
Jinghai Rao

Semantic Web Service
Composition via

Logic-based Program
Synthesis

Department of Computer and Information Science
Norwegian University of Science and Technology

N-7491 Trondheim, Norway

Norwegian University of Science and Technology
Faculty of Information Technology, Mathematics and Electrical Engineering
Department of Computer and Information Sciences
N-7491 Trondheim
Norway

Dr.Ing. Thesis 2004:121

ISBN 82-471-6464-7 (printed ver.)
ISBN 82-471-6463-9 (electronic ver.)
ISSN 1503-8181

Abstract

The ability to efficiently select and integrate inter-organizational heteroge-
neous Web services at runtime is an important requirement to the success of
Web service provision. In a Web service application, if there is no single Web
service that can satisfy the functionality required by the user, there should be
a program or a software agent which can automatically combine existing ser-
vices together in order to fulfill the request.

The aim of this thesis is to view the Web service composition problem from
the viewpoint of logic-based program synthesis and to propose an agent-based
framework for supporting the composition process in a scalable and flexible
manner. The approach described in this thesis uses Linear Logic-based theo-
rem proving to assist and automate the composition of Semantic Web services.
The approach uses a Semantic Web service language, DAML-S, for the exter-
nal presentation of Web services, while, internally, the services are presented
by extralogical axioms and proofs in Linear Logic. Linear Logic, as a resource
conscious logic, enables us to capture the concurrent features of Web services
formally (including parameters, states and non-functional attributes). The ap-
proach uses a process calculus to present the process model of the composite
service. The process calculus is attached to the Linear Logic inference rules in
the form of type theory. Thus, the process model for a composite service can
be generated directly from the complete proof. We introduce a set of subtyp-
ing rules that define the valid dataflow for composite services. The subtyping
rules that are used for semantic reasoning are presented with Linear Logic in-
ference figures. The composition system is based on a multi-agent architecture,
AGORA. The agent-based design enables the different components of the Web
service composition system, such as the theorem prover, semantic reasoner
and translator, to be integrated in a loosely coupled manner.

We conclude by discussing how this approach has been directed to meet
the main challenges in Web service composition. First, it is autonomous such
that the users are not required to analyze the huge amount of services available
manually. Second, it has good scalability and flexibility such that the composi-
tion performs reasonably well in a dynamic environment. Third, it solves the
heterogeneity problem because semantic information is used for matching and
composing Web services.

We argue that Linear Logic theorem proving, combined with semantic rea-
soning, offers a practical approach to the success of Web services composi-
tion. Linear Logic, as a logic for specifying concurrent programming, provides
higher expressive powers in the modeling of Web services than classical logic.
Further, the agent-based architecture provides a scalable and flexible platform
for the Web service composition system.

The main contributions of this thesis are summarized as follows. First, a
generic framework for the purpose of presenting an abstract process of the

ii

automated Semantic Web service composition has been developed. Second, a
specific system based on the generic framework has been developed. This sys-
tem focuses on the translation between the internal and external languages as
well as the process extraction from the proof. Third, applications of the subtyp-
ing inference rules that are used for semantic reasoning are discussed. Fourth,
an agent architecture is developed as the platform for Web service provision
and composition.

Contents

Preface xi

1 Introduction 1
1.1 Motivation and Aim . 1
1.2 An Application Example . 2
1.3 Research Questions . 4
1.4 Background . 5
1.5 Proposed Solution . 8
1.6 Research Activities and Contributions 11
1.7 Thesis Outline . 12

2 Web Service Composition: State of the Art 15
2.1 Web Services: Standards and Related Technologies 15

2.1.1 IBM Web Service Languages 17
2.1.2 Semantic Web Service Description with DAML-S 18
2.1.3 ebXML . 18
2.1.4 Platforms . 19

2.2 An Abstract Model for Web Service Composition 20
2.3 Web Service Composition via Business Process 22
2.4 Web Service Composition via AI Planning 24

2.4.1 Situation Calculus . 25
2.4.2 Planning Domain Definition Language (PDDL) 25
2.4.3 Rule-based Planning . 26
2.4.4 Other AI-planning Methods 27

2.5 Service Composition using Program Synthesis 28
2.6 Summary . 29

3 Logical Presentation of Web Services 31
3.1 Introduction . 31
3.2 Linear Logic . 32
3.3 The Expressive Power of LL . 36
3.4 The Upper Ontology of Web Services and LL 39
3.5 Transformation of Functionalities 43

iii

iv CONTENTS

3.5.1 Information Transformation 44
3.5.2 State Change . 47

3.6 Transformation of Non-functional Attributes 49
3.7 Example . 53
3.8 Summary . 54

4 Extraction of a Process Model from Proof 57
4.1 Introduction . 57
4.2 The π-calculus: a Formality of Web Service Process 58
4.3 An Upper Ontology for the Process Model 64
4.4 From the Proof to the Process Model 69
4.5 An Example Proof . 74
4.6 Summary . 77

5 Semantic Web Service Composition 79
5.1 Introduction . 79
5.2 Semantic Web and Languages . 80
5.3 Semantic Reasoning for DAML+OIL 84
5.4 Subtyping Rules for LL . 88
5.5 Summary . 90

6 A Multi-agent Architecture 93
6.1 Introduction . 93
6.2 The AGORA Multi-agent Platform 94

6.2.1 General Description . 94
6.2.2 Agent . 95
6.2.3 Agora node . 96

6.3 The Agent Architecture . 98
6.3.1 The Agent Model for Service Composition 99
6.3.2 The Interaction Model . 101
6.3.3 Facilitating Agora Nodes 102

6.4 Summary . 105

7 The Prototype Implementation 109
7.1 Introduction . 109
7.2 LL Theorem Prover . 110
7.3 Jena . 114
7.4 FaCT . 116
7.5 GUI . 117
7.6 Summary . 119

CONTENTS v

8 Evaluation 121
8.1 Answers to the Research Questions 121
8.2 Contributions . 124
8.3 Comparison with Other Methods 126
8.4 Publications . 127
8.5 Performance Evaluation . 131
8.6 Limitations . 132
8.7 Lessons Learned . 133

9 Conclusion 135
9.1 Summary of Results and Contributions 135
9.2 Directions for Future Work . 137

9.2.1 Partial Deduction . 137
9.2.2 Reusability of Composition Result 137

vi CONTENTS

List of Figures

1.1 The core service for buying skis. 3
1.2 The available value-added services. 4
1.3 The required service for buying skis. 4
1.4 The final service structure for buying skis. 5
1.5 The relations between the background researches. 8

2.1 An overview of Web service standard languages 17
2.2 A framework of service composition system. 20
2.3 The process of Web service composition using program synthesis. 29

3.1 The upper ontology for Web service declarative specification. . 40

4.1 π-calculus flow graph. 61
4.2 The upper ontology for the process model. 67
4.3 The example proof. 76
4.4 The illustration of result process for example. 77

5.1 The layer of data representation standards for the Semantic Web 81
5.2 The connections among DLs’ components, adapted from [78] . . 87

6.1 Basic AGORA system architecture. 95
6.2 An agent architecture. 96
6.3 An architecture for Web services provision. 99
6.4 An interaction model of service composition participants. 103
6.5 The agent architecture for facilitators. 104
6.6 An interaction model for facilitators. 105

7.1 An illustration of the implemented agents. 110
7.2 The Jena architecture, from [28] 115
7.3 A screen shot of main window. 117
7.4 Namespaces mapping window. 118
7.5 A screen shot of generated process model. 118

vii

viii LIST OF FIGURES

List of Tables

3.1 Inference rules for MAILL fragment. 34
3.2 The classification of non-functional attributes. 52

4.1 The concepts in process specification. 65
4.2 Inference rules for process extraction. 72

5.1 The correspondence of DL and DAML+OIL terms. 85

6.1 Meanings of performatives. 107

7.1 Forum specification of the LL sequent calculus. 112
7.2 The connectives in UMA Forum. 113

8.1 Experimental settings. 132
8.2 Process generation time. 132

ix

x LIST OF TABLES

Preface

This thesis is submitted to the Norwegian University of Science and Technol-
ogy (NTNU) in partial fulfillment of the requirements for the degree doktor
ingeniør. This work has been conducted at the Department of Computer and
Information Sciences (IDI), NTNU, Trondheim, Norway, under the supervi-
sion of Professor Mihhail Matskin. Part of this work was conducted while I
was a visiting researcher at the Department of Microelectronics and Informa-
tion Technology, the Royal Institute of Technology, Stockholm, Sweden.

