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Abstract

In object tracking, occlusions significantly undermine
the performance of tracking algorithms. Unlike the existing
methods that solely depend on the observed target
appearance to detect occluders, we propose an algorithm
that progressively analyzes the occlusion situation by
exploiting the spatiotemporal context information, which is
further double checked by the reference target and motion
constraints. This strategy enables our proposed algorithm
to make a clearer distinction between the target and
occluders than existing approaches. To further improve the
tracking performance, we rectify the occlusion-interfered
erroneous target location by employing a variant-mask
template matching operation. As a result, correct target
location can always be obtained regardless of the
occlusion situation. Using these techniques, the robustness
of tracking under occlusions is significantly promoted.
Experimental results have confirmed the effectiveness of
our proposed algorithm.

1. Introduction

Object tracking is an important aspect of computer vision
and has a wide range of applications. Tracking algorithms
can be classified into three categories: point tracking [1,2],
kernel tracking [3-7,10], and silhouette tracking [8,9]. This
paper focuses on kernel tracking, where an appearance
model (or equivalently, a template) is used to represent the
target and the geometric information of the target is
characterized by affine parameters [10].

For kernel tracking algorithms, one of the toughest
challenges comes from occlusions [3,5-7], in which the
target is covered by outliers for an uncertain period of time.
Failure to detect occluders would lead to significant loss in
tracking precision [5] and, more seriously, the infiltration of
occluders into the template which typically leads to tracking
failure [3]. The situation is further complicated by the
following chicken and egg problem: the occlusion situation
must be obtained before the target can be accurately located
by masking out the occluded portion of it, while the occluded
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portion of the target can reliably be determined by comparing
with the template only after the correct location of the target
is given in the first place.

In the literature a lot of efforts have been devoted to
detecting and handling occlusions. A mixture of three
distributions is used in [3] to model the observed target
appearance, where occluders are characterized by the “lost”
component which has a uniform distribution. Another
approach declares outlier pixels by examining whether the
measurement error exceeds a certain value [5-7]. These
algorithms work well when the statistical properties of
occluders happen to agree with their assumptions.
Unfortunately, in most cases the assumptions do not hold,
because in real-world tracking scenarios, an occluder might
be similar in color to the target, or occlude the target for a
long time. In [12], occlusion situation is analyzed by
comparing motion characteristics between the target and the
image blocks that cannot be well motion-compensated. This
algorithm is more effective in detecting occluders because
temporal context is utilized. However, error propagation is
frequently observed as a consequence of lacking the check
by an appearance model as a reference. As for the chicken
and egg problem, few solutions are provided in the literature.

This paper proposes a content-adaptive progressive
occlusion analysis (CAPOA) algorithm to handle occlusions
robustly. Instead of relying on the statistics of the observed
target appearance, our algorithm explicitly detects the
outliers in a progressive manner by using the spatiotemporal
context information around the target. The context
information is further subject to the scrutiny of the reference
target and motion properties as a double check. As a result,
the CAPOA algorithm makes a much clearer distinction
between the target and the occluder. We solve the
aforementioned chicken and egg problem by performing the
variant-mask template matching (VMTM), where the
non-occluded portion of the target is exploited to align the
target from the initial erroneous location to its true location.
Using the techniques above, our object tracker is found to be
much more robust against various types of occlusions.

The paper is organized as follows. In section 2, we give
the overall structure of our proposed algorithm. Section 3
details the CAPOA algorithm. The VMTM method is
discussed in Section 4. Experimental results are presented in



Section 5, and Section 6 concludes this paper.

