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1 Théorie des ensembles

1.1 Caractérisation fonctionnelle de l’injectivité
1. Soient E et F des ensembles, et f : E → F une fonction injective.

Soit G un ensemble, et g : E → G une fonction quelconque.
Montrer qu’il existe une fonction h : F →: G telle que g = h ◦ f

E
f
> F

G

g

∨
h

<...
.....
.....
.....
.

2. Réciproquement, supposons que f n’est pas injective. Construire un en-
semble G et une fonction g telle qu’on ne puisse pas construire une telle
fonction h

1.2 Caractérisation fonctionnelle de la surjectivité
1. Soient E et F des ensembles, et f : E → F une fonction surjective.

Soit G un ensemble, et g : F → G une fonction quelconque.
Montrer qu’il existe une fonction h : E →: G telle que h = g ◦ f

E
f
> F

G

h

∨

.........
g

<

2. Réciproquement, supposons que f n’est pas surjective. Construire un en-
semble G et une fonction g telle qu’on ne puisse pas construire une telle
fonction h

1.3 Caractérisation fonctionnelle des ensembles infinis
Soit E un ensemble. Montrer que E est infini si et seulement si pour toute

fonction f : E → E, il existe A ⊂ E tel que A est stable par f .

1.4 Une preuve du théorème de Cantor-Bernstein
On rappelle le théorème de Cantor-Bernstein :

Théorème 1. Soient E et F deux ensembles, et f : E → F et g : F → E deux
injections. Alors il existe h : E → F une bijection. Autrement dit, si E s’injecte
dans F et F s’injecte dans E, alors ces deux ensembles sont equipotents.
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Les définitions sont ici très formelles, car c’est la manière la plus rigoureuse de
rédiger. On s’attachera à bien faire comprendre les définitions.

Soit x ∈ E. On définit (un(x))n la suite (éventuellement finie) de E
⋃
F définie

par :

u0(x) = x

u2n+1 = g−1(u2n) si cela a un sens

u2n = f−1(u2n−1) si cela a un sens

On définit de même les suites (vn(y))n pour tout y ∈ F .
On définit :

E∞ := {x ∈ E|(un(x)) est infinie}
EE := {x ∈ E|(un(x)) finit en E}
EF := {x ∈ E|(un(x)) finit en F}

On fait de même pour F∞, FE , FF .

1. Montrer que (F∞, FE , FF ) est une partition de F , et que (E∞, EE , EF ) est
une partition de E (dont certaines des parties sont éventuellement vides).

2. Construire une bijection entre E∞ et F∞.
3. Construire des bijections entre EE et FE d’une part, et EF et FF d’autre

part.
4. En conclure le théorème de Cantor-Bernstein.

2 Relations d’ordre, relations d’équivalence

2.1 Recouvrements d’ensemble
Soit E un ensemble. On dit que (Ui)i∈I est un recouvrement de E si ∀i ∈

I, Ui ⊂ E et
⋃
i Ui = E.

1. Une partition est-elle un recouvrement ? Un recouvrement est-il une parti-
tion. Soit X un ensemble. P(X ) est-il un recouvrement de X ?

2. Soient (Ui)i∈I et (Vj)j∈J deux recouvrements. On dit que (Ui) est plus
fin que (Vj) si ∀i ∈ I,∃j ∈ j Ui ⊂ Vj . Cette relation forme-t-elle une
relation d’ordre ? Montrer qu’il existe un recouvrement “maximal” qui soit
plus fin que (Ui) et (Vj). Maximal signifie que tout recouvrement vérifiant
la propriété sera plus fin que celui-ci.

3. Soit X un ensemble, et soient fi : Ui → X des fonctions. Montrer l’équiva-
lence suivante :
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(i) ∀i, j ∈ I, ∀x ∈ Ui ∩ Uj , fi(x) = fj(x)
(ii) Il existe f : E → X telle que ∀i ∈ I, ∀x ∈ Ui, f(x) = fi(x)

2.2 Ensembles totalement ordonnés dénombrables
Montrer que tout ensemble dénombrable totalement ordonné est isomorphe

(en tant que qu’ensemble ordonné) à un sous-ensemble de Q.

