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Developmental and Individual Differences in Pure Numerical Estimation
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The authors examined developmental and individual differences in pure numerical estimation, the type
of estimation that depends solely on knowledge of numbers. Children between kindergarten and 4th grade
were asked to solve 4 types of numerical estimation problems: computational, numerosity, measurement,
and number line. In Experiment 1, kindergartners and 1st, 2nd, and 3rd graders were presented problems
involving the numbers 0—100; in Experiment 2, 2nd and 4th graders were presented problems involving
the numbers 0—1,000. Parallel developmental trends, involving increasing reliance on linear represen-
tations of numbers and decreasing reliance on logarithmic ones, emerged across different types of
estimation. Consistent individual differences across tasks were also apparent, and all types of estimation
skill were positively related to math achievement test scores. Implications for understanding of mathe-

matics learning in general are discussed.

Keywords: individual differences, mathematics, estimation, development

Estimation is a pervasive activity in the lives of both children
and adults. Consider a few representative estimation problems:
About how long will it take for you to finish your homework?
About how many people were at the concert? About how much
will each teammate have to pay to buy a $50 present for the coach?
Estimation is used to solve these and many other problems because
accurate estimates are sufficient for many purposes and because
people often lack the knowledge, time, means, or motivation
needed to calculate precise values.

Despite the omnipresence and importance of estimation in chil-
dren’s lives, far less is known about the process than about other
basic numerical processes, such as counting and arithmetic. A
large part of the reason for this limited knowledge about estimation
is the diversity of tasks that fall under the heading. Estimating the
population of Russia, the product of 175 X 243, and the speed of
a passing car have little in common except for the answer being
approximate. This diversity means that tasks that fall under the
estimation heading will have numerous sources of difficulty and
numerous patterns of development. The diversity also means that
progress in understanding estimation almost certainly will require
well-chosen differentiations among major estimation processes.

One approach to distinguishing among such processes is by
classifying estimation tasks according to the knowledge that they
demand and then considering the processes needed to estimate
accurately on tasks that require particular types of knowledge. Two
types of knowledge that seem useful for distinguishing among
estimation tasks are knowledge of real-world content and of num-
bers. Some estimation tasks require knowledge of specific real-
world entities, conventional measurement units, or both; an exam-
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ple that requires both is estimating the number of miles between
London and Paris. Other estimation tasks do not require such
real-world knowledge, for example, estimating the number of dots
on a page. Similarly, some estimation tasks involve numerical
input, output, or both (e.g., mental multiplication requires both).
Other tasks do not involve either (e.g., estimating whether there is
enough time to cross a street before oncoming traffic arrives).
The process that is of interest in the present study is pure
numerical estimation. This process can be defined in terms of its
goal and the two distinctions made in the previous paragraph: Pure
numerical estimation is a process that has a goal of approximating
some quantitative value; that uses numbers as inputs, outputs, or
both; and that does not require real-world knowledge of the entities
for which properties are being estimated or of conventional mea-
surement units. Three examples of pure numerical estimation are
approximating the product of 395 X 112, the location of 26 on a
number line, and the number of marbles in a jar. The process
seems especially central to estimation because it eliminates non-
mathematical knowledge of specific entities and particular mea-
surement units as sources of variability in performance, and be-
cause recent research on a pure numerical estimation task revealed
an interesting developmental shift in understanding of numerical
magnitudes that may influence all types of numerical estimation.
The recently discovered developmental shift involves a change
from reliance on logarithmic representations of numerical magni-
tudes to reliance on linear representations of them. This shift has
been found between kindergarten and second grade for estimates
of numerical locations on 0—100 number lines (Siegler & Booth,
2004) and between second and sixth grade for estimates of numer-
ical locations on 0—1,000 number lines (Siegler & Opfer, 2003).
To be specific, when asked to estimate the locations of numbers on
number lines with O at one end and 100 at the other, the large
majority of kindergartners produced estimates consistent with a
logarithmic function, whereas the large majority of second graders
produced estimates consistent with a linear function (about half of
first graders’ estimates were best fit by one function and half by
the other) (Siegler & Booth, 2004). Similarly, when asked to
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estimate the locations of numbers on number lines with O at one
end and 1,000 at the other, the large majority of second graders
generated logarithmic distributions of estimates, the large majority
of sixth graders produced linear distributions, and about half of
fourth graders were best fit by each function (Siegler & Opfer,
2003). By second grade, if not earlier, children possess both types
of representations, though they apply them in different contexts;
thus, almost half of the second graders in Siegler and Opfer’s study
generated a linearly increasing pattern of estimates on 0-100
number lines and a logarithmically increasing pattern on 0—1,000
number lines. The fact that the shift takes place at different ages for
different ranges of numbers makes it likely that the shift is driven
by increasing exposure to numbers in each range, rather than to a
more general insight into the decimal system or to some matura-
tional change that takes place at a particular age.

The shift from logarithmic to linear representations is important
for both theoretical and empirical reasons. At a theoretical level,
linear representations reflect the structure of the number system;
appropriately representing that structure is fundamental to under-
standing arithmetic, decimal notation, algebra, and other aspects of
mathematics. At an empirical level, the degree to which children
generate linear representations is related rather strongly to kinder-
gartners’ and first and second graders’ math achievement test
scores (Siegler & Booth, 2004). In this article, we examine another
potential source of importance—the generality of the shift across
different types of estimation.

Current Understanding of Developmental and Individual
Differences in Estimation

In a recent review of the estimation literature, Dowker (2003)
found little evidence for consistent developmental or individual
differences across different types of estimation. The studies she
reviewed indicated that some types of estimation show substantial
improvement with age and experience, whereas other types remain
unchanged over long periods. However, the tasks used in the
studies varied so widely in the real-world and numerical knowl-
edge required for accurate estimation that any conclusions about
either developmental or individual differences were, by necessity,
extremely tenuous. The types of knowledge needed to accurately
estimate the distance between London and Paris, and the types of
instruction that would produce such knowledge, are unrelated to
the types of knowledge and instruction needed to accurately esti-
mate the answer to 18 X 23. Therefore, one purpose of the present
research was to determine whether the developmental trend that
has been found on number line estimation—from reliance on
logarithmic representations to reliance on linear ones—also occurs
on other types of pure numerical estimation tasks and, if so,
whether the changes occur during the same period of development.

Existing research on individual differences in estimation is
similarly inconclusive. As noted above, the few studies that have
examined multiple types of estimation have not revealed consistent
individual differences across estimation tasks (Dowker, 1998;
Hook, 1992; Paull, 1972). However, previous studies have shown
that more skillful estimators tend to have better conceptual under-
standing of mathematics (LeFevre, Greenham, & Naheed, 1993;
Petitto, 1990), better counting and arithmetic skills (LeFevre et al.,
1993; Newman & Berger, 1984), greater working memory capac-
ity (Case & Sowder, 1990), and higher math achievement test

scores (Siegler & Booth, 2004) than do children who estimate less
accurately. Thus, the second main purpose of the present research
was to examine the consistency of individual differences in diverse
types of pure numerical estimation.

