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Point p, q, r, s
Segment a := {p, q}
Segment b := {p, r}
Point m := Midpoint(a)
Angle theta := ∠(q, p, r)
Triangle t := {p, r, s}
Ray w := Bisector(theta)
Ray h := PerpendicularBisector(a)

Style — Euclidean Style — spherical Style — hyperbolic

Fig. 1. Penrose is a framework for specifying how mathematical statements should be interpreted as visual diagrams. A clean separation between abstract
mathematical objects and their visual representation provides new capabilities beyond existing code- or GUI-based tools. Here, for instance, the same set of
statements (left) is given three different visual interpretations (right), via Euclidean, spherical, and hyperbolic geometry. (Further samples are shown in Fig. 29.)

We introduce a system called Penrose for creating mathematical diagrams. 
Its basic functionality is to translate abstract statements written in familiar
math-like notation into one or more possible visual representations. Rather
than rely on a fixed library of visualization tools, the visual representation is 
user-defined in a constraint-based specification language; diagrams are then
generated automatically via constrained numerical optimization. The sys-
tem is user-extensible to many domains of mathematics, and is fast enough 
for iterative design exploration. In contrast to tools that specify diagrams
via direct manipulation or low-level graphics programming, Penrose en-
ables rapid creation and exploration of diagrams that faithfully preserve
the underlying mathematical meaning. We demonstrate the effectiveness
and generality of the system by showing how it can be used to illustrate a 
diverse set of concepts from mathematics and computer graphics.
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1 INTRODUCTION
“Mathematicians usually have fewer and poorer figures

in their papers and books than in their heads.”
—William Thurston

Effective communication of mathematical ideas is a major chal-
lenge for students, educators, and researchers. Though modern
mathematics has a strong cultural bias toward formal language
[Mashaal 2006], visualization and illustration undoubtedly have an
equally profound impact on mathematical progress [Thurston 1998].
Yet the ability to translate abstract concepts into concrete illustra-
tions is often limited to the select few individuals who have both a
deep understanding of mathematics and an intimate knowledge of
graphical tools. As a result, diagrams are rather scarce in mathemat-
ical writing—for instance, recent mathematical papers from arXiv
have on average only one figure every ten pages. A central goal of
this work is to lower the barrier to turning mathematical ideas into
effective, high-quality visual diagrams. In the same way that TEX
and LATEX have democratized mathematical writing by algorithmi-
cally codifying best practices of professional typesetters [Beeton and
Palais 2016], Penrose aims to codify best practices of mathematical
illustrators into a format that is reusable and broadly accessible.
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Our approach is rooted in the natural separation in mathemat-
ics between abstract definitions and concrete representations. In
particular, the Penrose system is centered around the specification
of a mapping from mathematical objects to visual icons (Sec. 2).
Such mappings are expressed via domain-specific languages (DSLs)
that reflect familiar mathematical notation and can be applied to
obtain new capabilities that are difficult to achieve using existing
tools (Sec. 2.4). A key distinction is that Penrose programs encode
a family of possible visualizations, rather than one specific diagram.
Hence, effort put into diagramming can easily be reused, modified,
and generalized. This approach has several broad-reaching benefits:

• Accessibility. Novice users can generate diagrams by simply
typing mathematical statements in familiar notation, leverag-
ing the efforts of more expert package developers.

• Separation of content and presentation. The ability to
easily swap out different visual representations helps deepen
understanding by illustrating the same mathematical con-
cepts from many different visual perspectives.

• Evolution of collections. Existing collections of diagrams
can easily be improved and modified to meet the needs of
a target platform, e.g. desktop vs. mobile, different printing
processes, or different language localizations.

• Large-scale generation. It becomes easy to generate large
collections of illustrations to explore an idea, or to accompany,
say, randomly-generated homework exercises.

Beyond describing the implementation of Penrose, the purpose
of this paper is to explore the general challenge of designing systems
for diagram generation. We hence start with a discussion of goals
and trade-offs that inform our system design (Sec. 2). Readers may
also find it helpful to periodically refer to the more detailed but
purely descriptive account of the system given in Sec. 3 and Sec. 4.

2 SYSTEM DESIGN
“One must be able to say at all times—instead of points,

straight lines, and planes—tables, chairs, and beer mugs.”
—David Hilbert

Our aim is to build a system for converting abstract mathematical
ideas into visual diagrams. Choices about system design are guided
by several specific goals, many of which are supported by interviews
we did with users of diagramming tools [Ma’ayan et al. 2020]:

(1) Mathematical objects should be expressed in a familiar way.
(2) The system should not be limited to a fixed set of domains.
(3) It should be possible to apply many different visualizations

to the same mathematical content.
(4) There should be no inherent limit to visual sophistication.
(5) It should be fast enough to facilitate an iterative workflow.
(6) Effort spent on diagramming should be generalizable and

reusable.

To achieve these goals, we take inspiration from the way diagrams
are often drawn by hand. In many domains of mathematics, each
type of object is informally associated with a standard visual icon.
For instance, points are small dots, vectors are little arrows, etc. To
produce a diagram, symbols are systematically translated into icons;
a diagrammer then works to arrange these icons on the page in a

coherent way. We formalize this process so that diagrams can be
generated computationally, rather than by hand. Specifically,

The two organizing principles of Penrose are:
(i) to specify diagrams via a mapping from mathematical

objects to visual icons, and
(ii) to synthesize diagrams by solving an associated con-

strained optimization problem.

Just as the occupant of Searle’s “Chinese room” does not actually
understand a foreign language [Cole 2014], a system designed this
way need not perform deep reasoning about mathematics—it simply
does a translation. We hence do not expect our system to solve all
challenges of diagramming. Users are still responsible for, say,

• choosing meaningful notation for a mathematical domain,
• inventing a useful visual representation of that domain, and
• ensuring that diagrams correctly communicate meaning.

Likewise, a system cannot be expected to solve hard computational
or mathematical problems (e.g., the halting problem or Fermat’s last
theorem) in order to construct diagrams. Yet despite this shallow
level of reasoning, Penrose is able to generate quite sophisticated
diagrams. In fact, even in the absence of such reasoning, naïve
visualization often provides useful observations (Fig. 2).

Set A, B

Point p

A ⊂ B

p ∈ A

p < B

Fig. 2. An optimization-based approach
has myriad benefits. Here a logically in-
consistent program fails gracefully, pro-
viding visual intuition for why the given
statements cannot hold.

The resulting system effec-
tivelymodels diagram genera-
tion as a compilation process,
where the compilation target
is a constrained optimization
problem rather than (say) a bi-
nary executable or a static im-
age. Once compiled, this prob-
lem can be used and reused
to generate visual diagrams;
Fig. 3 illustrates the high-level
system flow. From a program-
ming language point of view,
a mapping expressed in this framework defines an executable visual
semantics. That is, it gives a specific, visual, and computable inter-
pretation to what were previously just abstract logical relationships.

numerical
solver

compiler optimization
problem

diagrams

source code

Substance
mathematical
contentDomain

language
definition Style

visual
representation

(interchangeable)
.STY .STY

.DSL

.STY

.SUB

Fig. 3. High-level pipeline: a compiler translates mathematical statements
and a chosen visual representation into a constrained optimization problem.
This problem is then solved numerically to produce one or more diagrams.
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PathType t
HasForm(t,"L(D|S)S*E")
Path p := Sample(t)

Fig. 4. By specifying diagrams in terms of abstract relationships rather than
explicit graphical directives, they are easily adapted to a wide variety of use
cases. Here we use identical Penrose code to generate ray tracing diagrams
for several targets (Sec. 5.6). Though the arrangement and number of objects
changes in each example, the meaning remains the same.

