid.
We gave the participants 30 minutes to complete the task.

Figure 2 shows the bid transaction that was provided to participants as well as a sample solution.
In the frst subtask, marked by // 1. TODO, participants needed to write code to refund the existing
bid to the previous bidder, whose address was stored in maxBidder, and record the new bid (money).
In the second subtask (// 2. TODO), participants needed to refund the bid to the bidder. The code in
yellow shows a correct answer. In both cases, there was an opportunity for asset loss: if participants

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 132. Publication date: November 2020.

Can Advanced Type Systems Be Usable? An Empirical Study of Ownership, Assets, and Typestate in Obsidian 132:11

overwrote the old Money reference (stored in maxBid), then the old bid would be lost. In Obsidian,
the compiler would report an error if this happened; in Solidity, there was no protection against
that mistake. This opportunity for error refected task criterion C3.
We refne the high-level research questions for this task (using numbering that refects the

original research questions in ğ 1):
RQ 2.1: How frequently do Solidity participants accidentally lose assets in the Auction task?
RQ 3.1: Overall, do completion times difer across conditions?
RQ 3.2: Overall, are participants more likely to fnish Auction (and do so correctly) if they use

Obsidian rather than Solidity?

8.2 Auction Results and Discussion
Table 4 summarizes the results of the Auction task; errors are shown in Table 5. Nine Solidity
participants said they were done with the task before the 30 minutes expired; among these nine, the
average time was 12 minutes (95% CI: [6.8, 17.4]). Eight Obsidian participants said they were done
with the task before running out of time; among these eight, the average time was also 12 minutes
(95% CI: [6.4, 18.3]). Thus, for RQ 3.1, the diference in times was not signifcant. Two participants
completed the task correctly in the Solidity condition; seven completed the task correctly in the
Obsidian condition. The diference in success rates (summarized in the frst two rows of Table 4) is
statistically signifcant, with � ≈ .015 (Fisher’s exact test; odds ratio 0.053). We conclude for RQ
3.2 that participants who fnished were more likely to fnish correctly if they used Obsidian than if
they used Solidity.

Of the two Obsidian participants who did not fnish the Auction task in time, one (P45) was con-
fused about the semantics of the :: feld initialization operator, attempting to use BidsMade::maxBid
to refer to the current value of the maxBid feld rather than the future value after a state transition.
This misconception led to a compiler error message that the participant did not fnd helpful. The
other participant also received a confusing error message: although the code invoked a transaction
that did not exist, the error message pertained to ownership of the transaction’s parameter. A more
mature compiler with better error messages might have helped the participants fnish the task.
In subtask 1 (starting at line 31 in Figure 2), participants needed to record the new bid and

refund the old bid. We found the following errors among the Solidity participants who said they
were done:

(1) Loss of previous refunds: the correct implementation added the new refund to any prior
refund. Four participants used = instead of +=, overwriting any old refund (in line 33).

(2) Omission of refund: three participants neglected to refund the previous bid (e.g., omitting
line 33).

All eight of the Obsidian participants who said they were done did so without losing any assets,
since otherwise the compiler would have given an error. However, one participant refunded the
old money to the new bidder instead of to the previous bidder.

Table 4. Auction task results. N=10 in each condition.

Solidity Obsidian

Completed task correctly 2 7
Completed task with bugs 7 1
Time in min., completed tasks only; 95% CI 12; [6.8, 17.4] 12; [6.4, 18.3]
Did not complete the task 1 2

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 132. Publication date: November 2020.

132:12 Michael Coblenz, Jonathan Aldrich, Brad A. Myers, Joshua Sunshine

Table 5. Errors in Auction task. N=10 in each condition.

Solidity Obsidian

Ran out of time 1 2
Lost an asset in either subtask 7 0
Subtask 1

omitted refund of old bid 3 0
overwrote old refund 4 0
refunded to wrong bidder 0 1

Subtask 2
overwrote old refund 4 0
refunded via transfer() instead of pendingReturns 4 N/A

While doing the task, two of the Obsidian participants received a compiler error indicating that
they had lost an asset. For example:

auction.obs 37.28: Variable 'maxBid' is an owning reference to an asset,
so it cannot be overwritten.

Both of these participants successfully fxed the error.
In subtask 2 (starting at line 41 of Figure 2), participants needed to refund the new bid, since it

was not larger than the previous bid. Among the nine Solidity participants who said they fnished
the task, two refunded the bid properly (using pendingReturns). Four refunded via transfer,
which would not have resulted in asset loss but was inconsistent with the documentation we gave
them. The documentation specifed to use the withdrawal pattern to be consistent with the typical
recommendation when using Solidity. Four attempted to refund via pendingReturns but, as in the
frst subtask, overwrote any previous refund, potentially losing money.
One might argue that the potential for asset loss due to improper use of pendingReturns was

due to the need to use the withdrawal pattern [Ethereum Foundation 2020d], as discussed above.
However, the particular bug we observed was due to participants overwriting an integer rather
than adding to it, and we infer that arithmetic errors are likely common when manipulating assets
manually. Obsidian protects against these bugs by encouraging programmers to design APIs that
use assets to represent money rather than raw integers.
Of the seven Obsidian participants who completed the Auction task successfully, while they

were working, two received compiler errors indicating that they had lost assets. One additional
participant, P45, got an error about a lost asset, but did not fnish the task because they were
confused about the use of the :: operator.

We conclude (RQ 2.1) that asset loss was frequent among Solidity users, and more frequent than
among Obsidian users, who did not lose any assets (� ≈ .002, Fisher’s exact test). This diference
may have been caused by a combination of diferences in language design and diferences in API
design, but the diferent API designs were related to diferent language design choices.

9 PRESCRIPTION TASK
9.1 Prescription Task Design
To address task criterion C4, we gave participants a short Pharmacy contract (43 lines in Obsidian
or 46 lines in Solidity including whitespace). The code included an example to show how the
contract was vulnerable to attack. Although a Prescription was specifed to only permit a fxed

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 132. Publication date: November 2020.

Can Advanced Type Systems Be Usable? An Empirical Study of Ownership, Assets, and Typestate in Obsidian 132:13

number of reflls, a Patient could invoke depositPrescription on more than one Pharmacy
object, resulting in the patient being able to refll the prescription the given number of times at each
pharmacy. We asked participants to fx the bug, avoiding runtime checks if possible. In Solidity, for
example, depositPrescription had the signature below:
function deposit(Prescription p) public returns (int);

In Obsidian, the starter code provided this signature:
transaction deposit(Prescription@ Shared p) returns int ;

In Obsidian, it sufced for participants to change the signature so that the Pharmacy acquired
ownership of the prescription object:
transaction deposit(Prescription@ Owned >> Unowned p) returns int ;

In Solidity, in contrast, since there is no static feature that would make the above safe, participants
had to implement a global tracking mechanism across all Pharmacy objects.

The task was based on a task from our prior study, which found that users of an earlier version of
Obsidian had great difculty using ownership to fx this problem [Coblenz et al. 2019a]. For example,
some participants in that study thought about ownership in a dynamic way (for example, writing
if statements to test ownership) or were confused about when ownership was transferred between
references. The version of the language used in the present study includes changes that resulted
from that work, such as fusing typestate and ownership in the language syntax, making ownership
transfer explicit in transaction signatures, and removing local variable ownership annotations. Our
research questions were centered around evaluating the revised language:

RQ 3.3: What fraction of Obsidian participants could use ownership to fx the multiple-deposit
vulnerability?

RQ 3.4: Does using ownership to prevent the multiple-deposit vulnerability take less time than
using a traditional dynamic approach?

We gave participants 35 minutes to complete the task. Because ownership-based approaches
are not checked by the Solidity compiler, we wanted to allow Solidity participants who proposed
ownership approaches to try again. Therefore, when participants informed the experimenter that
they were done, the experimenter inspected their code. If they had used static notions of ownership
instead of a dynamic approach, participants were permitted to try again in the rest of their 35
minutes.