2.3 Relation d’équivalence sur les fonctions réelles
On considère l’ensemble des fonctions de R dans R. On dit que f et g sont

équivalentes s’il existe c > 0 tel que ∀x > c, f(x) = g(x). Montrer que cette
relation est bien une relation d’équivalence.

2.4 Treillis complet
Soit (E,<) un ensemble (partiellement) ordonné. On dit que E est un treillis

complet si tout sous ensemble de E possède une borne supérieure.

1. Les ensembles suivants munis de leur relation d’ordre canonique sont-ils des
treillis complet ? [0, 1], ]0, 1[,R,P(X ) (où X est un ensemble quelconque).

2. Soit (E,<) un treillis complet. Soit f une fonction croissante de E dans E.
Montrer que f possède un point fixe.
Indication : On introduira A = {x ∈ E|x ≤ f(x)}

3. En déduire que toute application croissante de [0, 1] dans lui-même possède
un point fixe.

4. On se sert de ce résultat pour démontrer le théorème de Cantor Bernstein.
Soient E et F deux ensembles, f et g des injections de E dans F et de F
dans E. On définit

Φ : P(E) −→ P(E)
M 7−→ (E\g(F\f(M)))

Montrer que Φ possède un point fixe M . Construire une bijection entre M
et f(M) d’une part, et entre E\M avec F\f(M) d’autre part. En déduire
le théorème de Cantor Bernstein.

2.5 Fonction entre classes d’équivalence
Soient E et F des ensembles, R une relation d’équivalence sur E et S une rela-

tion d’équivalence sur F . Soit f une fonction de E dans F . Donner une condition
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nécessaire et suffisante telle qu’il existe f̂ telle que ce diagramme commute

E
f
> F

E/R

p
∨

f̂
> F/S

q
∨

où p et q sont les projections canoniques.

3 Fonctions usuelles, convexité

3.1 Inégalité sur l’exponentielle
Montrer que pour tout n ∈ N et x ≥ 0, on a :

ex ≥
n∑
i=0

xk

k!
(3.1)

3.2 Tangente et polynomes
Montrer que toutes les dérivées successives de x→ tan(x) peuvent s’exprimer

comme un polynome en tan(x).

3.3 Entropie et Divergence de Kullback-Leibler
Soit p = (p1, ..., pn) un n-uplet tel que ∀i, 0 ≤ pi ≤ 1 et

∑n
i=1 = 1.

Ce n-uplet s’interprète comme une distribution de probabilité sur un ensemble
fini.

On définit l’entropie de cette distribution par :

H(p) = −
n∑
i=1

pi log(pi) (3.2)

— Montrer que H(p) ≥ 0
— Énoncer l’inégalité de Jensen. En déduire une borne supérieure pour H(p),

et déterminer une distribution où elle est atteinte
On a maintenant deux distributions de probabilité p et q. On définit la diver-

gence de Kullback-Leibler par :

D(p, q) = −
n∑
i=1

pi log(qi)−H(p) (3.3)

— Montrer que D(p, q) est positive.
— Trouver une condition nécessaire et suffisante pour que D(p, q) = 0
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4 Equations différentielles

4.1 Equation de Bernoulli
On considère une modélisation de l’évolution d’une population. L’équation la

définissant est :
N ′(t) = aN(t)(1− N

Nmax
)

où a,Nmax ∈ R+.
Trouver toutes les solutions de cette équation.