2. Overall structure

Our proposed object tracking algorithm utilizes grayscale
features, yet it can readily be adapted to color features. The
entire structure of our algorithm is illustrated in Figure 1. The
initial target is manually selected by defining the region of
interest (ROI). When a new frame comes in, the approximate
target region (ROI) is obtained through the first masked
template matching. However, the target location acquired by
the first template matching might be erroneous because it
uses the template mask generated according to the occlusion
situation of the previous frame. In order to rectify the target
location, we analyze the occlusion situation within ROl
using the CAPOA algorithm and then perform the VMTM
based on the result of the occlusion analysis. The VMTM
yields a new ROI (ROL) whose occlusion situation is
analyzed by the CAPOA algorithm again. The resulting
occlusion situation of ROI, generates a new template mask
(M’) which guides the second masked template matching.
This template matching determines the final ROI (ROL),
within which the occlusion situation is analyzed by the
CAPOA algorithm to yield the final outlier map and template
mask. Having obtained the accurate target location and the
final template mask, we update the non-occluded part of the
template using a Kalman appearance filter [13]. It should be
noted that when analyzing the occlusion situations of ROL,
and ROL, we only need to determine the occlusion statuses
of newly covered image regions.

In our algorithm, template matching is performed by using
coordinate transformation to map the estimated template to
the frame and finds the frame region that agrees best with the
estimated template. Occluders are completely masked out,
not just down-weighted [6,7], in finding the target location,
because occluders are explicitly detected using the CAPOA
algorithm. The masked template matching can be expressed
as

i aremin 1,[p(x.a)]-7(x) J :
ga sum(M) XEQT[ GE(X) M( ) - )

where a is the estimated coordinate transformation

parameters, [, represents frame n, T denotes the estimated
template, oy is the expected estimation error obtained in the
process of Kalman appearance filtering [13], d(x;a) is an
arbitrary coordinate transformation characterized by the
parameter a which typically reflects the translation and
deformation of the target, 27 is the ensemble of the template
pixels in the template coordinate system, M denotes the
template mask which is the same size as the template. It has a
value of 0 where the corresponding template pixel is
occluded, and a value of 1 elsewhere. sum(M) calculates the
number of non-occluded template pixels. Only the
translational parameters are involved in the first template

Initialize the outlier map U, by manually selecting the target region
(ROI). Uy(x)=0 if x belong to the target region. U,(x)=1 elsewhere.
Initialize the template T by sampling the ROI through coordinate
transformation. The reference target T, is initialized as the ROI.
Initialize the template mask M, to be an array of ones with the same size
as the template.
For frame index n=2,3,...
Run ROl = FTM( T , I, M,.1) to obtain the approximate target region
ROI. FTM denotes “first template matching”. 1, is frame n.
Run [Uym, dummy]=CAPOA(ROI, T I, U.) to obtain the
preliminary outlier map Uy “dummy” means a dummy variable.
Run ROL =VMTM( 7,1, Uprim) to rectify the target region from ROI,
to ROL,. U,y is used to generate the variant mask M,,.
Run [dummy, M’ ]=CAPOA(ROL, Treps Ipt, Upt) to get a new
template mask M.
Run ROL = STM(T , 1,, M) to obtain the final target region ROL.
STM denotes “second template matching”.
Run [U,, M,]=CAPOA(ROL, T,y I,1, Usw1) to acquire the final
outlier map and template mask.
Update the non-occluded part of T and T,.rusing ROL, U, and M,
END

Figure 1: The entire structure of our proposed algorithm.

matching for stability, while all the parameters are under
search in the second template matching.

The update of the estimated template is as follows:

F(x) - T(x)+ G- {1, [(xsa)]- T - M(x). ()

Here, G is the Kalman gain in the appearance filter [13].
The occluded part of the template is excluded from the
update. By updating the template, the tracking algorithm is
robust against non-rigid deformation of the target and
gradual changes in lighting conditions.

The CAPOA and the VMTM algorithms are highlighted
in gray in Figure 1 and will be detailed in Section 3 and
Section 4, respectively.

