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Abstract 

 
In object tracking, occlusions significantly undermine 

the performance of tracking algorithms. Unlike the existing 
methods that solely depend on the observed target 
appearance to detect occluders, we propose an algorithm 
that progressively analyzes the occlusion situation by 
exploiting the spatiotemporal context information, which is 
further double checked by the reference target and motion 
constraints. This strategy enables our proposed algorithm 
to make a clearer distinction between the target and 
occluders than existing approaches. To further improve the 
tracking performance, we rectify the occlusion-interfered 
erroneous target location by employing a variant-mask 
template matching operation. As a result, correct target 
location can always be obtained regardless of the 
occlusion situation. Using these techniques, the robustness 
of tracking under occlusions is significantly promoted. 
Experimental results have confirmed the effectiveness of 
our proposed algorithm. 
 

1. Introduction 
Object tracking is an important aspect of computer vision 

and has a wide range of applications. Tracking algorithms 
can be classified into three categories: point tracking [1,2], 
kernel tracking [3-7,10], and silhouette tracking [8,9]. This 
paper focuses on kernel tracking, where an appearance 
model (or equivalently, a template) is used to represent the 
target and the geometric information of the target is 
characterized by affine parameters [10].   

For kernel tracking algorithms, one of the toughest 
challenges comes from occlusions [3,5-7], in which the 
target is covered by outliers for an uncertain period of time. 
Failure to detect occluders would lead to significant loss in 
tracking precision [5] and, more seriously, the infiltration of 
occluders into the template which typically leads to tracking 
failure [3]. The situation is further complicated by the 
following chicken and egg problem: the occlusion situation 
must be obtained before the target can be accurately located 
by masking out the occluded portion of it, while the occluded 

portion of the target can reliably be determined by comparing 
with the template only after the correct location of the target 
is given in the first place. 

In the literature a lot of efforts have been devoted to 
detecting and handling occlusions. A mixture of three 
distributions is used in [3] to model the observed target 
appearance, where occluders are characterized by the “lost” 
component which has a uniform distribution. Another 
approach declares outlier pixels by examining whether the 
measurement error exceeds a certain value [5-7]. These 
algorithms work well when the statistical properties of 
occluders happen to agree with their assumptions. 
Unfortunately, in most cases the assumptions do not hold, 
because in real-world tracking scenarios, an occluder might 
be similar in color to the target, or occlude the target for a 
long time. In [12], occlusion situation is analyzed by 
comparing motion characteristics between the target and the 
image blocks that cannot be well motion-compensated. This 
algorithm is more effective in detecting occluders because 
temporal context is utilized. However, error propagation is 
frequently observed as a consequence of lacking the check 
by an appearance model as a reference. As for the chicken 
and egg problem, few solutions are provided in the literature. 

This paper proposes a content-adaptive progressive 
occlusion analysis (CAPOA) algorithm to handle occlusions 
robustly. Instead of relying on the statistics of the observed 
target appearance, our algorithm explicitly detects the 
outliers in a progressive manner by using the spatiotemporal 
context information around the target. The context 
information is further subject to the scrutiny of the reference 
target and motion properties as a double check. As a result, 
the CAPOA algorithm makes a much clearer distinction 
between the target and the occluder. We solve the 
aforementioned chicken and egg problem by performing the 
variant-mask template matching (VMTM), where the 
non-occluded portion of the target is exploited to align the 
target from the initial erroneous location to its true location. 
Using the techniques above, our object tracker is found to be 
much more robust against various types of occlusions. 

The paper is organized as follows. In section 2, we give 
the overall structure of our proposed algorithm. Section 3 
details the CAPOA algorithm. The VMTM method is 
discussed in Section 4. Experimental results are presented in 
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Figure 1: The entire structure of our proposed algorithm.