4.2 Solutions des équations linéaires d’ordre quelconques.
Soient a0, ..., an ∈ C. On considère l’équation différentielle suivante :

any
(n) + ...+ a1y

′ + a0y = 0

On considère le polynome P (X) = anX
n + ...a1X + a0, et λ1, ..., λn ses racines

(supposées distinctes). Montrer que pour tout n-uplet µ1, ..., µn ∈ C, la fonction
t→

∑
i µe

λi est solution de l’équation différentielle.
En déduire toutes les solutions complexes et réelles de l’équation :

y(3) = y

4.3 Equations différentielles et involutions
Soit a ∈ R. Trouver toutes les fonctions dérivables de R dans R telles que :

f ′(x) = f(a− x)

4.4 Résolution générale des équations linéaires d’ordre 1
Le but de ce très court exercice est de voir que la résolution des équations

linéaires d’ordre 1 se ramène toujours à un simple calcul de primitive.
On considère a, b, c trois fonctions continues de R dans R, qui ne s’annulent

pas.
Exprimer en fonction de a, b, c les solutions de l’équation :

a(t)y′ + b(t)y = c(t)
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5 Suites réelles

5.1 Suites entières
Soit (un) une suite à valeur dans N.
— Montrer que si (un) converge, alors elle est constante à partir d’un certain

rang.
— Montrer que si (un) est injective, alors elle tend vers +∞

5.2 limsup, liminf
Soit(un) une suite réelle. On définit (vn) et (wn) à valeur dans R∪{−∞,+∞}

par :

vn = sup
k≥n
{uk}

wn = inf
k≥n
{uk}

— Montrer que (vn) et (wn) convergent. On
On notera lim sup(u) = limn vn et lim inf(u) = limn wn.

— Montrer que si lim sup(u) = lim inf(u), alors u converge.
— Montrer que si u converge, lim sup(u) = lim inf(u) = limnun
— Montrer que lim sup(u) et lim inf(u) sont des valeurs d’adhérence de (un).

5.3 Une généralisation du théorème de Césaro
Soient (an) et (bn) deux suites réelles. On suppose que an → a ∈ R
et bn → b ∈ R. On pose :

Cn =
1

n+ 1

n∑
k=0

akbn−k

Montrer que Cn converge, et déterminer sa limite.

5.4 Séries
Soit (un) une suite. On pose Sn =

∑n
k=0 uk, et S̃n

∑n
k=0 |uk|.

Montrer que si S̃n converge vers une limite finie, alors Sn également. On mon-
trera pour cela que c’est une suite de Cauchy.
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5.5 Fonction contractante
Pour cet exercice, il faut d’abord traiter (ou admettre) l’exercice précédent.
On dit que f : R→ R est contractante si il existe 0 < c < 1 tel que pour tout

x, y ∈ R, on a |f(x)− f(y)| < c|x− y|.
Soit x ∈ R. On définit (un) par :

u0 =x

un+1 =f(un)

Montrer que (un+1 − un) décroit “exponentiellement” vers 0. En déduire que
un converge vers un point fixe de f .

Montrer que ce point fixe est unique.

5.6 Caractérisation des ensembles de valeurs d’adhérence
Soit u une suite réelle. On note Λ(u) l’ensemble des valeurs d’adhérences de u,

éventuellement dans R = R ∪ {−∞,+∞}. Le but de l’exercice est de caractériser
les ensembles qui peuvent s’écrire comme Λ(u) pour une suite réelle donnée.

— Soient E = x1, ..., xn ∈ R. Construire u telle que Λ(u) = E
— Même question, mais en supposant cette fois x1, ..., xn ∈ R
— Soient a, b ∈ R. Montrer qu’il existe u suite réelle telle que Λ(u) = [a, b].

Généraliser au cas où a et b sont éventuellement infinis.
— Soient Λ1, ...,Λn des ensembles pouvant s’exprimer comme les ensembles

de valeurs d’adhérences de suites réelles. Montrer qu’il existe u une suite
réelle telle que Λ(u) =

⋃
1≤i≤n Λi

— Soit (Λn)n∈N une suite d’ensemble, pouvant tous s’exprimer comme des
ensembles de valeurs d’adhérences. Montrer qu’il existe u une suite réelle
telle que Λ(u) =

⋂
i Λi

5.7 Suite à variation décroissante
Soit u une suite réelle, telle que un+1 − un → 0. Montrer que l’ensemble des

valeurs d’adhérences de u est
[

lim inf(u), lim sup(u)
]
.

