Usability Hypotheses in the Design of Plaid

Jonathan Aldrich

Joshua Sunshine

Carnegie Mellon University

{aldrich,sunshiune}@cs.cmu.edu

Abstract

Plaid is a research programming language with a focus on
typestate, permissions, and concurrency. Typestate describes
ordering constraints on method calls to an object; Plaid in-
corporates typestate into both its object model and its type
system. Permissions, incorporated into Plaid’s type system
and runtime, describe whether a reference can be aliased
and whether aliases can change that reference. Permissions
support static typestate checking, but they also allow Plaid’s
compiler to automatically parallelize Plaid code.

In this paper, we describe the usability-related hypothe-
ses that drove the design of Plaid. We describe the evi-
dence, both informal and scientific, that inspired and (in
some cases) validated these hypotheses, and reflect on our
experience designing and validating the language.

Keywords typestate; permissions; programmability

1.

Typestate is an abstraction that divides an object’s life-
time into a sequence of abstract states, describing in which
state(s) each method can be invoked, and the state transi-
tion caused by each method. For example, a file may start
out in the Closed state, transition to the Open state when
the open() method is invoked, accept several calls to the
read () method while in this state, and finally transition to
the Closed state when the close () method is invoked.

Typestate in Plaid

1.1 Background Hypotheses

Our work on Plaid was motivated in part by the following
two background hypotheses, which developed out of our
prior work on object protocols

HI1: Many components define protocols of interaction
that clients must follow.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions @acm.org.

PLATEAU ’14, October 21, 2014, Portland, OR, USA..

Copyright is held by the owner/author(s). Publication rights licensed to ACM.

ACM 978-1-4503-2277-5/14/10. .. $15.00.
http://dx.doi.org/10.1145/2688204.2688219

63

H2: When developers are not aware of a component’s
protocol, they often make mistakes using it, and fixing these
mistakes is hard.

In prior work, we performed an empirical study on a
corpus of Java code to evaluate the first hypothesis, finding
that in Java approximately 7% of all types define protocols
[1]. That may not initially seem like much, but it is more
than twice as many types as define generic type parameters.

We initially investigated hypothesis H2 in an empirical
study of Spring and ASP.NET developer forums [6]. In our
study, we observed that protocol problems with developers
took hours or days to solve, even with expert help. Later,
we mined protocol-related programming problems from the
Stack Overflow forum and carried out observational studies
in the laboratory. We observed that programmers working on
these tasks spent 71% of their time searching the Java library
documentation for information about the relevant protocol—
and found that many of their searches were poorly supported
by the standard Javadoc library documentation [9].

In case studies of Plural, a Java-annotation typestate spec-
ification and checking tool, we found few defects in source
code repositories [2]. Since we did observe programmers
making mistakes with protocols in our laboratory studies,
we hypothesize that:

H3: Protocol errors do not often make it into production,
perhaps because they are easily caught by testing.

If true, this hypothesis implies that tools and languages
that support typestate should not have their primary aim
be to correct errors in production code, but rather to help
developers be more productive. This could be accomplished
by helping developers learn about typestate constraints so
they can write code more quickly and avoid introducing
errors in the first place, or it could be accomplished by
helping developers find errors more quickly than they could
through testing.

1.2 A Typestate-Based Object Model

Plaid provided a novel object model that incorporated types-
tate in a first-class way [11]. For example, one might declare
a stateful File abstraction as shown in Listing 1.

In this example, the state abstraction generalizes the
class abstraction from typical object-oriented languages to
describe an abstract state. The different states of File are

1 | state File {
2 val filename;

3 [}

5 | state Closed case of File {

6 method open() {

7 this <- Open { val filePtr = ...
s [}

30}

0 | state Open case of File {

11 val filePtr;

12 method read() { ... }

13 method close() { this <- Closed; }
14 }

Listing 1. File states in Plaid

represented as cases (similar to subclasses). The open ()
method is provided only in the Closed state. It is imple-
mented with a primitive state transition operation, written
this <- Open{ ... }, which changes the state of the cur-
rent object this from the Closed state to the Open state.

We based this design on several hypotheses which bear
on the usability of the language to represent concepts that
incorporate state:

H4: Providing state in the language’s object model will
enable the code to more closely reflect the programmer’s
intended design.

HS5: Making states explicit will make state constraints
more salient to developers who need to be aware of them.

While our papers contain examples like the code above
that intuitively seem to represent state more directly than
approaches such as the State design pattern [3], it would be
nice to evaluate this hypothesis more rigorously. Plaid code
is still arguably less explicit than a statechart [5], but our
state abstraction has the advantage that individual states
can be reused as part of different stateful abstractions [11].