The Present Study

We performed two experiments. In Experiment 1, we presented
four pure numerical estimation tasks to kindergartners and first,
second, and third graders, using different assessment methods for
each task. Children were required to approximate (a) the answers
to addition problems (computational estimation), (b) the number of
candies in a jar (numerosity estimation), (c) the length of a line in
inches (measurement estimation), and (d) the location of a number
on a line with numerical anchors at each end (number line esti-
mation). The first three tasks were of interest because they corre-
spond to types of pure numerical estimation that are frequently
encountered in the everyday environment; the fourth task (number
line estimation) was of interest because of the previously described
findings regarding the logarithmic-to-linear shift.

One goal of Experiment 1 was to replicate Siegler and Booth’s
(2004) findings regarding young elementary schoolchildren’s
number line estimation, in particular the log-to-linear shift on the
0-100 scale and the relation between linearity of estimates and
math achievement test scores. Such replication seemed important
because the finding that the large majority of 5- and 6-year-olds
represent numerical magnitudes logarithmically was quite coun-
terintuitive, and the result had not been replicated previously. The
other goal of Experiment 1 was to determine through less elaborate
assessments whether other types of pure numerical estimation also
show substantial development in this age range, whether individual
differences in them correlate with differences in math achievement
test performance, and thus whether more detailed investigation of
them was warranted.

In Experiment 2, we assessed the same four types of estimation
but this time with rigorous assessment techniques on all tasks. In
particular, the tasks used in Experiment 2 were designed to be
parallel on all nonessential features and to allow detailed exami-
nation of children’s numerical representations. The main goals
were to determine (a) whether the log-to-linear pattern of devel-
opment was present on pure numerical estimation tasks other than
number line estimation, (b) whether the timing of the log-to-linear
shift was similar on the different types of estimation, (c) whether
consistent individual differences were present across the four es-
timation tasks, and (d) whether any consistent individual differ-
ences patterns that arose among the estimation tasks were attrib-
utable to shared relations to math achievement test scores.

Experiment 1

Method

Participants

Ninety children participated: 20 kindergartners (mean age = 5.8 years,
SD = 0.4), 25 first graders (mean age = 6.8 years, SD = 0.4), 23 second
graders (mean age = 7.9 years, SD = 0.6), and 22 third graders (mean
age = 9.1 years, SD = 1.3). Among the participants, 63% were Caucasian,
33% African American, 2% Asian American, and 1% Latino. The exper-
imenter was a Caucasian, female graduate student.
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The children were recruited from a public school and a parochial school
in a lower to middle income neighborhood; between 60% and 75% of the
participants at each grade level came from the public school. Of children
who attended the public school, 55% were eligible for free or reduced-cost
lunches; at the parochial school, 15% of attendees were eligible for free or
reduced-cost lunches. Participation was completely voluntary, and no
extrinsic rewards were provided.

Procedure and Materials

Children met one-on-one with the experimenter for a single 20-min
session. The session consisted of two phases, with half of the children
receiving each phase first. One phase involved a detailed assessment of
number line estimation; the other phase involved exploratory assessments
of the other three types of estimation.

The number line phase included an initial orienting problem followed by
26 experimental problems. On the orienting problem, children were pre-
sented a sheet of paper with a 25-cm line across the middle; the number O
was printed just below the left end of the line and the number 100 just
below the right end. Children were asked to mark where they thought 50
would go on the line. After they did so, they were shown an identical
number line with 50 marked in the correct position, told that that was where
50 belonged, and asked if they knew why 50 went there. All children were
then told, “Because 50 is half of 100, it goes directly in the middle, halfway
between 0 and 100. So 50 is the middle, and it’s the only number that goes
exactly in the middle.”

After the orienting problem, children were presented 26 sheets of paper,
each with an identical 25-cm line, and asked to put a single mark on each
line to indicate the location of a number. The lines were identical to the one
used on the orienting problem except that a number (different on each trial)
was printed above the middle of the line. To ensure that we would be able
to discriminate between linear and logarithmic estimation patterns, we
oversampled the numbers below 30 by including four numbers from each
of the first three decades and two numbers from each successive decade.
The 26 numbers that were presented were 3, 4, 6, 8, 12, 14, 17, 18, 21, 24,
25,29, 33, 39, 42, 48, 52, 57, 61, 64, 72,79, 81, 84, 90, and 96. The order
of the sheets was randomized separately for each child.

The other phase of Experiment | included brief assessments of mea-
surement, numerosity, and computational estimation. Children were ran-
domly assigned to receive the three tasks in one of the six possible orders.

For the measurement estimation task, the experimenter first showed the
children a sheet with a 1-in. (2.54-cm) line in the center of the page, told
them that the line was 1 in. long, and asked them to trace the line with their
finger and to pay attention to its length. Children were also told that the line
would remain present to remind them of the length of an inch. The purpose
of presenting the inch marker was to eliminate knowledge of the measure-
ment unit as a source of variability in the children’s estimates. After the
inch marker was introduced, children were presented two measurement
tasks, one requiring production of lengths and the other requiring judgment
of lengths. On the production task, children were given blank sheets of
paper, reminded of the presence and length of the inch marker, and asked
to draw lines of 3, 5, 8, and 10 in. On the judgment task, children were
shown four cards, each with a line printed across the center and two
possible measures of its length in inches printed below; the task was to
choose the measure that was closer to the correct length. The lines were 3,
6, 8, and 9 in., respectively. The two choices were the line’s actual length
and a number that was 4 or 5 in. from the correct length.

For numerosity estimation, children were shown containers with 22, 34,
46, or 58 Hershey’s Kisses and asked to estimate which of two numbers
more closely corresponded to the number of candies in the container; the
two choices always included the correct answer and a foil that was one half,
one and one half, or twice the correct answer. Children were randomly
assigned to receive one of three possible sets of numerical choices. Set A
involved the choices 11 versus 22 for the container with 22 candies, 34

versus 51 for the container with 34 candies, 46 versus 92 for the container
with 46 candies, and 29 versus 58 for the container with 58 candies. Set B
involved the choices 22 versus 33, 34 versus 68, 23 versus 46, and 58
versus 87. Set C involved the choices 22 versus 44, 17 versus 34, 46 versus
69, and 58 versus 116. Questions were of the form “Do you think this is 17
or 34 Kisses?”

For computational estimation skill assessment, children were shown 12
cards, each containing an addition problem and three possible answers to
the problem. The problems included four 2-digit plus 1-digit items (e.g.,
25 + 3), four 2-digit plus 2-digit items (e.g., 35 + 23), two 1-digit +
1-digit + 1-digit items (e.g., 7 + 2 + 9), and two 1-digit + 1-digit +
1-digit + 1-digit items (e.g., 5 + 4 + 2 + 7). All of the sums were between
0 and 100. None of the 2-digit plus 2-digit problems required carrying to
obtain the exact number; two of the four 2-digit plus 1-digit problems did,
as did all of the problems involving strings of 1-digit numbers. The
alternative answers listed for each problem were always consecutive mul-
tiples of 10. On each item, the experimenter read the problem aloud and
asked the child which of the three choices was closest to the answer (e.g.,
“Is 34 + 29 closest to 40, 50, or 60?7).

There was no time limit for any of the problems. In addition, no
feedback was given about specific estimates, though the experimenter
frequently offered general praise. Following completion of all tasks, chil-
dren were told they did a good job, thanked for participating, and returned
to their classroom.