2.1 Language-Based Specification
A major decision in Penrose is to use programming languages
to specify both mathematical objects (Sec. 2.1.2) and their visual
representation (Sec. 2.1.3). Graphical (e.g., sketch-based) specifi-
cation would demand that users already know how to visualize
abstract ideas, and it ties mathematical content to one specific vi-
sual representation, which conflicts with Goal 3. A language-based
specification provides the level of abstraction needed to separate
content from visualization. This technique supports Goal 1, since
language is the most common means by which mathematical ideas
are expressed. From a system design point of view, a language-based
encoding provides a unified representation for identifying and trans-
forming mathematical objects throughout the pipeline. Moreover,
a language-based interface makes it easy for Penrose to provide
a platform on which other diagramming tools can be built (as in
Sec. 4.5 or Sec. 5.7). One trade-off is that a language-based approach
requires users to express themselves in formal mathematical or com-
putational language, making it more difficult for (say) visual artists
and designers to contribute new representations.
A secondary decision is to split specification of mathematical

content and visualization across two domain-specific languages:
Substance and Style. A good analogy is the relationship between
HTML [Berners-Lee and Connolly 1995], which specifies content,

Fig. 5. Similar to the TEX
ecosystem, most users need
only use the Substance lan-
guage, but can benefit from
packages written by more
expert Domain and Style
programmers.

Substance
(typical users)

Domain/Style
(package developers)

Fig. 6. One benefit of a uni-
fied framework is that differ-
ent domains are easily com-
bined. Here, two existing pack-
ages (for meshes and set the-
ory) were combined to illus-
trate that a simplicial complex
(left) is closed with respect to
taking subsets (right).

and CSS [Lie et al. 2005], which describes how it is rendered. A
schema calledDomain (analogous to XML or JSON schemas) defines
the mathematical domain of interest, supporting Goal 2. In line
with Goal 3, this division allows the same styles to be reused for
different content, and likewise, the same content to be displayed
in many different styles. Our goal is for this division to support an
ecosystem where novice users can benefit from packages written by
more experienced developers (Fig. 5). Finally, as in mathematics, the
ability to adopt user-defined, domain-specific notation (Sec. 2.1.1)
enables efficient expression of complex relationships in a way that
is both concise and easy to understand [Kosar et al. 2012]. Encoding
ideas directly in the idiom of a problem domain often results in
better program comprehension than (say) a sequence of library calls
in a general-purpose language [Van Deursen et al. 2000]. We discuss
the scope and limitations of our languages in Sec. 6.

2.1.1 Mathematical Domain (Domain). One of our primary goals
(Goal 2) is to build a unified system for diagramming, rather than to
focus on specific domains (as in, say, GraphViz [Ellson et al. 2004] or
GroupExplorer [Carter and Ellis 2019]). A unified design enables ob-
jects from different domains to coexist in the same diagram, often by
doing little more than concatenating source files (Fig. 6). Moreover,
effort put into (say) improving system performance or rendering
quality is amortized across many different domains.

Users can work in any area of mathematics by writing so-called
Domain schemas (Sec. 3.1) that define DSLs tailored to a given do-
main. This design also empowers users to adopt their own notation
and conventions for modeling the domain. Use of domain- and user-
specific notation reflects common practice in mathematical writing,
where the meaning of a symbol is frequently overloaded depending
on context. Importantly, aDomain schema is purely abstract: it does
not define an internal representation for objects, nor does it give
definitions to functions or predicates. This level of abstraction is
crucial for Goal 3, since it allows multiple visual representations to
later be applied to objects from the same domain.

2.1.2 Mathematical Content (Substance). To define the content of
a diagram, one must be able to specify (i) the objects in the diagram,
and (ii) relationships among these objects. In line with Goal 1, Sub-
stance uses concise assertions that resemble standard mathematical
prose (see for example Fig. 7). Formally, it can model any domain
expressible in a compositional language of types, functions, and
predicates, which are the basic constructs found in conventional
mathematical notation [Ganesalingam 2013]. Just as definitions are
typically immutable in mathematics, Substance draws inspiration
from strongly typed functional languages (such as ML [Milner et al.
1997]) where objects are stateless. This choice also simplifies system
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For any vector space
X , let u, v ∈ X be
orthogonal vectors of
equal length, and let
w = u+v . Thenu and
w make a 45◦ angle.

VectorSpace X

Vector u, v ∈ X

Orthogonal(u, v)

EqualLength(u, v)

Vector w ∈ X

w := u + v

Fig. 7. Extensibility enables users to adopt conventions and notation (center)
that reflect the way they naturally write mathematical prose (left). Here,
the resulting diagram (right) plays the role of the concluding statement.

implementation, since the compiler can assume fixed definitions. A
conscious design decision, in line with Goal 3, is to exclude all graph-
ical data (coordinates, sizes, colors, etc.) from Substance—since its
sole purpose is to specify abstract relationships rather than quantita-
tive data. All such data is instead specified in Style or determined
via optimization. This division relieves users from the burden of
tedious and repetitive graphics programming, which can instead be
factored out into reusable Style code.

Existing languages would be difficult to use in place of Substance
since they lack the semantics needed to encode complex logical
relationships and do not provide language-level extensibility. For
instance, TEX [Beeton and Palais 2016] and MathML [Miner 2005]
markup provide only enough information to translate plain text into
mathematical glyphs; computer algebra systems like Mathematica
and Maple have limited type systems or provide only a small set of
fixed predicates (e.g., asserting that a number is real). Conversely,
the much richer languages used by automated theorem provers
and proof assistants (such as Coq [Bertot and Castéran 2013] and
Lean [de Moura et al. 2015]) are overkill for simply specifying di-
agrams. A custom language provides simple, familiar syntax and
clear error messages. We do however adopt some ideas from Coq,
such as the ability to customize syntactic sugar (Sec. 3.1).

2.1.3 Mathematical Visualization (Style). The meaning of a dia-
gram is largely conveyed by relative relationships rather than abso-
lute coordinates. Moreover, diagrams are often underconstrained:
relationships needed to convey the intended meaning determine a
family of possible solutions, rather than a single unique diagram.
Style hence adopts a constraint-based approach to graphical speci-
fication in the spirit of Sketchpad [Sutherland 1964]: diagrams are
built up from hard constraints that must be satisfied and soft penal-
ties that are minimized (Sec. 3.3.6), then unspecified quantities are
solved for via numerical optimization (Sec. 4). Though procedural
definitions can still be used, the programmer need not provide ab-
solute coordinates (as in imperative languages like PostScript or
OpenGL). Though an implicit specification can make output hard
to predict, part of the allure of Penrose is the potential to find
interesting or surprising examples. Moreover, the approach yields
more concise code; for instance, Style programs are much shorter
than the SVG files they produce.

An alternative designmight be to use an application programming
interface (API), though historically APIs have been eschewed for
specification languages for good reason. Language provides far more

optimizing

Fig. 8. An optimization-based approach makes it possible to jointly optimize
visual attributes that are difficult to coordinate by hand. Here for instance
we optimize color contrast according to the spatial proximity of adjacent
disks (left to right), ultimately discovering a two-color solution (far right).
The system can also be used to debug the optimization process itself—in
this case by drawing the hue of each disk as a dot on a color wheel.

concise expression of complex relationships—imagine styling an en-
tire website via the DOMAPI’s getElementById() and setStyle()
methods, versus a few short lines of CSS. Visual programming lan-
guages (like LabView [Elliott et al. 2007] or Grasshopper [McNeel
et al. 2010]) might suffice for basic specifications (e.g., vectors should
be drawn as arrows), but don’t scale to more complex concepts that
are easily expressed via language [Burnett et al. 1995].
A key design challenge is identifying objects that appear in a

Substance program. Objects in a given mathematical universe are
distinguished not only by their type, but also by their relationships
to other objects. A widely-used mechanism for specifying such
relationships is through CSS-like selectors. Style adopts a similar
mechanism that performs pattern matching on the types, functions,
and predicates appearing in a Domain schema (Sec. 3.3.1).