3. Content-adaptive progressive occlusion
analysis (CAPOA) algorithm

The overall scheme of the CAPOA algorithm is shown in
Figure 2. The function block in gray is further expanded in
Figure 3. The two figures will be detailed in the subsequent
sub-sections. The CAPOA algorithm takes four inputs: the
image region to be analyzed (ROI), the reference target
(Tye), the previous frame (/,.,), and the previous outlier
map (U,.,). The two outputs of the CAPOA algorithm are
the updated outlier map (U,,) and the updated template
mask (M,,,). Their detailed definitions will be given later.

3.1. Progressive scanning of the region of interest

In our algorithm, occlusion detection is based on image
blocks, not individual pixels as is done in [3,5-7], because
spatial context plays an important role in deciding whether
the target is occluded. This is also how we humans make
such decisions. For example, when two faces partly overlap,
only by exploiting the differences of spatial structures can
we know that an occlusion occurs.



In order to obtain a good trade-off between reliability
and resolution, we use a progressive scanning procedure.
The region of interest (ROI) undergoes multiple scans. In
each new scan, the sizes of the blocks under analysis are
halved, and we only analyze the blocks within which the
occlusion situation has not been decided by the previous
scans. The progressive scanning terminates when the
occlusion situation of the entire ROI is determined (see
Figure 2). Let D, and D, be the length of the two sides of the
ROI, the total number of scans Ny is

N, = min{ log,(min(D,, D,)/5)}, 3} (3)
so that the minimum size of any block under analysis is 5 and
the maximum number of scans is 3. The determination of the
occlusion status of a block is illustrated in Figure 3 and
described in the sub-sections below.

3.2. Exploiting spatiotemporal context

As is mentioned in Section 1, the observed target
appearance alone cannot give a reliable decision on
occlusion situation, because the information of outliers is not
encoded there. The prior information regarding outliers is
only embodied in the non-target region during the
initialization. The evolvement of the non-target region offers
clues whether it has “encroached” on the target region.
Therefore, in order to determine whether a block in the ROI
is occluded, we perform backward motion estimation of the
block and see whether its corresponding block in the
previous frame is within the non-target region. By doing so,
the occluding status of the block can be traced down all the
way from the first frame, in which the occlusion situation is a
priori known. Any occluder (including those appearing after
the initialization) that moves from the non-target region into
the ROI will be detected. The spatiotemporal context around
the target region is thus exploited in this process.

The occlusion situation of a frame is represented by a so
called outlier map. It is a binary matrix that has a value of 1
where the pixel does not belong to the target. For each block
in the ROI (referred to as a current block), we perform
backward motion estimation to find the image block in the
previous frame that is the most similar to the current block,
and the motion-estimated block in the previous frame is
called a backward ME block (ME stands for motion
estimation). Theoretically, the occlusion situation within the
current block can just be copied from the previous outlier
map associated with the corresponding backward ME block.
However, if the current block is relatively small or is newly
uncovered, the motion estimation would be less reliable and
the judgment solely based on the previous outlier map is not
trustworthy. Therefore, what is derived at this stage is only a
temporary outlier map which is subject to further scrutiny.
The temporary outlier map associated with the current block
located at w, can be expressed as follows:

U’ (wb ) = Uprev (ab ) ? (4)

CAPOA starts
Set the block size under analysis|
to be half the size of the ROI
The entire ROT
is determined?
N

Analyze the occlusion
status of a block containing
undetermined pixels

All such blocks
are scanned?
Y

‘ Halve the block size under analysis ‘

L 7

CAPOA ends

Figure 2: The flowchart of the overall CAPOA algorithm.

where U’ denotes the temporary outlier map, U,.( @, )
represents the part of the previous outlier map associated
with the corresponding backward ME block located at @, .