9.2 Prescription Results
Table 6 summarizes the results. Regarding RQ 3.3, six of the ten Obsidian participants success-
fully used ownership to solve the problem. The dynamic Obsidian solution that we judged to be
correct tracked global state by making Prescription mutable, despite a comment indicating that
Prescription should be immutable.

Five of the ten Solidity participants tried to use ownership, even though Solidity does not check
ownership. Only three of the Solidity participants said that they were done within the time limit,
and of those, only two had a correct solution. The incorrect Solidity solution attempted to solve
the problem by making Prescription mutable to track remaining reflls globally, but in addition,
although the participant tried to track the number of reflls across all pharmacies, the code did not
update the global number of reflls when reflling a prescription.

We separated time Solidity participants spent on static solutions from the time spent on dynamic
solutions, since these attempts were likely prompted by the training materials; Table 6 shows both
sets of times. However, we included all time spent by Obsidian participants on correct solutions
because it is realistic that some Obsidian users would have tried each approach.

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 132. Publication date: November 2020.

132:14 Michael Coblenz, Jonathan Aldrich, Brad A. Myers, Joshua Sunshine

Regarding RQ 3.4, we did not observe a signifcant diference in completion times. However,
a large fraction of Solidity participants spent signifcant portions of their time attempting static
solutions. In retrospect, it might have been more informative to have told Solidity participants
explicitly that they needed to use a dynamic solution, and this approach might have led to a
more interesting comparison. However, due to the small amount of code required for the static
solution, we suspect that there is a signifcant learning efect to be leveraged here in Obsidian,
and the participants who succeeded could likely do so again in a similar situation much faster.
Furthermore, the fact that only two of three Solidity participants who fnished this task did so
correctly underscores the beneft of static enforcement of these kinds of safety properties.

9.3 Prescription Discussion
One might have expected that applying ownership would be challenging, since the concept was new
to the participants, but since only half of those who said they had completed a dynamic solution
had correct solutions, it would appear that using the new static construct may not be harder than
writing global state tracking code. In fact, using ownership to solve programming problems is
teachable: six of nine Obsidian participants who completed the task used ownership to do so. We
expect that the remaining three could be taught to do so with additional practice.

In an earlier study [Coblenz et al. 2019a], which used a very similar task, four of six participants
were able to solve the problem, but all of them received signifcant help from the experimenter.
The remaining two did not solve the problem even with help. Although those numbers cannot be
compared with the results of this study directly, the fact that six of our participants were able to
complete the task without any help suggests that the changes since then have improved usability.
Security experts have long argued in favor of immutable data structures [Oracle Corp. 2019;

Seacord 2013], which is one reason why we specifed that Prescription was immutable. However,
these results point out that this approach may not be tenable: specifcations of immutability may
be ignored or removed, and attempts to maintain immutability require substantial work, which
may itself be bug-prone. Indeed, when language-based mechanisms do not provide the required
safety properties [Coblenz et al. 2017], it may be safer and cheaper to use a mutable design than to
bear the cost of immutability. In this case, making Prescription mutable would have obviated
the need to implement separate data structures keeping track of how many reflls each prescription

Table 6. Summary of Prescription task results. Times are shown as mean (standard deviation). N=10 in each
condition. Two Solidity participants tried both static and dynamic approaches, and one Solidity participant
made no changes, resulting in 11 Solidity atempts.

Solidity Obsidian

Attempted a static solution 5 participants 6 participants
Correct static solution N/A 6
Attempted a dynamic solution 6 3
Correct dynamic solution 2 1
Made Prescription mutable 2 1
Completed within time limit 3 9
Mean time among successful participants; [95% CI] 20 min.; [0, 45] 22 min. [12, 33]
Mean time among successful participants after 18 min. 22 min.
removing Solidity time spent on static attempts

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 132. Publication date: November 2020.

Can Advanced Type Systems Be Usable? An Empirical Study of Ownership, Assets, and Typestate in Obsidian 132:15

had left, since that information could be kept in the Prescription object directly. That approach
appeared to be more natural for the participants, and certainly required less code.

The benefts of Obsidian’s ownership system in the Prescription task contrast with the benefts
of other kinds of ownership. For example, ownership in Rust [Mozilla Research 2015], which is
understood to be one of the more challenging aspects of learning Rust [Yegulalp 2018], introduces
constraints on mutation. However, in Rust, only owning references can mutate objects. In Obsidian,
mutation is restricted only as much as is needed to provide sound typestate specifcations, since
concurrency is not a concern. Therefore, in Obsidian, only changing which named state an object is
in is restricted, and then only through Unowned references. This contrasts with Rust, in which all
modifcations to felds of objects are restricted. Six of 10 participants were able to use the linear
aspects of ownership alone in the Prescription task, suggesting that languages that adopt just
linearity (and not mutability restrictions) may be usable. Perhaps by integrating a more fexible
permissions system, languages such as Rust could be made more convenient for common cases,
and thus have a more gradual learning curve. Alternatively, making these changes in Rust might
come at the expense of expert efcacy, so the impact of these changes in the long term would need
to be evaluated.

Although six of the Obsidian participants used ownership successfully, four participants did not.
One of the four participants did not complete any of the three tasks. Another łfxedž the issue by
modifying code in Patient that we had provided as an example of how a nefarious patient might
exploit the bug; perhaps this participant did not really understand the task. The other two seemed
to need more time studying ownership in order to use it efectively.

The instructions included: łPlease use what you have learned today to fx this problem (avoiding
runtime checks if possible).ž Perhaps as a result, a similar fraction of participants tried to use
ownership in both conditions. We wanted to encourage the Obsidian participants to use ownership
so that we could assess to what extent they could use it efectively, but the instructions persuaded
some of the Solidity participants to use it even though doing so was not checked by the compiler.

10 CASINO TASK
10.1 Casino Task Design
The casino task was more open-ended than the other tasks, addressing criterion C2. We gave
participants a web page with a diagram showing invocations that needed to be supported (Figure 4).
The web page included a list of requirements:

(1) If a Bettor predicts the outcome correctly, the Bettor gets twice the Money they put down.
For example, if Bettor b puts down 5 tokens on the correct outcome, they should receive 10
tokens after the Game is played.

(2) If the Bettor predicted incorrectly, the Casino keeps their tokens.
(3) Bets can only be made before the Game starts.
(4) Winnings can only be distributed after the Game is fnished.
(5) Bettors must collect winnings themselves from the Casino after a Game by calling code,

which you need to write. Until winnings are collected, the Casino keeps track of them.
(6) A Bettor can have one active bet per game. If a Bettor bets more than once, their original

bet should be replaced by the new one and any previous bet should be refunded.
(7) A Bettor MUST put down tokens at the same time that they’re making a Bet.
(8) If the Casino does not have enough tokens available to pay out winnings, the invocation to

collect winnings can fail.
We provided starter code for Casino, Game, and Bet. Obsidian participants also received imple-

mentations of appropriate containers (Solidity has suitable built-in containers).

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 132. Publication date: November 2020.

132:16 Michael Coblenz, Jonathan Aldrich, Brad A. Myers, Joshua Sunshine

Fig. 4. Sequence diagram given to participants to show what operations the Casino contract should support.

We used the Casino task to investigate fve research questions:
RQ 2.2: How frequently do Solidity participants lose assets in the Casino task?
RQ 3.5: To what extent do Obsidian participants leverage typestate in transaction signatures

to avoid dynamic checks (criterion C2)?
RQ 3.6: In both versions, programs represented funds with Token objects. Does Obsidian’s

type system help participants avoid losing Token objects compared with Solidity (criterion
C3)?

RQ 3.7: Do Obsidian participants view Token objects as resources that should not be created
or destroyed, or as data, which could be created and destroyed as needed (criterion C4)?

RQ 3.8: How do task completion times compare between Solidity and Obsidian participants
(criterion C4)?