Initialize the outlier map U1 by manually selecting the target region 
(ROI). U1(x)=0 if x belong to the target region. U1(x)=1 elsewhere. 
Initialize the template T̂ by sampling the ROI through coordinate 
transformation. The reference target Tref  is initialized as the ROI. 
Initialize the template mask M1 to be an array of ones with the same size 
as the template. 
For frame index n = 2,3,… 
 Run ROI1 = FTM( T̂ , In , Mn-1) to obtain the approximate target region 
 ROI1. FTM denotes “first template matching”. In  is frame n. 
 Run [Uprlm, dummy]=CAPOA(ROI1, Tref, In-1, Un-1) to obtain the 
 preliminary outlier map Uprlm. “dummy” means a dummy variable. 
 Run ROI2 = VMTM( T̂ , In , Uprlm) to rectify the target region from ROI1 
 to ROI2. Uprlm is used to generate the variant mask MA. 
 Run [dummy, M’ ]=CAPOA(ROI2, Tref, In-1, Un-1) to get a new 
 template mask M’. 
 Run ROI3 = STM( T̂ , In , M’ ) to obtain the final target region ROI3. 
 STM denotes “second template matching”. 
 Run [Un, Mn]=CAPOA(ROI3, Tref, In-1, Un-1) to acquire the final 
 outlier map and template mask. 
 Update the non-occluded part of T̂ and Tref using ROI3, Un and Mn. 
END

Section 5, and Section 6 concludes this paper. 

2. Overall structure 
Our proposed object tracking algorithm utilizes grayscale 

features, yet it can readily be adapted to color features. The 
entire structure of our algorithm is illustrated in Figure 1. The 
initial target is manually selected by defining the region of 
interest (ROI). When a new frame comes in, the approximate 
target region (ROI1) is obtained through the first masked 
template matching. However, the target location acquired by 
the first template matching might be erroneous because it 
uses the template mask generated according to the occlusion 
situation of the previous frame. In order to rectify the target 
location, we analyze the occlusion situation within ROI1 
using the CAPOA algorithm and then perform the VMTM 
based on the result of the occlusion analysis. The VMTM 
yields a new ROI (ROI2) whose occlusion situation is 
analyzed by the CAPOA algorithm again. The resulting 
occlusion situation of ROI2 generates a new template mask 
(M’) which guides the second masked template matching. 
This template matching determines the final ROI (ROI3), 
within which the occlusion situation is analyzed by the 
CAPOA algorithm to yield the final outlier map and template 
mask. Having obtained the accurate target location and the 
final template mask, we update the non-occluded part of the 
template using a Kalman appearance filter [13]. It should be 
noted that when analyzing the occlusion situations of ROI2 
and ROI3, we only need to determine the occlusion statuses 
of newly covered image regions.  

In our algorithm, template matching is performed by using 
coordinate transformation to map the estimated template to 
the frame and finds the frame region that agrees best with the 
estimated template. Occluders are completely masked out, 
not just down-weighted [6,7], in finding the target location, 
because occluders are explicitly detected using the CAPOA 
algorithm. The masked template matching can be expressed 
as  
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where  is the estimated coordinate transformation 
parameters, In represents frame n, 

â
T̂  denotes the estimated 

template, σE is the expected estimation error obtained in the 
process of Kalman appearance filtering [13], φ(x;a) is an 
arbitrary coordinate transformation characterized by the 
parameter a which typically reflects the translation and 
deformation of the target,  ΩT is the ensemble of the template 
pixels in the template coordinate system, M denotes the 
template mask which is the same size as the template. It has a 
value of 0 where the corresponding template pixel is 
occluded, and a value of 1 elsewhere. sum(M) calculates the 
number of non-occluded template pixels. Only the 
translational parameters are involved in the first template 

matching for stability, while all the parameters are under 
search in the second template matching. 

The update of the estimated template is as follows: 
 ( ) ( )[ ]{ } ( )xxaxxx MTIGTT n ⋅−⋅+← )(ˆˆ;)(ˆˆ φ . (2) 
Here, G is the Kalman gain in the appearance filter [13]. 
The occluded part of the template is excluded from the 
update. By updating the template, the tracking algorithm is 
robust against non-rigid deformation of the target and 
gradual changes in lighting conditions. 

The CAPOA and the VMTM algorithms are highlighted 
in gray in Figure 1 and will be detailed in Section 3 and 
Section 4, respectively.  