‘We obtained percentile scores from the math achievement tests taken by
the children as part of their school requirements. Children in one school
took the Stanford Achievement Test, Ninth Edition approximately 2
months prior to the study; children in the other school took the Iowa Test
of Basic Skills approximately 4 months after completion of the study.

Results
Development of Number Line Estimation

To measure changes in estimation accuracy, we calculated each
child’s percent absolute error:

Estimate — Estimated Quantity

Scale of Estimates

For example, if a child was asked to estimate the location of 15
on a 0—100 number line and placed the mark at the location that
corresponded to 35, the percent absolute error would be 20%:
[(35 — 15)/100].

An analysis of variance (ANOVA) on each child’s mean percent
absolute error indicated that accuracy increased with grade, F(3,
86) = 40.12, p < .01, n* = .58. Kindergartners’ mean percent
absolute error (24%) was considerably greater than those of first,
second, and third graders (12%, 10%, and 9%, respectively). This
level of accuracy was closely comparable to that obtained by
Siegler and Booth (2004) for the three age groups examined in
both studies: kindergartners (percent absolute error = 24% in both
studies), first graders (14% vs. 12%), and second graders (10% in
both studies).

The next analyses examined whether children showed the hy-
pothesized age-related change from a logarithmic to a linear rep-
resentation on the number line task. First, the median estimate for
each number generated by children in each grade was calculated;
then, the differences between that number and the number pre-
dicted by the best-fitting logarithmic, linear, and exponential func-
tions were compared. The exponential function fit less well than
the other two functions at all grade levels, so it was not included
in further analyses of the group data.
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As shown in Figure 1, kindergartners’ number line estimates
were better fit by the logarithmic function (R* = .92) than by the
linear function (R* = .63), #(25) = 4.64, p < .01, d = 0.89. In
contrast, first graders’ estimates were better fit by the linear
function than by the logarithmic one (R* = .96 vs. .89), #(25) =
2.50, p < .05, d = 0.66, as were those of second graders (R* = .97
vs. .88), #(25) = 4.38, p < .01, d = 1.12, and third graders (R =
98 vs. .85), 1(25) = 5.66, p < .01, d = 1.55.

To ensure that these results were not due to averaging across
children, we compared the variance accounted for by the best-
fitting linear, logarithmic, and exponential functions for individual
children’s estimates. Because the number of children who were
best fit by the exponential function was minimal (2 children), only
children who were best fit by the linear or the logarithmic function
were examined further. The type of function that fit the most
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children varied with age, )(2(3, N =90)=2561,p<.01,V=38.
The logarithmic function provided the best fit for 80% of kinder-
gartners and the linear function for 15%. In contrast, the linear
function provided the best fit for the majority of second and third
graders (74% and 86%, respectively), whereas the logarithmic
function provided the best fit for only 26% of second graders and
14% of third graders. First graders were equally likely to be best
fit by the linear and logarithmic functions (56% and 40% of
children, respectively). Paired-sample ¢ tests indicated that the fit
of the linear (lin) function to individual children’s estimates was
worse than the fit of the logarithmic (log) function for kindergart-
ners (mean R°;,, = .36, SE = .06, vs. mean R, = 49, SE = .05),
1(19) = 4.17, p < .01, d = 0.51; equal to the fit of the logarithmic
function for first graders (mean R?. = .77, SE = .04, vs. mean

lin
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Experiment 1: Best-fitting equations for median number line estimates for kindergartners and first,

second, and third graders. Lin = linear; Log = logarithmic.
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fit of the logarithmic function for second graders (mean R%;, =
87, SE = .02, vs. mean R?,, = .80, SE = .02), #(22) = 3.62,p <
.01, d = 0.73; and better than the fit of the logarithmic function for
third graders (mean R, = .87, SE = .03, vs. mean R°,,, = .78,
SE = .02), 1(21) = 3.81, p < .01, d = 0.81. A one-way ANOVA
indicated that the fit of the linear function to individual children’s
estimates increased with grade, F(3, 86) = 37.33, p < .01, 0> =
.57, with the fit of the linear function being better for first graders
than for kindergartners and better for second and third graders than
for first graders.

Development of Measurement, Numerosity, and
Computational Estimation

We next conducted one-way ANOV As on changes with age and
grade on the other three estimation tasks. For measurement esti-
mation, performance was evaluated separately for the two tasks.
Skill at the length production task was measured by the percent
absolute error on the line drawings. Such error decreased with
grade, F(3, 86) = 3.77, p < .05, n* = .12. The percent absolute
errors for the lines of kindergartners (43%, SE = .05), first graders
(37%, SE = .04), and second graders (33%, SE = .04) were greater
than those of third graders (23%, SE = .03). Proficiency at the
length judgment task, as measured by the percentage of problems
on which the students chose the better estimate, did not change
with age.

Performance on the numerosity and computational estimation
tasks was measured by the percentage of problems on which the
students selected the more accurate estimate. For numerosity es-
timation, kindergartners were less accurate (53% correct, SE =
.06) than were first graders (68%, SE = .03), second graders (76%,
SE = .04), or third graders (73%, SE = .05), F(3, 86) = 5.23,p <
.01, »* = .15 (chance was 50% for this task). For computational
estimation, kindergartners were less accurate than first graders
(36%, SE = .03, vs. 52%, SE = .04, correct), and both were less
accurate than second and third graders (75%, SE = .03, and 79%,
SE = .03, correct, respectively), F(3, 86) = 31.76, p < .01, n* =
.53 (chance was 33% correct).

Estimation and Math Achievement

To examine relations between estimation performance and math
achievement, we correlated children’s estimation scores with their
national percentile rankings on the math section of their achieve-
ment tests. Two third-grade students did not take the achievement
tests and therefore were not included in this analysis.

Children’s R?;, on the number line estimation task correlated
positively with their math achievement test scores at all four grade
levels: kindergarten, r(18) = .51, p < .05; first grade, r(23) = .44,
p < .05; second grade, r(21) = .54, p < .01; and third grade,
r(18) = .45, p < .05. Within each grade, children who generated
more linear patterns of estimates also had higher achievement test
scores. However, no significant relations were found between
mean absolute error of number line estimation and achievement
test scores, although trends (p < .10) in the expected direction
were found for first and second graders.

Individual differences on the computational estimation task
were also related to individual differences in achievement test
scores. Percentage correct on computational estimation items cor-

related positively with achievement test scores for kindergartners,
r(18) = .56, p < .01; second graders, r(21) = .81, p < .01; and
third graders, r(18) = .60, p < .01. Numerosity judgment scores
correlated positively with math achievement scores for second
graders, r(21) = .53, p < .01, and third graders, r(18) = 47, p <
.01, though not for kindergartners or first graders. No significant
relations with achievement test scores were found for either mea-
surement estimation task at any grade level.

Discussion

The results of the experiment can be easily summarized. Kin-
dergartners’ to third graders’ performance on the number line task
replicated the previously observed shift from reliance on a loga-
rithmic representation of numerical magnitudes to reliance on a
linear representation of them. Estimation accuracy also improved
substantially during this period; second and third graders’ percent
absolute error was less than half that of kindergartners. At all four
grade levels, individual differences in linearity of number line
estimates were positively related to individual differences in over-
all math achievement. Performance on the other three less-
formally assessed estimation tasks also improved substantially in
this age period, and individual differences in them were related to
individual differences in math achievement test scores at several
grades on the computational and numerosity estimation tasks.

