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1 Théorie des ensembles

1.1

1.

1.2

1.3

Caractérisation fonctionnelle de I’injectivité

Soient E et F' des ensembles, et f: E — F une fonction injective.
Soit G’ un ensemble, et g : E — G une fonction quelconque.
Montrer qu’il existe une fonction h : F —: G telle que g = ho f

E-1sF

g

G

. Réciproquement, supposons que f n’est pas injective. Construire un en-

semble G et une fonction g telle qu’on ne puisse pas construire une telle
fonction h

Caractérisation fonctionnelle de la surjectivité

. Soient E et F des ensembles, et f : E — F une fonction surjective.

Soit G un ensemble, et g : F' — G une fonction quelconque.
Montrer qu’il existe une fonction h : E —: G telle que h = go f

E%F

h/
v

G

Réciproquement, supposons que f n’est pas surjective. Construire un en-
semble G et une fonction g telle qu’on ne puisse pas construire une telle
fonction h

Caractérisation fonctionnelle des ensembles infinis

Soit E un ensemble. Montrer que E est infini si et seulement si pour toute
fonction f: F — FE, il existe A C F tel que A est stable par f.

1.4

Une preuve du théoréme de Cantor-Bernstein

On rappelle le théoréme de Cantor-Bernstein :

Théoréme 1. Soient E et F deux ensembles, et f : E — F et g: F — E deux
injections. Alors il existe h : E — F une bijection. Autrement dit, si E s’injecte
dans F et I' s’injecte dans E, alors ces deuxr ensembles sont equipotents.



Les définitions sont ici trés formelles, car c’est la maniére la plus rigoureuse de
rédiger. On s’attachera a bien faire comprendre les définitions.

Soit z € E. On définit (u,(x)), la suite (éventuellement finie) de E | J F' définie
par :

up(z) =«
Uzni1 = g (ugy) si cela a un sens
Uy, = f_l(uQn,l) si cela a un sens

On définit de méme les suites (v, (y)), pour tout y € F.
On définit :

E :={z € E|(un(x)) est infinie}
Ep :={z € E|(uy(z)) finit en E}
Er :={x € E|(uy(z)) finit en F}

On fait de méme pour Fi, Fg, Fr.
1. Montrer que (Fu, Fg, Fr) est une partition de F', et que (E, Fg, Er) est
une partition de E (dont certaines des parties sont éventuellement vides).
2. Construire une bijection entre Fy, et Fi.

3. Construire des bijections entre Eg et Fg d’une part, et Er et Fp d’autre
part.

4. En conclure le théoréme de Cantor-Bernstein.

2 Relations d’ordre, relations d’équivalence

2.1 Recouvrements d’ensemble

Soit E un ensemble. On dit que (U;);cr est un recouvrement de E si Vi €
I,Ui CFEet U7Uz =F.

1. Une partition est-elle un recouvrement ? Un recouvrement est-il une parti-
tion. Soit X un ensemble. P(X) est-il un recouvrement de X ?

2. Soient (U;)ier et (Vj)jes deux recouvrements. On dit que (U;) est plus
fin que (V;) si Vi € 1,35 € j U; C Vj. Cette relation forme-t-clle une
relation d’ordre ? Montrer qu’il existe un recouvrement “maximal”’ qui soit
plus fin que (U;) et (V;). Maximal signifie que tout recouvrement vérifiant
la propriété sera plus fin que celui-ci.

3. Soit X un ensemble, et soient f; : U; — X des fonctions. Montrer I’équiva-
lence suivante :



(i) Vi,j € I,V € U;NUj, fi(z) = fj(x)
(ii) Il existe f: E — X telle que Vi € I,Vz € Uy, f(z) = fi(x)

2.2 Ensembles totalement ordonnés dénombrables

Montrer que tout ensemble dénombrable totalement ordonné est isomorphe
(en tant que qu’ensemble ordonné) a un sous-ensemble de Q.

2.3 Relation d’équivalence sur les fonctions réelles

On considére I'ensemble des fonctions de R dans R. On dit que f et g sont
équivalentes s'il existe ¢ > 0 tel que Vo > ¢, f(z) = g(x). Montrer que cette
relation est bien une relation d’équivalence.

2.4 Treillis complet

Soit (E, <) un ensemble (partiellement) ordonné. On dit que F est un treillis
complet si tout sous ensemble de F posséde une borne supérieure.