For a current block located at w,, let y(w;) be the
percentage of the occluded pixels in U’(@;). Then the current
block can be classified into three categories as is illustrated in
Figure 3. Each category has a specific procedure of further
check. The idea behind it is that 1) if ¥ (w;) is non-zero, the
corresponding region should be analyzed by the (smallest)
blocks in the final scan pass and get double-checked in that
pass to discover details and to ensure the detection of small
target regions reappearing from behind the other side of an
occluder; 2) if y(wp) is zero, the block is double-checked in
the current scan pass only when it is not large enough to yield
reliable motion estimation. All the blocks that need to be
double-checked in the current scan pass is referred to as
uncertain blocks, and we resort to further information to
determine their occlusion statuses.

3.3. First check using the reference target

The reference target 7., is essentially a scaled version of
the target and is updated through incremental interpolation
and filtering at the end of processing each frame (see Figure
1): if the scale of the target is found to have changed in the
frame, the reference target is firstly interpolated to fit the size
of the target, and then renewed to incorporate the variations
of'the target appearance. The renewed value of a certain pixel
in the interpolated reference target is calculated as

T, (n+1)=T., (n)+G-{ROI(n)-T, (n)}-(1-u,), (5)
where T,./(n+1) is a pixel value of the reference target to be
used at frame n+1, T".s(n) denotes the corresponding pixel
value of the interpolated reference target at frame n, G is the
same Kalman gain as is used in the template update, RO! (n)
is the corresponding pixel value of the ROI, and u, is the
occlusion status of the corresponding pixel in frame n. Since
the change in the scale of the target is very small over one
frame interval, the incremental interpolation of the reference
target allows for smaller interpolation error and enables the



Begin processing the
current block
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Figure 3: The flowchart of analyzing the occlusion status of a current block.

reference target to contain more details than directly
interpolating the template to the size of the current target at
each frame. As a result, the reference target is more effective
than the template as a benchmark.

When an uncertain block belongs to the target, it must
resemble the corresponding part of the reference target. In
light of this, we search for the best match of the block around
its corresponding position in the reference target and
calculate the matching error measured by mean squared error
(MSE). Then we compare this MSE with the matching error
of the block in the previous frame (obtained through
backward motion estimation). For the simplicity of notation,
we denote the former error as €, and the latter one as €%,
For an uncertain block located at w, whose backward ME
block is non-occluded, it can be determined as truly
non-occluded [i.e. U, {@y)=U(wp)] if ezrefis smaller or only
slightly larger than é%,, Similarly, if the backward ME
block of an uncertain block is partly or completely occluded,
U,.{wy)=U’(w}) holds if ez,@f is significantly over €%, They
are the decision criteria when performing the first check. The
problem here is how to adaptively set the threshold of ¢’ —
€%,a involved in the decision criteria for individual blocks.
This threshold is denoted as ¢ in Figure 3.

As the the expected estimation error oy [see (1)] reflects
the general deviation of the observed value of a farget pixel
from the estimated value in the template (or the reference
target), it is reasonable to make the threshold dependent on
the average o’y of the template pixels related with the
uncertain block. In fact, it can be theoretically proved that the
expected value of €, —e’, for an uncertain block
belonging to the target is

E{efd» - e,fwd }: L Z 0'2 (x, ) ) (6)
NBT X, €Qp;
where € represents the template region corresponding to
the uncertain block, and Ny is the number of pixels 27
contains. The proof is omitted here for conciseness.
Combining with the result given by the spatiotemporal
context, we set the threshold ¢ for an uncertain block located
at w, as follows:
)=l —ei ) B 270 =22 562 ).0)
Nyr x,€Qy;
Smaller y (@) implies higher probability of the current block
belonging to the target, and therefore a larger threshold
should be set. From (7), it can be seen that the # in Figure 3 is
adaptive to the contents of individual blocks: higher
estimation error or lower occlusion percentage increases the
value of 7.

3.4. Second check by motion constraint

For the uncertain blocks that fail to meet the decision
criteria in Section 3.3, we exploit motion constraint to further
check their occlusion situations. Blocks that belong to the
target (occluder) should bear similar motion to the target
(occluder). By virtue of this fact, we compare the motion
vector of an uncertain block with the motion vector of the
target (occluder) to look for additional cues that help decide
on the occlusion status of the block.

