
A faster parameterized algorithm for set packing

Ioannis Koutis
Computer Science Department

Carnegie Mellon University
Pittsburgh, PA 15213 USA

ioannis.koutis@cs.cmu.edu

December 14, 2004

Abstract

We present an efficient parameterized algorithm for the (k, t)-set packing problem, in which
we are looking for a collection of k disjoint sets whose union consists of t elements. The com-
plexity of the algorithm is O(2O(t)nN log N). For the special case of sets of bounded size, this
improves the O((ck)kn) algorithm of Jia et al. [2004, J. Algorithms, 50(1)].

1 Introduction

We study the parameterized complexity of the set packing problem. An instance of the problem
asks whether a given collection C of n sets contains k mutually disjoint sets. It is known that, with
k being the parameter, the problem is W[1]-complete [2]. This means that we probably cannot
expect an algorithm of complexity polynomial in n, and proportional to f(k), for any function f .

However, even the m-set packing problem where the size of the sets in C is bounded by m ≥ 3
is NP-complete [3]. In view of this, Jia et al. [4] studied its parameterized complexity. They
showed that the problem is fixed parameter tractable by giving an algorithm that runs in time
O

(
mk

(
g(m, k)mk + k2m2n

))
where g(m, k) is linear in mk.

We consider a more general problem, the (k, t)-set packing problem, in which we are looking for a
collection of k disjoint sets whose union consists of t elements. We present an O(et(tnN+t24t log k))
randomized algorithm and an O(2O(t)nN log N) deterministic algorithm, where N is the total
number of distinct elements of the sets in C. For the special case of the m-set packing problem,
where t = mk, this yields an improvement over the algorithm in [4], with respect to the parameters.
For example, for fixed m and k = O(log n) our algorithm is polynomial, whereas the algorithm of
[4] is not. We note however that our algorithm is slower for a small range of the parameters.

In Section 2 we give an O(kn2N22N) algorithm for the general set packing, via an algebraic for-
mulation of the problem. We do so, despite the fact that the algorithm can be stated purely in
set-theoretic language, because apart from simplifying the presentation, the algebraization consists
a more general approach which may be of independent interest. Then, in Section 3, we show how
to extend the basic ideas of this algorithm, to obtain the randomized algorithm for the (k, t)-set

1

packing problem. Finally, we derandomize the algorithm by adapting the color coding method of
Alon et al.[1].

2 Algebraization of the Set Packing problem

2.1 The decision algorithm

Let C = {S1, . . . , Sn}, U =
⋃

Si and N = |U |. We assign variables xi, i = 1, . . . , N , to the elements
of U . For each set S ∈ C let f(S) be the product of the variables corresponding to its elements.
We will refer to f(S) as the representation of S. Consider the multivariate polynomial

Pk =

(∑

S∈C

f(S)

)k

If we expand Pk to a sum of terms and ignore their coefficients, we get one monomial per each
different selection of k sets from C. Each of these monomials is the product of the representations
of the corresponding sets. If a term contains two intersecting sets, then it is a multiple of x2

i for
some i. On the other hand, if there are k disjoint sets with total size t, the term corresponding to
the products of their representations is a multilinear monomial of degree t, in other words it is a
product of t distinct variables.

Let us give a small example to illustrate the concept. Let S1 = {1, 2}, S2 = {2, 3}, S3 = {3}. We
let 1 → x1, 2 → x2, 3 → x3, so that f(S1) = x1x2, f(S2) = x2x3, f(S3) = x3. Then,

P2 = (x1x2 + x2x3 + x3)2

= x2
1x

2
2 + x2

2x
2
3 + x2

3 + 2x1x
2
2x3 + 2x2x

2
3 + 2x1x2x3

It can be seen that in P2 there is only one multilinear monomial (x1x2x3), and that it corresponds
to the disjoint sets S1, S3.

For any polynomial Q let M(Q) be the sum of the multilinear monomials of Q. That is, M(Q)
is a multilinear polynomial with every coefficient equal to 1. From the above discussion it follows
that we can decide an instance of the problem by computing M(Pk). Concretely, there is collection
of k disjoint subsets in C if and only if M(Pk) 6= 0. Now, observe that for any Q1, Q2 we have
M(Q1Q2) = M(Q1M(Q2)). By using this fact, it follows by induction that we can compute M(Pk)
in k steps:

M(Pi) = M(M(Pi−1)P1) for i = 2, . . . , k

At each step we perform one multiplication and keep the multilinear terms. Since M(Pi) contains
only multilinear terms in N variables, it has at most 2N terms, and each term can be fully deter-
mined with O(N) bits. Also, P1 has n terms. Hence, the multiplication can be performed in time
O(nN22N). The product M(Pi)P1 is a sum of at most n2N monomials of size O(N). Computing
M(M(Pi)P1) can be done by sorting (with respect to some natural order) the terms of M(Pi)P1,
in time O(Nn2N log(n2N)) = O(nN22N). Since we do k multiplications, the overall complexity for
computing M(Pk) is bounded above by O(knN22N).