Of the original ten participants in each condition, we excluded one Obsidian participant who
should have received an error from the compiler but, due to a bug, did not. We also excluded one
Solidity participant and four Obsidian participants who did not have enough of their four hours
remaining, and in the time available, were not satisfed with their solution. This left nine Solidity
participants and fve Obsidian participants whose results we analyzed. The results below pertain
to these 14 participants. The discrepancy between the number of participants who had enough
time across the two conditions was due to two factors: the faster task completion times by Solidity
participants, and the high variance among Obsidian participants for time required for tasks that
occurred before Casino.

Of the 14 participants whose results we analyzed, one participant in the Obsidian condition gave
up after 1 hour, 15 minutes. That participant had chosen an unnecessarily difcult implementation

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 132. Publication date: November 2020.

Can Advanced Type Systems Be Usable? An Empirical Study of Ownership, Assets, and Typestate in Obsidian 132:17

Table 7. Summary of Casino task completions.

Solidity Obsidian

Had enough time to try Casino 9 5
Completed Casino with a program that compiled 8 4

Table 8. Summary of Casino task results among completed programs that compiled, showing correct solution
rates among errors made by more than one participant.

Solidity (� = 8) Obsidian (� = 4)

Completed task correctly (no identifed bugs) 12.5% 0%
Winnings collection emits error if Casino is out of tokens 62.5% 25%
Casino keeps tokens when a bet is lost 100% 50%
Bettor’s extra bets result in refunds 100% 75%
Only used disown safely N/A 0%
Managed tokens correctly (not fabricating or losing them) 50% 0%
Mean completion time 37 min. 64 min.

strategy, requiring implementing a new container (implemented as a linked list). Also, the participant
delayed trying to compile until after writing a lot of code, resulting in a large collection of compiler
errors. The remaining four Obsidian participants all wrote code that compiled successfully. One
participant in the Solidity condition gave up after 39 minutes, having received a parser error that
they were not sure how to fx.
The Casino task results should be interpreted in the context of some additional limitations

relative to the other tasks. The results of a comparison between conditions on this task may be
biased because the Obsidian participants who were included for analysis in this task are those who
completed the earlier tasks fastest. As a result, the Obsidian participants may have been stronger
programmers on average than those in the Solidity condition (in which almost all the participants
had time to try the task).
Casino was more open-ended than the other tasks, resulting in more variance, as participants

made varying implementation choices. Given this, the small numbers, and the potential bias, we
use this primarily as an opportunity to develop hypotheses, design insights, and identify future
opportunities for improvement.

10.2 Casino Results and Discussion
We analyzed the code participants wrote, comparing the code to the requirements we gave them.
As with the other tasks, in order to isolate the bugs from each other, our analysis was manual; the
source code produced by each participant is included in the supplement. Results are summarized in
Tables 7 and 8. Before discussing the results for the four research questions, we discuss the errors
that participants made while working on Casino.
Except for the one Solidity participant who completed the task correctly, all of the other par-

ticipants across both conditions inserted various bugs. For example, three participants in each
condition failed to emit an error when attempting to collect winnings from the Casino when the
Casino lacked enough resources to distribute them.

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 132. Publication date: November 2020.

132:18 Michael Coblenz, Jonathan Aldrich, Brad A. Myers, Joshua Sunshine

The most common bug among Solidity participants was some kind of token loss or improper
fabrication; four of the eight made this mistake, addressing RQ 2.2. For example, one participant,
when accepting a new bet, frst credited the bettor’s account for any prior bet, and then returned if
the bet amount exceeded the bettor’s balance. This meant that a second bet, when disallowed, would
incorrectly fabricate tokens out of thin air, since the code that debited the bettor’s balance occurred
after the early return. Another participant neglected to debit accounts for extra wagers, also
fabricating tokens out of thin air. This shows that protection against incorrect asset manipulation
is important.
All four Obsidian participants who fnished the Casino task used disown improperly to throw

away assets. We found this surprising, since we had warned the participants against improper
use of disown. The tutorial included an example of how disown might be needed inside the
implementation of a Money contract, and wrote below the example:

IMPORTANT: disown should be used only when you really want to throw something
out. Above, disown is required because of the manual arithmetic used to manipulate
amount inside the implementation of Money, but it is not needed in most normal code.

It would not have sufced to remove disown from the language; in addition to the fact that it is
needed in certain (rare) cases, programmers could build a Trash contract to hold discarded objects,
thus suppressing any errors the compiler would emit. We have several hypotheses regarding why
disown was abused:

• Some participants may have used disown to silence the compiler when they felt they had a
correct solution. One participant discarded the old wager, using money from the casino’s pot
to pay out bets. The participant also disowned the bet when a losing bettor tried to retrieve
their winnings (a correct solution would have put the tokens in the casino’s pot).

• Some participants may not have read or understood the tutorial’s warning about disown; in
retrospect, we should have assessed understanding explicitly.

• Some participants did not sufciently understand the notion of assets. For example, when
disbursing winnings, one solution disowned the previous wager and created new Tokens
when needed, rather than reusing the tokens from the wager.

• Some participants may have used disown as a workaround for an unsolved problem. In code
to accept a new bet, one participant disowned any previous bet by that bettor, and then
wrote: // Currently just throws the bettor’s money away and hopes they find
it eventually.

This motivates a question for future research to characterize the use of these escape hatch
constructs, which can be used in both safe and dangerous ways. Some languages include warnings
in the names of such constructs, as in unsafePerformIO in Haskell [of Glasgow 2001], but such
approaches may not be efective in explaining the danger.
Risk compensation refers to the idea that people compensate for safety features by taking addi-

tional risks. For example, drivers may drive faster when wearing seat belts because the seat belts
may mitigate the risk caused by higher speeds. However, in many cases (such as in the seat belt
example), overall risk is reduced despite potential compensating behavior [Houston and Richardson
2007]. Further study is needed to consider the question of whether risk compensation occurs with
strong type systems. Perhaps some participants who used disown assumed that if there were a bug,
the compiler would report it.
Regarding RQ 3.5, the Game contract that we provided defned states for Game (BeforePlay,

Playing, FinishedPlaying). When implementing Casino, participants wrote code in their Casino
transactions (to implement requirements 3 and 4) to dynamically check the state of the Game. An
alternative approach, which we had expected some participants to use, would have involved

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 132. Publication date: November 2020.

Can Advanced Type Systems Be Usable? An Empirical Study of Ownership, Assets, and Typestate in Obsidian 132:19

observing that the state of Game was related to the state of Casino. If a Casino was in a state
that permitted bets, then the Game must not have started. Likewise, collecting winnings was only
possible from a Casino whose Game had ended. Our starter code defned states in Game. Therefore,
participants could have avoided dynamic checks in Casino by defning multiple states in Casino,
each of which corresponded to a particular state of Game. All of the participants added the dynamic
checks. The participant who gave up tried to check the state with a static assertion, evidently not
understanding that the assertion was static, not dynamic.
The lack of usage of static state information is unfortunate because it represents a missed

opportunity to rule out bugs in calling code. Perhaps more-experienced programmers would be
more interested in leveraging this language feature; alternatively, it might require more training
or a more-convenient language design. The design the participants chose may have been best
given their incentives; the typestate-based approach would have required adding more structure to
refect the typestate relationships between Casino and Game. However, motivated by the results of
this study, we hope to consider future language design changes that make typestate coupling of
diferent objects convenient.
Perhaps creating new interfaces that use novel verifcation-related features (such as typestate)

is harder than consuming them, in which case further research should consider novel ways of
scafolding interface design and creation. In Obsidian, it is possible to use states to defne diferent
felds (each with its own typestate specifcation) for each possible state of referenced objects. This
approach would couple the states of the two objects, letting the programmer avoid runtime checks
that would be otherwise required, but we did not train participants in this approach. Perhaps this
technique is sufciently subtle that we should have provided training directly.