3. Content-adaptive progressive occlusion 
analysis (CAPOA) algorithm 

The overall scheme of the CAPOA algorithm is shown in 
Figure 2. The function block in gray is further expanded in 
Figure 3. The two figures will be detailed in the subsequent 
sub-sections. The CAPOA algorithm takes four inputs: the 
image region to be analyzed (ROI), the reference target 
(Tref), the previous frame (Iprev), and the previous outlier 
map (Uprev). The two outputs of the CAPOA algorithm are 
the updated outlier map (Uout) and the updated template 
mask (Mout). Their detailed definitions will be given later. 

3.1. Progressive scanning of the region of interest 
In our algorithm, occlusion detection is based on image 

blocks, not individual pixels as is done in [3,5-7], because 
spatial context plays an important role in deciding whether 
the target is occluded. This is also how we humans make 
such decisions. For example, when two faces partly overlap, 
only by exploiting the differences of spatial structures can 
we know that an occlusion occurs.  

 



 

In order to obtain a good trade-off between reliability 
and resolution, we use a progressive scanning procedure. 
The region of interest (ROI) undergoes multiple scans. In 
each new scan, the sizes of the blocks under analysis are 
halved, and we only analyze the blocks within which the 
occlusion situation has not been decided by the previous 
scans. The progressive scanning terminates when the 
occlusion situation of the entire ROI is determined (see 
Figure 2). Let D1 and D2 be the length of the two sides of the 
ROI, the total number of scans NS is  
 , (3) ( )(⎣{ }3,5/,minlogmin 212 DDNS =

Figure 2: The flowchart of the overall CAPOA algorithm.
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so that the minimum size of any block under analysis is 5 and 
the maximum number of scans is 3. The determination of the 
occlusion status of a block is illustrated in Figure 3 and 
described in the sub-sections below. 

3.2. Exploiting spatiotemporal context 
As is mentioned in Section 1, the observed target 

appearance alone cannot give a reliable decision on 
occlusion situation, because the information of outliers is not 
encoded there. The prior information regarding outliers is 
only embodied in the non-target region during the 
initialization. The evolvement of the non-target region offers 
clues whether it has “encroached” on the target region. 
Therefore, in order to determine whether a block in the ROI 
is occluded, we perform backward motion estimation of the 
block and see whether its corresponding block in the 
previous frame is within the non-target region. By doing so, 
the occluding status of the block can be traced down all the 
way from the first frame, in which the occlusion situation is a 
priori known. Any occluder (including those appearing after 
the initialization) that moves from the non-target region into 
the ROI will be detected. The spatiotemporal context around 
the target region is thus exploited in this process.  

The occlusion situation of a frame is represented by a so 
called outlier map. It is a binary matrix that has a value of 1 
where the pixel does not belong to the target. For each block 
in the ROI (referred to as a current block), we perform 
backward motion estimation to find the image block in the 
previous frame that is the most similar to the current block, 
and the motion-estimated block in the previous frame is 
called a backward ME block (ME stands for motion 
estimation). Theoretically, the occlusion situation within the 
current block can just be copied from the previous outlier 
map associated with the corresponding backward ME block. 
However, if the current block is relatively small or is newly 
uncovered, the motion estimation would be less reliable and 
the judgment solely based on the previous outlier map is not 
trustworthy. Therefore, what is derived at this stage is only a 
temporary outlier map which is subject to further scrutiny. 
The temporary outlier map associated with the current block 
located at ωb can be expressed as follows: 
   ( ) ( )bb ωUωU ~

prev=′ , (4) 

where U’ denotes the temporary outlier map, Uprev( bω
~ ) 

represents the part of the previous outlier map associated 
with the corresponding backward ME block located at bω

~ . 
For a current block located at ωb, let γ (ωb) be the 

percentage of the occluded pixels in U’(ωb). Then the current 
block can be classified into three categories as is illustrated in 
Figure 3. Each category has a specific procedure of further 
check. The idea behind it is that 1) if γ (ωb) is non-zero, the 
corresponding region should be analyzed by the (smallest) 
blocks in the final scan pass and get double-checked in that 
pass to discover details and to ensure the detection of small 
target regions reappearing from behind the other side of an 
occluder; 2) if γ (ωb) is zero, the block is double-checked in 
the current scan pass only when it is not large enough to yield 
reliable motion estimation. All the blocks that need to be 
double-checked in the current scan pass is referred to as 
uncertain blocks, and we resort to further information to 
determine their occlusion statuses. 