The detailed decision criteria are illustrated in Figure 3
based on the discussion above. Here, v, denotes the motion
vector of the uncertain block and is obtained through the



backward motion estimation in Section 3.2. v, (Vo) is the
motion vector of the target (occluder), and is estimated by
averaging the motion vectors of all the already-determined
target (occluded) pixels. o, (0,4) is the root mean square of
the Euclidean distances from the motion vectors of every
target (occluded) pixel to the mean motion vector of the
target (occluder).

After the occlusion situation of the entire ROI is
determined, the CAPOA is completed. The pixel values of
the outlier map outside the ROI are all ones. Each time the
outlier map is updated, the template mask is also renewed by
sampling from the outlier map as follows:

Mt}llf (x) = 1 - Uout {round[¢(x;&)]} s (8)
where round[-] is the operation that rounds the elements of
a vector to their nearest integers.

4. Variant-mask template matching (VMTM)

After a new frame comes in, the template mask used by
the first masked template matching is in accordance with the
occlusion situation of the previous frame, not the current
frame. As a result, the target location yielded by the first
masked template matching is often inaccurate, especially
when the occlusion percentage of the current frame is higher
than in the previous frame. Accumulation of these errors will
ultimately result in tracking failure.

In order to remedy this problem, we propose the
variant-mask template matching (VMTM) algorithm to
rectify the target location. As the target location yielded by
the first template matching is inaccurate, part of the target
might stay outside the ROI (as is depicted by the shadowed
area upon “A” in the lower left image of Figure 4). Therefore,
the outlier map generated after the first analysis of the
occlusion situation might be incorrect, and is referred to as a
preliminary outlier map (see Figure 1). However, the portion
of the target that lies within the ROI is still correctly
identified. We can therefore utilize this information to align
the target to its precise location using the VMTM algorithm.

In the VMTM algorithm, the accurate target location is
acquired by performing the following parameter search:

tbeal 7)., (x;a)f ©

a, = argmin
op(x

« sum(M ) XEQT[
where a, is the rectified transformation parameter vector

which defines the rectified ROI (RO, in Figure 1), M, is a
dynamic template mask which varies with the « under test,
and is generated from the preliminary outlier map by

M (x;a)=1-U,,, {round[g(x;a)]} (10)
where U,,;, denotes the preliminary outlier map.

The underlying mechanism of the VMTM algorithm is
that in the parameter search performed by (9), the
unmasked part of the template and unmasked part of the
ROI are always dissimilar unless the ROI is located
exactly where the target is. This fact is illustrated in

Corresponding M,
Candidate ROI 5

k8 e

ﬂnl:> High error
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D .

Current template

J—>Low error

Current frame

N oo/ o "

ROI Before rectification ROI After rectification Preliminary outlier map
Figure 4: An illustration of the VMTM algorithm. Letters “A”,
“B”, “C” and “D” are marked on the target to indicate different
portions of it. The matching error reaches its minimum when the
candidate ROI is just the region that the target occupies.

Figure 4. For the sake of stability, only translational
transformation parameters are involved in the VMTM.

5. Experimental results

We perform experiments on a wide range of video sequences
both taken by ourselves and downloaded from the standard
datasets available at http:/homepages.inf.ed.ac.uk/tbf/CAVIAR
and http://www.ces.clemson.edu/~stb/research/headtracker/seq.
Those real-world sequences contain various types of targets
and different scenarios of occlusions. Cameras do not need to
be stationary. We classify the occlusion scenarios of all the
30 test sequences into two categories: short-term and
long-term occlusions. An occlusion that lasts more than 25
frames is classified as a long-term occlusion here. We
compare the performance of our algorithm with that of some
state-of-the-art algorithms ([4, 7, 12]). In order to observe the
contribution of the VMTM method, the performance of our
algorithm without the VMTM is also examined. In our
experiments, only translational and scaling parameters are
involved as the template is adaptive.