2

2.2 Constructing a set packing

Now suppose we have computed M(Pk) 6= 0. Fix any term w of M(Pk). We would like to find a
collection R of k subsets such that the product of their representations is w. Consider the following
algorithm:

1. R = {}
2. for i := 1 to n

3. if w ∈ (∑
S∈C−Si

f(S)
)k then C := C − Si else R := R

⋃
Si

4. if |R| = k then return R

At any point of the algorithm, 2C contains a set of collections of k disjoint sets, say C = {C1, . . . , Cj},
such that, for each i, the product of the representations of the sets in Ci is w. Step 3 ensures that
for any set S ∈ R we have S ∈ ⋂j

i=1 Ci, and thus R ⊆ ⋂j
i=1 Ci. When the algorithm terminates,

|R| = k, and since |Ci| = k there is only one collection in C, and it is identical to R. Finally, note
that the complexity of Steps 3 and 4 is dominated by the computation of M(Pk). As shown in the
previous section, this can be done in time O(knN22N). Hence, the total complexity for computing
R is bounded above by O(kn2N22N).

3 The algorithm for (k, t)-set packing

3.1 The randomized algorithm

Let us identify the elements of U with variable names. We take a random mapping M : U =
[x1, . . . , xN] → U ′ = [y1, . . . , yt]. We construct the multi-set S′i from Si by substituting the elements
in Si according to M , and we let C ′ = {S′1, . . . , S′n}. If a multi-set S′i has multiple copies of the
same element we remove it from C ′. If a number of sets from C map to the same set in C ′, we keep
one of the copies. In this way we can think of C ′ as a sub-collection of at most 2t sets from C. It is
easy to see that if Si

⋂
Sj 6= ∅ then S′i

⋂
S′j 6= ∅. It follows that if C does not contain a collection

of k disjoint sets, then the same holds for C ′. On the other hand, if C contains k disjoint subsets
with a total of t elements, then the same holds for C ′ if the t critical elements get different names
under M . This will happen with probability t!/tt > e−t.

It is not hard to see that for a given mapping M , an instance C ′ can be constructed from C in time
O(tnN). Now, we concentrate on C ′ and work with multilinear polynomials on t variables. For
any two such polynomials, Q1, Q2, computing the product Q1Q2 takes time O((2tt)2). Q1Q2 is a
sum of at most 4t monomials of size O(t) and thus, M(Q1Q2) can be computed in time O(t24t) by
sorting the terms of Q1Q2. By adapting the algorithm of Section 2, it follows that the instance C ′

can be decided in time at most O(k(2tt)2). We can get an improvement to O(t24t log k) by using
a standard technique for computing powers. To decide C ′ with constant probability we must try
O(et) random mappings. This takes time O(et(tnN + t24t log k)). Once the right mapping is found,
the k disjoint subsets in C ′ can be constructed as in Section 2 in time O(2tt24t log k). By using
the correspondence of sets in C ′ with sets in C we can recover k disjoint subsets in C. Thus, the
complexity of the randomized algorithm is O(et(tnN + t24t log k)).

3

3.2 Derandomization

To derandomize the algorithm we need a list M of mappings M : U → U ′ such that for every
subset V ⊂ U with |V | = t, there is a mapping M ∈ M such that every element of V is mapped
(under M) to a different element in U ′. This can be accomplished with a t-perfect family of hash
functions. Such a family exists, it has size 2O(t) log N and can be constructed deterministically in
time O(2O(t) log N) [1]. It follows that a collection of k disjoint sets with a total of t elements can
be found in time O(2O(t)nN log N).

4 Acknowledgements

I would like to thank Gary L. Miller for his support, and Beno�ıt Hudson for suggestions that helped
in the improvement of the paper. I also thank the anonymous referees for their helpful comments
and suggestions.

References

[1] Noga Alon, Raphael Yuster, and Uri Zwick. Color-coding. J. ACM, 42(4):844–856, 1995.

[2] R. G. Downey and M. R. Fellows. Parameterized Complexity. Springer, 1999.

[3] Michael R. Garey and David S. Johnson. Computers and Intractability: A Guide to the Theory
of NP-Completeness. W. H. Freeman & Co., 1979.

[4] Weijia Jia, Chuanlin Zhang, and Jianer Chen. An efficient parameterized algorithm for m-set
packing. J. Algorithms, 50(1):106–117, 2004.

4