Surprisingly, in RQ 3.6, we observe that in fact, Solidity participants were probably more likely
to correctly have the casino keep tokens when a bet is lost (Table 8, � ≈ 0.09, Fisher’s exact test).
Likewise, Solidity participants may be more likely to successfully issue refunds for bets after the
frst bet (� ≈ 0.33, Fisher’s exact test). We believe this is related to abuse of disown by Obsidian
participants.
Regarding RQ 3.7, all four of the Obsidian participants who wrote solutions that compiled

treated tokens as data rather than assets, i.e., at some point in their code, they either created new
tokens or disowned tokens. The Obsidian participant who gave up did not do either of those things,
likely viewing tokens more as assets, but became mired in a list of type errors. We conclude that
use of assets was likely not natural for our participants. This interpretation is consistent with the
post-study survey results (ğ 11), in which we observed that participants said they felt ownership
and states were more useful than assets.
For RQ 3.8, Obsidian participants spent signifcantly longer on the Casino task than Solidity

participants did (� ≈ 0.02, Mann-Whitney U test, � ≈ 1.9). Therefore, the stronger type system
provided by Obsidian likely had a signifcant cost in development time for our participants. We
hypothesize that this cost is greater with more open-ended tasks, which would explain why we did
not observe this diference in the two prior tasks. Of course, the additional cost may be worthwhile
since Obsidian would rule out some classes of bugs statically, particularly when used by skilled
programmers who do not abuse disown. The time to task completion in this experiment might
relate in practice to the time required to complete a prototype version of software rather than the
time required to create a production-quality version.

11 POST-STUDY SURVEY RESULTS
We conducted a post-study survey asking participants about their opinions. We asked participants
(on a 5-point scale) how well they understood particular concepts and how useful they thought those
concepts were. The results from participants who completed the survey before being de-briefed

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 132. Publication date: November 2020.

132:20 Michael Coblenz, Jonathan Aldrich, Brad A. Myers, Joshua Sunshine

Table 9. Perceptions of ownership, states, and assets on a 1–5 scale (5 is best). Cells show average (standard
deviation). * indicates that a Mann-Whitney U test shows a significant diference at � < 0.05.

Solidity Obsidian
(N=6) (N=8)

How much did you like the language you used? 3.7 (0.82) 4.0 (0.53)
How well do you feel you understand the concept of ownership? 3.8 (0.98) 3.75 (0.99)
*How useful do you think ownership is? 3.0 (1.1) 4.88 (0.36)
*How well do you feel you understand the concept of states? 4.8 (0.41) 4.1 (0.64)
How useful do you think states are? 4.3 (0.81) 4.1 (0.64)
How well do you feel you understand the concept of assets? 3.2 (0.98) 3.4 (1.3)
How useful do you think assets are? 2.7 (0.52) 3 (1.2)

from the study are summarized in Table 9. Although the Obsidian participants said they thought
ownership was signifcantly more useful than the Solidity participants did (� ≈ 0.002, � ≈ 2.5),
the Solidity participants indicated that they felt they understood states better than the Obsidian
participants did (� ≈ 0.04, � ≈ 1.3). Perhaps the existence of an unfamiliar state construct in
Obsidian, or the unfamiliarity of the relationship between states and types, led to less confdence.
There was no signifcant diference in views of the utility of states. This may be due to the tasks we
gave, which did not particularly rely on the static aspects of states.
We also compared across questions. Obsidian participants said that they felt both ownership

and states were more useful than assets (� ≈ .0027, � ≈ 2.1 and � ≈ .037, � ≈ 1.2, respectively,
according to a Mann-Whitney U test and Cohen’s �). The diferences between perceptions of
understanding between ownership and assets and between states and assets were not signifcant at
� < .05. Of course, perceptions of understand and utility were infuenced by the particular tasks
the participants did and their perceived success at doing those tasks, but these results correspond
with the Obsidian participants’ failure to regard tokens as assets in the Casino task.

The survey also included a free-form box in which participants could respond to the question
łPlease use this space to write any additional comments you have about the language or the study.ž
We reviewed the free-form comments, and describe the most interesting ones here. Due to the
sparse and brief nature of the data, we did not conduct a more formal analysis. The complete data
are included in the supplement.
Several of the Solidity participants expected that the language would have included constructs

for states or ownership. For example, one participant wrote in the post-study survey:

It also seemed like there should be some syntactic sugar for writing things like:

enum State { Foo , Bar , Buzz }
State s

since they are so common.

Three Solidity participants expected that the compiler would check ownership. For example:

On [semantics] Ð I was hoping ownership / assets / states would be statically verifed.
When I wrote code during the 2nd phase of the study, I found that I didn’t really
document ownerships / asset status.

Similarly, from another Solidity participant:

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 132. Publication date: November 2020.

Can Advanced Type Systems Be Usable? An Empirical Study of Ownership, Assets, and Typestate in Obsidian 132:21

Table 10. Numbers of participants completing diferent numbers of tasks correctly in the two conditions.

Tasks completed Solidity Obsidian
correctly participants participants

0 7 1
1 2 3
2 0 6
3 1 0

I think it would be nice to have some static analysis to check ownership information
rather than relying on the programmer to have good comments documenting ownership
because in practice documentation is never perfect and often overlooked.

Participants using Obsidian had difering opinions regarding how easy it was to learn. One wrote:
The tutorial and the exercises are well-written and they helped me a lot in understanding
the concepts of new language!

Another Obsidian participant wrote:
The smaller coding exercises were nice to follow and complete. The open-ended part
was a little overwhelming to fnish, for somebody that just got introduced to new
concepts of ownership, states and assets.

One Obsidian participant commented on how ownership seemed natural after some practice:
. . . the general concepts of ownership [were] a little unintuitive but after working with
the language they started to make more sense and seem more natural. . . .

12 SUMMARY OF RESULTS
In order to summarize the overall results across the three tasks, we computed the fraction of
successfully completed tasks for each participant, taking into consideration the tasks that were
not included in the analysis above (only nine Solidity participants and fve Obsidian participants
in the Casino task). The median fraction of tasks completed by Solidity participants was 0%; the
median fraction of tasks completed by Obsidian participants was 67% (since these are ratios, we
do not take their mean). We compared these fractions using a Mann-Whitney U test, observing a
signifcant diference with � < 0.008. Table 10 summarizes successful task completions: tasks that
were completed correctly within time limits.

We now return to the initial research questions.
RQ1: Could we obtain actionable data about the usability of a novel programming
language (that uses a type system that would be unfamiliar to our participants) in
a short-duration user study (less than one day), which would be representative of
real-world smart contract development?

Our results regarding the other research questions show that we were able to identify both
strengths and weaknesses of Obsidian relative to Solidity in the context of smart contract program-
ming tasks that were drawn from real-world scenarios. Perhaps more importantly, the study led to
insights about the type system and its potential risks that can be used to refne future language
designs. For example, strong type systems can be learned and used to signifcant beneft in short
periods of time, but escape hatches can be frequently abused.

RQ2: Do programmers using Solidity insert more of the kinds of bugs that Obsidian is
designed to catch?

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 132. Publication date: November 2020.

132:22 Michael Coblenz, Jonathan Aldrich, Brad A. Myers, Joshua Sunshine

In Auction, we observed that Solidity participants lost assets frequently (seven of nine Solidity
participants who fnished lost assets) (RQ 2.1). Similarly, four of eight Solidity participants lost
assets in the Casino task (RQ 2.2). We conclude that linear type systems likely have value in helping
programmers of smart contracts detect bugs earlier. However, the abuse of disown in Casino shows
that training or language refnement may be needed to help users of linear type systems obtain
these guarantees efectively.

RQ3: Can programmers who were previously familiar with object-oriented program-
ming (but not with Obsidian, typestate, ownership, or linear type systems in general)
successfully use Obsidian to complete relevant smart contract programming tasks? If
so, is there a signifcant impact on task completion times?