6 Fonctions continues

6.1 Unique antécédent
Soit f une fonction continue de R dans R, telle que chaque y réel admet au

plus deux antécédents.
Montrer qu’il existe un y réel qui possède un unique antécédent.
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6.2 Involution dans R+

Soit f : R+ → R+ continue, telle que f ◦ f = Id. Déterminer f .

6.3 Continuité de fonction croissante
Soit f une fonction croissante de R∗+ → R telle que f(x)

x est décroissante.
Montrer que f est continue.

6.4 Borne supérieure glissante
Soit f une fonction réelle continue. Soit g définie par :

g(x) = sup
t∈[x,x+1]

f(t) (6.1)

Montrer que g est continue.

6.5 Fonction réelle surjective
Soit f : R+ → R une fonction continue surjective.
Soit y un réel. Montrer que l’équation y = f(x) admet une infinité de solutions.

6.6 Continuité et convergence uniforme
Soit (fn) une suite de fonctions continues qui converge uniformément vers f .

Montrer que f est continue.

6.7 Semi-Continuité
1. Soit (fi)i∈I une famille de fonctions continues et bornées. La fonction infi fi

est-elle continue ?
2. On dit d’une fonction f qu’elle est semi-continue supérieurement si :

∀a,∀ε > 0,∃η, ∀x, |x− a| < η ⇒ f(x) ≤ f(a) + ε

(a) Donner un exemple de fonction non continue mais continue supérieure-
ment.

(b) Montrer que si (fi)i∈I est une famille de fonctions continues supérieu-
rement et bornées, alors infi fi est continue supérieurement.

6.8 Caractérisation par les ouverts
Montrer qu’une fonction réelle est continue si et seulement si l’image réciproque

de tout ouvert est un ouvert.
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7 Dérivabilité

7.1 Croissante sur un voisinage ?
Soit f une fonction C1([0, 1],R) telle que f ′(0) > 0. Existe-t-il un voisinage I

de 0 tel que f est strictement croissante sur I ?
Le résultat est-il vrai si on suppose uniquement f dérivable ?

7.2 Bornes d’une intégrale
Montrer qu’il existe φ : R→ R une fonction telle que ∀x ∈ R :∫ φ(x)

x

et
2

= 1

Montrer que φ est C1.

7.3 Surjectivité des tangentes
Soit f : [a, b] → R une fonction dérivable. Soit x /∈ [a, b]. Montrer qu’il existe

une tangente à f passant par x.

7.4 Minoration de la dérivée seconde
Soit f : [0, 1]→ R C2 telle que f(0) = f ′(0) = f ′(1) = 0, et f(1) = 1.
Montrer qu’il existe c tel que |f ′′(c)| ≥ 4.

8 Développements limités et analyse asymptotique

8.1 Questions courtes
— Montrer que les coefficients pairs du DLn(0) d’une fonction impaire sont

nuls.
— Commenter le DL2(0) d’une fonction C2 qui admet un minimum local strict

en 0.

8.2 Convergence simple de la série de Taylor de sinus
Notons Tn le développement limité de sinus en 0. Montrer que :

∀x ∈ R, lim
n→∞

Tn(x) = sin(x)
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8.3 Racines imbriquées

Trouver un équivallent de un =

√
n+

√
(n− 1) + · · ·+

√
2 +
√

1. On peut
poser les questions intermédiaires suivantes :

1. Montrer que un →n→∞ ∞.
2. Montrer que un ≤ n.
3. Montrer que un = O(

√
n).

4. Montrer que un ∼
√
n

8.4 Développement asymptotique des solutions d’une equa-
tion

Montrer que pour tout n entier naturel, il existe une unique solution à l’équa-
tion ex + x = n.

On appelle cette solution xn.
Déterminer la limite de xn.
Déterminer son développement asymptotique à trois termes.

