Learning to Find Proofs and Theorems by Learning to Refine Search Strategies The Case of Loop Invariant Synthesis

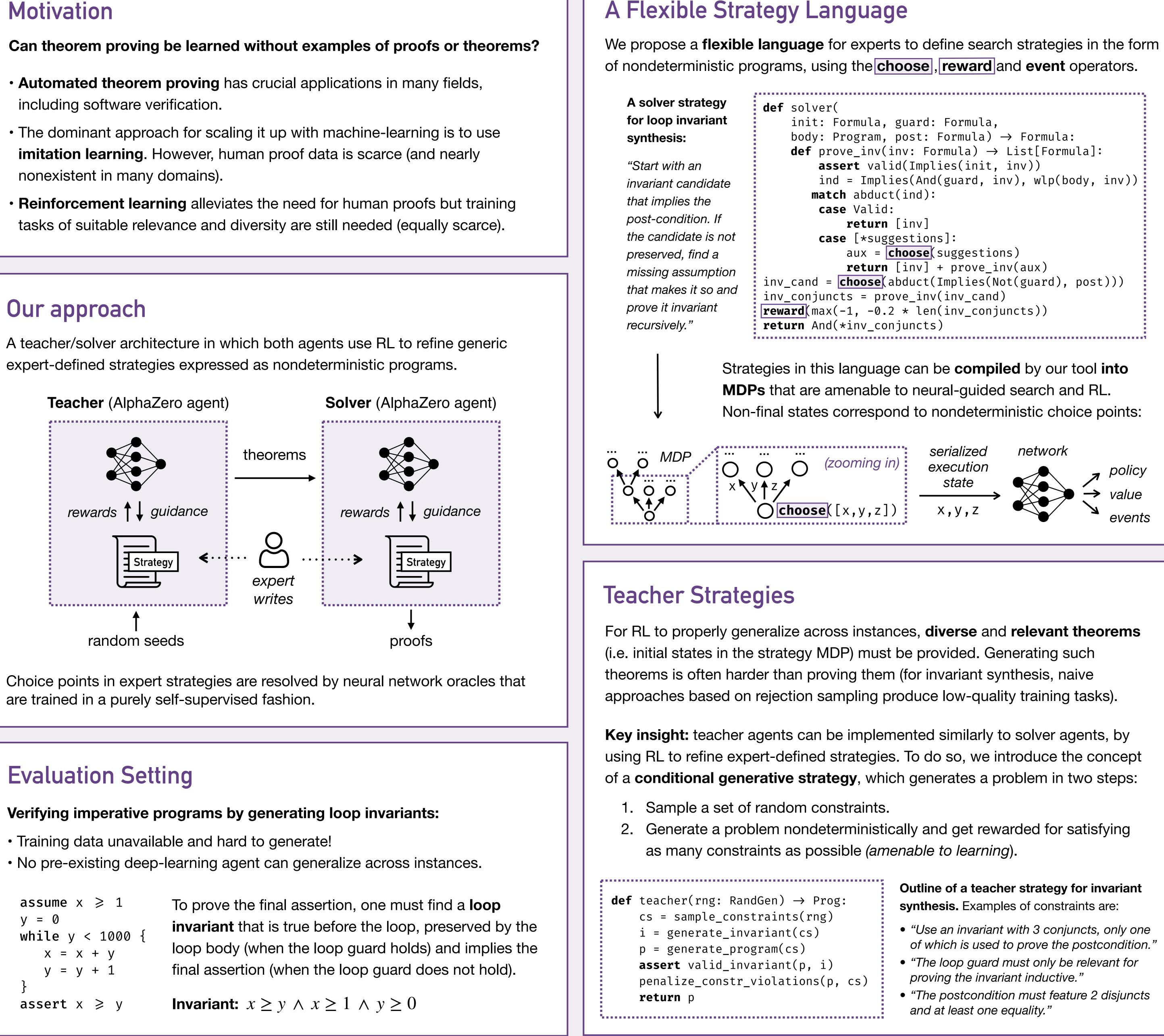
Jonathan Laurent^{1,2} and André Platzer^{1,2} (Carnegie Mellon University¹, Karlsruhe Institute of Technology²)

Motivation

- including software verification.
- nonexistent in many domains).

Our approach

expert-defined strategies expressed as nondeterministic programs.

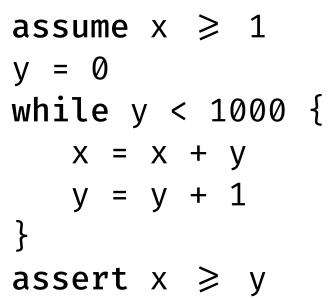


are trained in a purely self-supervised fashion.