1. Les ensembles suivants munis de leur relation d’ordre canonique sont-ils des
treillis complet 7 [0, 1],]0, 1[, R, P(X) (ou X est un ensemble quelconque).

2. Soit (E, <) un treillis complet. Soit f une fonction croissante de E dans F.
Montrer que f posséde un point fixe.
Indication : On introduira A = {z € Elz < f(z)}

3. En déduire que toute application croissante de [0, 1] dans lui-méme posséde
un point fixe.

4. On se sert de ce résultat pour démontrer le théoréme de Cantor Bernstein.
Soient E et F' deux ensembles, f et g des injections de E dans F' et de F
dans E. On définit

$: PE) — PE)
M — (BE\g(F\f(M)))

Montrer que ® posséde un point fixe M. Construire une bijection entre M
et f(M) d’une part, et entre E\M avec F\ f(M) d’autre part. En déduire
le théoréme de Cantor Bernstein.

2.5 Fonction entre classes d’équivalence

Soient E et F' des ensembles, R une relation d’équivalence sur F et S une rela-
tion d’équivalence sur F. Soit f une fonction de F dans F. Donner une condition



nécessaire et suffisante telle qu’il existe f telle que ce diagramme commute

E%F

b
E/R = F/S

ol p et g sont les projections canoniques.

3 Fonctions usuelles, convexité

3.1 Inégalité sur ’exponentielle

Montrer que pour tout n € Net x >0, on a :
n ij
xT
e’ =Y o (3.1)
i=0

3.2 Tangente et polynomes

Montrer que toutes les dérivées successives de x — tan(x) peuvent s’exprimer
comme un polynome en tan(zx).

3.3 Entropie et Divergence de Kullback-Leibler

Soit p = (p1, ..., pn) un n-uplet tel que Vi, 0 <p; <let >, =1.

Ce n-uplet s’interpréte comme une distribution de probabilité sur un ensemble
fini.

On définit U'entropie de cette distribution par :

H(p) = — Zpi log(p;) (3.2)

— Montrer que H(p) > 0
— Enoncer Iinégalité de Jensen. En déduire une borne supérieure pour H (p),
et déterminer une distribution ou elle est atteinte
On a maintenant deux distributions de probabilité p et ¢g. On définit la diver-
gence de Kullback-Leibler par :

Dlp,q) =~ pilog(as) ~ H(p) (33

— Montrer que D(p, q) est positive.
— Trouver une condition nécessaire et suffisante pour que D(p,q) =0



4 Equations différentielles

4.1 Equation de Bernoulli

On considére une modélisation de I’évolution d’une population. L’équation la

définissant est :
N

Nmaa:

N'(t) = aN(t)(1 — )

ou a, Nmaw € R-‘,—-
Trouver toutes les solutions de cette équation.

4.2 Solutions des équations linéaires d’ordre quelconques.

Soient ay, ..., a, € C. On considére I’équation différentielle suivante :
any™ 4+ .+ ary +apy =0

On considére le polynome P(X) = a, X™ 4+ ...a1 X + ag, et A1,..., A, ses racines
(supposées distinctes). Montrer que pour tout n-uplet pq, ..., 4, € C, la fonction
t — >, peti est solution de I'équation différentielle.

En déduire toutes les solutions complexes et réelles de ’équation :

y®) =y

4.3 Equations différentielles et involutions

Soit a € R. Trouver toutes les fonctions dérivables de R dans R telles que :
f'(@) = fla—u)

4.4 Reésolution générale des équations linéaires d’ordre 1

Le but de ce trés court exercice est de voir que la résolution des équations
linéaires d’ordre 1 se raméne toujours & un simple calcul de primitive.

On considére a, b, ¢ trois fonctions continues de R dans R, qui ne s’annulent
pas.

Exprimer en fonction de a, b, ¢ les solutions de I’équation :

a(t)y’ + b(t)y = c(t)



5 Suites réelles

5.1 Suites entiéres

Soit (u,) une suite a valeur dans N.

— Montrer que si (u,) converge, alors elle est constante & partir d’un certain
rang.