8.5 Un calcul de limite
Soient x1, ..., xn > 0.
Calculer la limite quand α↔ 0 de

α

√
xα1 + ...+ xαn

n

8.6 Arccosinus
Déterminer le développement asymptotique de arccos en 1.

9 Arithmétique

9.1 Questions courtes
— Combien y a-t-il de zéro terminaux dans l’écriture en base 10 de 100!
— Montrer que la somme des cubes de trois entiers consécutifs est toujours

divisible par 9
— Montrer que si 2n−1 est premier alors n est premier
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9.2 Critère d’Euler
Soit p > 2 un nombre premier et a ∈ (Z/pZ)∗. Montrer que a est un carré si

et seulement si a
p−1
2 = 1.

9.3 Somme de parties entières
Soient n et m deux entiers premiers entre eux. Montrer que :

n−1∑
k=1

⌊
km

n

⌋
=

(m− 1)(1− 1)

2

10 Groupes

10.1 Formule de Legendre
One note vp(n) la valuation p-adique de n, soit la puissance maximale de p qui

divise n.
Montrer la formule de Legendre :

vp(n!) =
∑
k∈N?

⌊
n

pk

⌋
(10.1)

10.2 Sommes d’inverses
On note S(m,n) =

∑n
i=m

1
i . Montrer que les seuls n,m tels que S(n,m) ∈ N

sont n = m = 1

10.3 PGCD et suite de Fibonacci
On définit la suite de Fibonacci par φn+2 = φn+1 + φn, φ0 = 0 et φ1 = 1.
— Montrer que φn+1 ∧ φn = 1
— Montrer que φn+m = φmφn+1 + φm−1φn
— En déduire que φkn+r ∧ φn == φr ∧ φn
— En conclure que φn ∧ φm = φn∧m

10.4 Parties stables de N
On prend une partie P stable par addition. Montrer qu’il existe n, k tels que

P ∩ [n,∞[= kN ∩ [n,∞[.
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10.5 Infinité des nombres premiers
— Montrer que l’ensemble des nombres premiers est infini
— Montrer que l’ensemble des nombres premiers congrus à 3 modulo 4 est

infini.

11 Groupes, anneaux, corps

11.1 Questions courtes
— Montrer que le centre d’un groupe G est un sous-groupe de G.
— Montrer que les éléments d’ordre fini d’un groupe abélien en forment un

sous-groupe.
— Montrer que la table de multiplication d’un groupe fini est un carré latin

(chaque élément du groupe apparait exactement une fois sur chaque ligne
et chaque colonne).

— Montrer qu’un groupe dont tous les éléments sont d’ordre au plus 2 est
commutatif.

— Trouver le plus petit entier n tel qu’un groupe de cardinal n n’est pas
nécessairement abelien (pour n = 4, utiliser le point précédent).

11.2 Groupe dihedral
Soit P = A1 · · ·An un n-gone régulier. On noteDn l’ensemble des permutations

σ ∈ Sn telles que AiAj est une arrête de P si et seulement si Aσ(i)Aσ(j) est une
arrête de P .

— Quel est le cardinal de Dn ?
— Montrer que Dn admet une structure de groupe.
— Discuter l’ordre des éléments de Dn

— Montrer que Dn admet un sous-groupe cyclique d’ordre n.
— Montrer que Dn admet n éléments au moins d’ordre 2.

— Donner la table de multiplication de Dn

— Dn peut-il être abélien, si oui pour quels valeurs de n ?
— Combien de sous-groupes Dn admet-il exactement ?

11.3 Groupe des fonctions affines
Soit k un corps commutatif. On considère E = k∗ × k muni de la loi :

(x, y) ? (x′, y′) = (xx′, xy′ + y) (11.1)

Montrer que (E, ?) est un groupe.

On considère F = {f : z → az + b, a ∈ k∗b ∈ k}
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Montrer que (F, ◦) est un groupe.
Montrer qu’il est isomorphe à (E, ?).