The results from Experiment 1 also raised two major questions.
One was whether the logarithmic-to-linear shift is present not only
on number line estimation but also on other types of pure numer-
ical estimation. The measurement, numerosity, and computational
estimation tasks in Experiment 1 did not yield any measure of
linearity and therefore did not allow this question to be addressed.

The other main question raised by the results of Experiment 1
was how strongly different types of pure numerical estimation are
related. The tasks used in Experiment 1 were inadequate for
answering questions about the strength of relations among differ-
ent types of estimation because of their limited number of items
(several tasks had only four items) and extremely variable re-
sponse formats (on different tasks, children responded by drawing
lines, judging line lengths, answering two-choice multiple-choice
items, answering three-choice multiple-choice items, and placing
hatch marks on lines). Nonetheless, a number of relations among
the four types of estimation were evident. Individual differences in
number line and computational estimation were positively related
at all four ages (rs = .38—-.66, two ps < .10 and two ps < .01). It
was probably not coincidental that these were the two tasks with a
reasonable number of items (26 and 12, respectively). Relations
were also present for some of the other pairs of tasks at some
grades; for example, accuracy of computational and numerosity
estimation was significantly related for kindergartners and second
graders (rs = .50 and .54, respectively, ps < .05), though not for
first or third graders. The methodological limitations noted above
made these results on consistency of individual differences in
estimation far from conclusive, but the results were sufficiently
promising to justify a more rigorous assessment of individual, as
well as developmental, differences in pure numerical estimation.

Experiment 2

Experiment 2 was designed to examine four specific issues: (a)
whether the developmental progression from logarithmic to linear
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representations that was observed on number line estimation also
is present on other types of pure numerical estimation, (b) whether
individual differences in different types of pure numerical estima-
tion are interrelated, (c) whether the relation of linearity of esti-
mation to math achievement test scores that has been demonstrated
through second grade is also present beyond that point, and (d)
whether any consistent individual differences in estimation that
emerge are simply reflections of a common relation to overall
math achievement. To address these issues, we presented second
and fourth graders with detailed assessments of the four types of
estimation examined in Experiment 1. The problems involved
numbers between 0 and 1,000, rather than 0 and 100, because
Siegler and Opfer (2003) reported a logarithmic-to-linear shift on
0-1,000 number lines in this age range.

We predicted that the previously observed developmental trend
toward increasingly linear estimation patterns would extend to
pure numerical estimation problems other than those involving
number lines. The reasoning was that all types of pure numerical
estimation draw on the same representations of numerical magni-
tudes and that the increasing familiarity with numbers in the
0-1,000 range that was hypothesized to lead to the logarithmic-
to-linear shift in number line estimation in Siegler and Opfer
(2003) would produce the same effect on other types of pure
numerical estimation.

Our second prediction was that individual differences in linear-
ity of estimates on the different tasks would be positively corre-
lated. The reasoning again was that all types of pure numerical
estimation are based on a common representation of numerical
magnitudes and that this common core would be clearly evident
when irrelevant sources of variation, such as those in number of
items and response formats, were eliminated.

The third prediction was that individual differences in accuracy
and linearity of estimation on the four tasks would be related to
children’s math achievement test scores. This prediction was based
on the belief that children in this age range, like younger children,
vary in the representation of numerical magnitude that they use
with numbers in this range and that reliance on linear representa-
tions both reflects and promotes better math learning in general.

Finally, the fourth prediction was that individual differences in
performance on the four estimation tasks would be related to each
other, above and beyond their common relation to math achieve-
ment. This prediction was based on our belief that performance on
the estimation tasks is a quite direct reflection of a common
numerical representation, whereas math achievement test perfor-
mance reflects that representation but also reflects other factors,
such as memorization of arithmetic facts and mastery of mathe-
matical procedures.

Method

Participants

Fifty-eight children took part: 30 second graders (mean age = 7.8 years,
SD = 0.4) and 28 fourth graders (mean age = 9.9 years, SD = 0.4). Among
the participants, 96% were Caucasian, 2% African American, and 2%
Indian American. The children were recruited from a public school in
which 19% of children were eligible for free or reduced-cost lunches; the
school was in a predominantly middle-class area. Participation in the study
was completely voluntary, and children were not given extrinsic rewards
for their participation. The experimenter was a Caucasian, female graduate
student.

Teachers within the school taught estimation skills more frequently than
peers in other schools in which we have conducted studies of estimation.
On a questionnaire about teaching practices, four of the five teachers
indicated that they taught computational and measurement estimation once
a week or more and that they taught numerosity estimation about once a
month; the other teacher indicated that she taught numerosity and number
line estimation about once a week and computational and measurement
estimation about once a month.

Procedure and Materials

Children met one-on-one with the experimenter for a single 20-min
session. The experimenter presented the four estimation tasks in random
order.

The number line procedure was identical to that in Experiment 1, except
that the scale was 0—1,000 instead of 0—100 and the orienting task was
replaced with two practice trials; one required marking 1,000 on a number
line, and the other involved marking O on the line. The 22 numbers that
were presented in the experimental phase again slightly overrepresented
the low end of the scale; they included 4 numbers between 0 and 100 and
2 numbers from each successive hundred. The numbers were 3, 7, 19, 52,
103, 158, 240, 297, 346, 391, 438, 475, 502, 586, 613, 690, 721, 760, 835,
874, 907, and 962. Order of presentation of the numbers was randomized
separately for each child.

The measurement task involved presentation of 22 sheets of paper, each
with two preprinted lines near the top. One (very short) line measured
0.034 cm and was labeled ! zip; the other (much longer) line measured 34
cm and was labeled 7,000 zips. The desired length (in number of zips) for
the line that the child was to produce on a given trial was printed in the
middle of the page, and the bottom of the sheet was left blank for drawing
the line. The same numbers used for the number line task were used to
indicate the desired length in zips; the numbers were again presented in
random order. Children were first shown 1 of the measurement estimation
sheets, told the length of the two lines at the top of the page, and asked to
trace each line with a finger. They were also told that these two lines would
be on each page to remind them of the lengths of 1 zip and 1,000 zips.
Then, children were shown a special viewer made of clear Plexiglas. The
viewer held the sheets of paper snugly and contained a window 1,000 zips
(34 cm) long that could be used to draw straight lines. After practice
drawing lengths of 1 zip and 1,000 zips along the edge of the viewer,
children were asked to draw lines of the 22 lengths listed above, 1 per page.

For the numerosity estimation task, stimuli were presented with a
computer program that generated dots in a box on a monitor. When full, the
box held 1,000 dots in 40 columns and 25 rows. Each child was first shown
an empty box and a full box, told that the empty one had 0 dots and the full
one 1,000 dots, and informed that the two boxes would always be present
to remind them of what 0 and 1,000 dots looked like. The children were
then shown how to hold the “Increase” button and the “Decrease” button
to make dots appear in or disappear from a third box; the dots appeared or
disappeared in random order from the third box when the relevant button
was held down. Children were also told that when the box contained the
number of dots they wanted on a trial, they should click the “Finish”
button. When they did, the computer recorded the number of dots that the
box contained and reset the number of dots to 0. After 2 practice trials
making pictures with 1,000 and O dots, children were presented with 22
trials, with numbers matched to those presented in the number line and
measurement estimation tasks. As in the other tasks, the numbers were
presented in random order.