Acknowledgments

First and foremost, I would like to thank my supervisor Professor Mihhail
Matskin for his expert guidance, constant encouragement and enduring pa-
tience during my doctoral research. I am lucky to work in his group and have
been surrounded by knowledgeable and helpful co-workers. I am grateful
to Peep Küngas for our wonderful cooperation and all the interesting discus-
sions about Linear Logic. Thanks to Sobah Abbas Petersen and Amund Tveit
for their discussions, information and inspiration.

During the first half of year 2003 I was given the opportunity to stay at
the Department of Microelectronics and Information Technology, the Royal In-
stitute of Technology. I would like to thank Professor Hannu Tehnunen who
invited me for this visiting. I would also like to thank the colleagues there, in
particular Mika Cohen and Christian Schulte for discussions and assistance. I
thank my old friend Bo Cong, for helping me to find the apartment and shar-
ing a lot of fun in Stockholm.

I would like to thank all people at IDI. Among them, my friends, Darijus,
Sari, Raimundas and Wacek have provided me a lot of help. Warm thanks to
my friends both in Norway and in China for the joy I shared with them and
the help I received from them.

Finally, I would like to thank my parents and my brother in China for their
love and support. My special thank goes to Xiaomeng for her encouragement

xi

xii PREFACE

and support. She has been helping me both with forming the ideas presented
in this thesis, and with thoughtful comments on what has been written.

Jinghai Rao
November 10, 2004

Chapter 1

Introduction

1.1 Motivation and Aim

Recent progress in the field of Web services makes it practically possible to
publish, locate, and invoke applications across the Web. This is a reason why
more and more companies and organizations now implement their core busi-
ness and outsource other application services over Internet. Thus the ability to
efficient selection and integration of inter-organizational services on the Web
at runtime becomes an important issue to the Web service provision. The gen-
eral problem is about how to develop mechanisms to automatically locate the
correct Web service in order to meet the user’s requirements. In some cases, if
no single Web service can satisfy the functionality required by the user, there
should be a possibility to combine existing services together in order to fulfill
the request.

The problem of Web service composition is a highly complex task. Here we
underline some sources of its complexities:

• First, the amount of available Web services is huge, and it is already be-
yond the human’s capability to analyze them manually.

• Second, Web services can be created and updated on the fly, thus the com-
position system needs to detect the updating at runtime and the decision
should be made based on the up-to-date information.

• Third, the Web services are usually developed by different organizations
that use different conceptual models for presenting services’ characteris-
tics. This requires utilization of relevant semantic information for match-
ing and composition of Web services.

In this thesis, we focus on the automated composition of Web services at
runtime. The result of the composite service is generated in the user interac-
tion loop on the basis of the service requests and the available services. Since

1

2 CHAPTER 1. INTRODUCTION

Web services are pieces of software applications, Web service Composition can
be conceived as a software synthesis problem [80]. This research trend has
triggered a number of research efforts both in academia and in industry. (An
overview of the literature is given in Chapter 2).

The aim of this thesis is to consider the Web service composition prob-
lem from the viewpoint of logic-based program synthesis, and to propose an
agent-based framework for supporting the composition process. The logic-
based method ensures the correctness and the completeness of the solution.
The agent-based framework provides the scalability and flexibility to the com-
position system.

1.2 An Application Example

We consider how our service composition method can be applied to the com-
position of Web services. Here, we present an example based on value-added
Web service composition. Value-added services differ from core services—they
are not a part of core services but act as complements to the core services. In
particular, they may stand alone in terms of operation and profitability as well
as provide adds-on to core services. It is important to mention that value-
added services may allow different their combinations and they may provide
incremental extension of core services. For example, in online shopping, the
core services range from product search, ordering, payment and shipment.
The value-added services, such as currency exchange, measurement converter
and language translation can also be required in cases when the core services
cannot meet the users’ requests exactly. Usually these value-added services
are not designed for a particular core service but they rather extend abilities of
core services or, in other words, add value to the core services.

As a working example we consider a ski selling Web service. In this exam-
ple the core service receives characteristics of a pair of skis (such as, length,
brand, model etc) as inputs and provides prices, availability and other re-
quested characteristics as outputs. We assume that a user would like to use
this service but there are gaps between the user’s requirements and the func-
tionalities the service provides.

The differences could exist, for example, in the following details:

• the user would like to receive prices in a local currency (for example, in
Norwegian Crowns), however, the service provides price in US Dollars
only;

• the user would like to use centimeters as length measurement units but
the service uses inches;

• the user does not know what ski length or model are needed and he
would like that these can be calculated from his height and weight;

1.2. AN APPLICATION EXAMPLE 3

• the user does not know which brand is most suitable and he would like
to get a recommendation from a Web service.

We assume that the user provides the body height measured in centimeters
(cm), the body weight measured in kilograms (kg), his skill level and the price
limit. The user would like to get a price of a recommended pair of skis in
Norwegian Crowns (NOK).

The core service selectSkis accepts the ski length measured in inches, ski
brand, ski model and gives the ski price in US Dollars (USD).

Some available value-added services are as follows :

• selectBrand—given a price limit and a skill level, provides a brand;

• selectModel—given body height in cm and body weight in kg, provides
ski length in cm and a model;

• cm2inch—given length in cm, provides length in inches;

• USD2NOK—given price in USD, provides price in NOK;

• inch2cm—given length in inches, provides length in cm;

• NOK2USD—given price in NOK, provides price in USD;

• kg2lb—given weight in kg, provides weight in pounds;

• lb2kg—given weight in pounds, provides weight in kg.

The core service and available value-added services are depicted respec-
tively in Figure 1.1 and Figure 1.2. A required service is presented in Figure 1.3.
The structure of a composite service solution is presented in Figure 1.4.

selectSkis

LENGTH_INCH

PRICE_USDBRAND

MODEL

Figure 1.1: The core service for buying skis.

We would like to mention that our working example is intentionally made
simpler than it is required for practical cases. This has been done in order to
keep simplicity of presentation. In practice there can be more value-added ser-
vices available and more parameters for the core service (in particular, there
may exist many other converters for currency, measurements and other units),
and the user may not always be able to find a solution intuitively. In addi-
tion, it may also be beyond the user’s ability to search among a huge amount
of available value-added services to find all possible solutions. In particular,
if the set of possible solutions consists of all existing converters to all inputs

4 CHAPTER 1. INTRODUCTION

�����������
	���
��������� ��������� ��� �
� ��� ���!���"��#
��� $ ��%�&�'

�����������)(+*������,���� -�,.�/�����
0+��� -�,��/����-

�+1�'����
�2��&�-.�3,4�����

�45�6�7���� 8�2��&.-.�3, �����

9;:�< 6;=�>�?����� ���)��@;� ' ����� ������&�1��

�2��&�-��3,
��� &���,

7����48�6��45�2��&�-��3,
��� &���,

=�>�?�6 9�:�<����� �;�)��&.1�� ����� ���2��@;� '

�2��&�-.�),
�����

A�B 6���C0D��� -�,E� ����-

��C�6 A�B0+��� -�,.�!��� $ 0+��� -�,��/����-

0+��� -�,.�!��� $

Figure 1.2: The available value-added services.