— Montrer que si (uy,) est injective, alors elle tend vers +oo

5.2 limsup, liminf

Soit(uy,) une suite réelle. On définit (v,,) et (w,) a valeur dans RU{—o00, 400}
par :

on =sup{up}
k>n
—inf
vn = ot
— Montrer que (v,) et (w,) convergent. On
On notera lim sup(u) = lim,, v, et liminf(u) = lim,, w,,.
— Montrer que si lim sup(u) = liminf(u), alors u converge.
— Montrer que si u converge, limsup(u) = liminf(u) = lim,u,
— Montrer que limsup(u) et liminf(u) sont des valeurs d’adhérence de (u,,).
5.3 Une généralisation du théoréme de Césaro

Soient (a,) et (b,) deux suites réelles. On suppose que a,, — a € R
et b, — b € R. On pose :

1 n
C, = by
n+1’;ak k

Montrer que C),, converge, et déterminer sa limite.

5.4 Séries

Soit (u,) une suite. On pose Sy, = 37 uy, et Sn Sr_o lusl.
Montrer que si S, converge vers une limite finie, alors S,, également. On mon-
trera pour cela que c’est une suite de Cauchy.



5.5 Fonction contractante

Pour cet exercice, il faut d’abord traiter (ou admettre) lexercice précédent.

On dit que f: R — R est contractante si il existe 0 < ¢ < 1 tel que pour tout
2,y € R, ona |f(z) - f(y)| < clz — .

Soit € R. On définit (u,) par :

ug =&
Up+1 :f(un)

Montrer que (u,t1 — uy,) décroit “exponentiellement” vers 0. En déduire que
u, converge vers un point fixe de f.
Montrer que ce point fixe est unique.

5.6 Caractérisation des ensembles de valeurs d’adhérence

Soit u une suite réelle. On note A(u) 'ensemble des valeurs d’adhérences de w,
éventuellement dans R = R U {—o00, +00}. Le but de 'exercice est de caractériser
les ensembles qui peuvent s’écrire comme A(u) pour une suite réelle donnée.

— Soient F = 1, ...,x, € R. Construire u telle que A(u) = E

— Meéme question, mais en supposant cette fois x1, ..., z, € R

— Soient a,b € R. Montrer qu’il existe u suite réelle telle que A(u) = [a, b].
Généraliser au cas ol a et b sont éventuellement infinis.

— Soient Aq,...,A, des ensembles pouvant s’exprimer comme les ensembles
de valeurs d’adhérences de suites réelles. Montrer qu’il existe u une suite
réelle telle que A(u) = J;<;<p, Ai

— Soit (A,)nen une suite d’ensemble, pouvant tous s’exprimer comme des
ensembles de valeurs d’adhérences. Montrer qu’il existe v une suite réelle
telle que A(u) =), As

5.7 Suite & variation décroissante

Soit u une suite réelle, telle que uy+1 — u, — 0. Montrer que I’ensemble des
valeurs d’adhérences de u est [liminf(u), limsup(u)].

6 Fonctions continues

6.1 Unique antécédent

Soit f une fonction continue de R dans R, telle que chaque y réel admet au
plus deux antécédents.
Montrer qu’il existe un y réel qui posséde un unique antécédent.

10



6.2 Involution dans R,

Soit f: Ry — R, continue, telle que f o f = Id. Déterminer f.

6.3 Continuité de fonction croissante
f(z)

x

Soit f une fonction croissante de R} — R telle que est décroissante.

Montrer que f est continue.

6.4 Borne supérieure glissante

Soit f une fonction réelle continue. Soit g définie par :

g(z)= sup f(t) (6.1)
te(z,xz+1]

Montrer que g est continue.

6.5 Fonction réelle surjective

Soit f : Ry — R une fonction continue surjective.
Soit y un réel. Montrer que I’équation y = f(z) admet une infinité de solutions.

6.6 Continuité et convergence uniforme

Soit (f,) une suite de fonctions continues qui converge uniformément vers f.
Montrer que f est continue.

6.7 Semi-Continuité

1. Soit (f;)ier une famille de fonctions continues et bornées. La fonction inf; f;
est-elle continue 7

2. On dit d’une fonction f qu’elle est semi-continue supérieurement si :
Va,Ve > 0,3, Vo, |z —al <n = f(z) < fla)+¢

(a) Donner un exemple de fonction non continue mais continue supérieure-
ment.

(b) Montrer que si (fi)ics est une famille de fonctions continues supérieu-
rement et bornées, alors inf; f; est continue supérieurement.

6.8 Caractérisation par les ouverts

Montrer qu'une fonction réelle est continue si et seulement si I'image réciproque
de tout ouvert est un ouvert.