2.2 Optimization-Based Synthesis
The second major design decision in Penrose is to use constrained
optimization to synthesize diagrams satisfying a given specification
(Sec. 4). This approach is again inspired by how people often draw
diagrams by hand (e.g., using GUI-based tools): visual icons are
placed on a canvas and iteratively adjusted until no further improve-
ments can be made. In difficult scenarios, a diagrammer may try
several global arrangements before refining the final design, though
typically no more than a few. Automating this process makes it easy
to perform layout tasks that would be tedious by hand (Fig. 8).
There are good reasons to believe that an optimization-based

approach can scale to very complex diagrams. First, attractive dia-
grams need not be optimal in a global sense—they should simply not
permit obvious local improvements, such as text that could easily
be moved closer to the item it labels. In fact, disparate local min-
ima can provide useful examples that help build intuition (Fig. 9).
Second, even sophisticated diagrams have surprisingly few degrees
of freedom in comparison to many modern optimization problems
(e.g., tens or hundreds, versus thousands or millions). Finally, strate-
gies employed by expert diagrammers can be applied to manage
complexity, such as independently optimizing small components of
a diagram (akin to nonlinear Gauss-Seidel), rather than optimizing
all degrees of freedom simultaneously.
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Fig. 9. A language-based design makes it easy to build tools on top of
Penrose that provide additional power. Here we use standard techniques
from program synthesis (Sec. 5.7) to automatically enumerate how the
given relationships can be realized. Generating such examples helps to see
important corner cases that might be missed when drawing diagrams by
hand (where perhaps the top-left diagram most easily comes to mind).

In line with Goals 2 and 3, an optimization-based approach can
be applied generically and automatically for any user-defined do-
main and visual representation, without requiring programmers
to think about the details of the layout process. In our system, the
optimization problem is defined using common-sense keywords
(Sec. 3.3.6) in Style and chaining together basic operations (e.g.,
arithmetic). Since the diagram specification is divorced from the
details of the solver, optimization strategies can be changed and
improved in future versions of the system while preserving compat-
ibility with existing code. The main cost of an optimization-based
approach is that it puts demands on system design “upstream”: all
expressions used to define a visual style must be differentiable. As
discussed in Sec. 4.2, these requirements are largely satisfied via
standard techniques (e.g. by using automatic differentiation).
In general, diagram optimization is a challenging problem in its

own right, which we of course do not aim to solve conclusively
in this paper. Currently, we just use a generic constrained descent
solver (Sec. 4.2). However, we have been pleased to find that this
simple approach handles a wide variety of examples from different
domains without requiring domain-specific strategies.

2.3 Plugins
The final design decision in Penrose is to provide system-level
extensibility via a plugin interface for calling external code in Sub-
stance and Style. Providing a plugin system is essential to enable
users to integrate external code that is specialized to solve particular
logical or graphical challenges. In fact, such interfaces for integrat-
ing external code are already provided by many systems (e.g., TEX,
Adobe Illustrator, and TikZ’s plugin system for graph layout algo-
rithms [Ellson et al. 2001]). The interface for Penrose plugins is
designed to define a clear and simple boundary between the Pen-
rose system and the plugin while enabling each component to focus
on its strengths. A plugin can analyze and augment the set of ab-
stract objects defined in Substance as well as analyze and augment
the numerical information in Style. This simple interface allows
plugins to be written in any language (or repurposed from other sys-
tems) and operate independently from the implementation details of
Penrose. However, a plugin cannot change an existing Substance

or Style program or directly generate static graphical content, since
such plugins would abandon the benefits that Penrose provides,
such as the ability to re-style content and avoid use of absolute
coordinates. Fig. 4 illustrates how a simple plugin can make use of
Substance and Style information to create “responsive” diagrams.

2.4 Related Systems
Here we consider how our system design relates to other systems
that convert abstract mathematical ideas into visual diagrams. Other
classes of tools, such as general-purpose drawing tools (e.g., Adobe
Illustrator) can also be used to make diagrams, though one quickly
runs into barriers, such as for large-scale diagram generation or
evolving the style of a large collection of existing diagrams. A
broader discussion of related work can be found in a pilot study we
did on how people use diagramming tools [Ma’ayan et al. 2020].
There are three main kinds of systems that convert an abstract

form of input (e.g., an equation or code) into a visual representation.
Language-based systems, such as TikZ [Tantau [n. d.]] (which builds
on TEX), are domain-agnostic and provide significant flexibility for
the visual representation. Their use of “math-like” languages influ-
enced the design of Substance. However, existing systems do not
aim to separate mathematical content from visual representation.
For instance, TikZ is domain- and representation-agnostic because
it requires diagrams to be specified at a low level (e.g., individual
coordinates and styles) making programs hard to modify or reuse.
Moreover, since there are only shallow mathematical semantics, it
becomes hard to reason about programs at a domain level.

Plotting-based systems, like Mathematica and GeoGebra [Hohen-
warter and Fuchs 2004] enable standard mathematical expressions
to be used as input and automatically generate attractive diagrams.
Just as a graphing calculator is easy to pick up and use for most
students of mathematics, these tools inspired us to provide a “tiered”
approach to Penrose that makes it accessible to users with less
expertise in illustration (Fig. 5). However, much like a graphing
calculator, the visual representations in these systems are largely
“canned,” and the set of easily accessible domains is largely fixed.
For instance, Mathematica does not permit user-defined types, and
to go beyond system-provided visualization tools, one must provide
low-level directives (in the same spirit as tools like TikZ ).
Finally, systems like graphviz [Ellson et al. 2004], and Geometry

Constructions Language [Janičić 2006] translate familiar domain-
specific language into high-quality diagrams. Here again, the do-
mains are fairly narrow and there is little to no opportunity to ex-
pand the language or define new visualizations. Yet the convenience
and power of such systems for their individual domains inspired us
to build a system with greater extensibility. More broadly, while all
these systems share some design goals with ours, a key distinction
is that Penrose is designed from the ground up as an extensible
platform for building diagramming tools, rather than a monolithic
end-user tool.

3 LANGUAGE FRAMEWORK
The Penrose language framework comprises three languages that
play different roles:
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• A Domain schema declares the objects, relationships, and
notation available in a mathematical domain.

• A Substance program makes specific mathematical asser-
tions within some domain.

• A Style program defines a generic mapping from mathe-
matical statements in some domain to a visual representation.

A package consisting of a Domain, and one or more compatible
Style programs, can be used to illustrate Substance programs from
a given domain (Fig. 3). Though some starter packages are provided
for the examples discussed in Sec. 5, the real power of Style and
Domain is that they enable Penrose to be easily extended. In this
section we illustrate these languages via the running example of a
linear algebra package (Figures 10 through 12). Formal grammars
for the three languages are given in supplemental material.

3.1 The Domain Schema
A Domain schema describes a domain of mathematics by defining
the objects and notation that can be used by associated Substance
and Style programs. A partial example for linear algebra is shown
in Fig. 10 (the full schema is provided in supplemental material). The
type lines define the available object types, function lines define
the domain and codomain for the set of available functions (where
* denotes a Cartesian product), and predicate lines define the
possible relationships among objects, including unary predicates.
Importantly, a Domain schema is purely abstract: it does not define
a specific representation for objects, nor does it define bodies for
functions or predicates. For instance, we do not say here that a vector
is encoded by a list of coordinates, nor do we write an addition
operation on such coordinates. A concrete visual interpretation of
these definitions is given by a Style program (Sec. 3.3). Types can
be given fields via constructors. For instance, the line

constructor MakeInterval: Real min * Real max -> Interval

assigns fields min and max to an Interval, which can be accessed
from a Substance or Style program (e.g., to assert a relationship
between endpoints). Subtyping via the syntax Subtype <: Type
facilitates generic programming. Finally, notation lines define
optional syntactic sugar that can simplify code (e.g., in Fig. 11).

3.2 The Substance Language
Each statement in the Substance language either (i) declares an
object, (ii) specifies properties of an object, or (iii) specifies relation-
ships among objects within some Domain schema. As in mathe-
matics, not all attributes need be fully specified. For instance, one
can talk about a point without giving it explicit coordinates. To-
gether, these statements describe a context that encloses all the
mathematical objects and relationships that have been defined.
Fig. 11 shows an example in which Substance code specifies

properties and relationships for a pair of vectors. Importantly, these
statements do not induce any kind of numerical evaluation. For in-
stance, no coordinates are assigned to x1 in order to make it unit—in
fact, the vector space X does not even have an explicit dimension.
Instead, statements specify persistent and purely symbolic relation-
ships that provide cues for visualization; specific coordinates and
attributes are later determined by the layout engine (Sec. 4). The

1 type Scalar, VectorSpace, Vector -- LinearAlgebra.dsl

2 function add: Vector * Vector -> Vector

3 function norm: Vector -> Scalar

4 function scale: Scalar * Vector -> Vector

5 ...