PRICE_NOK
SKILL_LEVEL

PRICE_LIMIT

WEIGHT_KG

HEIGHT_CM

Figure 1.3: The required service for buying skis.

and outputs of all Web services (both core and value-added), this may cause
big overhead in service provision. Taking this into account, we believe that
automatic composition would be an efficient and a practical solution in this
case.

Here we illustrate a case where the Web services are only specified by the
input/output signatures. This is not enough to model the current Web ser-
vices because the Web services have more behavior other than just receiving
and sending messages, for example, the pre- and post-condition, the cost in-
formation, the security information, etc. We will give a complete overview of
the properties to specify the Web Services in Chapter 3.

1.3 Research Questions

The overall research question this thesis tries to answer is:

How can we enable the intelligent agents to automatically retrieve and compose
Web services to achieve the goals specified by their users?

In order to be able to answer this question, we define a set of research ques-
tions that address the problem in detail.

1.4. BACKGROUND 5

selectModel
WEIGHT_KG

HEIGHT_CM MODEL

LENGTH_CM cm2inch LENGTH_INCH

selectSkis PRICE_USD USD2NOK PRICE_NOK

selectBrand BRAND
SKILL_LEVEL

PRICE_LIMIT

Figure 1.4: The final service structure for buying skis.

RQ1: What is Web services and how are they composed?

• What type of information is required to identify Web services at run-
time?

• How do we specify the interaction within the composite service?

• What platforms are required to support the publishing, invocation
and composition of Web services?

RQ2: How can we automatically compose the Web services via logic-based
program synthesis?

• How can we specify the Web services in a logical language?

• What is the formal basis for representing the dynamic composition
of services from the service specification?

• How can we extract the process model from the proof?

RQ3: Is it reasonable to present the Web service composition problem in the
context of multi-agent framework?

• Can multi-agent framework improve the scalability and flexibility
of the Web service composition systems?

• Can multi-agent framework leverage the semantics interoperation
for heterogeneous Web services?

RQ4: How can we use Semantic Web markups for facilitating the Web service
composition task?

• How can we deal with the difference between the Semantic Web
languages and Web service languages?

• How can we integrate the semantic reasoner for Semantic Web with
the logic theorem prover for program synthesis?

1.4 Background

According to the general research question, we are interested in the problem of
how to automate the service provision and composition at runtime. When we
chose this subject, four research directions inspired us. They are the researches

6 CHAPTER 1. INTRODUCTION

in Web services, deductive program synthesis, software agents and Semantic
Web. Those directions are presented here as the background of the research
subject in this thesis.

• First of all, we were inspired by the Web service initiatives proposed both
in academia and in industry. Those efforts provide platforms and lan-
guages that allow to discover, execute and integrate services. For ex-
ample, Universal Description, Discovery, and Integration (UDDI) [19],
Web Services Description Language (WSDL) [31], Simple Object Access
Protocol (SOAP) [24] and parts of DAML-S [72] ontology (including Ser-
viceProfile and ServiceGrounding) define standard ways for service dis-
covery, description and invocation (message passing). Some other ini-
tiatives including Business Process Execution Language for Web service
(BPEL4WS) [13] and DAML-S ServiceModel, are focused on represent-
ing service compositions where a process flow and bindings between
services are known a priori. Some platforms have been developed to
support the invocation of Web services that are specified by the above
languages, such as bpws4j [57], axis [1], WebSphere [58] and .NET [84].
However, those initiatives do not provide means for the dynamic compo-
sition of existing services. If the required functionality cannot be realized
by a single existing service, the composition of the available services to
fulfill the request has to be specified by the human being by hand. The
languages only provide the way to describe the the composite services
when the process model is known.

• Second, we were inspired by research on deductive program synthesis
using the intuitionistic propositional calculus. Program synthesis is a
method of software engineering in order to generate programs automat-
ically. In particular, deductive program synthesis is based on an obser-
vation that constructive proofs are equivalent to programs where each
step of a proof can be interpreted as a step of a computation. The key
ideas of the software composition approach, as well as correspondence
between theorems and specifications and between constructive proofs
and programs, are presented in [70]. We believe that an automated de-
ductive program synthesis method serves best for dynamic Web Service
composition given the correct specification of services in logic. The open
problem is how to develop the translators between the standard Web ser-
vice specification languages and the logical languages. The Web service
specification languages are used by the users to describe the Web services
in the problem domain. The logical languages are hidden from the users,
although they are reachable, if needed. They are used by automated the-
orem prover to generate the process model for the composite service.

• The third source for our approach is agent technology [124,93]. The soft-

1.4. BACKGROUND 7

ware agent is autonomous, reactive and proactive computational device
that could interact through Internet. Using software agents to represent
Web services gives a better flexibility, scalability and dynamicity to re-
trieval and composition problem. The reasons exist in three points. First,
if the Web services are changed on the fly, the agents who represent those
services is able to report the changes to the repository initiatively. Sec-
ond, the distributed manner of software agent does not require a central
controlled service repository. This can improve the system performance
when the number of available Web Services is huge. Third, a composition
program can be divided into a set of sub-programs that can be solved by
different agents.

• At last, we were inspired by the research efforts in the Semantic Web [20].
The Semantic Web, as a vision of the evolution of the World Wide Web
from a human interpretable document collection to a computer under-
standable one, increases automation of interoperation among Web appli-
cations. Generally, such interoperation is realized through the content
annotation using XML based ontology language, such as DAML+OIL [2]
and OWL [34]. The Semantic Web and ontologies are central to our re-
search because they allow the Web services and software agent to agree
on the terms that they use when advertising, searching and communicat-
ing. For Web Services, the semantic markup provide the shared mean-
ing of the term using to describe the service capabilities. In particular,
the synonym and subsumption relations between the terms are essential
for the Web service composition, because they define the valid dataflow
between the Web services. The same issue is also emphasized by the
program synthesis community using type systems [69]. For the soft-
ware agents, agents represent their ”view of the world” by explicitly de-
fined ontologies. The interoperability of a multi-agent system is achieved
through the reconciliation of these views by a commitment to common
ontologies that permit agents to interoperate and cooperate. Thus, on-
tologies, if shared among stakeholders, will improve system interoper-
ability across agent systems.

We can find a strong influence from the above research directions to our
research result. An overview of the background researches is illustrated in
Figure 1.5. In general, the Web Service efforts provide the specification lan-
guage to the program synthesis methods that use logical languages to deduce
and generate process model for composite service. The software agent, using
program synthesis algorithm as decision making and inference method, acts
as a more flexible and scalable platform for composition system. In the plat-
form, the software agents are on behalf of Web services and the Web services
present the requirements and capabilities of agents. Semantic Web supports

8 CHAPTER 1. INTRODUCTION

���������
	��
��������������������� 	"! #�� #

$%��&'�(���)
�� �*��# �+��,)	 -.�����0/1�����
	

�(���'����	2� �3$%��&
46527 8 9 :

9 8 ; < 9�= >
? ; >
@ A ; @ 7

B

C A < =
D ; < 9 8 E

= D 5
= B 9 < 9�= >

F 7 < G = H

IKJMLON L
P
Q�R N L*STL*UWV
X
UZY1[\X*]WX*^�R _ R V `baWcZd�e
L
UWV f
g U1^WL*JMX _ c ahcZijLZ^1kKLZN l
R [\L
f

mon p q r q s t uwv x q t y
z|{y s } q ~ � �

�"� � � � � � � � �)� ��� � � � � � �

� ��� � ��� �
�

�6���2���
�

�� �¡£¢ ¤ ¢6¥
¦ §w¨ª©|«)¬®­¯M°ª± ²2³ ² ´®µ

Figure 1.5: The relations between the background researches.

the interoperation of Web services and multiple agents by shared ontologies,
while it also provides the type system for program synthesis.

Our research method integrates a deductive program synthesis technique
with the standard semantic Web service specification language to provide au-
tomated service composition. The work is realized in the context of a multi-
agent platform. The detail of our proposed solution is described in Section 1.5.