11.4 Sous-groupes maximaux
Déterminer tous les sous-groupes de (Z,+).
On dit qu’un sous-groupe H de G est maximal s’il n’est strictement inclus

dans aucun sous-groupe strict de G.
Déterminer tous les sous-groupes maximaux de (Z,+).
Déterminer tous les sous-groupes maximaux de (Q,+).

12 Polynomes

12.1 Anneaux, quotients, polynomes, ...
Soit A un anneau, I un idéal de A.
On définit la relation a ∼ b⇔ a− b ∈ I
— Montrer que ∼ est une relation d’équivalence.
— Exemple : A = Z, I = nZ. Quelles sont les classes d’équivalence ?
— On définit :

ā+̄b̄ := a+ b (12.1)

ā×̄b̄ := a× b (12.2)

Montrer que (A/ ∼, +̄, ×̄) est un anneau.
— Pour la suite, on prend k un corps et A = k[X]. On prend P ∈ A et

I = Pk[X]. Quelles sont les classes d’équivalences ? Quels sont les éléments
inversibles ?

— Montrer que si P est irréductible dans k, alors k[X]/P est un corps. On le
notera k′.

— Montrer que k peut être vu comme un sous-corps de k′.
— Montrer que P en tant que polynome de k′ possède une racine dans k′.
— Application : on prend k = R et P = X2 + 1. Montrer que R[X]/P = C en

tant que corps.

12.2 Division de polynomes
Calculer la division euclidienne de (cos θ +X sin θ)n par (X2 + 1).

12.3 Nombre de solutions d’une équation
Soit P un polynome de C[X] de degré d. On définit n(z) comme le nombre de

solution à l’équation P (x) = z.
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— Montrer que n(z) = d− deg((P − z) ∧ P ′)
— Montrer que

∑
z∈C d− n(z) = d− 1

12.4 Minoration du module des racines
Soit P ∈ C[X], P = Xn + an−1X

n−1 + ...+ a0.
Soit z0 une racine de P . Montrer que |z0| ≤ 1 + max(|ai|).

13 Fractions rationnelles

13.1 (Quasi) surjectivité des fractions rationnelles
Montrer qu’une l’image d’une fraction rationnelle complexe est soit tout C,

soit C privé d’un point.

13.2 Fraction rationnelle et longueurs d’intervalles
Soient a1, ..., an > 0, et x1, ..., xn ∈ R. On pose

f(x) =
∑
i

ai
x− xi

On définit
E(λ) = {x ∈ R | f(x) > λ)}

.
— Montrer que E(λ) est une union finie d’intervalles.
— Montrer que la somme des longueurs de ces intervalles vaut

1

λ

∑
i

ai

13.3 Calcul de série
Calculer ∑

n≥1

1

n(n+ 1)(n+ 2)
(13.1)

Solution : 1/4
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14 Espaces vectoriels

14.1 Exemples
On se place dans l’espace des fonctions réelles. Dire si ces ensembles sont ou

non des sous-espaces vectoriels :
— L’ensemble des fonctions croissantes
— L’ensemble des fonctions monotones
— L’ensemble des fonctions périodiques de période 1
— L’ensemble des fonctions pouvant s’écrire comme la somme d’une fonction

croissante et d’une fonction décroissante.
— L’ensemble des fonctions qui ont une limite finie en ∞ et −∞.

14.2 Quelques supplémentaires
Dans chaque exemple, montrer que F est un sous espace vectoriel de E et

trouver un supplémentaire de F dans E.
— E = K(X), F = K[X]
— E = RR, F = {f : f(0) + f(1) = 0}
— E = RR, F = {f : f paire}
— E = C0([0, 1],R), F = {f :

∫ 1

0
f = 0}

— [∗] E = C0(R,R), F = {f : ∀k, f(xk) = 0}

14.3 Intersections, unions, sommes
Soit E un espace vectoriel, A et B des parties de E
— Comparer V ect(A ∪B) et V ect(A) + V ect(B)
— Comparer V ect(A ∩B) et V ect(A) ∩ V ect(B)

14.4 Equation de Cauchy
On considère l’équation de Cauchy :

∀x, y ∈ R, f(x+ y) = f(x) + f(y)

— Montrer que la restriction de toute solution à l’équation de Cauchy à Q est
linéaire.