6 predicate In: Vector * VectorSpace

7 predicate Unit: Vector

8 predicate Orthogonal: Vector * Vector

9 ...

10 notation "v1 + v2" ∼ "add(v1,v2)"

11 notation "|y1|" ∼ "norm(y1)"

12 notation "s * v1" ∼ "scale(s,v1)"

13 notation "Vector v ∈ V" ∼ "Vector a; In(a,U)"

14 notation "v1 ⊥ v2" ∼ "Orthogonal(v1,v2)"

15 ...

Fig. 10. A Domain schema specifies the building blocks available in a given
mathematical domain, as well as any associated syntactic sugar. This schema
(abbreviated) enumerates some basic constructs from linear algebra.

VectorSpace X

Vector x1, x2

In(x1, X)

In(x2, X)

Unit(x1)

Orthogonal(x1, x2)

label x1 $x_1$
label x2 $x_2$

(unsugared)

VectorSpace X

Vector x1, x2 ∈ X

Unit(x1)

x1 ⊥ x2

label x1 $x_1$
label x2 $x_2$

(sugared)

Fig. 11. When used with the Style defined in Fig. 12, this Substance code
(with or without syntactic sugar) produces the diagram shown at right.

final lines specify label strings to be used by the Style program,
here in TEX notation. Fig. 11, center shows a “sugared” version of
this program using notation defined in the Domain schema (Fig. 10).
Users can write programs either way, depending on the capabilities
of their editor (e.g., support for Unicode input).

3.3 The Style language

R
ul
e

Declaration

Selector Style specifies how expressions
in a Substance program are
translated into graphical objects
and relationships. It is a declara-

tive specification language that shares many features with CSS. The
core principle is to sketch out basic rules (e.g., visual icons for basic
types) and then refine these rules via cascading (Sec. 3.3.2). Each
rule uses a selector to pattern match on objects and relationships
appearing in Substance code (Sec. 3.3.1). A sequence of declara-
tions then specifies a corresponding visualization, e.g., by emitting
graphical primitives or enforcing constraints. Each declaration ei-
ther assigns a value to a field ( Sections 3.3.5 and 3.3.3) or specifies
a constraint or objective (Sec. 3.3.6). An example is shown in Fig. 12,
which defines part of the style used for the Substance program in
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Fig. 11 (a full Style is given in the supplemental material). We will
use this example to highlight the basic features of the language.

3.3.1 Selectors. A selector uses pattern matching to specify which
objects will be styled by a rule. Unlike regular expressions, selectors
do not match literal strings of Substance code, but rather objects
and relationships in the context defined by this code. A simple
example is a selector that matches every instance of a type, indicated
by the forall keyword. For instance, Line 1 matches all vector
spaces. In subsequent declarations, U refers to the vector space
X from the Substance program. The where keyword restricts
matches to objects that satisfy one or more relationships; e.g., Line 37
matches all pairs of orthogonal vectors. One can also match by name
using backticks; e.g., Line 48 matches only the vector x2 . Selectors
could be enriched in the future to allow other statements from
first-order logic (such as ∃, disjunctions, and conjunctions).

3.3.2 Cascading. A cascading mechanism allows rules to be refined
for more specialized objects or relationships. For example, the selec-
tor in Line 48 matches a specific vector, refining an earlier rule that
applies to all vectors. Rule precedence is determined by order in the
Style file, and later rules can refer to any previously defined field
(Sec. 3.3.3). The override keyword (Line 49) hints that a rule will
modify an existing field, otherwise the compiler issues a warning.

3.3.3 Fields. The visual representation of an object is specified by
creating fields that are assigned values (Sec. 3.3.5). For instance,
in Lines 17–23 a field called u.arrow is created and assigned an
expression describing an arrow. Fields are created on assignment and
can have any name not conflicting with a reserved word. Fields not
naturally associated with a single object can also be assigned locally
to a rule. For instance, Line 38 is used to draw a right angle mark
between any pair of orthogonal vectors. Every object automatically
has fields name and label storing its Substance name and label
string (resp.), as well as any field created via a constructor (Sec. 3.1).

3.3.4 Properties. Style provides built-in graphical primitives (cir-
cle, arrow, etc.) with a fixed set of properties. Like fields, properties
can be assigned values (as in Lines 38–44). If a value is not assigned, it
will be assigned a default value, possibly a pending value (Sec. 3.3.5).
For example, an arrow might be black by default, whereas the width
of a box might be optimized (akin to flexible space in TEX).

3.3.5 Values and Expressions. Atomic values can be combined to
form expressions. For instance, Lines 10–12 assign values, whereas
Lines 6–9 assign composite expressions involving inline computa-
tion. Line 26 specifies value via a path, i.e., a sequence of expressions
separated by . characters; such assignments are made by reference.
Expressions can also access values from plugins (Sec. 4.3). A very
important construct is pending values, denoted by a ? as in Line 20.
This line specifies that the location of the arrow endpoint is not
fixed and will be automatically determined by the solver (Sec. 4).

3.3.6 Constraints and Objectives. Constraints and objectives de-
scribe how pending values should behave. In particular, the ensure
keyword defines a hard constraint that the diagram must satisfy.
For instance, Line 45 specifies that two orthogonal vectors must be
drawn at right angles. The encourage keyword specifies a rela-
tionship that should be satisfied as much as possible. For instance,

1 forall VectorSpace U { -- LinearAlgebra.sty

2 U.originX = ? -- to be determined via optimization

3 U.originY = ? -- to be determined via optimization

4 U.origin = (U.originX, U.originY)

5 U.xAxis = Arrow { -- draw an arrow along the x-axis

6 startX : U.originX - 1

7 startY : U.originY

8 endX : U.originX + 1

9 endY : U.originY

10 thickness : 1.5

11 style : "solid"

12 color : Colors.lightGray

13 } -- (similar declarations omitted for the y-axis)

14 }

15 forall Vector u, VectorSpace U -- match any vector

16 where In(u, U) { -- in some vector space

17 u.arrow = Arrow {

18 startX : U.originX

19 startY : U.originY

20 endX : ?

21 endY : ?

22 color : Colors.mediumBlue

23 }

24 u.text = Text {

25 string : u.label -- label from Substance code

26 color : u.arrow.color -- use arrow's color

27 x : ?

28 y : ?

29 }

30 u.start = (u.arrow.startX, u.arrow.startY)

31 u.end = (u.arrow.endX, u.arrow.endY)

32 u.vector = minus(u.arrow.end, u.arrow.start)

33 encourage near(u.text, u.end)

34 ensure contained(u.end, U.shape)

35 }

36 forall Vector u, Vector v

37 where Orthogonal(u, v) {

38 local.perpMark = Curve {

39 pathData : orientedSquare(u.shape, v.shape,

40 U.origin, const.perpLen)

41 strokeWidth : 2.0

42 color : Colors.black

43 fill : Colors.white

44 }

45 ensure equals(dot(u.vector, v.vector), 0.0)

46 }

47 ... -- (similar rule omitted for Unit)

48 Vector `x2` {

49 override `x2`.shape.color = Colors.green;

50 }

Fig. 12. The Style program defining the visual style used in Fig. 11, right.
Note that this Style program can be reused for many different Substance
programs in the same domain.
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Fig. 13. Pipeline view of the layout engine. Rather than a single static image,
compilation yields an optimization problem that can be solved and re-solved
to produce many diagrams, or (in principle) used in an interactive tool.

Line 33 asks that the label for a vector be placed close to its end-
point. These expressions are translated into constraints and energy
functions that make up a numerical optimization problem (Sec. 4.2).