3.3. First check using the reference target 
The reference target Tref is essentially a scaled version of 

the target and is updated through incremental interpolation 
and filtering at the end of processing each frame (see Figure 
1): if the scale of the target is found to have changed in the 
frame, the reference target is firstly interpolated to fit the size 
of the target, and then renewed to incorporate the variations 
of the target appearance. The renewed value of a certain pixel 
in the interpolated reference target is calculated as  
 ( ) ( ) ( ) ( ){ } ( )nrefrefref unTnROIGnTnT −⋅′−⋅+′=+ 11 , (5) 
where Tref (n+1) is a pixel value of the reference target to be 
used at frame n+1, T’ref (n) denotes the corresponding pixel 
value of the interpolated reference target at frame n, G is the 
same Kalman gain as is used in the template update, ROI (n) 
is the corresponding pixel value of the ROI, and un is the 
occlusion status of the corresponding pixel in frame n. Since 
the change in the scale of the target is very small over one 
frame interval, the incremental interpolation of the reference 
target allows for smaller interpolation error and enables the 

 



 

Figure 3: The flowchart of analyzing the occlusion status of a current block. 
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reference target to contain more details than directly 
interpolating the template to the size of the current target at 
each frame. As a result, the reference target is more effective 
than the template as a benchmark. 

When an uncertain block belongs to the target, it must 
resemble the corresponding part of the reference target. In 
light of this, we search for the best match of the block around 
its corresponding position in the reference target and 
calculate the matching error measured by mean squared error 
(MSE). Then we compare this MSE with the matching error 
of the block in the previous frame (obtained through 
backward motion estimation). For the simplicity of notation, 
we denote the former error as e2

ref  and the latter one as e2
bwd.  

For an uncertain block located at ωb whose backward ME 
block is non-occluded, it can be determined as truly 
non-occluded [i.e. Uout(ωb)=U’(ωb)] if e2

ref is smaller or only 
slightly larger than e2

bwd. Similarly, if the backward ME 
block of an uncertain block is partly or completely occluded, 
Uout(ωb)=U’(ωb) holds if e2

ref  is significantly over e2
bwd. They 

are the decision criteria when performing the first check. The 
problem here is how to adaptively set the threshold of e2

ref  − 
e2

bwd involved in the decision criteria for individual blocks. 
This threshold is denoted as t in Figure 3. 

As the the expected estimation error σE [see (1)] reflects 
the general deviation of the observed value of a target pixel 
from the estimated value in the template (or the reference 
target), it is reasonable to make the threshold dependent on 
the average σ 2E of the template pixels related with the 
uncertain block. In fact, it can be theoretically proved that the 
expected value of e2

ref − e2
bwd for an uncertain block 

belonging to the target is 
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where ΩBT represents the template region corresponding to 
the uncertain block, and NBT is the number of pixels ΩBT 
contains. The proof is omitted here for conciseness. 

Combining with the result given by the spatiotemporal 
context, we set the threshold t for an uncertain block located 
at ωb as follows: 
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Smaller γ (ωb) implies higher probability of the current block 
belonging to the target, and therefore a larger threshold 
should be set. From (7), it can be seen that the t in Figure 3 is 
adaptive to the contents of individual blocks: higher 
estimation error or lower occlusion percentage increases the 
value of t. 

3.4. Second check by motion constraint 
For the uncertain blocks that fail to meet the decision 

criteria in Section 3.3, we exploit motion constraint to further 
check their occlusion situations. Blocks that belong to the 
target (occluder) should bear similar motion to the target 
(occluder). By virtue of this fact, we compare the motion 
vector of an uncertain block with the motion vector of the 
target (occluder) to look for additional cues that help decide 
on the occlusion status of the block.  