1.5 Proposed Solution

We have approached the problem through designing and implementing a pro-
totype system for automated Web service composition. The prototype consti-
tutes an essential part of the presented thesis work. The prototype is designed
to combine the advantages of multi-agent system with positive sides of deduc-
tive program synthesis for supporting Web Service composition. The program
synthesis part is based on the proof search in a fragment of propositional Lin-
ear Logic (LL) [44]. The prototype system is built on the software agent archi-
tecture, AGORA. We use both the AGORA notion and implementation in our
solution.

This thesis has resulted in the implemented prototype with the following
functionalities:

• First, the general idea of our service composition method is as follows.
Given a set of existing Web services and a set of functionalities and non-
functional attributes, the method finds a composition of existing services
that satisfies the user requirements. The description of existing Web ser-
vices is encoded as extralogical axioms in LL, and the requirements to the
composite services are specified in form of a LL sequent to be proven. We
use a LL theorem prover to determine whether the sequent can be proven

1.5. PROPOSED SOLUTION 9

by the axioms. If the answer is positive then the next step is to construct
the dataflow from the generated proofs. The reason that we use LL the-
orem proving as Web service composition method is as follows. LL is
a resource-conscious logic and this allows us to capture the concurrent
features of Web services formally (including parameters, states and non-
functional attributes). Because of soundness of the logic fragment used
the correctness of composite services is guaranteed with respect to the
initial specification. Completeness of the logic fragment ensures that all
composable solutions would be found. Our method is strongly influ-
enced by the service composition method using Structural Synthesis of
Programs(SSP) proposed in [76, 64, 75]. Both SSP and our approach are
based on the idea that the programs can be constructed automatically
taking into account only their structural properties, namely the inter-
faces of the services. The idea is used to construct programs from ex-
isting modules. Modules are pre-programmed functions whose internal
structure are not considered. Therefore, the result composite service can
be modeled as a set of component services that are connected through
dataflow dependencies between the interfaces. One main difference is
that the method reported in this thesis considers more properties other
than the input/output parameters, for example the pre-, post-conditions
and the non-functional attributes.

• Second, our method distinguishes between the service specification lan-
guages and the logical languages when describing the Web services. The
service specification languages are used by the users to enhance acces-
sibility of the users in the sense that it is easier for the users to express
what they want. The logical languages are different because they are
used by the automated theorem prover. In reality, the users have already
gotten used to the standard Web service languages, such as WSDL and
DAML-S. Thus we have to develop the translation components between
the Web service languages and the logical languages. In our system, we
have presented that DAML-S ServiceProfile part is suitable for a declar-
ative language to describe the Semantic Web service specification. The
documents written in DAML-S ServiceProfile is able to be translated to
LL axioms as the input of the LL theorem prover. A π-calculus [90] based
process calculus is used to present the process model of composite ser-
vice formally. It can be extracted from the proof directly. The calculus can
be translated into DAML-S ServiceModel. In addition, because DAML-S
lacks the support of invocation platform, WSDL and BPEL4WS are used
as grounding of ServiceProfile and ServiceModel respectively. As a re-
sult, the translation between the WSDL, BPEL4WS and DAML-S is also
developed.

• Third, we use a composition approach that allows reasoning with types

10 CHAPTER 1. INTRODUCTION

from a service specification. The fundamental purpose of the types is
to define the valid dataflow for the composite services, thus types im-
pose constraints which help to enforce the correctness of the execution
of composite service. The typing relations between the concepts used to
specify the services are defined in the domain ontology. We developed
a semantic reasoner to infer the missing type information automatically.
The type information can be presented in form of LL implications. This
ensures the interoperability between the LL theorem prover and the se-
mantic reasoner. A set of interaction protocols between the LL theorem
prover and the semantic reasoner is also developed.

• Fourth, we use an agent-based approach to support the cooperative ac-
tivities, such as advertising, searching and composing Web services. The
agent-based approach uses software agents to represent the service providers
and the service requesters. In this approach, the Web services describe
the requirements and capabilities of agents. The service composition pro-
cess is presented as multi-agent communication, coordination and ne-
gotiation. Furthermore, the different components supporting the com-
position, such as the theorem provers, the semantic reasoners and the
translators can also represented by software agents, which is called fa-
cilitator agents. The agent-based design enables these components to
integrate with each other in a loosely coupled manner. We have de-
signed and implemented the respective agents on an agent architecture,
AGORA [74, 73]. The AGORA system is a multi-agent environment,
which provides supports for cooperative work between the participat-
ing agents. The agent-based approach gives service providers a more
proactive role in the service composition process. The architecture com-
bining with a distributed Web service composition method, reduces the
heterogeneity between different components.

• Finally, we take advantage of the existing LL programming languages as
the automated theorem provers in our experiments. We have used both
Forum [87] and RAPS [60]. Forum is a LL theorem prover based on intu-
itionistic LL. We have implemented a theorem prover based on its Prolog
interpreter to enable the attachment of process model as the type of the
propositional variables. RAPS is developed in our group as a LL plan-
ner to support reasoning over Web service composition problems both in
propositional and first-order LL. It supports Partial Deduction but does
not support multiplicative disjunction so far. We should emphasize that
this thesis is not an effort to develop automated LL theorem provers, in-
stead we take advantage of existing languages and systems for support
our applications in Web service composition.

1.6. RESEARCH ACTIVITIES AND CONTRIBUTIONS 11

1.6 Research Activities and Contributions

The research activities used in this work consist of literature review, system
analysis, development and evaluation. All together the phases include the
following steps.

1. The literature review step includes:

• The survey of Web service languages and platforms step includes an in-
vestigation of existing languages and platforms to support the de-
scription, provision and invocation of Web services.

• The survey of Web service composition step includes an investigation
of applicable part of the relevant research efforts, in particular, we
concern the automated Web service composition methods based on
AI planning or logic-based program synthesis.

2. The analysis of requirements step includes an inventory of the problems in
Web service composition and an analysis of the raised requirements.

3. The development step includes:

• The development of upper ontologies of Web services step includes the
efforts to generalize the specification languages both for service pro-
file and service process. The languages are based on DAML-S, but a
reconstruction is needed when considering the translation to logical
languages.

• The development of logical presentation of Web services step includes the
definition of the specific axioms and inference rules.

• The development of agent-based approach step includes the design of
agent architecture and interaction protocols to support the service
composition based on the multi-agent platform, AGORA.

• The prototype application step includes development and implemen-
tation of the prototypical environment.

4. The applicability analysis and evaluation step includes the experimental
evaluation of using proposed Web service composition in examples.

A major contribution of this thesis is the development and specification of
a formal approach to support the Semantic Web service composition problem.
The work has been implemented on a multi-agent platform.

Some specific contributions of our work are listed as follows. The detail
evaluation of the following contributions can be found in Section 8.2:

C1: Development and evaluation of a LL-based formal method for automated
program synthesis to enable Semantic Web service composition.

12 CHAPTER 1. INTRODUCTION

C2: Development of the translation mechanism between the standard Web
service languages and the LL formulae. The process calculus is attached
to the proof figure as type system, thus the process can be extracted from
the proof directly.

C3: Application of the subtyping inference rules that are used for semantic
reasoning. The semantic relations are presented with LL inference fig-
ures. We propose a system architecture where the semantic parser, LL
theorem prover and the semantic reasoner can operate together.

C4: Development of an agent architecture and interaction for the service pro-
vision and composition.

1.7 Thesis Outline

This thesis contains a survey of the Web service composition methods, a de-
scription of the work and an overview of the results and contributions. An
outline of the structure of this thesis is shown as follows:

Chapter 2 provides an overview of literatures on Web service composition,
including the composition languages, platforms and methods. The com-
position methods are separated by the topic of business process, software
composition and AI planning.

Chapter 3 presents a method for the translation from DAML-S ServiceProfile
to extralogical axioms in LL.