4 LAYOUT ENGINE
The layout engine translates Penrose code into images (Fig. 13).
There are two main stages: a compiler (Sec. 4.1) translates code into
an optimization problem that describes possible diagrams, then a
solver (Sec. 4.2) produces solutions to this problem. These values
are used to render the final diagram (Sec. 4.4). For simplicity, the
goal is to automatically produce one static diagram, but the same
pipeline could be extended to support capabilities like interaction.

4.1 Compiler
The input to the compiler is a triple of files: a Domain schema
with Substance and Style programs. The output is a constrained
optimization problem, expressed as a computational graph.

4.1.1 Parsing and Type Checking. We parse each of the input files
into abstract syntax trees (ASTs), applying static typechecking to
ensure that types are well-formed and variables are well-typed. We
first typecheck the Domain program since it defines the valid types
for the Substance and Style programs, then use these types to
check the Substance program and the selectors in the Style code.

4.1.2 Computational Graph. The ASTs are combined to define a
computational graph that encodes operations that define the final
diagram (Fig. 14). To build this graph, we apply a standard pat-
tern matching and cascading procedure: iterate over rules in the
Style program, find tuples of Substance variables that match the
selector pattern, then modify the graph according to the declara-
tions within the matched rule. For example, when the first selector
VectorSpace U from Fig. 12 matches the variable X from Fig. 11,
we add nodes to the graph that encode the axes of this vector space.
In general, declarations could also remove nodes from the graph or
connect previously added nodes. Once this transformation is com-
plete, we have replaced all abstract mathematical descriptions with
concrete graphical representatives. All that remains is to determine
pending values (i.e., those marked by a ? ) and those values that
depend on them, which will be done by the solver.

Fig. 14. Applying the mapping
defined by Style code to a Sub-
stance program yields a graph
that describes how to draw the
diagram—here, for part of Fig. 11.
Some values are known (in blue),
whereas others (in orange) de-
pend on unknowns that must be
determined via optimization.

+
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x1.shape.end x1.text.position x2.text.position

x2.shape.end

X.bbox dotProduct 0

x1.vector x2.vector

x2.shape.end

Fig. 15. The computation graph is further expanded to produce graphs
representing the objective and constraint space for our optimization problem.
From there, we can easily use automatic differentiation to obtain derivatives.
This figure depicts part of the optimization graph for Fig. 11.

4.1.3 Optimization Graphs. To encode the optimization problem,
we collect terms from the computational graph into an objective
and constraint graph (Fig. 15). Each ensure and encourage state-
ment is then replaced by the corresponding mathematical expres-
sion. For instance, ensure equal(x,y) is translated into the con-
straint x −y = 0, which the solver seeks to enforce exactly, whereas
encourage equal(x,y) becomes the objective (x −y)2, which the
solver seeks to minimize as much as possible. The overall constraint
set is the intersection of all constraints, and the overall objective is
a sum of objective terms. Currently Penrose provides a fixed set of
constraints and objectives, though it would be straightforward to
extend Style to allow user-defined inline expressions.

4.2 Solver
The optimization graphs produced by the compiler describe an opti-
mization problem in standard form, i.e., minimization of an objective
function subject to equality and inequality constraints [Boyd and
Vandenberghe 2004, Section 4.1]. Such problems may be solved
with many standard methods. We currently use an exterior point
method [Yamashita and Tanabe 2010] that starts with an infeasible
point and pushes it toward a feasible configuration via progres-
sively stiffer penalty functions—mirroring a process often used by
hand (Sec. 2.2). Moreover, the exterior point mehod is an appropri-
ate choice since (i) a feasible starting point is typically not known
(Fig. 16), and (ii) by converting constraints into progressively stiffer
penalty functions, we can use descent algorithms that do not directly
support constrained optimization. In particular, we use L-BFGS with
a line search strategy suitable for nonsmooth objectives [Lewis and
Overton 2009]. Given the rich structure of our optimization graphs,
which can be linked back to program semantics, there are plenty of
opportunities to improve this generic strategy, such as decomposing
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initial
state

final
state

Fig. 16. Our solver can lay out diagrams even if we do not initially know how
to satisfy all the constraints. Here we show several steps of optimization.

the problem into smaller pieces that can be independently optimized,
or employing an SMT solver to find a feasible initial state.

4.2.1 Initialization. Just as a human diagrammer might consider
several initial arrangements, we randomly sample several config-
urations and optimize only the most promising ones, i.e., the ones
with the least overall energy in the exterior point problem. Initial
values are sampled uniformly at random from a range related to
their types; for example, RGB color values are sampled from [0, 1].

4.2.2 Failures and warnings. Since our language framework is quite
general, a programmer might define difficult or impossible optimiza-
tion problems. Hence, we can’t guarantee that Penrose produces a
valid diagram. However, the system can provide feedback by sim-
ply printing an error message if any of the constraint values are
nonzero. The resulting invalid diagram might even provide useful
visual intuition for why the Style program failed (Fig. 2).

4.3 Plugins
A plugin is a piece of external code, written in any language, that is
given information from a specific pair of Substance and Style files
and can produce more Substance and Style information in specific
files for Penrose to use. A plugin is run when making diagrams
with a particular Style. A Stylemay declare the plugins to be called
at the top of the file with the syntax plugin "myPlugin" (args) ,
which states that the plugin myPlugin should be run with the given
argument list. When a diagram is generated, the plugin is given the
Substance program as a JSON file, as well as the parameters given
in Style as command-line arguments. The plugin can output new
Substance code as a text file and/or a set of values for the fields of
any Substance variable, encoded as a JSON file. The Substance
code generated by a plugin is appended to the existing Substance
program, and the values generated by the plugin can be accessed in
Style via the syntax myPlugin[variable][field] . Note that a
plugin is run exactly once, prior to execution of all Penrose code.
Therefore, the values generated by a plugin are not optimized by
the layout engine, so plugin code does not have to be differentiable.
For examples of plugin use, see Sec. 5.2 and Sec. 5.5.

Fig. 17. Our system supports integration with web-based applications. Here
a Penrose IDE provides automatic syntax highlighting and autocomplete
for any user-defined domain.

4.4 Rendering
In this paper we focused on generating 2D vector graphics, but in
principle nothing about our system design limits us to this partic-
ular target. For instance, the constraint-based approach is just as
suitable for, say, generating arrangements of 3D objects that can be
rendered via photorealistic ray tracing [Pharr et al. 2016], or even
constrained interactive diagrams that could be used in virtual reality.
In our current implementation, graphical primitives are translated
to SVG-native primitives via React.js [Facebook 2020] and labels are
postprocessed from raw TEX to SVG paths using MathJax [Cervone
2012]. Since Penrose code is typically quite concise, we embed it
as metadata into the SVG, easing reproducibility. We also embed
Substance names as tooltips to improve accessibility.

4.5 Development Environment
To facilitate development, we built a web-based IDE (Fig. 17) that
highlights the potential for high-level diagramming tools built on
Penrose. For instance, since the Domain grammar has a standard
structure, the IDE can provide features like autocomplete and syntax
highlighting for any domain. We are optimistic that the design
choices made in Sec. 2 will support the use of Penrose as a platform
for building diagramming tools beyond the use cases in this paper.

4.6 Implementation
The Penrose system is written in Haskell and the rendering fron-
tend is written in Typescript. We wrote our own solver using the
Haskell library ad [Kmett 2015] to perform automatic differentiation.
We provide one output target and renderer (SVG), together with a
fixed set of graphical primitives that are loosely based on SVG (e.g.,
circles and paths), plus features that SVG users commonly add by
hand, like arrowheads. We also provide a fixed set of objectives and
constraints for specifying spatial layout, such as shape containment
and adjacency relationships, and other functions for performing
spatial queries, such as computing bounding boxes and pairwise
distances. Sustained use by a community of users might point the
way to a standard library. The system has been open-sourced here:
github.com/penrose/penrose

5 EXAMPLES AND EVALUATION
Our main goal for Penrose was to create a system that can auto-
matically generate diagrams from many different domains using
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familiar syntax. Here we examine our design by exploring examples
from a variety of common domains in mathematics and computer
graphics; we also do some basic performance analysis (Sec. 5.8). All
examples in the paper were generated automatically and were not
manipulated by hand. However, due to small errors when convert-
ing our SVG output to the PDF format required by pdflatex, minor
manual editing was required (e.g. fixing broken transparency).