11



7 Dérivabilité
7.1 Croissante sur un voisinage ?
Soit f une fonction C*([0,1],R) telle que f/(0) > 0. Existe-t-il un voisinage I
de 0 tel que f est strictement croissante sur 17?7
Le résultat est-il vrai si on suppose uniquement f dérivable ?
7.2 Bornes d’une intégrale

Montrer qu’il existe ¢ : R — R une fonction telle que Vx € R :

#(x)
/ et2 =1

Montrer que ¢ est C1.

7.3 Surjectivité des tangentes

Soit f : [a,b] — R une fonction dérivable. Soit = ¢ [a,b]. Montrer qu’il existe
une tangente & f passant par x.
7.4 Minoration de la dérivée seconde

Soit f:[0,1] — R C? telle que f(0) = f/(0) = f'(1) =0, et f(1) = 1.
Montrer qu'il existe ¢ tel que |f”(c)| > 4.

8 Développements limités et analyse asymptotique

8.1 Questions courtes

— Montrer que les coefficients pairs du DL, (0) d’une fonction impaire sont
nuls.

— Commenter le DL5(0) d’une fonction C? qui admet un minimum local strict
en 0.

8.2 Convergence simple de la série de Taylor de sinus

Notons T, le développement limité de sinus en 0. Montrer que :

Vr e R, lim T,(z) = sin(z)
n—oo

12



8.3 Racines imbriquées

Trouver un équivallent de u, = \/n + \/(n -D+--+Vv2+ V1. On peut

poser les questions intermédiaires suivantes :
1. Montrer que t, —¥,_yo0 OO.
2. Montrer que u, < n.
3. Montrer que u,, = O(y/n).
4. Montrer que u, ~ \/n

8.4 Deéveloppement asymptotique des solutions d’une equa-
tion

Montrer que pour tout n entier naturel, il existe une unique solution a I’équa-
tion e* + x = n.

On appelle cette solution x,,.

Déterminer la limite de z,,.

Déterminer son développement asymptotique a trois termes.

8.5 Un calcul de limite

Soient x1, ..., T, > 0.
Calculer la limite quand « <> 0 de

LA S S s
n

Déterminer le développement asymptotique de arccos en 1.

8.6 Arccosinus

9 Arithmétique

9.1 Questions courtes

— Combien y a-t-il de zéro terminaux dans I’écriture en base 10 de 100!

— Montrer que la somme des cubes de trois entiers consécutifs est toujours
divisible par 9

— Montrer que si 277! est premier alors n est premier

13



9.2 Critére d’Euler

Soit p > 2 un nombre premier et a € (Z/pZ)*. Montrer que a est un carré si

. p—1
et seulement si a2 = 1.

9.3 Somme de parties entiéres

Soient n et m deux entiers premiers entre eux. Montrer que :

ZWJ :<m—1;<1—1>

k=1

10 Groupes

10.1 Formule de Legendre

One note v,(n) la valuation p-adique de n, soit la puissance maximale de p qui
divise n.
Montrer la formule de Legendre :

o)=Y LZJ (10.1)
keN~
10.2 Sommes d’inverses

On note S(m,n) = Y.~ L. Montrer que les seuls n,m tels que S(n,m) € N

=m 3
sontn=m=1

10.3 PGCD et suite de Fibonacci

On définit la suite de Fibonacci par ¢,10 = ¢pr1 + dn, ¢o =0 et ¢ = 1.
— Montrer que ¢p41 Ay, =1

— Montrer que ¢pnim = PrmPnr1 + Gm—10n
— En déduire que ¢ppir A Op == @ A P,
— En conclure que ¢, A ¢y = Groam

10.4 Parties stables de N

On prend une partie P stable par addition. Montrer qu’il existe n, k tels que
PN n,oco[=kNnN[n,ocol.

14



10.5 Infinité des nombres premiers

Montrer que I’ensemble des nombres premiers est infini
Montrer que l’ensemble des nombres premiers congrus & 3 modulo 4 est
infini.

11 Groupes, anneaux, corps

11.1 Questions courtes

Montrer que le centre d’'un groupe G est un sous-groupe de G.

Montrer que les éléments d’ordre fini d’un groupe abélien en forment un
sous-groupe.

— Montrer que la table de multiplication d’un groupe fini est un carré latin
(chaque élément du groupe apparait exactement une fois sur chaque ligne
et chaque colonne).

Montrer qu'un groupe dont tous les éléments sont d’ordre au plus 2 est
commutatif.