Evaluation Setting

Verifying imperative programs by generating loop invariants:

- Training data unavailable and hard to generate!



```
body: Program, post: Formula) \rightarrow Formula:
    def prove_inv(inv: Formula) → List[Formula]:
        ind = Implies(And(guard, inv), wlp(body, inv))
             aux = choose(suggestions)
            return [inv] + prove_inv(aux)
inv_cand = choose(abduct(Implies(Not(guard), post)))
```

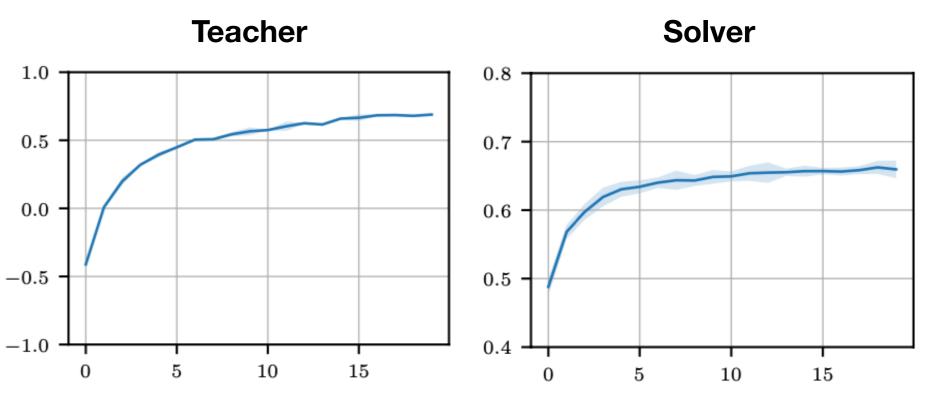
network serialized execution policy value х,у, Z events

Outline of a teacher strategy for invariant synthesis. Examples of constraints are:

• "Use an invariant with 3 conjuncts, only one of which is used to prove the postcondition." • "The loop guard must only be relevant for proving the invariant inductive." • "The postcondition must feature 2 disjuncts and at least one equality."

Experiments

- debug and compile strategies into MDPs.



Average collected reward as a function of the training iteration

Policy	% Problems solved
Random Network (untrained teacher) Network (trained teacher)	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$

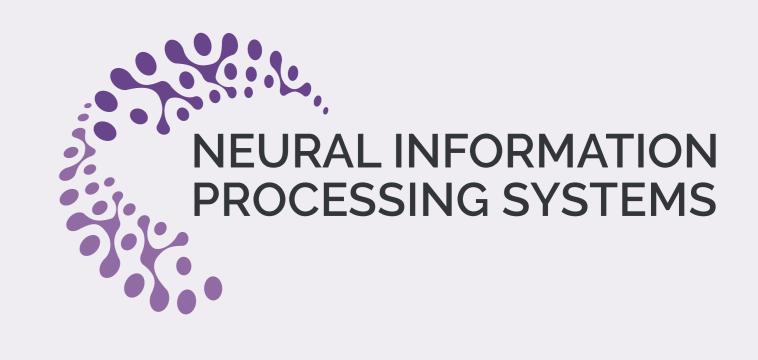
Takeaway: the trained network can solve a majority of problems with *no* search at all despite never seeing those during training. Using an untrained teacher leads to an inferior solver with decreased generalization capabilities.

Conclusion and Future Work

We demonstrated the possibility of learning a theorem proving task (invariant synthesis) in the absence of *both* proof and theorem examples.

- Future work:

- Integration with large pretrained language models



• We implemented our strategy language along with a toolchain to write,

• We trained a **teacher** and a **solver** agent for **invariant synthesis** based on two strategies written in this language. We used **Dynamic Graph Transformers** with 2M parameters as neural oracles and trained both agents for 160K **AlphaZero** episodes (with 32 MCTS simulations per move).

• Training took 16 hours on a 10-core CPU and 1 Nvidia RTX 3080 GPU.

• We evaluated the resulting solver on the **Code2Inv benchmark suite** (130 problems involving loops, conditionals and linear integer arithmetic).

• The Code2Inv problems can be solved via pure search so we conducted the evaluation with **no search allowed** (i.e. using the network policy greedily).

• Broader vision: interactive provers allow users to write teacher and solver strategies for various domains in a distributed way. A large language model is fine-tuned to serve as a shared oracle that generalizes across those.

• Evaluation of our framework in other application domains • Intrinsic teacher rewards (curiosity, solver rewarding the teacher directly...)