The experimental results are listed in Table 1, where P and
P’ denote our algorithm with and without the VMTM,
respectively. It is observed in the experiments that the
algorithm of [7] is much more effective in handling
short-term occlusions than long-term ones. In the latter case,
the outliers penetrate into the appearance model when the
occlusion lasts relatively long. This phenomenon exist for all

Table 1: Performances of various object tracking algorithms in
dealing with occlusions.

Occlusion Type [4] [7] [12] P’ P
Short-term (15) 7 12 10 13 14
Long-term (15) 4 0 5 7 13

Total (30) 11 12 15 20 27




Figure 5: Comparison of different algorithms in handling a challenging long-term occlusion. The four rows from top display the results of
the algorithms of [4], [7], [12], and our proposed algorithm, respectively. The four columns from left show frames 1980, 2013, 2032, and
2052, respectively. In the first row, the tracking result is represented by an ellipse. In the remaining rows, the tracking result is indicated
by a rectangle with a cross at the center. For rows 2 and 4, the current occlusion situation of the target (or template mask) and the current
template are displayed from left in the lower right corner of each image. For row 3, only the current occlusion situation of the target is
displayed in the corresponding positions. Occluded pixels are indicated in black.

the other algorithms sharing similar occlusion detection
mechanisms (e.g. [3, 5, 6]). The algorithm of [12] has a better
performance, but it fails in many sequences as a result of the
propagation of the errors in the outlier map and being
ineffective in detecting target regions reemerging from
behind the other side of occluders. As the algorithm of [4]
(Mean Shift) does not possess a scheme to handle occlusions,
it has the worst performance. Our proposed algorithm tracks
the target very well in almost all the sequences for each type
of occlusions. We observe that outliers are always effectively
detected by our algorithm, and the integrity of the template is
rarely undermined. Without performing the VMTM, our
tracking algorithm fails for some sequences that it could have
successfully tracked otherwise. In the other sequences for
which the tracking still succeeds, it is observed that the

tracking accuracy drops when we leave out the VMTM.

In order to provide an intuitive impression of the
performance of our proposed algorithm, we show the
tracking process of a challenging test sequence in Figure 5.
This sequence named “WalkByShoplcor” is taken from the
first standard dataset mentioned before. It contains a
long-term occlusion, in which a man (target) is severely
occluded by two pedestrians for over 50 frames. Since the
man is walking, the target itself changes appearance. Some
parts of the occluders are similar in color to the target. All the
algorithms start tracking from frame 1920 with identical
initialization. It can be seen that the algorithm of [4] fails in
this sequence, because histogram is not discriminant enough
when occlusions occur. The algorithm of [7] performs poorly
in distinguishing between the occluders and the target in this



Figure 6: Illustration of the role that the VMTM plays in our algorithm. The first row displays the results of our algorithm without the
VMTM. The second row shows the results of our complete algorithm. The four columns from left show frames 2, 27, 29, and 45,
respectively. The tracking result is indicated by a rectangle with a cross at the center. The current occlusion situation of the target (or
template mask) and the current template are displayed from left in the lower right corner of each image. Occluded pixels are indicated in

black.

complex environment. The algorithm of [12] is more
effective in detecting occlusions. Nevertheless, as it does not
keep an appearance model to check the correctness of the

motion-based analysis, a lot of errors occur in the outlier map.

Our proposed algorithm has the best performance in
analyzing occlusion situations. It also has the capability to
discriminate against background outliers (see the template
masks of the images in the fourth row). It is worth noting that
the outlier map generated by our algorithm is never
completely correct (see the template mask of the third image
in the fourth row), yet the errors are soon corrected by the
double checks in the CAPOA algorithm and they seldom
propagate away (see the template mask of the fourth image in
the fourth row). If we omit the double checks in the CAPOA
algorithm, then we have the problems similar to the ones
encountered by the algorithm of [12].