In Auction, we observed no signifcant diference in completion times, which is promising for
strong type systems (RQ 3.1). Furthermore, participants who used Obsidian were more likely to
fnish Auction correctly (RQ 3.2). In Prescription, 60% of Obsidian users were able to use ownership
to fx the vulnerability we gave them, suggesting that earlier work iterating on the language
design using user-centered methods may have been efective in making the language more usable
than it had been initially (RQ 3.3). Using ownership does not necessarily take less time than
using a dynamic approach, but seven of the ten Obsidian participants successfully completed the
Prescription task, suggesting that enabling use of ownership can empower programmers to be
more efective (compared to two of ten Solidity participants who succeeded) (RQ 3.4). In Casino, we
observed that all of the Obsidian participants who fnished the task abused the disown keyword,
which serves as a caution that escape hatches from safety features are easily misused; this misuse
can signifcantly hamper a language’s ability to achieve its safety goals (RQ 3.5). Likely due to
this misuse, Solidity participants were more likely than Obsidian participants to have the Casino
keep funds from losing bets and to issue refunds correctly for revised bets. Likewise, the Obsidian
participants appeared to create and destroy tokens at will, rather than treating them as assets; more
training is likely required if we want programmers to achieve the safety benefts of adopting this
perspective, which may not be a particularly natural one for them. Finally, Obsidian participants
spent signifcantly longer on the task than the Solidity participants did, confrming that in some
more complicated tasks, a stronger type system likely increases the cost of an initial implementation.

There has been long-standing debate about a hypothesis that dynamically-typed languages may
be better for prototyping work than statically-typed languages [Hanenberg et al. 2014; Meijer and
Drayton 2004]. Our results provide a limited form of support for this hypothesis, since the Solidity
participants were able to fnish the Casino task faster than the Obsidian participants. Of course,
since there were many diferences other than type system between the two languages, the study
does not address this hypothesis directly.

13 LIMITATIONS AND THREATS TO VALIDITY
The pre-screening instrument may have introduced bias, either by being unrepresentative of
common content knowledge among typical object-oriented programmers or by discouraging some
people from participating. The student participants may not be representative of the population of
smart contract programmers. However, since most of the students had some professional experience,
they were likely representative of entry-level programmers in industry [Stack Overfow 2019]. Also,
other studies have found no signifcant diferences in code correctness in programming studies
between students and non-students [Acar et al. 2017]. The tasks were more constrained than
real-world programming tasks, although smart contracts tend to be small in practice, averaging
322 lines [Pinna et al. 2019]. Table 11 describes solution lengths in our study.

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 132. Publication date: November 2020.

Can Advanced Type Systems Be Usable? An Empirical Study of Ownership, Assets, and Typestate in Obsidian 132:23

The participants were new to the programming languages and to smart contract development in
general, so it is possible that experienced programmers would have behaved diferently. Although
we tried to infer how particular aspects of the languages and their type systems afected partici-
pants’ behavior and performance, because this was a summative study, the results may have been
infuenced other aspects of the experience, such as the way in which diferent aspects of the type
systems interacted or the details of the particular tasks we gave participants.

The order of the tasks was consistent among all the participants, so the results of the tasks cannot
be regarded as being independent of each other due to learning efects. Because of the way we
allocated time, only fve Obsidian participants completed the Casino task, so those results should
be considered exploratory.
We assessed results by manually analyzing code for correctness rather than by test cases. It

is possible that using unit tests would have revealed additional bugs that we did not identify.
Furthermore, disallowing execution might have biased the results to favor Obsidian, since without
testing, writing correct code may be easier with the stronger type system that Obsidian provides.
Providing unit tests to participants (and allowing them to be run) might have allowed the

participants to identify minor bugs that had gone undetected without incurring the time and
variance cost of having participants write their own tests. This approach would also likely have
increased external validity, although it adds a concern that participants might simply iterate until
the tests pass rather than ensuring that they really understand how to write the code correctly.
Furthermore, given our research focus on static correctness techniques, it is not clear which unit
tests should have been included.
Our study was potentially subject to the Hawthorne efect, in which participants may change

their behavior when they know they are being observed [Sadler and Kitchenham 1996]. However,
this efect would have been equally present in both conditions. To minimize this efect, although the
experimenter remained in the room, the experimenter minimized direct observation by recording
screen videos and source code rather than continuously watching participants.

14 IMPLICATIONS ON PLIERS
PLIERS is a process for language design that integrates user-centered methods into the design and
evaluation process for programming languages [Coblenz et al. 2019a]. In addition to evaluating
Obsidian, the study also served in part to evaluate the PLIERS process. We were able to show a
safety beneft of Obsidian in the Auction task, and were able to show that most of the Obsidian
participants were able to use ownership successfully in the Prescription task. This shows that the
tutorial method was mostly successful (though more success could likely have been obtained with
more practice) and that the language design was efective overall (modulo the abuse of disown that
we observed). Every study design involves making tradeofs. The results here may show a tradeof
between training time and success rates; users of PLIERS will need to decide, based on their own
design and research goals, how to balance the risks when designing their studies. However, the

Table 11. Ranges of all (whether correct or not) solution lengths in lines of code.

Solidity Obsidian
Min Max Min Max

Auction 291 355 352 395
Prescription 455 570 457 518
Casino 257 425 135 416

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 132. Publication date: November 2020.

132:24 Michael Coblenz, Jonathan Aldrich, Brad A. Myers, Joshua Sunshine

overall PLIERS design process did result in a language that had signifcant benefts relative to the
status quo, which we were able to measure in a relatively low-cost study.
In retrospect, since only one of 20 participants completed the Casino task successfully (across

both conditions), that task was too hard for the amount of time we allowed. We recommend that
users of PLIERS carefully select success criteria in pilot studies in order to set appropriate task time
limits and difculties.
Designing and executing an efective RCT is extremely challenging and labor-intensive. The

tutorial and tasks were initially drafted much earlier than the RCT, but even with a six-participant
usability study (which had nine pilots) and four pilots for the RCT, we were still surprised at how
difcult the Casino task was for some participants. In addition, executing the RCT was a lengthy
efort; we estimate that recruiting participants, managing 21 participants plus four pilots, analyzing
the data, etc. took about two months.

15 RELATED WORK
Rust [Developers 2017] supports a version of ownership. Permissions and typestate features have
not been included in popular programming languages, so we lack data regarding their broader
usability. We are not aware of prior quantitative user studies of any of these kinds of type systems.
Other programming languages were designed to improve smart contract safety. Flint [Schrans

et al. 2019] is a typestate-oriented language that supports linear assets, but omits a permissions
system for fexible referencing of objects. Pact [Kadena 2019] is Turing-incomplete, avoiding
nonterminating behavior. Scilla [Sergey et al. 2019] is an intermediate language whose semantics
were formalized in Coq; it represents programs as communicating automata, avoiding complex inter-
contract transactions (instead requiring that these be implemented as continuations). Nomos [Das
et al. 2019] uses linear types for safety and provides automatic resource analysis to facilitate gas
usage prediction, but does not operate on any blockchain platforms. None of the above languages
were evaluated empirically.

Delmolino et al. [2016] described a user study of Serpent, which was a precursor to Solidity,
showing several classes of bugs that occurred in the lab. Among these was asset loss, which motivated
our study to see whether our participants would avoid these bugs when using Obsidian.
In the past, we argued for using a variety of methods when designing programming lan-

guages [Coblenz et al. 2018]. Stefk and Hanenberg [2014] focused on the need for empirical
evaluation of programming languages. Stefk et al. developed methodology to evaluate syntax
choices for novice programmers [Stefk and Siebert 2013]. Hanenberg et al. compared static and
dynamic type systems [Hanenberg et al. 2014], fnding benefts of static type systems in both
documentation and compile-time checking. The general question of the benefts of the Obsidian
type system relates to the more general question of static vs. dynamic types, which has also been
addressed in other contexts [Hanenberg et al. 2014]. Our evaluation approach is related to that
used by Stefk, Hanenberg, and others, but our method integrates teaching a novel type system
into the experimental procedure. Also, our study was between-subjects, whereas the experiment
comparing static to dynamic types was within-subjects [Hanenberg et al. 2014]. Our design is
robust to learning efects, but more subject to variance among participants. In comparison to the
Hanenberg et al. paper, we focus more on an experimental design that minimizes time required by
participants and on reporting detailed data on errors made by participants.