We also had hypotheses about how state support might
help developers more directly:

H6: Making states explicit will make the invariants of
objects easier to understand and will help programmers
avoid errors.

H7: Making states explicit will enable the runtime system
to give developers better error messages when they misuse
typestate dynamically.

Hypothesis H6 was again not evaluated directly, but the
intuition behind it is shown in the example code above.
Because the filePtr field only exists in the Open state,
there is no need to set the field to null or some other sentinel
value in the Closed state, in which there is no meaningful
value for this field. As for Hypothesis H7, Plaid’s runtime is
indeed able to tell the programmer when a method that does
not exist in the current state is invoked. Intuitively, this seems
better than allowing the call to proceed in a meaningless
state and relying on the library writer to provide defensive

64

code to check that the object is in the proper state. However,
as yet we do not have concrete evidence in support of this
hypothesis.

1.3 Checking Typestate Statically

We also worked on a type system that would allow us to
check that clients use stateful libraries correctly—e.g. that
they do not invoke read() on a File that is Closed [4].
Because of our earlier experience with Plural, we did not
expect this type system to eliminate many defects from pro-
duction code. Instead, we hypothesized that:

HS8: A significant benefit of types (including protocol
types) is that they provide correct and easily accessible (e.g.
via the IDE) documentation for programmers, helping pro-
grammers write code more quickly and correctly.

Recently, we were able to validate this hypothesis indi-
rectly. We looked at the protocol-related programming tasks
from the qualitative study mentioned above [9] and isolated
questions that programmers had to answer about protocols
in order to carry out these tasks. One benefit of static type-
state information is that Javadoc-like documentation can be
generated that is organized by the state the object is in, and
makes state transitions explicit. In a laboratory experiment,
we showed that developers were able to answer protocol-
related questions in half the time and with fewer errors when
they used typestate-enhanced documentation compared to
plain Javadoc [10]. Our work reinforces earlier result that
also found that types provide documentation benefits [7].

2. Permissions in Plaid

In order to support static typestate checking in Plaid, pro-
grammers must declare a permission for each variable, de-
scribing whether the variable is aliased and whether the
aliases could change the state of the object. For example,
a unique variable is unaliased, and so the type system can
easily track changes to its typestate through that variable. On
the other hand, a shared variable may be aliased by other
variables, and so the static type system must conservatively
assume that the typestate of the object it points to could be
changed through other references.

Our earlier work in the Plural system also leveraged per-
missions. However, we hypothesized that:

HY9: We can provide an easier-to-use type system by build-
ing permissions into the language’s type system, compared
to layering permissions on top of Java.

We did not evaluate this hypothesis empirically; however,
the types in Plaid are quite obviously more succinct and
anecdotally seem simpler to us than the previous systems we
designed for Java. Building permissions into the language
also allowed us to explore run-time checking of permissions,
supporting casts and/or a gradual type system [12]. This
leads to another hypothesis:

HI10: A type system that provides run-time checking in
the form of casts or similar constructs can be more usable

than a system without run-time checks, because the latter
may require complex static constructions in places where the
former uses a cast.

A concrete example of H10 is Java’s original type system,
which did not support generics. Generic collections were
supported by using casts to get the proper type of object out
of a collection. This resulted in many run-time checks that
could fail, but it did keep Java’s original type system very
simple.

Another hypothesis regarding permissions was:

H11: Permission assertions are useful in their own right
for design documentation or encapsulation.

While we did not investigate this hypothesis in the Plaid
project, other research has applied permissions similar to the
ones we used in Plaid to a variety of problems including both
design documentation and encapsulation. We believe that
identifying a core set of permissions that provides a wide
variety of benefits is a fruitful direction for future work in
language design.

3. Parallelism in Plaid

Plaid was designed not just to support typestate, but also par-
allel programming. The central idea is that Plaid’s permis-
sions provide additional information about aliasing that can
be used to parallelize the program automatically. We hypoth-
esized that:

H11: By leveraging the same permissions for both type-
state and concurrency, we can provide programmers with
more benefit per unit cost compared to using separate per-
mission and type systems for these features.

In the Plaid project, we did indeed show that it was pos-
sible to leverage the same core set of permissions for both
purposes [8], but did not explicitly evaluate the compara-
tive costs and benefits. A core aspect of Plaid’s approach to
parallelism (we used the name Aminium to capture Plaid’s
concurrency-related features) was that programmers can fo-
cus on the dependencies within the program rather than mul-
tiple threads of control, which we hypothesized would pro-
vide usability benefits:

H12: It is easier for programmers to think correctly about
dependencies rather than multiple threads of control.