Trouver le plus petit entier n tel quun groupe de cardinal n n’est pas
nécessairement abelien (pour n = 4, utiliser le point précédent).

11.2 Groupe dihedral

Soit P = A; - -+ A, un n-gone régulier. On note D,, '’ensemble des permutations
o € Sy telles que A;A; est une arréte de P si et seulement si A,;)A,(;) est une
arréte de P.
— Quel est le cardinal de D,, ?
— Montrer que D,, admet une structure de groupe.
Discuter 'ordre des éléments de D,
— Montrer que D,, admet un sous-groupe cyclique d’ordre n.
— Montrer que D,, admet n éléments au moins d’ordre 2.
— Donner la table de multiplication de D,
D,, peut-il étre abélien, si oui pour quels valeurs de n ?
Combien de sous-groupes D,, admet-il exactement ?

11.3 Groupe des fonctions affines
Soit k un corps commutatif. On considére £ = k* x k muni de la loi :
(z,y) * (2',y') = (2, 2/ + ) (11.1)
Montrer que (F,*) est un groupe.

On considére F'={f:z —az+b, a € k*b € k}

15



Montrer que (F, o) est un groupe.
Montrer qu’il est isomorphe a (E, ).

11.4

Sous-groupes maximaux

Déterminer tous les sous-groupes de (Z, +).
On dit qu’un sous-groupe H de G est maximal s’il n’est strictement inclus
dans aucun sous-groupe strict de G.

Déterminer tous les sous-groupes maximaux de (Z, +
Déterminer tous les sous-groupes maximaux de (Q,+).

12

12.1

).

Polynomes

Anneaux, quotients, polynomes, ...

Soit A un anneau, I un idéal de A.
On définit la relation a ~b<a—be [

12.2

Montrer que ~ est une relation d’équivalence.
Exemple : A = Z,1 = nZ. Quelles sont les classes d’équivalence ?
On définit :

S

F

X

a—+

a X

(12.1)
(12.2)

Is]l

(=l
(=l

]

Montrer que (A/ ~,+, X) est un anneau.

Pour la suite, on prend k£ un corps et A = k[X]. On prend P € A et
I = Pk[X]. Quelles sont les classes d’équivalences 7 Quels sont les éléments
inversibles 7

Montrer que si P est irréductible dans k, alors k[X]/P est un corps. On le
notera k'

Montrer que k peut étre vu comme un sous-corps de k'

Montrer que P en tant que polynome de k' posséde une racine dans k’.
Application : on prend k = R et P = X2+ 1. Montrer que R[X]/P = C en
tant que corps.

Division de polynomes

Calculer la division euclidienne de (cos 6 + X sin 6)™ par (X2 + 1).

12.3

Nombre de solutions d’une équation

Soit P un polynome de C[X] de degré d. On définit n(z) comme le nombre de
solution a I’équation P(x) = z.

16



— Montrer que n(z) = d — deg((P — z) A P’)

— Montrer que ) _.cd—n(z) =d—1

12.4 Minoration du module des racines

Soit P € C[X], P=X"+an,_1 X" 1 + ... + ao.
Soit zp une racine de P. Montrer que |zg| < 1+ max(|a;|).

13 Fractions rationnelles

13.1 (Quasi) surjectivité des fractions rationnelles

Montrer qu’une l'image d’une fraction rationnelle complexe est soit tout C,
soit C privé d’un point.
13.2 Fraction rationnelle et longueurs d’intervalles

Soient ay,...,a, >0, et z1,...,z, € R. On pose

f@) =3

On définit
EA) ={z eR]| f(z) > \)}

— Montrer que E()) est une union finie d’intervalles.
— Montrer que la somme des longueurs de ces intervalles vaut

1
32

13.3 Calcul de série

Calculer

1
2 n(n+1)(n +2) (13-4

n>1

Solution : 1/4
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14 Espaces vectoriels

14.1 Exemples

On se place dans 'espace des fonctions réelles. Dire si ces ensembles sont ou
non des sous-espaces vectoriels :

— L’ensemble des fonctions croissantes

— L’ensemble des fonctions monotones

— L’ensemble des fonctions périodiques de période 1

— L’ensemble des fonctions pouvant s’écrire comme la somme d’une fonction

croissante et d’une fonction décroissante.
— L’ensemble des fonctions qui ont une limite finie en co et —oco.