Chapter 4 discusses how to extract a process from the LL proof. We introduce
a process calculus that is attached to the LL inference rules in the style
of type theory. Thus the process model for the composite service can be
generated from the process of the proof.

Chapter 5 presents the usage of type system to enable the composition using
Semantic Web information. We used a set of subtyping rules for semantic
reasoning. The rules are presented with LL inference figures so that the
semantic reasoner and LL theorem prover can interact directly.

Chapter 6 introduces an agent-based approach to service composition prob-
lem, especially the agent architecture and multi-agent interaction.

Chapter 7 demonstrates the implementation issues for our service composi-
tion system.

Chapter 8 evaluates the expressive power for the fragment of LL we used to
model the Web services. Discussion and comparition of the proposed
method are presented in this Chapter too.

1.7. THESIS OUTLINE 13

Chapter 9 summarizes and discusses the method and future directions for this
work.

14 CHAPTER 1. INTRODUCTION

Chapter 2

Web Service Composition: State of
the Art

2.1 Web Services: Standards and Related Technolo-
gies

The term “Web services” has been used very often nowadays. According to
IBM [4], “Web Services are self-contained, modular applications, accessible via the
Web through open standard languages, which provide a set of functionalities to busi-
nesses or individuals”. This definition places the emphasis on two points. The
first point is that a Web service is seen as an application accessible to other ap-
plications over the Web. Secondly, Web services are open, which means that
services have published interfaces that can be invoked by message passing
standards. This definition is very simple, but not precise enough. For instance,
it is not clear what it is meant by a modular, self-contained application. A
step further in refining the definition of Web service is the one provided by the
World Wide Web consortium (W3C):

A Web service is a software system identified by a URI, whose pub-
lic interfaces and bindings are defined and described using XML.
Its definition can be discovered by other software systems. These
systems may then interact with the Web service in a manner pre-
scribed by its definition, using XML-based messages conveyed by
Internet protocols. [121]

The W3C definition stresses that Web services should be capable of being
“defined, described, and discovered,” thereby clarifying how to access the Web
services [9]. We should also emphasize that Web services do not merely pro-
vide static information, but allow one to affect some action or change in the
world, e.g. the sale of a product, the control of a physical device, etc.

15

16 CHAPTER 2. WEB SERVICE COMPOSITION: STATE OF THE ART

What makes the Web services attractive is the ability to integrate the Web
services developed by different organizations together to fulfill the user’s re-
quirement. Such integration is based on the common standards of Web service
interfaces, regardless of the languages that are used to implement the Web ser-
vices, and the platforms where the Web services are executed.

In general, the Web services have the following features that make them
better in integration inside the heterogeneous environments:

loosely coupled: In software development, coupling typically refers to the
degree to which software components/modules depend upon each other.
Comparing with the tightly coupled components (such as the Distributed
Component Object Model (DCOM) [85] or the Common Object Request
Broker Architecture (CORBA) [94]), the Web services are autonomous
and can operate independently from one another. The loosely coupled
feature enables Web services to locate and communicate with each other
dynamically at runtime.

universal accessibility: The Web services can be defined, described and dis-
covered through the Web that enables an easy accessibility. Not only
the Web services users can locate appropriate services, but services can
describe and advertise themselves so that they are possible to bind and
interact with each other.

standards languages: Web services are described by standard XML languages
that have been considered as parts of the Web technology. The Web ser-
vices standards are of higher abstraction. Although the cores of Web ser-
vices may implemented by different programming languages, the inter-
face of Web services are described by uniform standard XML languages.

The standard may be of the most importance for the success of Web ser-
vices. In fact, the Web service community has proposed dozens of standard
languages and frameworks to help users to present the services in a uniformed
matter. Figure 2.1 is adapted from [118], which provides an overview of com-
monly used standards and their positions in the application of Web services.
In the following, we will elaborate the languages from three sources. First,
we sketch the Web service languages proposed or co-proposed by IBM, which
is considered as the most elaborated and the best described industry quasi-
standard for Web service so far. The IBM Web service languages represent a
traditional view of Web service languages. From this view, Web services have
simple rather than rich descriptions, the environment is closed rather than
open, the service requester is human rather than machine and data exchange
are syntactic rather than semantic [113]. Second, we introduce a Semantic Web
description of services, which provides some additional modifications to move
the traditional languages closer to the vision of an openness and interoperabil-
ity. We argue that the current description of DAML-S, the DAML+OIL based

2.1. WEB SERVICES: STANDARDS AND RELATED TECHNOLOGIES 17

�����������	������
��
��������� �������� �
��� �

��� ���������	� �

� �! �� � "	��� �

#%$���� ��	���
�&� �	���	���('
)*�!� �,+.- ���
�%� "! ���"	�/� � �! 	�

��0 �	� �	�	1	� "!2 0 �

� �! ����!� ��"�� � �	 ��

���! �3 + $	 	�/� � �	 �"4-,5	�	����� 2�� � ��

&�!� �	� ���6���	�����7� 2�� � �!

89�;:�3 <�"!���	5>=>�	����"!1!� �1
�?�@A�

)*
B��:

)*
9C�:

)*
&3 � �	�!� 54� 	"�� � �!

�
�3)*

)*
&3 �%� "! ���"��/� � �!

#���C�:�D�)E

F�����G

�!<�89�;:
�
�	����"	14� 	1

�!<�89�;: � ���
H����

I!JLK9MON P
P	Q(R S,T UOQ(V	R WYX T Z Q9[
P!Q(R S,T UOQ(\&R W(],^�T _O`

�&@9�;:�3

&�!� �	� ���	�>�	5	�4-

�&@��a:�3.

&�!� �	� ���!�
�	5!�4-

�&@9�;:�3

&�!� �	� ���4�%� ��+.� - �

#��%�;:

#L���

)*
 � G
)*
 � :

#4���

�!<�8��6:>#��&
�

#��%�6:

�!<�89�;: � �4@

�!<�89�;:
HB��14� �/� �7� �	�

)b
B�9:�3.<�"	���	5
%�L=
"! �� � �
)b�	<><	"	���	5

�!<�89�;:

Figure 2.1: An overview of Web services standard languages, adapted from [118].

Semantic Web service ontology is of such kind of language. The third source of
Web service languages are the languages concerning the business interaction,
represented by ebXML. Finally, we will also list some Web service platforms
that support the languages we have introduced.

2.1.1 IBM Web Service Languages

The general idea of Web service application from IBM is the following: A Web
service provider offers services on the Web. He may choose to register his
service at an online registry of a service broker. The registry also provides
standardized description facilities, e.g. taxonomies that allow the description
of 1) the functionality of a service, 2) the information about service provider,
and 3) the way to access and interact with the service. The corresponding
information about a particular service is registered by the provider at a broker.

The service requester searches for a service at the registry. He finds one by
browsing or querying the registry. Then he uses the service description to cre-
ate a binding for his application. The last step is to invoke or interact with the
Web service using standard communication language. The IBM Web service
languages that support the above procedure are UDDI, WSDL and SOAP.

UDDI [19] provides a registry where service providers can register and pub-
lish their services. The registry consists of three parts: white pages, yel-
low pages and green pages. Contact information, human readable infor-
mation and related can be registered in the white pages. Keywords that
characterize the service are registered in the yellow pages. Service rules
and descriptions for application invocations are registered in the green
pages (technical). UDDI does not support semantic descriptions of ser-
vices and no content language for advertising is provided. WSDL is a

18 CHAPTER 2. WEB SERVICE COMPOSITION: STATE OF THE ART

candidate for such a content language.

WSDL [31] is a proposed W3C standard for describing network services.
The descriptions work as a recipe for automating the details involved
in communication between applications. WSDL defines an XML gram-
mar where services are a set of ports (network endpoints). Messages are
abstract descriptions of the exchanged data. Port types are abstract col-
lections of operations supported by communication endpoints. A con-
crete protocol and data format for a port type constitutes to a reusable
binding. SOAP is typically used to deploy the operations.