Because computational estimation differs from the other types of pure
numerical estimation in several inherent ways—the presence of two nu-
merical inputs rather than one, the relevance and likely use of previously
learned arithmetic facts, and the relevance and likely use of previously
learned rounding rules—the procedure used to examine it differed in
several ways from those used on the other three tasks. The experimenter
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showed children a series of 20 cards, each containing an arithmetic prob-
lem. Ten of the cards (5 addition, 5 subtraction) presented problems with
one 3-digit and one 2-digit number (e.g., 377 + 82, 443 — 38). The other
10 cards (5 addition, 5 subtraction) presented problems with two 3-digit
numbers (e.g., 227 + 195, 639 — 344). Answers to addition problems
ranged from 222 to 997; answers to subtraction problems ranged from 87
to 816. The experimenter read each problem aloud, and children verbally
stated their answers.

Achievement scores from the math sections of the Terra Nova Test that
the children had taken approximately 2 months prior to the study as part of
their regular school activities were obtained from school records.

Results

We first examined changes with age, then consistencies of
individual differences across the four types of estimation, and then
the relation of estimation performance to math achievement test
scores.

Age-Related Changes

We examined two measures of age-related changes on each
task: changes in the best-fitting function and changes in accuracy.
As in Experiment 1, the exponential function fit the children’s
median estimates less well than did the other two functions, so it
was not included in further analyses.

Number line estimation. On the number line task, the logarith-
mic and linear functions fit second graders’ median estimates for
each number equally well (R*;, = .91 and R*,, = .88), 1(21) =
1.07, ns, d = 0.38 (see Figure 2). In contrast, fourth graders’
median estimates were much better fit by the linear function than
by the logarithmic one (R?;, = .98 and R2log =.71), «(21) = 6.50,
p < .01, d = 1.90. From another perspective, the variance in the
group medians accounted for by the linear function increased
between second and fourth grade (from 91% to 98%), and the
variance accounted for by the logarithmic function decreased
(from 88% to 71%).

Analyses of the number line estimates of individual children
yielded similar results. The type of function that fit the most
children varied with age, x*(1, N = 58) = 15.23, p < .01, V = .51.
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The logarithmic function provided the better fit for 60% of second
graders and the linear function for 40%. In contrast, the linear
function provided a better fit than the logarithmic function for 89%
of fourth graders, whereas the reverse was true for only 11%. Seen
from another perspective, the percentage of children for whom the
linear function provided the better fit increased from 40% of
second graders to 89% of fourth graders, and the percentage for
whom the logarithmic function provided the better fit decreased
from 60% to 11%. Paired-sample ¢ tests indicated that for individ-
ual second graders, the fit of the linear and logarithmic functions
was equal (mean R2Iog = .68, SE = .04, vs. R*,, = .66, SE = .03),
#(29) = 0.65, ns, d = 0.11, and that for individual fourth graders,
the linear function provided a better fit (mean R2log = .66, SE =
.02, vs. mean R, = .85, SE = .03), 127) = 6.19,p < .01,d =
1.38. A one-way ANOVA indicated that the fit of the linear
function to individual children’s number line estimates increased
with grade, F(1, 56) = 17.80, p < .01, n* = .24.

Percent absolute error of number line estimates decreased with
grade. Second graders’ estimates were farther from the correct
answer than were the estimates of fourth graders (percent absolute
error = 17%, SE = .01, vs. 10%, SE = .01), F(1,56) = 24.61,p <
.01, n2 = .31. Thus, the accuracy of estimation in the current study
was somewhat better than that obtained by Siegler and Opfer
(2003) for second graders (percent absolute error = 19%) and
fourth graders (12%), though the improvement between second
and fourth grade was identical (7% in both cases).

Measurement estimation. A similar pattern of change emerged
in analyses of the measurement estimation data. Second graders’
median estimates on the measurement estimation task were equally
well fit by the logarithmic function (R* = .91) and the linear
function (R* = .85), #(21) = 0.36, ns, d = 0.12 (see Figure 3). In
contrast, fourth graders’ measurement estimates were better fit by
the linear function than by the logarithmic one (R* = .98 and .74),
1(21) = 5.89, p < .01, d = 1.63. Thus, the variance accounted for
by the linear function increased with age (from 85% to 98%), and
the variance accounted for by the logarithmic function decreased
with age (from 91% to 74%).
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Figure 2. Experiment 2: Best-fitting equations for median number line estimates for second and fourth graders.

Lin = linear; Log = logarithmic.
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Figure 3. Experiment 2: Best-fitting equations for median measurement estimates for second and fourth

graders. Lin = linear; Log = logarithmic.

A similar pattern emerged in analyses of individual children’s
measurement estimates. The type of function that fit the estimates
of the greatest number of children varied with age, x*(1, N =
57) = 13.01, p < .01, V = .48. Individual second graders’
measurement estimates were more likely to be best fit by the
logarithmic function than by the linear function (70% vs. 30%). In
contrast, fourth graders’ estimates were more likely to be best fit
by the linear function than by the logarithmic function (78% vs.
22%). Thus, the percentage of children best fit by the linear
function increased from 30% to 78%, and the percentage best fit by
the logarithmic function decreased from 70% to 22%. Individual
second graders’ estimates were fit better by the logarithmic func-
tion than by the linear one (mean R2log = .67, SE = .03, vs. mean
R*,, = .59, SE = .03),#(29) = 2.32, p < .05, d = 0.43. In contrast,
individual fourth graders’ estimates were better fit by the linear
than by the logarithmic function (mean R*;, = .83, SE = .03, vs.
mean R?,, = .68, SE = .02), #(27) = 5.22,p < .01,d = 1.09. The
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mean fit of the linear function to individual children’s estimates
also increased with grade, F(1, 56) = 26.99, p < .01, n* = .33.

Estimation accuracy, like the linearity of estimates, increased
with age. Percent absolute error decreased from 19% (SE = .01)
among second graders to 12% (SE = .01) among fourth graders,
F(1,56) = 17.13, p < .01, n* = .23.

Numerosity estimation. Changes with age in numerosity es-
timation closely paralleled the changes in number line and
measurement estimation. Second graders’ numerosity estimates
were equally well fit by the logarithmic function (R*> = .90) and
the linear function (R* = .85), #(21) = 0.60, ns, d = 0.19 (see
Figure 4). In contrast, fourth graders’ numerosity estimates
were better fit by the linear function than by the logarithmic one
(R* = .96 and .78), #(21) = 3.60, p < .01, d = 1.02. Seen from
another perspective, the fit of the linear function to the median
numerosity estimate for each number increased from .85 for sec-
ond graders to .96 for fourth graders, whereas the fit of the
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Figure 4. Experiment 2: Best-fitting equations for median numerosity estimates for second and fourth graders.

Lin = linear; Log = logarithmic.
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logarithmic function decreased from .90 for second graders to .78
for fourth graders.