14.2 Quelques supplémentaires

Dans chaque exemple, montrer que F' est un sous espace vectoriel de E et
trouver un supplémentaire de F' dans FE.

— E=K(X),F =K[X]

— E=RE, F={f: f(0)+ (1) = 0}

— E=RE F={f: f paire}

1
— FE :CO([O>1]7R)a F= {f : f() f = 0}
— [{] E=CYR,R), F={f:Vk, f(x))=0}

14.3 Intersections, unions, sommes

Soit E un espace vectoriel, A et B des parties de E
— Comparer Vect(AU B) et Vect(A) + Vect(B)
— Comparer Vect(AN B) et Vect(A) N Vect(B)

14.4 Equation de Cauchy

On considére ’équation de Cauchy :

Voe,y € R, f(x+y) = f(z) + [(y)

— Montrer que la restriction de toute solution a I’équation de Cauchy a Q est
linéaire.

— Montrer que toute solution continue est linéaire.

— Montrer que R est un Q-ev de dimension infinie.

— En admettant I’existence d’un supplémentaire de Q dans R, construire une
solution non linéaire a ’équation de Cauchy.
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14.5 Endomorphismes nilpotents

Soit E un espace de dimension n.

— Soit u un endomorphisme nilpotent. Montrer que u™ = 0.

— Soient uyq, ..., u, des endomorphismes nilpotents qui commutent. Montrer
que %] O Uz O ... 0 Uy = 0.

14.6 Supplémentaire commun

Soit E un espace vectoriel de dimension finie, F' et G des sous-espaces de E de
méme dimension.
Montrer qu’ils admettent un supplémentaire commun.

14.7 Identité de Leibniz

On veut montrer I'identité de Leibniz a partir de I’identité de Newton dans un
anneau quelconque. Pour cela, on introduit £ = {f : N2> = R : f est a support fini}.
Pour f et g deux fonctions C* et ¢ € E, on définit :

[0lg =Y (i, 5)f g
©,J

— Montrer que F peut étre muni d’une structure d’EV.
— Trouver un opérateur A : E — E tel que :

Vo, ([9]1.9) = [Ad]fq

— En écrivant A comme somme de deux endomorphismes de £(E) qui com-
mutent et en utilisant I'indentité de Newton sur anneau (L(E), +, o), mon-
trer 'identité de Leibniz.

14.8 Un peu de dénombrement

Soit £ un EV de dimension n sur le corps Fy, et r < n.
— Combien y a-t-il de familles libres (ordonnées) de taille r sur E?
— Combien y a-t-il de sous-espaces de dimension r dans F

14.9 Pour ceux qui aiment 1’algébre

Montrer que le cardinal de tout corps fini est une puissance d’un entier premier.
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14.10 Petits exos faciles

— Montrer que I’ensemble des suites de périodes T est un EV. Quelle est sa
dimension ?

— Soient 1 < --- < z,. Quelle est la dimension de ’espace des fonctions
continues sur [x1,z,] affines sur chaque intervalle [z;, ;1] ?

— Montrer que rg(v ou) = rg(u) si et seulement si Kerv NImu =0

— Montrer que |rg(u) —rg(v)| < rg(u+v) < rg(u) + rg(v)

— Montrer que dim Ker(f o g) < dim Ker(f) + dim Ker(g) (f,g € L(F)). Cas
d’égalité ? (Ker(f) C Im(g))

14.11 Contraintes indépendantes

Soit E e.v. de dimension n et ¢1,---, ¢, des formes linéaires indépendantes.
Montrer que dim ("), Ker ¢; =n — p.

Indices :
— Montrer que si H est un ev strict de RP, alors il existe (a;); telle que :

Ve € H, Zaixi =0

— Etudier application z — (¢1(x),- -, ¢a2(x))

14.12 Décomposition de 'unité

Soit E un espace vectoriel, (f;) une famille finie d’endomorphismes. On suppose
que :
— 2rg(fi) <n

— X fi=1d

Montrer que les f; sont des projecteurs.

Solution : Comme Y f; = Id, on a @ Im(f;) = E. (Vérifier les intersections
nulles)

Indice : Montrer que f;f; =0sii# j.

14.13 Division polynomiale et projecteurs

Soit E = R[X], et A € E. Montrer que I’application qui & un polynome associe
le reste de la division euclidienne par A est un projecteur. Déteriner son image et
son noyau.

14.14 Corps et sur-corps
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