The detailed decision criteria are illustrated in Figure 3 
based on the discussion above. Here, vblk  denotes the motion 
vector of the uncertain block and is obtained through the 

 



 

Corresponding MAbackward motion estimation in Section 3.2. vtgt (votl) is the 
motion vector of the target (occluder), and is estimated by 
averaging the motion vectors of all the already-determined 
target (occluded) pixels. σtgt (σotl) is the root mean square of 
the Euclidean distances from the motion vectors of every 
target (occluded) pixel to the mean motion vector of the 
target (occluder).  

After the occlusion situation of the entire ROI is 
determined, the CAPOA is completed. The pixel values of 
the outlier map outside the ROI are all ones. Each time the 
outlier map is updated, the template mask is also renewed by 
sampling from the outlier map as follows: 
 ( ) ( )[{ axx ˆ;round1 ]}φoutout UM −= , (8) 
where round[·] is the operation that rounds the elements of 
a vector to their nearest integers. 

4. Variant-mask template matching (VMTM) 
After a new frame comes in, the template mask used by 

the first masked template matching is in accordance with the 
occlusion situation of the previous frame, not the current 
frame. As a result, the target location yielded by the first 
masked template matching is often inaccurate, especially 
when the occlusion percentage of the current frame is higher 
than in the previous frame. Accumulation of these errors will 
ultimately result in tracking failure.  

In order to remedy this problem, we propose the 
variant-mask template matching (VMTM) algorithm to 
rectify the target location. As the target location yielded by 
the first template matching is inaccurate, part of the target 
might stay outside the ROI (as is depicted by the shadowed 
area upon “A” in the lower left image of Figure 4). Therefore, 
the outlier map generated after the first analysis of the 
occlusion situation might be incorrect, and is referred to as a 
preliminary outlier map (see Figure 1). However, the portion 
of the target that lies within the ROI is still correctly 
identified. We can therefore utilize this information to align 
the target to its precise location using the VMTM algorithm. 

In the VMTM algorithm, the accurate target location is 
acquired by performing the following parameter search: 
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where  is the rectified transformation parameter vector 
which defines the rectified ROI (ROI2 in Figure 1), MA is a 
dynamic template mask which varies with the a under test, 
and is generated from the preliminary outlier map by 

Aâ

 ( ) ( )[{ axax ;round1; ]}φprlmA UM −=  (10) 

where Uprlm denotes the preliminary outlier map. 
The underlying mechanism of the VMTM algorithm is 

that in the parameter search performed by (9), the 
unmasked part of the template and unmasked part of the 
ROI are always dissimilar unless the ROI is located 
exactly where the target is. This fact is illustrated in 

Figure 4. For the sake of stability, only translational 
transformation parameters are involved in the VMTM.  

5. Experimental results 
We perform experiments on a wide range of video sequences 

both taken by ourselves and downloaded from the standard 
datasets available at http://homepages.inf.ed.ac.uk/rbf/CAVIAR 
and http://www.ces.clemson.edu/~stb/research/headtracker/seq.  
Those real-world sequences contain various types of targets 
and different scenarios of occlusions. Cameras do not need to 
be stationary. We classify the occlusion scenarios of all the 
30 test sequences into two categories: short-term and 
long-term occlusions. An occlusion that lasts more than 25 
frames is classified as a long-term occlusion here. We 
compare the performance of our algorithm with that of some 
state-of-the-art algorithms ([4, 7, 12]). In order to observe the 
contribution of the VMTM method, the performance of our 
algorithm without the VMTM is also examined. In our 
experiments, only translational and scaling parameters are 
involved as the template is adaptive. 

The experimental results are listed in Table 1, where P and 
P’ denote our algorithm with and without the VMTM, 
respectively. It is observed in the experiments that the 
algorithm of [7] is much more effective in handling 
short-term occlusions than long-term ones. In the latter case, 
the outliers penetrate into the appearance model when the 
occlusion lasts relatively long. This phenomenon exist for all  

 
Table 1: Performances of various object tracking algorithms in 
dealing with occlusions. 