Uesbeck et al. evaluated the beneft of C++ lambdas [Uesbeck et al. 2016], fnding that no beneft
even for the purposes for which lambdas were created. The only other quantitative empirical
studies we are aware of for complete, novel programming languages (as opposed to ones that were
already familiar to the participants) were of Quorum [Stefk and Siebert 2013] and HANDS [Pane

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 132. Publication date: November 2020.

Can Advanced Type Systems Be Usable? An Empirical Study of Ownership, Assets, and Typestate in Obsidian 132:25

et al. 2002]. Other work has focused on language extensions, such as for software transactional
memory [Pankratius and Adl-Tabatabai 2014] and immutability [Coblenz et al. 2017].

Several languages have integrated support for linearity. Wadler [Wadler 1990] proposed the use
of linear types for programming languages. In functional languages, linearity may take the form of
session types [Caires and Pfenning 2010]. This approach mirrors typestate, since channel types
(expressed as session types) change as messages are sent through them. Typestate was originally
proposed by Strom and Yemini [Strom and Yemini 1986]. Drossopoulou et al. [2002] introduced
typestate for object-oriented languages in Fickle. In Fickle, objects could dynamically change class,
but the static type did not refect the changing classes. More recent work by DeLine, Aldrich,
Bierhof, and others describes how object-oriented languages can be used with typestate-specifying
references [Aldrich et al. 2009; Bierhof and Aldrich 2007; DeLine and Fähndrich 2004]. Garcia et al.
[2014] gave a formalization of typestate. None of the these languages were empirically evaluated
with users, although Sunshine et al. [2014] showed that typestate in documentation can be benefcial.
We designed Obsidian [Coblenz et al. 2020b] using user-centered design [Coblenz et al. 2019a];
that paper focuses on the design methodology, rather than on an empirical comparison between
Obsidian and Solidity, but it describes a partial, previous version of the experimental materials that
we used here.

High-quality error messages are a key component of a usable compiler. Some work in this area
has produced guidelines for creating error messages that are efective for novices [Becker et al.
2019]. Our work focuses on professionals, but the guidelines given in that work (for example, show
solutions or hints) are relevant to Obsidian.

16 FUTURE WORK
Casino, which included signifcant use of nominal states (i.e., statically-defned states with their own
names), resulted in Obsidian participants writing dynamic checks. Future work should investigate
the extent to which typestate, as provided in Obsidian and other typestate-oriented languages, can
be made more compelling for programmers. For example, when pairs of objects have states that are
coupled, the language could provide features to make representing and using this relationship con-
venient. Likewise, the existence of risk compensation among programmers should be investigated
in future studies.
This study investigated whether Solidity programmers insert bugs that Obsidian detects, but

a corpus study could show how prevalent these kinds of bugs are in real-world Solidity code.
Bugs involving asset loss can occur in any language in which programs may manipulate assets; a
corpus study involving a larger corpus of programs might be fruitful and still generalize to smart
contract development. Indeed, it may be that the kinds of safety properties needed in smart contract
development are generally applicable to many kinds of programs, regardless of whether they are
hosted on blockchains.
A study that included testing, debugging, and code review would be more representative of

real-world use. Also, the participants were new to the language they used in the study, and the
Casino task may have been too difcult for the amount of time we allocated. A longer-duration
study would likely have increased validity Ð both by allowing enough time for difcult tasks and
by allowing participants to become more comfortable with the language they were using. In a
study of experienced Obsidian and Solidity programmers, we hypothesize that the task completion
time diference would diminish signifcantly but Obsidian users would continue to take longer on
complex development projects. On the other hand, there would likely be fewer serious bugs in the
completed Obsidian projects, since Obsidian rules out classes of important bugs.

The tradeof between internal and external validity seems fundamental to programming studies.
Above, we suggested increasing external validity, but doing so might compromise internal validity

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 132. Publication date: November 2020.

132:26 Michael Coblenz, Jonathan Aldrich, Brad A. Myers, Joshua Sunshine

further, since the tasks would include more kinds of work. Another approach to study design
might trade external validity for additional internal validity. Asking participants to write nontrivial
programs, such as in the Casino task, may refect real-world programming tasks, but the task
complexity results in high variance and signifcant amounts of time spent on programming issues
that are not necessarily directly related to the research questions. In future studies, it might be
worthwhile to consider more restricted tasks that only investigate a small portion of the development
workfow. For example, if the research question pertains to creation of interfaces or architectures,
then the task might isolate that part of the programming process rather than integrating it into a
complete programming problem. Another approach to increasing external validity would be to
investigate whether the results generalize to other languages or contexts. Do Java programmers
who write auction programs also tend to accidentally lose assets? How does task performance
compare between Obsidian and other linearly-typed languages, such as Nomos [Das et al. 2019]?

Some of the usability results for Obsidian may generalize to other languages that use ownership,
such as Rust. Future work should investigate whether the usability tradeofs we observed here
occur in other languages.

We observed many Obsidian programmers making unsafe use of disown. Future research should
investigate how to more safely provide features that are safe in unusual situations but unsafe in situa-
tions that arise commonly. Some languages use naming conventions, such as łunsafe,ž to denote fea-
tures that defeat the language’s type system (e.g., Haskell’s System.IO.Unsafe.unsafePerformIO),
but here, the feature is a required part of the type system rather than a way of escaping from it.

17 CONCLUSION
As programming languages are tools for empowering programmers, empirical methods ofer an
opportunity for designers to provide evidence of the benefts of their work. In this study, we showed
that programmers who used Obsidian were able to complete more of the tasks correctly than those
using Solidity (ğ 12). We also showed that ownership alone can be used efectively with a short
training period and that assets can be used to detect bugs that would otherwise likely be inserted.
However, we also identifed areas of risk relating to language features that weaken the checks that
the compiler provides. Although few language designs have been evaluated in this way, our work
shows that it is possible to empirically evaluate a novel language, to both support hypotheses of
usability as well as identify areas for potential improvement. We also hope that our fndings of
usability for the less-common type system features we analyzed will lead to more adoption of safer,
more sophisticated type systems in future languages.

ACKNOWLEDGMENTS
This research was sponsored by the National Security Agency Department of Defense award
H9823018D0008; by the National Science Foundation awards CNS1423054 and CCF1901033; by the
United States Air Force Ofce of Scientifc Research award FA8702-15-D-0002; by two IBM PhD
Fellowship awards; and by Ripple. The views and conclusions contained in this document are those
of the author and should not be interpreted as representing the ofcial policies, either expressed or
implied, of any sponsoring institution, the U.S. government or any other entity.

REFERENCES
Yasemin Acar, Christian Stransky, Dominik Wermke, Michelle L Mazurek, and Sascha Fahl. 2017. Security developer studies

with GitHub users: Exploring a convenience sample. In Proceedings of the Thirteenth USENIX Conference on Usable Privacy
and Security. 81ś95.