5.1 Sets
A simple example that illustrates many
principles of our system design is the do-
main of basic set theory—Fig. 18 shows a
complete listing for one of three possible
styles. Notice here the complete absence
of explicit coordinates in both the Sub-
stance and Style code. The other two
Style programs (not shown) either im-
prove the visual styling, or shift to a dif-
ferent representation where subset inclu-
sion is indicated by a tree-like drawing
rather that overlapping disks. Different
representations are especially helpful for
different types of examples—for instance,
disksmust shrink exponentially for deeply
nested subsets, whereas a tree diagram re-

mains easy to read (see inset, left). One limitation highlighted by this
example is that the constraints and objectives appearing in Style
are not yet extensible within the language itself—for instance, the
statement ensure contains(y.shape,x.shape) translates to a
fixed function on the centers and radii of the two disks.
This example also demonstrates the benefit of a more explicit

type system, rather than, say, interpreting raw mathematical strings
as in TEX. In particular, Fig. 9 shows how a Domain schema can be
used with program synthesis techniques (Sec. 5.7) to automatically
enumerate different logical instantiations of the given Substance
code. To make this example, there was no need to model sets as
an explicit datatype (e.g. a list of points) nor to assign semantics to
these datatypes (such as the impossibility of two sets being both
intersecting and nonintersecting). Instead, the program synthesizer
can reason purely about the abstract types specified in the Domain
schema, letting the constraints defined in the Style define the visual
semantics. Thus, the program synthesizer can check if the generated
code is valid by simply testing if the constraints defined in Style all
evaluate to zero for the optimized diagram. This example captures
an important aspect of our system design: the mapping defined by
Style programs not only provides a superficial visual interpretation,
but also assigns deeper mathematical meaning.

5.2 Functions
A natural concept to build on top of sets is mappings between sets.
This example also illustrates the use of plugins (Sec. 4.3). We first add
a Map type to the Domain for sets (Sec. 5.1), as well as a constructor
From: Set * Set -> Map specifying the domain and codomain
of the map. Here, syntactic sugar

notation "f: A -> B" "Map f; From(f, A, B)"

type Set -- Sets.dsl

predicate Intersecting : Set s1 * Set s2

predicate IsSubset : Set s1 * Set s2

predicate Not : Prop p

notation "A ⊂ B" ~ "IsSubset(A, B)"

notation "A ∩ B = ∅" ~ "Not(Intersecting(A, B))"

Set A, B, C, D, E, F, G

B ⊂ A

C ⊂ A

D ⊂ B

E ⊂ B

F ⊂ C -- Sets.sub

G ⊂ C

E ∩ D = ∅
F ∩ G = ∅
B ∩ C = ∅

forall Set x { -- Sets-Disks.sty

x.shape = Circle { strokeWidth : 0.0 }

x.text = Text { string : x.label }

ensure contains(x.shape, x.text)

encourage sameCenter(x.text, x.shape)

layer x.shape below x.text

}

forall Set x; Set y

where IsSubset(x, y) {

ensure contains(y.shape, x.shape)

ensure smallerThan(x.shape, y.shape)

ensure outsideOf(y.text, x.shape)

layer x.shape above y.shape

layer y.text below x.shape

}

forall Set x; Set y

where NotIntersecting(x, y) {

ensure disjoint(x.shape, y.shape)

}

Fig. 18. Here, some Substance code is used to specify set relationships.
Different Style programs not only tweak the visual style (e.g., flat vs. shaded
disks), but allow one to use a completely different visual representation (e.g.,
a tree showing set inclusions). Sets.sty above describes the flat disk style.

enables one to both declare and define the map via the concise, famil-
iar notation f: A -> B . In Fig. 19 we add predicates Injection ,
Surjection , and Bijection to the Domain schema to illustrate
some basic ideas about maps. The two different styles of illustration
help ease the transition from thinking of mappings between discrete
points to thinking of continuous mappings on the real line. To gen-
erate the discrete examples, we wrote a simple plugin (Sec. 4.3) that
acts as “glue” between Penrose and an external SMT solver (another
example is shown in Fig. 20). The compiler uses this plugin to expand
the Map objects from Fig. 19, top into specific instances of a new
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-- Injection.sub

Set A, B

f: A -> B

Injection(f)

Not(Surjection(f))

-- Surjection.sub

Set A, B

f: A -> B

Surjection(f)

Not(Injection(f))

-- Bijection.sub

Set A, B

f: A -> B

Surjection(f)

Injection(f)

in
je

ct
io

n

Style — discrete Style — continuous

su
rj

ec
ti

on
bi
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Fig. 19. Different visual representations provide different ways of thinking
about an idea. Here, the notion of injections, bijections, and surjections is
illustrated in both discrete (left) and continuous (right) styles. In the former,
functions with the desired properties are randomly generated by an SMT
solver, allowing the user to learn from many different examples.

Point type, as well as a new predicate (a, b) ∈ f that expresses
a map as an explicit list of domain/codomain pairs. For instance, the
map in Fig. 19 generates points Point A0, A1, B0, B1, B2 with
the two predicates (A0, B1) ∈ f and (A1, B2) ∈ f . A Style
tailored to these types is used to generate diagrams in Fig. 19, left;
as in Fig. 8, hue is optimized to enhance contrast between nearby
points. In contrast, the continuous function diagrams in Fig. 19, right
do not require an external plugin, but instead constrain the degrees
of freedom of a Bézier curve. Finally, Fig. 20 shows how abstract
function composition in Substance is automatically translated into
explicit composition of generated functions by the Style program
without any Substance writer effort.

5.3 Geometry
Classical geometric figures provide a good opportunity to exam-
ine how one can use different Style programs to change not only
the superficial style of a diagram, but also its fundamental visual
representation. The familiar “two-column proof” exemplifies how,
in mathematics, one can make geometric statements without refer-
ring to explicit quantities like coordinates and lengths. Likewise,
compass-and-ruler constructions (dating back to the ancient Greeks)

Set A, B, C

f: A -> B

g: B -> C

Injection(f)

Bijection(g)

Function gf = g(f)

Fig. 20. Here, abstract function composition is realized as explicit composi-
tion of functions produced via an SMT solver, illustrating the fact that the
composition of an injection and a bijection is an injection.

show how geometric figures can be specified with only relative con-
straints. These modalities are well-captured in the way we write
Substance and Style code for geometric diagrams, respectively.
For instance, Fig. 21, top gives a listing of geometric assertions that
resemble the left column in a two-column proof. This would likely
be a natural notation even for intermediate-level students. A bare-
bones Style program for this domain (not shown) comprises basic
statements very similar to those used in Fig. 12, e.g., to express
the orthogonality of two segments. (This approach is similar to
the special-purpose geometry package GCLC [Janičić 2006]; how-
ever, here the domain of objects and visual representations are both
extensible at the language level.)

B

A

C

Diagrams used as inspiration
for the Styles in Fig. 21.