The data on individual children’s estimates showed a similar
pattern. The number of children for whom the logarithmic and
linear functions provided the best fit varied with age, x*(1, N =
56) = 9.22, p < .01, V = .41. For second graders, the two
functions provided the best fit for roughly equal numbers of
children (the logarithmic function fit best for 57% and the linear
function for 43%), whereas for fourth graders, the linear function
provided the best fit for 82% and the logarithmic function for 18%.
Put another way, the percentage of children for whom the linear
function provided the best fit increased from 43% to 82%, whereas
the percentage of children for whom the logarithmic function
provided the best fit decreased from 57% to 18%. In addition, the
fit of the linear and logarithmic functions to individual second
graders’ estimates was equal (mean R210g = .59, SE = .02, vs.
mean R?,;, = .57, SE = .03), #(29) = 1.02, ns, d = 0.12, and the
linear function provided a better fit to the estimates of individual
fourth graders (mean R?;, = .77, SE = .03, vs. mean Rzlog = .60,
SE = .02), 1(27) = 4.15, p < .01, d = 0.82. The mean fit of the
linear function to individual children’s estimates also increased,
F(1, 56) = 20.56, p < .01, n* = .27.

Accuracy, like linearity, increased with age. Percent absolute
error of numerosity estimates decreased from 22% (SE = .01)
among second graders to 15% (SE = .01) among fourth graders,
F(1, 56) = 16.71, p < .01, n* = .23.

Computational estimation. The computational estimation task
did not allow calculation of linearity scores. However, percent
absolute error showed the same 7% decrease as it did on the other
three tasks (and in Siegler & Opfer, 2003, in the same age range).
In this case, mean percentage of absolute error decreased from
11% (SE = .02) among second graders to 4% (SE = .00) among
fourth graders, F(1, 56) = 13.30, p < .01, n* = .19.

Relations Among Estimation Tasks

To examine relations among different types of estimation, we
first correlated individual children’s percent absolute error on the
four estimation tasks. As shown in Table 1, individual differences
in the accuracy of the three highly parallel tasks—number line,

Table 1
Experiment 2: Correlations Among Individual Children’s
Percent Absolute Error on Four Estimation Tasks

measurement, and numerosity estimation—were consistently re-
lated (five of the six correlations among these three types of
estimation were significant). Individual differences in second grad-
ers’ computational estimation accuracy were also related to indi-
vidual differences on two of the other three tasks, but no relations
between individual differences in fourth graders’ computational
estimation and individual differences on the other three tasks were
significant at the .05 level. This lack of relations between fourth
graders’ performance on the computational estimation task and
their performance on the other three tasks may have been due to
ceiling effects; mean percent absolute error for fourth graders’
computational estimates was 4%, with a standard deviation of only
2%.

We next examined the consistency of individual differences in
children’s linearity of estimates (R?;,) on the three tasks for which
linearity could be computed (number line, measurement, and nu-
merosity). As shown in Table 2, for second graders, all six corre-
lations were significant, and for fourth graders, five of the six
correlations were significant. The correlations tended to be quite
substantial; 8 of the 12 were between .50 and .84. Also as shown
in Table 2, five of the six correlations between children’s percent
absolute error on the computational estimation task and their
linearity on the other three tasks were significant. In light of the
ceiling effects noted in the previous paragraph, the relation of
individual differences in the accuracy of fourth graders’ compu-
tational estimation to individual differences in their linearity on the
other three estimation tasks was surprising.

If the linearity of children’s representations of numerical mag-
nitude is the key to these relations among accuracy of estimation
on different tasks, then partialing out each child’s linearity on a
task should reduce or eliminate the correlations between the
child’s accuracy on that task and on the other two estimation tasks
for which linearity could be computed. This prediction proved
accurate. Partialing out linearity on one of the two tasks resulted in
only 2 of the 12 possible correlations among percent absolute error
remaining significant. The 2 correlations that remained significant
after partialing out linearity involved fourth graders: the correla-
tion between accuracy on the number line and numerosity tasks,

Table 2

Experiment 2: Correlations Among Individual Children’s
Linearity on Number Line, Measurement, and Numerosity
Estimation Tasks and Percent Absolute Error on the
Computational Estimation Task

Task Measurement Numerosity Computational Task Measurement Numerosity Computational

Second graders Second graders

Number line .627%* AS5* 53 Number line .65%* .55% —.52%%

Measurement 28 STHE Measurement 54 —.42%

Numerosity .30 Numerosity —.46%
Fourth graders Fourth graders

Number line 6% A1* 35 Number line .84%% 10%* —-.29

Measurement 38% .33 Measurement .60%* —.50%*

Numerosity 31 Numerosity —.39%

Note. df = 28 for second graders and 26 for fourth graders.
*p <.05. *p <0l

Note. df = 28 for second graders and 26 for fourth graders.
*p <.05. *p <0l
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r(25) = .44, p < .05, and the correlation between accuracy on the
number line and measurement tasks, #(25) = .55, p < .01.

This effect was not symmetrical; 7 of the 12 correlations be-
tween each child’s linearity on pairs of tasks remained significant
after partialing out the child’s percent absolute error on one of the
tasks. For second graders, after partialing out each child’s percent
absolute error on the numerosity task, significant correlations
remained between the child’s linearity on the numerosity and
number line tasks, r(27) = .39, p < .05, and between the child’s
linearity on the numerosity and measurement tasks, 7(27) = .44,
p < .05. Similarly, after partialing out second graders’ percent
absolute error on the measurement estimation task, a significant
correlation remained between linearity on the measurement and
number line tasks, 7(27) = .37, p < .05. For fourth graders, after
partialing out percent absolute error on the measurement estima-
tion task, significant correlations remained between R, on that
task and the number line task, #(25) = .71, p < .01, and between
R?,;,, on that task and the numerosity task, 7(25) = .46, p < .05.
Similarly, after partialing out fourth graders’ percent absolute error
on the numerosity task, significant correlations remained between
R?,, on that task and the number line task, 7(25) = .73, p < .01,
and on that task and the measurement task, r(25) = .56, p < .01.
Thus, the consistency of individual differences on these estimation
tasks seemed largely attributable to differences in the linearity of
children’s representations of numerical magnitudes.

Estimation and Math Achievement

To examine the relation of estimation accuracy to math achieve-
ment, we correlated individual children’s percent absolute error on
each of the estimation tasks to that child’s percentile ranking on
the achievement test. One of the second graders did not take the
achievement test, so her data were excluded from this analysis.

Accuracy and linearity of estimation were consistently related to
math achievement test scores at both grade levels. As shown at the
top of Table 3, second graders’ math achievement test scores were
related to the linearity of their estimates for all three types of
estimation for which linearity could be computed; the same was
true for fourth graders for two of the three tasks, and a trend in the
predicted direction was present on the third task. As shown at the
bottom of Table 3, second graders’ percent absolute error was
related to their achievement test scores on all four types of esti-
mation; for fourth graders, the same relation was present on three
of the four types of estimation.

Table 3

Were Relations Among Estimation Tasks Attributable to
Shared Relations to Math Achievement?