Jonathan Aldrich, Joshua Sunshine, Darpan Saini, and Zachary Sparks. 2009. Typestate-oriented Programming. In Companion
of Object Oriented Programming Systems, Languages, and Applications (OOPSLA ’09). 1015ś1022. https://doi.org/10.1145/
1639950.1640073

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 132. Publication date: November 2020.

https://doi.org/10.1145/1639950.1640073
https://doi.org/10.1145/1639950.1640073

Can Advanced Type Systems Be Usable? An Empirical Study of Ownership, Assets, and Typestate in Obsidian 132:27

Brett A. Becker, Paul Denny, Raymond Pettit, Durell Bouchard, Dennis J. Bouvier, Brian Harrington, Amir Kamil, Amey
Karkare, Chris McDonald, Peter-Michael Osera, Janice L. Pearce, and James Prather. 2019. Compiler Error Messages
Considered Unhelpful: The Landscape of Text-Based Programming Error Message Research. In Working Group Reports
on Innovation and Technology in Computer Science Education (Aberdeen, Scotland Uk) (ITiCSE-WGR ’19). 177ś210.
https://doi.org/10.1145/3344429.3372508

Kevin Bierhof and Jonathan Aldrich. 2007. Modular Typestate Checking of Aliased Objects. In Object-oriented programming
systems, languages, and applications (OOPSLA ’07). 301ś320. https://doi.org/10.1145/1297027.1297050

Luís Caires and Frank Pfenning. 2010. Session types as intuitionistic linear propositions. In International Conference on
Concurrency Theory (CONCUR ’10). https://doi.org/10.1007/978-3-642-15375-4_16

Michael Coblenz, Jonathan Aldrich, Brad Myers, and Joshua Sunshine. 2020a. Obsidian vs. Solidity RCT Replication Package.
(8 2020). https://doi.org/10.1184/R1/12771074.v1

Michael Coblenz, Jonathan Aldrich, Brad A. Myers, and Joshua Sunshine. 2018. Interdisciplinary Programming Language
Design. In Symposium on New Ideas, New Paradigms, and Refections on Programming and Software (Onward! ’18). 133ś146.
https://doi.org/10.1145/3276954.3276965

Michael Coblenz, Gauri Kambhatla, Paulette Koronkevich, Jenna L. Wise, Celeste Barnaby, Joshua Sunshine, Jonathan
Aldrich, and Brad A. Myers. 2019a. PLIERS: A Process that Integrates User-Centered Methods into Programming
Language Design. arXiv:1912.04719

Michael Coblenz, Whitney Nelson, Jonathan Aldrich, Brad Myers, and Joshua Sunshine. 2017. Glacier: Transitive Class
Immutability for Java. In International Conference on Software Engineering (ICSE ’17). IEEE Press, 496ś506. https:
//doi.org/10.1109/ICSE.2017.52

Michael Coblenz, Reed Oei, Tyler Etzel, Paulette Koronkevich, Miles Baker, Yannick Bloem, Brad A. Myers, Joshua Sunshine,
and Jonathan Aldrich. 2020b. Obsidian: Typestate and Assets for Safer Blockchain Programming. ACM Transactions on
Programming Languages 42 (2020). Issue 3. https://doi.org/10.1145/3417516 To appear.

Michael Coblenz, Joshua Sunshine, Jonathan Aldrich, and Brad A. Myers. 2019b. Smarter Smart Contract Development
Tools. 2nd International Workshop on Emerging Trends in Software Engineering for Blockchain. https://doi.org/10.1109/
WETSEB.2019.00013

J. Czerwonka, M. Greiler, and J. Tilford. 2015. Code Reviews Do Not Find Bugs. How the Current Code Review Best Practice
Slows Us Down. In International Conference on Software Engineering (ICSE ’15, Vol. 2). 27ś28.

Ankush Das, Stephanie Balzer, Jan Hofmann, Frank Pfenning, and Ishani Santurkar. 2019. Resource-Aware Session Types
for Digital Contracts. arXiv:1902.06056 [cs.PL]

Robert DeLine and Manuel Fähndrich. 2004. Typestates for Objects. In European Conference on Object-Oriented Programming
(ECOOP ’04). https://doi.org/10.1007/978-3-540-24851-4_21

Kevin Delmolino, Mitchell Arnett, Ahmed Kosba, Andrew Miller, and Elaine Shi. 2016. Step by step towards creating a safe
smart contract: Lessons and insights from a cryptocurrency lab. In International conference on fnancial cryptography and
data security. https://doi.org/10.1007/978-3-662-53357-4_6

The Rust Project Developers. 2017. What is Ownership? (2017). Retrieved November 15, 2017 from https://doc.rust-
lang.org/book/second-edition/ch04-01-what-is-ownership.html

Sophia Drossopoulou, Ferruccio Damiani, Mariangiola Dezani-Ciancaglini, and Paola Giannini. 2002. More Dynamic
Object Reclassifcation: Fickle II. ACM Trans. on Programming Languages and Systems 24, 2 (March 2002), 153ś191.
https://doi.org/10.1145/514952.514955

Ethereum Foundation. 2020a. Ethereum Project. Retrieved February 18, 2020 from http://www.ethereum.org
Ethereum Foundation. 2020b. Solidity. Retrieved February 18, 2020 from https://solidity.readthedocs.io/en/develop/
Ethereum Foundation. 2020c. State Machine. Retrieved February 18, 2020 from https://solidity.readthedocs.io/en/v0.4.24/

common-patterns.html#state-machine
Ethereum Foundation. 2020d. Withdrawal from Contracts. Retrieved February 25, 2020 from https://solidity.readthedocs.io/

en/v0.6.3/common-patterns.html#withdrawal-from-contracts
Ethereum Foundation. 2020. Simple Open Auction. https://solidity.readthedocs.io/en/v0.6.3/solidity-by-example.html#simple-

open-auction
Ronald Garcia, Éric Tanter, Roger Wolf, and Jonathan Aldrich. 2014. Foundations of Typestate-Oriented Programming. ACM

Trans. on Programming Languages and Systems 36, 4, Article 12 (Oct 2014), 44 pages. https://doi.org/10.1145/2629609
Luke Graham. 2017. $32 million worth of digital currency ether stolen by hackers. CNBC. Retrieved November 2, 2017 from

https://www.cnbc.com/2017/07/20/32-million-worth-of-digital-currency-ether-stolen-by-hackers.html
Stefan Hanenberg, Sebastian Kleinschmager, Romain Robbes, Éric Tanter, and Andreas Stefk. 2014. An empirical study

on the impact of static typing on software maintainability. Empirical Software Engineering 19, 5 (oct 2014), 1335ś1382.
https://doi.org/10.1007/s10664-013-9289-1

David J. Houston and Lilliard E. Richardson. 2007. Risk Compensation or Risk Reduction? Seatbelts, State Laws, and Trafc
Fatalities. Social Science Quarterly 88, 4 (2007), 913ś936. https://doi.org/10.1111/j.1540-6237.2007.00510.x

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 132. Publication date: November 2020.

https://doi.org/10.1145/3344429.3372508
https://doi.org/10.1145/1297027.1297050
https://doi.org/10.1007/978-3-642-15375-4_16
https://doi.org/10.1184/R1/12771074.v1
https://doi.org/10.1145/3276954.3276965
https://arxiv.org/abs/1912.04719
https://doi.org/10.1109/ICSE.2017.52
https://doi.org/10.1109/ICSE.2017.52
https://doi.org/10.1145/3417516
https://doi.org/10.1109/WETSEB.2019.00013
https://doi.org/10.1109/WETSEB.2019.00013
https://arxiv.org/abs/1902.06056
https://doi.org/10.1007/978-3-540-24851-4_21
https://doi.org/10.1007/978-3-662-53357-4_6
https://doc.rust-lang.org/book/second-edition/ch04-01-what-is-ownership.html
https://doc.rust-lang.org/book/second-edition/ch04-01-what-is-ownership.html
https://doi.org/10.1145/514952.514955
http://www.ethereum.org
https://solidity.readthedocs.io/en/develop/
https://solidity.readthedocs.io/en/v0.4.24/common-patterns.html#state-machine
https://solidity.readthedocs.io/en/v0.4.24/common-patterns.html#state-machine
https://solidity.readthedocs.io/en/v0.6.3/common-patterns.html#withdrawal-from-contracts
https://solidity.readthedocs.io/en/v0.6.3/common-patterns.html#withdrawal-from-contracts
https://solidity.readthedocs.io/en/v0.6.3/solidity-by-example.html#simple-open-auction
https://solidity.readthedocs.io/en/v0.6.3/solidity-by-example.html#simple-open-auction
https://doi.org/10.1145/2629609
https://www.cnbc.com/2017/07/20/32-million-worth-of-digital-currency-ether-stolen-by-hackers.html
https://doi.org/10.1007/s10664-013-9289-1
https://doi.org/10.1111/j.1540-6237.2007.00510.x