Occlusion Type [4] [7] [12] P’ P 
Short-term (15) 7 12 10 13 14 
Long-term (15) 4 0 5 7 13 

Total (30) 11 12 15 20 27 

Figure 4: An illustration of the VMTM algorithm. Letters “A”, 
“B”, “C” and “D” are marked on the target to indicate different 
portions of it. The matching error reaches its minimum when the 
candidate ROI is just the region that the target occupies. 
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Figure 5: Comparison of different algorithms in handling a challenging long-term occlusion. The four rows from top display the results of 
the algorithms of [4], [7], [12], and our proposed algorithm, respectively. The four columns from left show frames 1980, 2013, 2032, and 
2052, respectively. In the first row, the tracking result is represented by an ellipse. In the remaining rows, the tracking result is indicated 
by a rectangle with a cross at the center. For rows 2 and 4, the current occlusion situation of the target (or template mask) and the current 
template are displayed from left in the lower right corner of each image. For row 3, only the current occlusion situation of the target is 
displayed in the corresponding positions. Occluded pixels are indicated in black. 

the other algorithms sharing similar occlusion detection 
mechanisms (e.g. [3, 5, 6]). The algorithm of [12] has a better 
performance, but it fails in many sequences as a result of the 
propagation of the errors in the outlier map and being 
ineffective in detecting target regions reemerging from 
behind the other side of occluders. As the algorithm of [4] 
(Mean Shift) does not possess a scheme to handle occlusions, 
it has the worst performance. Our proposed algorithm tracks 
the target very well in almost all the sequences for each type 
of occlusions. We observe that outliers are always effectively 
detected by our algorithm, and the integrity of the template is 
rarely undermined. Without performing the VMTM, our 
tracking algorithm fails for some sequences that it could have 
successfully tracked otherwise. In the other sequences for 
which the tracking still succeeds, it is observed that the 

tracking accuracy drops when we leave out the VMTM. 
In order to provide an intuitive impression of the 

performance of our proposed algorithm, we show the 
tracking process of a challenging test sequence in Figure 5. 
This sequence named “WalkByShop1cor” is taken from the 
first standard dataset mentioned before. It contains a 
long-term occlusion, in which a man (target) is severely 
occluded by two pedestrians for over 50 frames. Since the 
man is walking, the target itself changes appearance. Some 
parts of the occluders are similar in color to the target. All the 
algorithms start tracking from frame 1920 with identical 
initialization. It can be seen that the algorithm of [4] fails in 
this sequence, because histogram is not discriminant enough 
when occlusions occur. The algorithm of [7] performs poorly 
in distinguishing between the occluders and the target in this 

 



 

Figure 6: Illustration of the role that the VMTM plays in our algorithm. The first row displays the results of our algorithm without the 
VMTM. The second row shows the results of our complete algorithm. The four columns from left show frames 2, 27, 29, and 45, 
respectively. The tracking result is indicated by a rectangle with a cross at the center. The current occlusion situation of the target (or 
template mask) and the current template are displayed from left in the lower right corner of each image. Occluded pixels are indicated in 
black. 

complex environment. The algorithm of [12] is more 
effective in detecting occlusions. Nevertheless, as it does not 
keep an appearance model to check the correctness of the 
motion-based analysis, a lot of errors occur in the outlier map. 
Our proposed algorithm has the best performance in 
analyzing occlusion situations. It also has the capability to 
discriminate against background outliers (see the template 
masks of the images in the fourth row). It is worth noting that 
the outlier map generated by our algorithm is never 
completely correct (see the template mask of the third image 
in the fourth row), yet the errors are soon corrected by the 
double checks in the CAPOA algorithm and they seldom 
propagate away (see the template mask of the fourth image in 
the fourth row). If we omit the double checks in the CAPOA 
algorithm, then we have the problems similar to the ones 
encountered by the algorithm of [12].  