We next tested whether relations among different types of
estimation were attributable to their common relation to overall
math achievement. With math achievement test scores controlled
for, partial correlations were computed for the linearity of esti-
mates on the three pairs of tasks on which this measure could be
computed. For second graders, correlations of the linearity of
estimates on two of the three pairs of tasks remained significant
after math achievement was partialed out: the correlations between
the linearity of number line and measurement estimation, r(26) =
48, p < .01, and between the linearity of number line and
numerosity estimation, 7(26) = .39, p < .05. A trend toward
significance was also present on the third pair of tasks, measure-
ment and numerosity estimation, 7(26) = .34, p < .10. Among
fourth graders, the relations among individual children’s linearity
of estimates for all three pairs of tasks remained significant after
the children’s math achievement scores were partialed out: number
line and measurement estimation, »(25) = .78, p < .01; number
line and numerosity estimation, (25) = .65, p < .01; and mea-
surement and numerosity estimation, r(25) = .51, p < .01.

The correlations of percent absolute error on pairs of estimation
tasks decreased somewhat more when achievement test scores
were partialed from the correlations. For second graders, only the
correlation between percent absolute error on the number line and
measurement estimation tasks remained significant, 7(26) = .39,
p < .05, though trends toward significance were also present for
the correlations between performance on the computational and
number line estimation tasks and between performance on the
computational and measurement estimation tasks, rs(26) = .33,
ps < .10. For fourth graders, the partial correlation between
percent absolute error on the number line and measurement esti-
mation tasks remained significant, 7(25) = .70, p < .01, as did the
correlation between number line and numerosity estimation,
r(25) = .38, p < .05; a trend toward significance was also present
for the correlation between percent absolute error on the measure-
ment and numerosity estimation tasks, 7(25) = .33, p < .10.

Discussion

Numerous researchers and organizations of mathematics educa-
tors have concluded that children have poor estimation skills (Case
& Sowder, 1990; Dowker, 2003; Geary, 1994; Hiebert & Wearne,

Experiment 2: Correlations Between Individual Children’s Math Achievement Scores and Their

Linearity and Accuracy on Four Estimation Tasks

Variable Number line Measurement Numerosity Computational
Linearity
Second grade S53#* L62%% A48#*
Fourth grade AT S545#% 35
Percent absolute error
Second grade —.57%* —.67%* —.45% —.53%%*
Fourth grade —.45% —.45% —.16 —.49%*

Note. Linearity could not be calculated on the computational estimation task. df = 27 for second graders and

26 for fourth graders.
*p <.05. *p < 0L
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1986; Joram, Subrahmanyam, & Gelman, 1998; National Council
of Teachers of Mathematics, 2000). The explanations that have
been advanced—inadequate number sense, mindless symbol ma-
nipulation, and poor understanding of principles—seem generally
in the right ballpark but are vague and are more restatements of the
data than explanations of them. The present study was based on a
more specific explanation: that a large part of the reason for
elementary schoolchildren’s poor estimation, as well as for devel-
opmental and individual differences in their estimation, is reliance
on logarithmic rather than linear representations of numerical
magnitudes. Results of both experiments were consistent with this
explanation. In this concluding section, we discuss the implica-
tions of the findings for understanding children’s poor estimation
skills as well as for understanding developmental and individual
differences in those skills.

Development of Pure Numerical Estimation

The previously observed developmental progression away from
reliance on logarithmic representations and toward reliance on
linear ones was replicated and extended. The present findings
replicated Siegler and Booth’s (2004) and Siegler and Opfer’s
(2003) observations that between kindergarten and fourth grade,
children increasingly often generate linearly increasing estimates
of numerical magnitudes and decreasingly often generate logarith-
mically increasing estimation patterns. In the present study, this
developmental trend was found to apply not only to number line
estimation, for which it had previously been found, but also to
measurement and numerosity estimation.

The magnitude of the developmental shift was remarkably sim-
ilar across the present and previous studies. First, consider the
change from kindergarten to second grade on 0—100 number lines.
In Experiment 1 of the present study, there was a 54% decrease,
from 80% of kindergartners to 26% of second graders, in the
percentage of children whose number line estimates were best fit
by the logarithmic function. In the two experiments by Siegler and
Booth (2004), the average decrease between kindergarten and
second grade was 48%—from 80% to 32%. Similarly, the percent
absolute error in Experiment 1 of the present study decreased from
24% among kindergartners to 10% for second graders. In the two
experiments by Siegler and Booth (2004), the percent absolute
error decreased from an average of 25% among kindergartners to
12% among second graders.

Now consider the improvement from second to fourth grade on
0-1,000 number lines. In Experiment 2 of the present study, the
percentage of children whose number line estimates were best fit
by the logarithmic function decreased from second to fourth grade
by 49%—trom 60% to 11%. Siegler and Opfer (2003) found that
the decrease over the same period was 47%—from 91% to 44%.
Similarly, in Experiment 2 of the present study, the percent abso-
lute error decreased 7% from second to fourth grade, from 17% to
10%, just as it did in the same age range in Siegler and Opfer’s
study, in which the decrease was from 19% to 12%. The absolute
level of number line performance varied considerably from exper-
iment to experiment, but the magnitude of improvement was
strikingly similar.

Equally striking was the comparability of improvement across
different types of pure numerical estimation. In Experiment 2 of
the present study, the percent absolute error decreased by exactly

7% on all four tasks: from 17% to 10% on number line estimation,
from 19% to 12% on measurement estimation, from 22% to 15%
on numerosity estimation, and from 11% to 4% on computational
estimation. Similarly, the percentage of variance accounted for by
the linear function increased 13% on measurement estimation
(from 85% to 98%), 11% on numerosity estimation (from 85% to
96%), and 7% on number line estimation (from 91% to 98%). The
similarity of the developmental changes in accuracy and linearity
suggests a common source of development across pure numerical
estimation tasks.

Several other results from Experiment 2 provide additional
evidence that inappropriate representation of numerical magni-
tudes is a general problem across different types of pure numerical
estimation. First, the average fit of the linear function to individual
children’s estimates was similar across the three tasks for which
linearity could be computed. This was true for second graders, for
whom R?,;, accounted for 66%, 59%, and 57% of the variance in
number line, measurement, and numerosity estimation, respec-
tively. It was also true for fourth graders, for whom R?;, accounted
for 85%, 83%, and 77% of variance, respectively. In addition, at
both grade levels, the fit of the linear representation was highest
for number line estimates, followed by measurement estimates and
then numerosity estimates. This pattern seemed to reflect the
degree to which numerical magnitude representations were the
primary determinant of children’s responses. Thus, it was not
surprising that R?; was somewhat lower on the numerosity task
than on the other tasks, because the numerosity task, unlike the
others, required consideration of two spatial dimensions. Number
of spatial dimensions that children need to consider has been found
to influence the difficulty of estimation tasks (Siegel, Goldsmith,
& Madson, 1982).

Might the developmental parallels across the different types of
estimation in Experiment 2 have been due to the tasks used to
measure them differing only in trivial ways? Close examination of
the tasks argued against this possibility. As noted in the previous
paragraph, the numerosity estimation task required consideration
of both the width and the height of the box of dots, the number line
task required placement of a hatch mark on a line, and the mea-
surement estimation task required drawing a line of a specified
length. Performance on all three tasks also correlated substantially
with performance on computational estimation problems, which
involved a numerical rather than a spatial response and which
involved two numerical inputs rather than one. Thus, the develop-
mental parallels among the four types of pure numerical estimation
reflected more than task similarity.