One goal of Penrose is to codify
the subjective style choices made by
professional illustrators so non-expert
users can benefit from their exper-
tise. Fig. 21, bottom cascades on the
bare-bones Style program to riff on
styles from several existing sources
(shown in inset), namely, Byrne’s Eu-
clid [Byrne 1847], Wikipedia [Com-
mons 2006], and a collection of illus-
trated notes on discrete differential ge-
ometry [Crane et al. 2013]. This figure
also illustrates how we can “mix and

match” different Style and Substance programs. The bulk of these
styles (∼500 lines) share the same baseline Style code; additional
code for a specific style requires less than 100more lines. To illustrate
the Pythagorean theorem (right column), we also used cascading to
add diagram-specific features (e.g., altitude and extension lines).
In the spirit of Hilbert’s quip (Sec. 2), we can also swap out the

basic visual representation of a given set of logical statements. For in-
stance, any collection of geometric statements that does not assume
the parallel postulate can be realized in several different geometries
(Fig. 1). To generate this figure, we wrote three Style programs that
all match on the same patterns from a common “neutral geometry”
Domain schema. Swapping out these Style files then allows users
to build intuition about spherical or hyperbolic geometry by explor-
ing how a given figure (expressed via Substance) differs from its
Euclidean counterpart. Such an example could be further enriched
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Point A, B, C

-- define a right triangle

Triangle ABC := {A,B,C}

Angle θ := ∠(C,A,B)

Right(θ)

-- square each side

Point D, E, F, G, H, I

Square CBDE := [C,B,D,E]

Disjoint(CBDE, ABC)

Square BAGF := [B,A,G,F]

Disjoint(BAGF, ABC)

Square ACIH := [A,C,I,H]

Disjoint(ACIH, ABC)

-- PythagoreanTheorem.sub

-- split hypotenuse area

Segment AK := Altitude(ABC,θ)

Point K := Endpoint(AK)

Segment DE := {D,E}

Point L

On(L, DE)

Segment KL := {K,L}

Perpendicular(KL, DE)

Rectangle BDLK := {B,D,L,K}

Rectangle CKLE := {C,K,L,E}

-- (plus additional objects

-- from Byrne's diagram)
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Fig. 21. The cascading design of Style enables one to modify a base style
with relatively little code. Here the two Substance programs from Fig. 1 and
the listing above are visualized in three different styles, all of which build
on the same basic constraints and objectives.

by writing styles for different models of hyperbolic geometry (such
as half-plane, hyperboloid, or Beltrami-Klein), each of which in-
volves meticulous calculations. To show that these examples were
not cherry-picked, Fig. 29 depicts a gallery of samples.
Finally, the diagram specification enables us to build “staged”

diagrams, such as ones illustrating the steps of a proof. Fig. 22
successively uncomments lines of Substance code to produce a
style of explanation common in textbooks and slides, a strategy
which could easily be applied to (say) any two-column proof. In this
example, the values of optimized variables are fixed by hand; an
interesting question is how this might be done automatically.

Fig. 22. Once a complex diagram has been built, it can be easily broken
into pieces or stages by, e.g., commenting out lines of Substance code. Here
we illustrate steps in Euclid’s proof of the Pythagorean theorem, turning
Byrne’s static figure (far right) into a progressive “comic strip.”

5.4 Linear Algebra
In mathematics, complexity is built up by composing simple state-
ments. The mapping defined by a Style program automatically
lifts this compositionality to the visual setting. That is, it enables
Substance writers to compose logical statements to build up visual
complexity without explicit effort from the Style programmer. A
good analogy is procedural L-systems [Prusinkiewicz and Linden-
mayer 2012]. Although a graphics programmer can directly write
code to recursively apply spatial transformations, it saves effort to
first generate strings in a grammar, then systematically translate
these strings into graphical transformations.
In Penrose, examples from linear algebra demonstrate compo-

sitionality. The Style declaration on Line 23 of Fig. 12 defines the
visual icon for a vector (a 2D arrow). Suppose we now want to illus-
trate linear maps, denoted by f , which have two defining properties:
linearity of vector addition (f (u + v) = f (u) + f (v) for all vec-
tors u,v) and homogeneity of scalar multiplication (f (cu) = c f (u)
for all vectors u and scalars c). Successive Style rules cascade on
Fig. 12 to define how these logical operations should be mapped to
visual transformations. For example, application of a linear map f
is represented by a literal 2 × 2 matrix-vector multiply; the image
vector f (u) also inherits the color of the argument u. The map it-
self is visually represented by a labeled arrow, and the domain and
target spaces by coordinate planes on either side. The Style pro-
grammer need not compose these directives explicitly; the compiler
does the tedious job of translating Substance statements (Fig. 23,
top) into a composition of graphical statements that define a dia-
gram (Fig. 23, bottom). Moreover, since the Style program faithfully
represents the underlying mathematics, we observe the expected
properties, e.g., the arrow for f (u1 + u2) is the same as the arrow
for f (u1) + f (u2). Automatically checking consistency of the visual
representation based on analysis of a richer Domain schema would
be an interesting topic for future work.

Finally, the inset (left) shows an al-
ternative representation for vectors and
scalars as signed and unsigned quantities
(u1 and c , resp.) on the number line. The
benefit of a 1D representation is that the
remaining dimension can be used to il-
lustrate different concepts, in this case

relating the magnitude of a product to an area. The ability to switch
between representations can be pedagogically valuable, such as for
transitioning from lower to higher mathematics.
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VectorSpace U, V

LinearMap f : U → V

Vector u1, u2, u3 ∈ U

Vector v1, v2, v3, v4 ∈ V

u3 := u1 + u2

v1 := f(u1)

v2 := f(u2)

v3 := f(u3)

v4 := v1 + v2

VectorSpace U, V

LinearMap f : U → V

Vector u1, u2 ∈ U

Vector v1, v2, v3 ∈ V

Scalar c

u2 := c * u1

v1 := f(u1)

v2 := f(u2)

v3 := c * v1

Fig. 23. Composition of mathematical statements naturally translates into
composition of graphical transformations with no explicit programmer effort.
Here we compose linear maps, showing addition and scaling, to illustrate
the two defining properties of linear maps.

5.5 Meshes
Polygonal meshes are ubiquitous in computer graphics, but illus-
trating meshes is often cumbersome due to the large number of
elements involved, especially when illustrating meshes by hand or
in GUI-based tools. In such cases, Penrose can be useful not just
for making illustrations, but also to inspect and debug user-defined
data structures by attaching them to custom visualizations. A sim-
ple example is shown in Fig. 24, where different regions of a mesh
are specified via standard operators on a simplicial complex; this
diagram also illustrates the definition of the simplicial link [Bloch
1997, Section 3.3]. Further examples in Fig. 25 show how a user can
quickly build intuition about this definition by drawing the link of
a variety of different mesh subsets.

To make these examples in Penrose, we follow a pattern similar
to the discrete function example (Sec. 5.2): generic mesh objects from
the Substance code are refined into specific instances of Vertex ,
Edge , and Face objects by an external plugin, which generates and
optimizes a random triangle mesh. Since meshes are randomly gen-
erated, the plugin passes a random seed (from its Style arguments)
to draw different pieces of the same mesh. For this example, we used
an existing JavaScript-based mesh processing library [Sawhney and

SimplicialComplex K

Edge e ∈ K

Subcomplex E ⊆ K

E := Closure(e)

SimplicialSet StE ⊆ K

StE := Star(E)

Subcomplex ClStE ⊆ K

ClStE := Closure(StE)

Subcomplex ClE ⊆ K

ClE := Closure(E)

SimplicialSet StClE ⊆ K

StClE := Star(ClE)

SimplicialSet LkE ⊆ K

LkE := SetMinus(ClStE, StClE)

Fig. 24. A language-based specification makes it easy to visually inspect
data structures or assemble progressive diagrams with only minor changes
to program code. Here we draw the simplicial link by building it up from
simpler constituent operations.

Crane 2017] that was not designed ahead of time to interface with
Penrose. The benefit of generating these elements at the Substance
level (rather than returning, say, a static SVG image) is that they
can continue to be styled and manipulated within Penrose; the
programmer does not have to edit extra graphics code or keep it
compatible with the Style program. Likewise, programmers who
adopt Penrose as a tool for visual debugging can benefit from sys-
tem improvements while writing minimal code to attach their data
structures to a visual representation.