SOAP [24] is a proposed W3C standard for exchanging information in a de-
centralized and distributed environment. It offers a mechanism to define
application semantics. This makes it possible to invoke methods on ob-
jects remotely. SOAP consists of three parts: envelope, encoding rules
and Remote Procedure Call (RPC) representation. The envelope sets up
a framework for what the message contains and responsibility. The en-
coding rules provide a serialization mechanism for exchanging instances
of application specific data types. Finally, RPC makes it possible to en-
capsulate and represent remote procedure calls and responses.

2.1.2 Semantic Web Service Description with DAML-S

DAML-S [14] is an ontology that provides constructs for describing Web ser-
vices. With DAML-S the properties of services and their capabilities are less
ambiguous and described in computer-interpretable format. It can be regarded
as a semantic-based effort for service description, service publication and ser-
vice flow [113]. DAML-S descriptions enable improved matching of services [97].
The top level of the ontology has a service construct, related to three basic con-
cepts: ServiceProfile, ServiceModel and ServiceGrounding. The ServiceProfile
describes what the service does (what is provided), the ServiceModel describes
how it works (what happens) and the ServiceGrounding describes how to ac-
cess it (how to use). In a more detailed perspective, a composite Web service
can be viewed as a process, which is specified by a subclass of ServiceModel
called process ontology. A process can have a number of participating services
as well as the control flow and data flow among the services. In the current
version, the ServiceGrounding is defined as the mapping between the Service-
Model and the a service’s interface description, WSDL.

2.1.3 ebXML

ebXML [38] is a standardization effort for business interactions, and is an ini-
tiative of UN/CEFACT and OASIS . It can be regarded as a more open and

2.1. WEB SERVICES: STANDARDS AND RELATED TECHNOLOGIES 19

flexible successor of EDI (Electronic Data Interchange). To conduct business
with each other, companies must do the following:

• Discover products and services offered.

• Determine how these products and services can be obtained by deciding
on shared process and information exchange.

• Agree on form of communication and points of contact for exchange of
documents.

• Agree on contractual terms like transactions, plans and security.

The ebXML Registry is the central server that stores the necessary data.
Each company must register its profile, Collaboration Protocol Profile (CPP),
which specifies some of the business processes of its business and some sup-
ported Business Service Interfaces. Business Processes are the activities compa-
nies can be involved in and the service interfaces describe how it can perform
the transactions necessary in its processes. Companies use the collaboration
protocol profile to agree on the contractual terms and establish a Collaboration
Protocol Agreement (CPA). ebXML has two views to describe business inter-
actions: Business Operational View and Functional Service View. The former
addresses the semantics of business data transactions, in addition to: oper-
ational conventions, agreements, mutual obligations and requirements. The
Functional Service View deals with supporting services like functional capa-
bilities, business service interfaces and protocols.

ebXML can be regarded as complementary to the other technologies [110].
It takes a broader approach in terms of scope and functionality. A survey of
ebXML specifications and other content standards are given in [36]. Such stan-
dards are highly relevant for semantic interoperability in a global sense, but
will not be emphasized in this thesis.

2.1.4 Platforms

E-business infrastructure companies are beginning to announce platforms to
support some levels of Web-service automation. Examples of such products
include Hewlett-Packard’s e-speak, a description, registration, and dynamic
discovery platform for e-services; Microsoft’s .NET and BizTalk tools; Oracle’s
Dynamic Services Framework; IBM’s Application Framework for E-Business;
and Sun’s Open Network Environment. VerticalNet solutions, anticipating
and wishing to accelerate the markup of services for discovery, is building
ontologies and tools to organize and customize Web service discovery and -
with its OSM Platform - is delivering an infrastructure that coordinates Web
services for public and private trading exchanges.

20 CHAPTER 2. WEB SERVICE COMPOSITION: STATE OF THE ART

��� ������� ��	
�� � �
�
������� ������� ��	
��

������� ����	
��

� ��� ��� �! #"%$!&!�('!) *) '+ !�) ,-�
.�� ,('/�/$/$��($

�10���
���	32
���4��512 ��� 6 ��� ��2
��78��9�
���2 	
�� :

;-<�� ��� �! �"3$#&��#'!) *) '+ !�) ,��

6 ��� ��2
��=� ��>������?	 ���

@ ABCDE
EDE

FG&!� ,#'+�($/$

H#I J K L M
N�O?P Q�R S!OT�U O-S-R V R S!W#X R Y?Z

6 ��� ��2
��[9��
���2 \����

]+^ _ ` a b ^c d ^ b a e a b fhg a i j

Figure 2.2: A framework of service composition system.

There are also some platforms proposed by academia. [109] is a service
matching and invocation platform supported by software agents. [29] is a ser-
vice composition platform based on HP workflow infrastructure.

2.2 An Abstract Model for Web Service Composi-
tion

Here, we propose a general framework for automatic Web services composi-
tion. This framework is in high-level abstraction, without considering a par-
ticular language, platform or method used in composition process. The frame-
work is initially proposed in [105], and further improved in [106]. The aim of
the framework is to give the basis to discuss similarities and differences of the
available service composition methods. In addition, we also use the frame-
work to unify the terms used in the following of the thesis.

A general framework of the service composition system is illustrated in
Figure 2.2. The composition system has two kinds of participants, service
provider and service requester. The service providers propose Web services
for use. The service requesters consume information or services offered by ser-
vice providers. The system also contains the following components: transla-
tor, process generator, evaluator, execution engine and service repository. The
translator translates between the external languages used by the participants
and the internal languages used by the process generator. For each request,
the process generator tries to generate a plan that composes the available ser-
vices in the service repository to fulfill the request. If more than one plan is
found, the evaluator evaluates all plans and proposes the best one for exe-
cution. The execution engine executes the plan and returns the result to the
service provider.

Most precisely, the process of automatic service composition includes the
following phases:

Presentation of single service: firstly, the service providers will advertise their
atomic services at a global market place. There are several languages

2.2. AN ABSTRACT MODEL FOR WEB SERVICE COMPOSITION 21

available for advertising, for example, UDDI [19] or DAML-S ServicePro-
file [72]. The essential attributes to describe a Web service include the sig-
nature, states and the non-functional values. The signature is represented
by the service’s inputs, outputs and exceptions. It provides information
about the data transformation during the execution of a Web service. The
states are specified by precondition and postcondition. We model it as
the transformation from one state to another state in the world. Non-
functionality values are those attributes that are used for evaluating the
services, such as the description of cost, quality and response time.

Translation of the languages: most service composition methods distinguish
between the external and internal service specification languages. The
external languages are used by the users to enhance accessibility of the
users in the sense that the users can express what they can offer or what
they want in a relatively easy manner. They are usually different from
the internal ones that are used by the composition process generator, be-
cause the process generator requires more formal and precise languages,
for example, the logical programming languages. So far, the users have
already get used to the standard Web service languages, such as WSDL
and DAML-S. Thus the translation components between the standard
Web service languages and the internal languages have to be developed.

Generation of composition process model: in the meantime, the service re-
quester can also express the requirement in a service specification lan-
guage. A process generator then tries to solve the requirement by com-
posing the atomic services advertised by the service providers. The pro-
cess generator usually takes the functionalities of services as input, and
produces as output the process model that describes the composite ser-
vice. The process model contains a set of selected atomic services to-
gether with the control flow and data flow among them.

Evaluation of composite service: it is quite common that many services have
the same or similar functionalities. So it is possible that the planer gener-
ates more than one composite services fulfilling the requirement. In that
case, the composite services are evaluated by their overall utilities using
the information provided from the non-functional attributes. The most
commonly used method is utility functions. The requester should spec-
ify weights to each non-functionality attributes and the best composite
service is the one who is ranked on top.