Individual Differences

The data on individual differences also supported the conclu-
sions that performance on different pure numerical estimation
tasks has a common core and that the common core is the linearity
of representations of numerical magnitude. Some consistent indi-
vidual differences across the four estimation tasks were present
even in Experiment 1, in which the tasks varied on numerous
irrelevant dimensions and in which two of the tasks had only 4
items. The consistencies were stronger in Experiment 2, in which
all four tasks had at least 20 items and in which three of the four
tasks used parallel formats. There, all six correlations among
individual second and fourth graders’ performance on the three
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tasks for which linearity could be computed were significant and
substantial, ranging from .54 to .84. In addition, five of the six
correlations of individual children’s linearity on these three tasks
with their percent absolute error on computational estimation, the
task on which linearity could not be computed, also were
significant.

These relations among individual differences in linearity of
estimates could not be explained in terms of general math ability.
Estimation performance on all three tasks for which linearity could
be computed was related to math achievement test scores, but
partialing out the achievement test scores left five of the six
correlations significant (and a trend toward significance was
present on the sixth correlation). In most cases, the partial corre-
lations were quite substantial; for example, for fourth graders, they
ranged from .51 to .78. In addition, all three correlations of
linearity of individual children’s estimates on the pairs of tasks for
which linearity could be computed were higher than any of the
three correlations between linearity of estimates on those tasks and
math achievement test scores.

In contrast, partialing out math achievement test scores did
eliminate the correlations between computational estimation per-
formance and performance on the other three estimation tasks.
Computational estimation skill during elementary school seems
likely to depend largely on ability to memorize arithmetic facts and
to use specific procedures for solving the problems (e.g., round-
ing). Accurate execution of the typical rounding process used by
elementary school students (substituting Os for all but the leftmost
digit and then performing the operation) requires sufficient com-
putational skill to perform the operation. Consistent with this
analysis, skill at computational estimation is empirically related to
skill at exact computation (Dowker, 2003; LeFevre et al., 1993).
Computational skill also is tested extensively on achievement tests,
which probably accounts for the large effects of partialing out the
achievement test scores from correlations involving computational
estimation.

Comparing correlations of the linearity of estimates on different
tasks with correlations of the accuracy of estimates on different
tasks also supported the interpretation that degree of linearity was
a key determinant of the individual differences in estimation, at
least on the three tasks for which linearity could be computed. In
all six correlations among the three tasks for which linearity could
be computed, the correlations between individual children’s degree
of linearity on pairs of tasks were greater than the correlations
between their accuracy (percent absolute error) on the same pairs
of tasks. Moreover, partialing out linearity rendered nonsignificant
almost all correlations between accuracy on pairs of tasks, but
partialing out accuracy of estimates did not have a comparable
effect on the relations of linearity on pairs of tasks.

Other factors not measured in the present study almost certainly
contribute to individual differences in children’s estimation. For
example, working memory functioning may influence children’s
ability to simultaneously consider the low and high ends of the
scale and their relation to the number being estimated and thus
may reduce the accuracy of estimates. In addition, future studies
should obtain a measure of reading achievement, which would be
informative for evaluating whether the estimation tasks are assess-
ing a pure numerical competency or more general aptitude levels.
Nonetheless, the present findings about individual differences, like
those about developmental differences, support the view that reli-

ance on nonoptimal representations of numerical magnitudes is a
major source of children’s inaccurate estimation.

Questions and Implications

One class of questions raised by the present findings concerns
the breadth of influence of logarithmic representations of numer-
ical magnitudes. The present findings indicate that kindergartners
frequently rely on logarithmic representations when generating
estimates in the 0—100 range and that second graders frequently do
so when operating in the 0—1,000 range. Would older children and
adults perform similarly in the 0-1,000,000 or 0—1,000,000,000
range or on scales with odd endpoints such as 0-432,751, espe-
cially when under time pressure?

The overlapping waves perspective, which underlies the present
research, suggests that varied representations of numerical magni-
tude persist over time and that when operating in unfamiliar
numerical ranges, adults and older children may rely on the intu-
itive and widely applicable logarithmic representation. It may be
the case that people never automatically use linear representations
of numerical magnitude for all types of numbers. Instead, when
operating in unfamiliar numerical ranges, even adults may need to
override the impulse to use the logarithmic representation. Viewed
from an evolutionary perspective, logarithmic representations may
serve as the default option for all types of quantitative computa-
tions. Rats and pigeons, as well as human infants and adults, have
been found to apply logarithmic representations to a wide variety
of quantitative dimensions (Banks & Hill, 1974; Dehaene, 1997;
Holyoak & Mah, 1982). Such representations have survival value,
because differences at the low end of quantitative dimensions
frequently matter more than do equal size differences among larger
values. For example, the difference between 1 and 2 pieces of food
would be more important for a hungry animal than would the
difference between 41 and 42 pieces. Thus, adults as well as
elementary schoolchildren may rely on logarithmic representations
in unfamiliar numerical ranges. The frequent confusion of mil-
lions, billions, and trillions in news magazines and political dis-
cussions lends plausibility to this prediction.

A second class of questions involves whether children rely on
logarithmic representations on numerical tasks other than estima-
tion and, if so, what consequences this reliance has for learning of
these tasks. For example, reliance on a logarithmic representation
of numerical magnitudes might facilitate learning of multiplication
facts with small products but hinder learning of facts with large
products. The reason is that the logarithmic representation exag-
gerates the psychological distance between small numbers but
understates the psychological distance between large ones. Greater
psychological distance seems likely to make answers more dis-
tinctive and hence more memorable. The present findings, as well
as those of Siegler and Booth (2004), indicate that reliance on a
logarithmic representation is associated with low math achieve-
ment; this association makes it unlikely that the absolute level of
performance would be higher for any range of arithmetic problems
for children who adopted a logarithmic representation. Factors
other than numerical representations, such as working memory
capacity and speed of processing, also influence learning of arith-
metic facts (Geary, Hoard, Byrd-Craven, & DeSoto, 2004). How-
ever, the present perspective does predict that the greater the sum
or product, the greater the difference will be between the learning
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of children who rely on logarithmic representations and that of
peers who rely on linear representations.

A third class of questions involves practical applications of the
present findings. One question concerns whether using number
lines to display the linear magnitudes associated with each operand
when arithmetic problems are presented and then displaying the
magnitude of the answer when feedback is given will improve
children’s learning. Learning answers to arithmetic problems is not
a rote process; children learn not only the verbal label of the
correct answer but also its approximate magnitude. Evidence for
this conclusion comes from both verification and production tasks.
On verification tasks, children are quicker to reject errors that are
far from the correct answer to an arithmetic problem than errors
that are close to it (Ashcraft, 1987). On production tasks, a dis-
proportionate percentage of children’s errors on arithmetic prob-
lems are close misses (Siegler, 1988). Reliance on a logarithmic
representation would increase the difficulty of learning the mag-
nitudes of answers, especially in high ranges in which the loga-
rithmic representation minimizes the psychological distance be-
tween numbers. Thus, presenting spatial displays of the linear
magnitudes associated with operands and answers during learning
might well hasten the learning of correct answers and also enable
children to generate plausible rather than implausible errors. More
generally, identifying representations of numerical magnitude as a
source of children’s difficulty in estimation, and perhaps in learn-
ing math more generally, opens a new dimension for mathematics
educators to consider.
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