5.6 Ray Tracing
Our final example constructs light path diagrams, which are often
used to illustrate ideas in physically-based rendering. The Sub-
stance code expresses types of light paths via Heckbert’s regular
expression notation. For instance, the expression L(D|S)S*E spec-
ifies a family of light paths that start at a light source ( L ), bounce
off a diffuse or specular object ( S|D ), then bounce off zero or more
specular objects ( S* ), then enter the “eye” or camera ( E ). One or
more paths can then be declared that have a given form (Fig. 26).
The challenge in generating a diagram from such a specification is
that there must be geometry in the scene that supports the given
path(s). For instance, for a fixed eye, light, and mirror, there may
simply be no path of the form LSE. Rather than meticulously con-
structing a valid scene by hand, we can use a simple Style program
to jointly optimize the scene geometry and the light path by speci-
fying constraints such as equality of incoming and outgoing angles
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SimplicialComplex K
SimplicialSet LkS := Link(S)

Vertex S ∈ K Edge S ∈ K

Vertex v1 ∈ K
Vertex v2 ∈ K
SimplicialSet S ⊆ K
S := {{v1},{v2}}

Fig. 25. Domain-specific notation makes it easy to explore an idea by trying
out many different examples. Here several subsets of a simplicial complex
are specified (top) to explore the definition of the “link” (bottom). An external
plugin generates random example meshes, further enriching exploration.

at a specular bounce. The set of objects in the scene is generated
by a simple plugin that expands the regular expression into a set of
compatible objects (e.g., a mirror for each specular bounce). This plu-
gin also uses the canvas size to choose appropriate scene and path
complexity according to the target output device (Fig. 4). Diagrams
for more intricate light transport phenomena could be generated
by calling an actual ray tracer (such as PBRT [Pharr et al. 2016])
to trace and rejection-sample paths by path type. The added value
of generating the final diagrams with Penrose is that initial path
and scene geometry generated by the external code can be further
optimized to meet other design goals, such as the canvas size. Addi-
tionally, the visual style of a large collection of diagrams (e.g., for a
set of course notes) can easily be adjusted after the fact.
In our experience, Penrose acts as a nexus for diagram gener-

ation. It connects disparate components, such as language-based
specification and ray tracing, into a diagramming tool that provides
the system-level benefits described in Sec. 1.

5.7 Large-Scale Diagram Generation
One goal for Penrose is that effort spent on diagramming should
be generalizable and reusable (Goal 6). To demonstrate the system’s
reuse potential, we developed a simple program synthesizer to auto-
matically create any number of diagrams randomly sampled from a
domain. Given a Domain program, a Style program, and the num-
ber of diagrams (n) as input, the synthesizer analyzes the Domain
program to find the mathematical constructs in the domain, ran-
domly creates n Substance programs that contain these constructs,

Fig. 26. When drawing ray tracing diagrams by hand, it can be difficult to
construct geometry that permits the desired path types. Here we jointly opti-
mize path and scene geometry to match multiple path types simultaneously.
Shown are several diagrams generated for the same program.

then compiles, optimizes, and renders the results. Fig. 9 demon-
strates an example of using the synthesizer to “autocomplete” an
underspecified Substance program by automatically enumerating
all possible subset relationships, using information from the Do-
main schema. Automatically generating diagrams at scale can also
help users write better Style programs, since synthesizer can “fuzz”
the space of possible Substance programs to find corner cases.
To stress-test the system’s performance and the reusability of

Style and Domain programs, we randomly generated 2000 Sub-
stance programs from the sets domain (Sec. 5.1) in the flat disc style.
Penrose was able to create diagrams for all samples. Though 1058
of the 2000 programs had conflicting constraints due to randomness,
the solver failed gracefully (as in Fig. 2) and reached convergence.

5.8 Performance Evaluation
We hope to support an iterative workflow where the system’s per-
formance does not block the user’s creative process. One possible
goal is to generate most diagrams within ten seconds, since that
threshold is deemed a “unit task” in cognitive science [Newell 1994]
and is about as long as similar authoring processes take, such as
building a LATEX document or compiling code. Even lower latency
(< 500 ms) might enable new applications of Penrose, since this
threshold benefits users of data visualization, live programming,
and other exploratory creative tools [Liu and Heer 2014].

We have not focused on performance tuning, so a fully-interactive
experience is not yet possible with Penrose. With our current naïve
implementation, Penrose generated 70% of the figures in this paper
in under 10 seconds. However, some figures took significantly longer
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Fig. 27. To stress-test the system and collect timing information, we gener-
ated and visualized random Substance programs of different sizes, revealing
that optimization dominates the execution time.
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Fig. 28. We evaluated the performance of the Penrose compiler by running
it on a large collection of programs, showing that the execution time of the
compiler grows slowly as the number of selector matches increases.

(e.g. Fig. 1, Fig. 6, and Fig. 21), up to a few minutes. To assess the
system’s performance, we used diagrams generated in Sec. 5.7 to
simulate arbitrary user inputs and measured the time to produce
each diagram. To analyze the relative performance of different parts
of the system, we separately timed the four stages in the layout
engine (Sec. 4): compilation, optimization, label generation, and
rendering. Timing was measured on a 2017 MacBook Pro; note that
performance in our web-based IDE (Sec. 4.5) is slower due to the
cost of editor services and communication with the browser. As
shown in Fig. 27, optimization dominates execution time, though the
time to convergence grows slowly with the size of the optimization
problem. The second slowest part is the compiler, though Fig. 28
shows that compilation time grows linearly with the number of
selector matches, suggesting that the compiler scales well.
We are optimistic about our ability to improve the optimization

speed, since we are currently using only a simple, generic solver that
we implemented ourselves. (See Sec. 4.2 and Sec. 6 for further dis-
cussion.) In our experience, optimization often slowed by objectives
that involve all pairs of a large collection of objects, especially for
label placement, where all labels “repel” all others. Here one could
apply standard acceleration strategies for n-body problems, such as
the Barnes-Hut algorithm [Barnes and Hut 1986]. Moreover, though
it may take time for diagrams to finish, the optimization-based ap-
proach provides near-instantaneous feedback for most diagrams by
displaying the first few steps of the optimization process. These

proto-diagrams typically provide enough information about the fi-
nal layout that the user can halt optimization and continue iterating
on the design.

6 DISCUSSION AND FUTURE WORK
Effectively communicating mathematical ideas remains a major
challenge for students, educators, and researchers alike. Penrose
provides a step toward understanding the abstractions needed to
build general-purpose diagramming tools that connect a concise
specification of mathematical content with powerful tools for visual
synthesis. In our experience, centering the design around mappings
from logical to visual objects leads to a system that is both flexible
and scalable. Moreover, providing a clean separation between con-
tent and presentation lays a foundation for meaningful interaction
techniques for making diagrams.
The system has several limitations that make interesting top-

ics for future work. For example, the Domain, Substance, and
Style languages are limited in what they can express. Thus, Sub-
stancemight be extended with more constructs from mathematical
language, such as anonymous expressions, and Style might be ex-
tended to provide greater flexibility, e.g., via user-defined priorities
on objectives. Additionally, the system currently supports only a
fixed set of objectives, constraints, functions, graphical primitives,
and renderers, as detailed in Sec. 4.6. However, our software archi-
tecture does not present major roadblocks to greater extensibility,
such as enabling programmers to define constraints inline or emit
output for other targets such as 3D or interactive platforms. The
system also presents opportunities to study questions of usability,
learnability, and debugging, such as the natural way that Style users
might want to express spatial layout constraints and the learning
curve for different classes of users.

The cost of optimization is the biggest bottleneck in our pipeline,
as seen in Sec. 5.8, which is not surprising given that we currently
use a “catch-all” solver. A nice feature of our design is that the
program semantics provide rich information about the structure of
the optimization problem. This structure should make it possible to
adopt highly effective problem-specific optimization strategies of
the kind described in Sec. 2.2 and Sec. 5.8, e.g., analyzing the com-
putation graph to break down the diagram into smaller constituent
pieces. Beyond finding local minima, we are excited about different
design modalities enabled by exploring the constraint space defined
by the Style program, such as sampling a diverse set of examples
or interpolating between different layouts to create animations.

Finally, there is no reason that the basic design of Penrose must
be applied only to mathematical diagrams. Many other fields, such
as law, chemistry, and biology, all deal with non-quantitative infor-
mation comprised of intricate logical relationships. We believe that
an extensible and expressive system for assigning visual interpreta-
tions to such information provides a powerful tool for seeing the
big picture.
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