132:28 Michael Coblenz, Jonathan Aldrich, Brad A. Myers, Joshua Sunshine

Kadena. 2019. PACT. https://pact.kadena.io
Erik Meijer and Peter Drayton. 2004. Static typing where possible, dynamic typing when needed: The end of the cold war

between programming languages. In OOPSLA ’04 Workshop on Revival of Dynamic Languages.
The University of Glasgow. 2001. System.IO.Unsafe. https://hackage.haskell.org/package/base-4.12.0.0/docs/System-IO-

Unsafe.html
John F. Pane, Brad A. Myers, and Leah B. Miller. 2002. Using HCI techniques to design a more usable programming system. In

Human Centric Computing Languages and Environments (HCC ’02). 198ś206. https://doi.org/10.1109/HCC.2002.1046372
Victor Pankratius and Ali-Reza Adl-Tabatabai. 2014. Software engineering with transactional memory versus locks in

practice. Theory of Computing Systems 55, 3 (2014), 555ś590. https://doi.org/10.1007/s00224-013-9452-5
Andrea Pinna, Simona Ibba, Gavina Baralla, Roberto Toonelli, and Michele Marchesi. 2019. A Massive Analysis of Ethereum

Smart Contracts Empirical Study and Code Metrics. IEEE Access 7 (2019). https://doi.org/10.1109/ACCESS.2019.2921936
Mozilla Research. 2015. The Rust Programming Language. Retrieved February 18, 2020 from https://www.rust-lang.org
Oracle Corp. 2019. Secure Coding Guidelines for the Java SE, version 4.0. Retrieved February 18, 2020 from https://www.

oracle.com/technetwork/java/seccodeguide-139067.html
Chris Sadler and Barbara Ann Kitchenham. 1996. Evaluating Software Engineering Methods and ToolÐPart 4: The Infuence

of Human Factors. SIGSOFT Softw. Eng. Notes 21, 5 (Sept. 1996), 11ś13. https://doi.org/10.1145/235969.235972
Franklin Schrans, Daniel Hails, Alexander Harkness, Sophia Drossopoulou, and Susan Eisenbach. 2019. Flint for Safer Smart

Contracts. (2019). arXiv:1904.06534
Robert C Seacord. 2013. Secure Coding in C and C++. Addison-Wesley Professional.
Ilya Sergey, Vaivaswatha Nagaraj, Jacob Johannsen, Amrit Kumar, Anton Trunov, and Ken Chan Guan Hao. 2019. Safer

smart contract programming with Scilla. In Object-oriented Programming, Systems, Languages, and Applications (OOPSLA
’19). https://doi.org/10.1145/3360611

Emin Gün Sirer. 2016. Thoughts on The DAO Hack. Hacking, Distributed. Retrieved February 18, 2020 from http:
//hackingdistributed.com/2016/06/17/thoughts-on-the-dao-hack/

Stack Overfow. 2019. Developer Survey Results 2019. Retrieved February 18, 2020 from https://insights.stackoverfow.com/
survey/2019

Andreas Stefk and Stefan Hanenberg. 2014. The Programming Language Wars: Questions and Responsibilities for the
Programming Language Community. In Symposium on New Ideas, New Paradigms, and Refections on Programming and
Software (Portland, Oregon, USA) (Onward! 2014). 283ś299. https://doi.org/10.1145/2661136.2661156

Andreas Stefk and Susanna Siebert. 2013. An empirical investigation into programming language syntax. ACM Transactions
on Computing Education (TOCE) 13, 4 (2013), 19. https://doi.org/10.1145/2534973

Robert E. Strom and Shaula Yemini. 1986. Typestate: A programming language concept for enhancing software reliability.
IEEE Trans. Software Engineering SE-12, 1 (1986), 157ś171. https://doi.org/10.1109/TSE.1986.6312929

Joshua Sunshine, James D. Herbsleb, and Jonathan Aldrich. 2014. Structuring Documentation to Support State Search: A
Laboratory Experiment about Protocol Programming. In European Conference on Object-Oriented Programming (ECOOP
’14). https://doi.org/10.1007/978-3-662-44202-9_7

Nick Szabo. 1997. Formalizing and Securing Relationships on Public Networks. First Monday 2, 9 (1997). https://doi.org/10.
5210/fm.v2i9.548

The Linux Foundation. 2020a. Hyperledger. (2020). Retrieved February 18, 2020 from https://www.hyperledger.org
The Linux Foundation. 2020b. Hyperledger Fabric. Retrieved February 18, 2020 from https://www.hyperledger.org/projects/

fabric
Phillip Merlin Uesbeck, Andreas Stefk, Stefan Hanenberg, Jan Pedersen, and Patrick Daleiden. 2016. An Empirical Study on

the Impact of C++ Lambdas and Programmer Experience. In International Conference on Software Engineering (Austin,
Texas) (ICSE ’16). ACM, 760ś771. https://doi.org/10.1145/2884781.2884849

Philip Wadler. 1990. Linear types can change the world. In Programming concepts and methods, Vol. 2. 347ś359.
Serdar Yegulalp. 2018. Rust language is too hard to learn and use, says user survey. https://www.infoworld.com/article/

3324488/rust-language-is-too-hard-to-learn-and-use-says-user-survey.html

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 132. Publication date: November 2020.

https://pact.kadena.io
https://hackage.haskell.org/package/base-4.12.0.0/docs/System-IO-Unsafe.html
https://hackage.haskell.org/package/base-4.12.0.0/docs/System-IO-Unsafe.html
https://doi.org/10.1109/HCC.2002.1046372
https://doi.org/10.1007/s00224-013-9452-5
https://doi.org/10.1109/ACCESS.2019.2921936
https://www.rust-lang.org
https://www.oracle.com/technetwork/java/seccodeguide-139067.html
https://www.oracle.com/technetwork/java/seccodeguide-139067.html
https://doi.org/10.1145/235969.235972
https://arxiv.org/abs/1904.06534
https://doi.org/10.1145/3360611
http://hackingdistributed.com/2016/06/17/thoughts-on-the-dao-hack/
http://hackingdistributed.com/2016/06/17/thoughts-on-the-dao-hack/
https://insights.stackoverflow.com/survey/2019
https://insights.stackoverflow.com/survey/2019
https://doi.org/10.1145/2661136.2661156
https://doi.org/10.1145/2534973
https://doi.org/10.1109/TSE.1986.6312929
https://doi.org/10.1007/978-3-662-44202-9_7
https://doi.org/10.5210/fm.v2i9.548
https://doi.org/10.5210/fm.v2i9.548
https://www.hyperledger.org
https://www.hyperledger.org/projects/fabric
https://www.hyperledger.org/projects/fabric
https://doi.org/10.1145/2884781.2884849
https://www.infoworld.com/article/3324488/rust-language-is-too-hard-to-learn-and-use-says-user-survey.html
https://www.infoworld.com/article/3324488/rust-language-is-too-hard-to-learn-and-use-says-user-survey.html

	Abstract
	1 Introduction
	2 The Obsidian Language
	3 The Solidity Language
	4 Study Design
	5 Participants
	6 Training
	7 Task Selection
	8 Auction Task
	8.1 Auction Task Design
	8.2 Auction Results and Discussion

	9 Prescription Task
	9.1 Prescription Task Design
	9.2 Prescription Results
	9.3 Prescription Discussion

	10 Casino Task
	10.1 Casino Task Design
	10.2 Casino Results and Discussion

	11 Post-study Survey Results
	12 Summary of Results
	13 Limitations and threats to validity
	14 Implications on PLIERS
	15 Related Work
	16 Future Work
	17 Conclusion
	Acknowledgments
	References