An intuitive example of the role that the VMTM plays in 
our algorithm is shown in Figure 6, where the test sequence 
is taken by us. In this sequence, a screwdriver (target) moves 
behind a box for about 20 frames. It can be seen that without 
the rectification of the target location by the VMTM, the 
tracking fails when the target gets occluded rapidly.  

In order to quantify the contribution of the VMTM and 
acquire a deeper insight into the underlying factors, we 
perform experiments on synthetic sequences as well, so that 
the ground-truth values of the transformation parameters are 
known in advance and the experiments can be conducted in a 
controlled manner. The synthetic sequences are generated 
using the standard test image “lake”, in which the image 
block containing the sailboat (lines 367 to 447, columns 296 
to 350) is extracted as the target and overlapped on the 
original image after being scaled. It moves along the 

diagonal of the image “lake” from (178,178) to (370,370) at 
a constant velocity. Along the way, the target is partially 
occluded by a 61-by-61 original image block centered at 
(276,276). The highest occlusion percentage exceeds 75%. 
The scale of the target also varies between 0.5 and 1.0 at a 
rate of 0.01 per frame. A sample frame in one of the synthetic 
test sequences is displayed in Figure 7. We measure the 
tracking errors of the proposed tracking algorithm with and 
without the VMTM under various target speeds. Tracking 
error is measured by the mean Euclidean distances between 
the estimated values and the ground truth values of the 
transformation parameter vectors at all frames. 

The experimental result is illustrated in Figure 8. It can be 
observed that when the target speed relative to the occluder is 
low, the proposed tracking solution achieves high tracking 
accuracy no matter whether the VMTM is employed or not. 
When the target moves faster, however, the tracking error 
with the VMTM almost remains the same, while the tracking 
error without the VMTM drastically increases. This is 
because with the rise of the target speed, the non-occluded 
part of the target in the current frame becomes increasingly 
dissimilar to the non-occluded part in the previous frame. As 
a result, the template mask generated according to the 
previous occlusion situation becomes increasingly imprecise 
in guiding the search for the target location in the current 
frame, thus leading to the soaring tracking error. By 
performing the VMTM, the target location is always 
effectively rectified and the tracking error is therefore always 
kept low. 

Finally, we discuss the failure modes of our algorithm. 1) 
When complete occlusions occur, our algorithm will fail. 2) 
If a part of an occluder has exactly the same appearance as a 

 



 

Figure 8: The plot of tracking error against target speed when 
applying our algorithm with and without the VMTM. 
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Figure 7: A sample frame in a synthetic test sequence. The partly-
occluded target is highlighted by a white rectangle. 

nearby part of the target, our algorithm will not be able to 
detect it. Although [9] can tackle the first problem, it cannot 
readily be adapted to kernel tracking. Solving the second 
problem might need more prior information. The solutions to 
the two problems are left for future research. 

6. Conclusion 
In this paper, we propose an object tracking algorithm 

which demonstrates high robustness against occlusions. 
This is achieved by effectively analyzing the occlusion 
situation to generate proper template mask and rectifying 
initial erroneous target location caused by occlusions.  

In our proposed algorithm, we utilize the spatiotemporal 
context to analyze the occlusion situation of the target. The 
analysis results are further checked by the reference target 
and the motion information according to content-adaptive 
thresholds. The occlusion analysis is performed in a 
progressive manner, so that we achieve high reliability and 
high resolution simultaneously.  Our proposed algorithm 
also performs variant-mask template matching (VMTM) to 
remove the error of the target location introduced by 
performing template matching when the template mask 
reflecting the current occlusion situation is unavailable yet. 
In the process of the VMTM, the non-occluded portion of 
the target serves as a benchmark for the alignment of the 
target location.  

We verify the effectiveness of our proposed algorithm 
by conducting experiments on a wide range of real-world 
video sequences downloaded from the standard datasets 
and taken by ourselves. Synthetic test sequences are also 
employed to evaluate the role of the VMTM quantitatively. 
The experimental results have shown that our approach 
outperforms many state-of-the-art algorithms when faced 
with different types of occlusions. 
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