— Montrer que toute solution continue est linéaire.
— Montrer que R est un Q-ev de dimension infinie.
— En admettant l’existence d’un supplémentaire de Q dans R, construire une

solution non linéaire à l’équation de Cauchy.
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14.5 Endomorphismes nilpotents
Soit E un espace de dimension n.
— Soit u un endomorphisme nilpotent. Montrer que un = 0.
— Soient u1, ..., un des endomorphismes nilpotents qui commutent. Montrer

que u1 ◦ u2 ◦ ... ◦ un = 0.

14.6 Supplémentaire commun
Soit E un espace vectoriel de dimension finie, F et G des sous-espaces de E de

même dimension.
Montrer qu’ils admettent un supplémentaire commun.

14.7 Identité de Leibniz
On veut montrer l’identité de Leibniz à partir de l’identité de Newton dans un

anneau quelconque. Pour cela, on introduit E = {f : N2 → R : f est à support fini}.
Pour f et g deux fonctions C∞ et φ ∈ E, on définit :

[φ]f,g =
∑
i,j

φ(i, j)f (i)g(j)

— Montrer que E peut être muni d’une structure d’EV.
— Trouver un opérateur ∆ : E → E tel que :

∀φ, ([φ]f,g)
′ = [∆φ]f,g

— En écrivant ∆ comme somme de deux endomorphismes de L(E) qui com-
mutent et en utilisant l’indentité de Newton sur l’anneau (L(E),+, ◦), mon-
trer l’identité de Leibniz.

14.8 Un peu de dénombrement
Soit E un EV de dimension n sur le corps Fp et r ≤ n.
— Combien y a-t-il de familles libres (ordonnées) de taille r sur E ?
— Combien y a-t-il de sous-espaces de dimension r dans E

14.9 Pour ceux qui aiment l’algèbre
Montrer que le cardinal de tout corps fini est une puissance d’un entier premier.
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14.10 Petits exos faciles
— Montrer que l’ensemble des suites de périodes T est un EV. Quelle est sa

dimension ?
— Soient x1 < · · · < xn. Quelle est la dimension de l’espace des fonctions

continues sur [x1, xn] affines sur chaque intervalle [xi, xi+1] ?
— Montrer que rg(v ◦ u) = rg(u) si et seulement si Ker v ∩ Imu = 0
— Montrer que | rg(u)− rg(v)| ≤ rg(u+ v) ≤ rg(u) + rg(v)
— Montrer que dim Ker(f ◦ g) ≤ dim Ker(f) + dim Ker(g) (f, g ∈ L(E)). Cas

d’égalité ? (Ker(f) ⊆ Im(g))

14.11 Contraintes indépendantes
Soit E e.v. de dimension n et φ1, · · · , φp des formes linéaires indépendantes.

Montrer que dim
⋂
i Kerφi = n− p.

Indices :
— Montrer que si H est un ev strict de Rp, alors il existe (ai)i telle que :

∀x ∈ H,
∑
i

aixi = 0

— Etudier l’application x 7→ (φ1(x), · · · , φ2(x))

14.12 Décomposition de l’unité
Soit E un espace vectoriel, (fi) une famille finie d’endomorphismes. On suppose

que :
—
∑
rg(fi) ≤ n

—
∑
fi = Id

Montrer que les fi sont des projecteurs.
Solution : Comme

∑
fi = Id, on a

⊕
Im(fi) = E. (Vérifier les intersections

nulles)
Indice : Montrer que fifj = 0 si i 6= j.

14.13 Division polynomiale et projecteurs
Soit E = R[X], et A ∈ E. Montrer que l’application qui à un polynome associe

le reste de la division euclidienne par A est un projecteur. Déteriner son image et
son noyau.

14.14 Corps et sur-corps
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