An intuitive example of the role that the VMTM plays in
our algorithm is shown in Figure 6, where the test sequence
is taken by us. In this sequence, a screwdriver (target) moves
behind a box for about 20 frames. It can be seen that without
the rectification of the target location by the VMTM, the
tracking fails when the target gets occluded rapidly.

In order to quantify the contribution of the VMTM and
acquire a deeper insight into the underlying factors, we
perform experiments on synthetic sequences as well, so that
the ground-truth values of the transformation parameters are
known in advance and the experiments can be conducted in a
controlled manner. The synthetic sequences are generated
using the standard test image “lake”, in which the image
block containing the sailboat (lines 367 to 447, columns 296
to 350) is extracted as the target and overlapped on the
original image after being scaled. It moves along the

diagonal of the image “lake” from (178,178) to (370,370) at
a constant velocity. Along the way, the target is partially
occluded by a 61-by-61 original image block centered at
(276,276). The highest occlusion percentage exceeds 75%.
The scale of the target also varies between 0.5 and 1.0 at a
rate of 0.01 per frame. A sample frame in one of the synthetic
test sequences is displayed in Figure 7. We measure the
tracking errors of the proposed tracking algorithm with and
without the VMTM under various target speeds. Tracking
error is measured by the mean Euclidean distances between
the estimated values and the ground truth values of the
transformation parameter vectors at all frames.

The experimental result is illustrated in Figure 8. It can be
observed that when the target speed relative to the occluder is
low, the proposed tracking solution achieves high tracking
accuracy no matter whether the VMTM is employed or not.
When the target moves faster, however, the tracking error
with the VMTM almost remains the same, while the tracking
error without the VMTM drastically increases. This is
because with the rise of the target speed, the non-occluded
part of the target in the current frame becomes increasingly
dissimilar to the non-occluded part in the previous frame. As
a result, the template mask generated according to the
previous occlusion situation becomes increasingly imprecise
in guiding the search for the target location in the current
frame, thus leading to the soaring tracking error. By
performing the VMTM, the target location is always
effectively rectified and the tracking error is therefore always
kept low.

Finally, we discuss the failure modes of our algorithm. 1)
When complete occlusions occur, our algorithm will fail. 2)
If a part of an occluder has exactly the same appearance as a
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Figure 7: A sample frame in a synthetic test sequence. The partly-
occluded target is highlighted by a white rectangle.

nearby part of the target, our algorithm will not be able to
detect it. Although [9] can tackle the first problem, it cannot
readily be adapted to kernel tracking. Solving the second
problem might need more prior information. The solutions to
the two problems are left for future research.

6. Conclusion

In this paper, we propose an object tracking algorithm
which demonstrates high robustness against occlusions.
This is achieved by effectively analyzing the occlusion
situation to generate proper template mask and rectifying
initial erroneous target location caused by occlusions.

In our proposed algorithm, we utilize the spatiotemporal
context to analyze the occlusion situation of the target. The
analysis results are further checked by the reference target
and the motion information according to content-adaptive
thresholds. The occlusion analysis is performed in a
progressive manner, so that we achieve high reliability and
high resolution simultaneously. Our proposed algorithm
also performs variant-mask template matching (VMTM) to
remove the error of the target location introduced by
performing template matching when the template mask
reflecting the current occlusion situation is unavailable yet.
In the process of the VMTM, the non-occluded portion of
the target serves as a benchmark for the alignment of the
target location.

We verify the effectiveness of our proposed algorithm
by conducting experiments on a wide range of real-world
video sequences downloaded from the standard datasets
and taken by ourselves. Synthetic test sequences are also
employed to evaluate the role of the VMTM quantitatively.
The experimental results have shown that our approach
outperforms many state-of-the-art algorithms when faced
with different types of occlusions.
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