Execution of composite service: after a unique composite process is selected,
the composite service is ready to be executed. Execution of a composite
Web service can be thought as a sequence of message passing according
to the process model. The dataflow of the composite service is defined as

22 CHAPTER 2. WEB SERVICE COMPOSITION: STATE OF THE ART

the actions that the output data of a former executed service transfers to
the input of a later executed atomic service.

Building composite Web services with an automated or semi-automated
tool is critical to the success of the Web service applications. To that end,
several methods for this purpose have been proposed. In particular, most re-
searches conducted fall in the realm of workflow composition or AI planning.

For the former, one can argue that, in many ways, a composite service is
similar to a workflow [30]. The definition of a composite service includes a
set of atomic services together with the control and data flow among the ser-
vices. Similarly, a workflow has to specify the flow of work items. The cur-
rent achievements on flexible workflow, automatic process adaption and cross-
enterprise integration provide the means for automated Web services composi-
tion as well. In addition, the dynamic workflow methods provide the means to
bind the abstract nodes with the concrete resources or services automatically.

On the other hand, dynamic composition methods are required to generate
the plan automatically. Most methods in such category are related to AI plan-
ning and deductive theorem proving. The general assumption of such kind
of methods is that each Web service can be specified by its preconditions and
effects in the planning context. Firstly, a Web service is a software component
that takes the input data and produces the output data. Thus the preconditions
and effects are the input and the output parameters of the service respectively.
Secondly, the Web service also alters the states of the world after its execution.
So the world state pre-required for the service execution is the precondition,
and new states are generated after the execution is the effect. A typical ex-
ample is a service for logging into a Web site. The input information is the
username and password, and the output is a confirmation message. After the
execution, the world state changes from “not logged in” to “logged in”. The
“logged in” state will be keeping until the “log out” service is invoked. If the
user can specify the preconditions and effects required by the composite ser-
vice, a plan or process is generated automatically by logical theorem prover or
AI planners without knowledge of predefined workflow. However, the busi-
ness logic can provide constraints in the planning process.

In the following we will give a survey on the methods used for the process
generator to generate the process. The methods can be either fully automated
or semi-automated.

2.3 Web Service Composition via Business Process

In the workflow-based composition methods, we should distinguish the static
and dynamic workflow generation. The static one means that the requester
should build an abstract process model before the composition planning starts.
The abstract process model includes a set of tasks and their data dependency.

2.3. WEB SERVICE COMPOSITION VIA BUSINESS PROCESS 23

Each task contains a query clause that is used to search the real atomic Web ser-
vices to fulfill the task. In that case, only the selection and binding of atomic
Web service are done automatically by program. The most commonly used
static method is to specify the process model in graph. On the other hand,
the dynamic composition both creates process model and selects atomic ser-
vices automatically. This requires the requester to specify several constraints,
including the dependency of atomic services, the user’s preference and so on.

EFlow [29] is a platform for the specification, enactment and management
of composite services. A composite service is modeled by a graph that defines
the order of execution among the nodes in the process. The graph is created
manually but it can be updated dynamically. The graph may include service,
decision and event nodes. Service nodes represent the invocation of an atomic
or composite service, decision nodes specify the alternatives and rules control-
ling the execution flow, and event nodes enable service processes to send and
receive several types of events. Arcs in the graph denote the execution depen-
dency among the nodes. Although the graph should be specified manually,
EFlow provides the automation to bind the nodes with concrete services. The
definition of a service node contains a search recipe that can be used to query
actual service either at process instantiation time or at runtime. As the service
node is started, the search recipe is executed, returning a reference to a specific
service. In particular, the search recipe is resolved each time when a service
node is activated. They do so because the availability of services may change
very frequently in a highly dynamic environment. In [30], the authors further
refine the service composition platform and propose a prototype of compos-
ite service definition language(CSDL). An interesting feature of CSDL is that
it distinguishes between invocation of services and of operations within a ser-
vice. It provides the adaptive and dynamic features to cope with the rapidly
evolving business and IT environment in which Web services are executed.

Yang et. al. [126] proposed a composition logic which dictated how the
component services could be combined, synchronized and co-ordinated. Com-
position logic is beyond conversation logic (which is modeled as a sequence of
interactions between two services) and forms a sound basis for expressing the
business logic that underlies business applications. The composition logic in-
dicates the following features of a composite service:

• the sequence of atomic web services execution;

• the message dependency among the parameters of the atomic services.

The composition logic can be specified in XML document.
Tut et al. [119] introduced the use of patterns during the planning stage

of service composition. Patterns represent a proven way of doing something.
They could be business patterns such as how to model online store-fronts, or
generic patterns such as project work process.

24 CHAPTER 2. WEB SERVICE COMPOSITION: STATE OF THE ART

Polymorphic Process Model (PPM) [107] uses a method that combines the
static and dynamic service composition. The static setting is supported by
reference process-based multi-enterprise processes, the processes that consist
of abstract subprocesses, i.e., subprocesses that have functionality description
but lack implementation. The abstract subprocesses are implemented by ser-
vice and binded at runtime. This is similar to the service binding in EFlow.
The dynamic part of PPM is supported by service-based processes. Here, a
service is modeled by a state machine that specifies that possible states of a
service and their transitions. Transitions are caused by service operation(also
called service activity) invocations or internal service transitions. In the set-
ting, the dynamic service composition is enabled by the reasoning based on
state machine.

2.4 Web Service Composition via AI Planning

Many research efforts tackling Web service composition problem via AI plan-
ning have been reported. In general, a planning problem can be described as a
five-tuple 〈S, S0 , G, A, Γ 〉, where S is the set of all possible states of the world,
S0 ⊂ S denotes the initial state of the world, G ⊂ S denotes the goal state of
the world the planning system attempts to reach, A is the set of actions the
planner can perform in attempting to change one state to another state in the
world, and the translation relation Γ ⊆ S× A× S defines the precondition and
effects for the execution of each action.

In the terms of Web services, S0 and G are the initial states and the goal
states specified in the requirement of Web service requesters. A is a set of
available services. Γ further denotes the state change function of each service.

DAML-S (also called OWL-S in the most recent versions) is the only Web
service language that announces the directly connection with AI planning. The
state change produced by the execution of the service is specified through the
precondition and effect properties of the ServiceProfile in DAML-S. Precon-
dition presents logical conditions that should be satisfied prior to the service
being requested. Effects are the result of the successful execution of a service.
Since DAML+OIL, the language used to build DAML-S, uses Description Log-
ics [45] as its logical foundation, DAML+OIL has the express power allowing
for logical expressions. The majority of the methods reported in this survey
use DAML-S as the external Web service description language. There are also
a couple of methods that use WSDL or their own languages.

In the following we introduces a list of Web service composition methods
based on AI planning. This kind of methods have been reported frequently in
recent years, so we do not claim that we have an exhaustive list of the meth-
ods. We further classify the methods into five categories, namely, the situation
calculus, the Planning Domain Definition Language (PDDL), rule-based plan-

2.4. WEB SERVICE COMPOSITION VIA AI PLANNING 25

ning, the theorem proving and others.

2.4.1 Situation Calculus

McIlraith et. al. [81,92,80] adapt and extend the Golog language for automatic
construction of Web services. Golog is a logic programming language built on
top of the situation calculus. The authors address the Web service composition
problem through the provision of high-level generic procedures and customiz-
ing constraints. Golog is adopted as a natural formalism for representing and
reasoning about this problem.

The general idea of this method is that software agents could reason about
Web services to perform automatic Web service discovery, execution, composi-
tion and inter-operation. The user request (generic procedure) and constraints
can be presented by the first-order language of the situation calculus(a logi-
cal language for reasoning about action and change). The authors conceive
each web service as an action - either a PrimitiveAction or a ComplexAction.
Primitive actions are conceived as either world-altering actions that change
the state of the world or information-gathering actions that change the agent’s
state of knowledge. Complex actions are compositions of individual actions.
The agent knowledge base provides a logical encoding of the preconditions
and effects of the Web service actions in the language of the situation calculus.
The agents use procedural programming language constructs composed with
concepts defined for the services and constraints using deductive machinery.
A composite service is a set of atomic services which connected by procedural
programming language constructs(if-then-else, while and so forth).