H13: Programmers using Aminium’s Parallel by Default
model will expose more concurrency than is typically ex-
posed in explicit concurrency models.

We hope these hypotheses can be evaluated empirically
in the future.

4. Discussion and Conclusion

The Plaid language design was based on a number of hy-
potheses that touch on the usability of programming lan-
guages, especially with respect to typestate, type systems,
permissions, and concurrency. We were able to validate a
few of the hypotheses, especially those that motivated our
focus on typestate in the first place, and examined the docu-

65

mentation benefits provided by typestate. At the same time,
many hypotheses that were validated at best anecdotally.
Providing empirical validation for hypotheses such as these
is a challenging task: while each of the papers on Plaid’s lan-
guage design was based (explicitly or implicitly) on several
hypotheses, the few hypotheses we did validate each took at
least one paper to validate, and more work could be done
even on these.

Most of the hypotheses listed in this paper deal with the
usability of particular features of Plaid as independent en-
tities. We have some evidence, however, that some features
work less in combination than they do independently. In par-
ticular, in unpublished pilot studies participants confused ac-
cess permissions with typestate annotations. For example, in
one task all three participants thought that the pure permis-
sion was an abstract state. This confusion was likely due in
part to the fact that the study required participants to learn
two new concepts (access permissions and typestate annota-
tions) at once. More generally, these early results are a wor-
rying sign for those hoping to layer specialized verification
systems on top of one another. We would like to investigate
these combinations further.

While we would have liked to validate all the hypothe-
ses on which the design of Plaid is based, in practice we are
happy that some progress has been made toward this goal.
The process of science involves the generation of hypothe-
ses, the generation of artifacts to test them (concrete pro-
gramming language designs, in this case), and evaluation of
the hypotheses. Each of these has a role to play and a sci-
entific paper may provide value in any of the three areas. In
particular, there is value in designers of languages making
their hypotheses about usability more explicit, and we thank
PLATEAU for giving us a chance to do that for Plaid. Ul-
timately, we hope that researchers (both in our group and
outside it) will be able to evaluate some of these hypotheses
more fully in the future.

Acknowledgements

This research was supported in part by the National Sci-
ence Foundation under grant #CCF-1116907, “Foundations
of Permission-Based Object-Oriented Languages.”

References

[1] N. E. Beckman, D. Kim, and J. Aldrich. An empirical study
of object protocols in the wild. In European Conference on
Object-Oriented Programming (ECOOP), 2011.

[2] K. Bierhoff, N. E. Beckman, and J. Aldrich. Practical API Pro-
tocol Checking with Access Permissions. In European Con-
ference on Object-Oriented Programming (ECOOP), 2009.

[3] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. De-
sign Patterns: Elements of Reusable Object-Oriented Soft-
ware. Addison-Wesley, 1994.

[4] R. Garcia, E. Tanter, R. Wolff, and J. Aldrich. Foundations of
typestate-oriented programming. ACM Transactions on Pro-

gramming Languages and Systems (TOPLAS), 36(4), October
2014.

[5] D. Harel. Statecharts: A visual formalism for complex sys-
tems. Sci. Comput. Program., 8(3):231-274, June 1987.

[6] C. Jaspan and J. Aldrich. Are object protocols burdensome?
an empirical study of developer forums. In Workshop on
Evaluation and Usability of Programming Languages and

Tools (PLATEAU), 2011.

[7] C. Mayer, S. Hanenberg, R. Robbes, E. Tanter, and A. Stefik.
An empirical study of the influence of static type systems on
the usability of undocumented software. In Object-Oriented
Programming, Systems, Languages, and Applications (OOP-
SLA), 2012.

[8] S. Stork, K. Naden, J. Sunshine, M. Mohr, A. Fon-
seca, P. Marques, and J. Aldrich. ZAminium: A permis-
sion based concurrent-by-default programming language ap-

66

proach. ACM Transactions on Programming Languages and
Systems (TOPLAS), 36(1):2:1-2:42, March 2014.

[9] J. Sunshine. Protocol Programmability. PhD thesis, Carnegie
Mellon University, 2013.

[10] J. Sunshine, J. Herbsleb, and J. Aldrich. Structuring documen-
tation to support state search: A laboratory experiment about
protocol programming. In European Conference on Object-
Oriented Programming (ECOOP), 2014.

[11] J. Sunshine, K. Naden, S. Stork, J. Aldrich, and E. Tanter.
First-class state change in Plaid. In Object-Oriented Pro-
gramming, Systems, Languages, and Applications (OOPSLA),
2011.

[12] R. Wolff, R. Garcia, E. Tanter, and J. Aldrich. Gradual type-

state. In European Conference on Object-Oriented Program-
ming (ECOOP), 2011.