The authors also propose a way to customize Golog programs by incorpo-
rating the service requester’s constraints. For example, the service requester
can use the nondeterministic choice to present which action is selected in a
given situation, or use the sequence construct to enforce the execution order
between two actions. The generation of the plan have to obey the predefined
constraint.

2.4.2 Planning Domain Definition Language (PDDL)

A strong interest to Web service composition from AI planning community
could be explained roughly by similarity between DAML-S and PDDL repre-
sentations. PDDL is widely recognized as a standardized input for state-of-
the-art planners. Moreover, since DAML-S has been strongly influenced by
PDDL language, mapping from one representation to another is straightfor-
ward (as long as only declarative information is considered). When planning
for service composition is needed, DAML-S descriptions could be translated to
PDDL format. Then different planners could be exploited for further service
synthesis.

26 CHAPTER 2. WEB SERVICE COMPOSITION: STATE OF THE ART

In presenting the Web service composition method based on PDDL, McDer-
mott [77] introduces a new type of knowledge, called value of an action, which
persists and which is not treated as a truth literal. From Web service construc-
tion perspective, the feature enables us to distinguish the information trans-
formation and the state change produced by the execution of the service. The
information, which is presented by the input/output parameters are thought
to be reusable, thus the data values can be reused for the execution of multiple
services. Contrarily, the states of the world are changed by the service execu-
tion. We interpret the change as that the old states are consumed and the new
states are produced.

To deal with this issue is critical for Web service composition using AI plan-
ning because usually in AI planning, closed world assumption is made, mean-
ing that if a literal does not exist in the current world, its truth value is consid-
ered to be false. In logic programming this approach is called negation as failure.
The main trouble with the closed world assumption, from Web service con-
struction perspectives, is that merely with truth literals we cannot express that
new information has been acquired. For instance, one service requester might
want to describe that after sending a message to a Web service, an identity
number to the message will be generated. Thus during later communication
the ID could be used.

2.4.3 Rule-based Planning

Medjahed [82] presents a technique to generate composite services from high-
level declarative description. The method uses composability rules to deter-
mine whether two services are composable. The composition approach con-
sists of four phases.: First,the specification phase enables high-level descrip-
tion of the desired compositions using a language called Composite Service
Specification Language(CSSL). Then the matchmaking phase uses compos-
ability rules to generate composition plans that conform to service requester’s
specifications. If more than one plan is generated, in the selection phase, the
service requester selects a plan based on quality of composition (QoC) param-
eters (e.g. rank, cost, etc.). The final phase is the generation phase. A detailed
description of the composite service is automatically generated and presented
to the service requester.

Here, we should pay more emphasis on the composability rules because it
is the major issue to define how the plan is generated. The composability rules
consider the syntactic and semantic properties of Web services. Syntactic rules
include the rules for operation modes and the rules for binding protocols of
interacting services. Semantic rules include the following subset: (1) message
composability defines that two Web services are composable only if the output
message of one service is compatible with the input message of another ser-
vice; (2) operation semantic composability defines the compatibility between

2.4. WEB SERVICE COMPOSITION VIA AI PLANNING 27

the domains, categories and purposes of two services; (3) qualitative compos-
ability defines the requester’s preferences regarding the quality of operations
for the composite service; and (4) composition soundness considers whether a
composition of services is reasonable. To this end, the authors introduce the
notion of composition templates that define the dependency between the dif-
ferent kinds of services.

The main contribution of this method is the composability rules, because
they define the possible Web service’s attributes that could be used in service
composition. Those rules can be used as a guideline for other Web service
methods based on planning.

SWORD [101] is another developer toolkit for building composite Web ser-
vices using rule-based plan generation. SWORD does not deploy the emerg-
ing service-description standards such as WSDL and DAML-S, instead, it uses
Entity-Relation (ER) model to specify the Web services. In SWORD, a service
is modeled by its preconditions and postconditions. They are specified in a
world model that consists of entities and relationships among entities. A Web
service is represented in the form of a Horn rule that denotes the postcondi-
tions are achieve if the preconditions are true. To create a composite service,
the service requester only needs specify the initial and final states for the com-
posite service, then the plan generation can be achieved using a rule-based
expert system. Besides the general composition methods, an interesting work
done by SWORD is that the authors give a discussion on that the rule-based
chaining can sometimes generate “uncertain” results if a precondition can not
uniquely determines a postcondition. The authors argue that the uncertain re-
sults can avoid only when the preconditions are functionally depending on the
postconditions inside a service. In fact, it may happen in most service compo-
sition methods described in this survey but not all authors explicitly declare
it.

2.4.4 Other AI-planning Methods

Some other AI planning techniques are proposed for the automatic compo-
sition of Web services. In [125] the SHOP2 planner is applied for automatic
composition of Web services, which are provided with DAML-S descriptions.
SHOP2 is an Hierarchical Task Network(HTN) planner. The authors believe
that the concept of task decomposition in HTN planning is very similar to
the concept of composite process decomposition in DAML-S process ontology.
The authors also claim that the HTN planner is more efficient than other plan-
ning language, such as Golog. In their paper, the authors give a very detailed
description on the process of translating DAML-S to SHOP2. In particular,
most control constructs can be expressed by SHOP2 in an explicit way.

Sirin et al [111] present a semi-automatic method for web service composi-
tion. Each time when a user has to select a Web service, all possible services,

28 CHAPTER 2. WEB SERVICE COMPOSITION: STATE OF THE ART

that match with the selected service, are presented to the user. The choice of the
possible services is based both on functionalities and non-functional attributes.
The functionalities (parameters) are presented by OWL classes and OWL rea-
soner is applied to match the services. A match is defined between two services
when an output parameter of one service is the same OWL class or subclass of
an input parameter of another service. The OWL inference engine can order
the matched services so that the priority of the matches are lowered when the
distance between the two types in the ontology tree increases. If more than
one match is found, the system filters the services based on the non-functional
attributes that are specified by the user as constraints. Only those services who
pass the non-functional constraints can be presented to the service requester.
The idea of semi-automatic service composition is quite interesting because it
is very difficult to capture behavior in sufficient detail and compose the ser-
vices in a fully automatic way, especially for the commercial-grade services.
Although the proposed method is simple, it indicates the trend that automatic
planner and human being can work together to generate the composite service
for the user’s request.

2.5 Service Composition using Program Synthesis

Program synthesis is a method of software engineering used to generate pro-
grams automatically. There are three different approaches to program synthe-
sis: transformational, inductive and deductive program synthesis. Here, we
only focus on the deductive program synthesis methods. Deductive program
synthesis is based on the observation that proofs are equivalent to programs
because each step of a proof can be interpreted as a step of a computation.
This transforms program synthesis into a theorem-proving task. The key ideas
of this approach, namely the correspondence between theorems and specifi-
cations and between constructive proofs and programs are presented in [70].
From some aspects, we can say that the Web service composition methods us-
ing deductive program synthesis are special cases of those using AI Planning,
but the process generation has tightly connection with proof theories.

A general composition process using program synthesis case is shown in
Figure 2.3. First, a description of existing Web Services is translated into logical
axioms, and the requirements to the composite services are specified in form of
a logical sequent to be proven. Second, a theorem prover is used to determine
whether the sequent can be proven by the available axioms. If the answer is
positive, the last step is to construct the process description from the complete
proof.

Waldinger [122] elaborates an idea for service synthesis by theorem prov-
ing. The approach is based on automated deduction and program synthesis
and has its roots in his earlier work [71]. Initially available services and user

2.6. SUMMARY 29

���������	�
	� �
����������� � ��� � ���

��� �	���	�
�������
��� � ��� � ���

��� �����

 ���!�� �
"	#%$�&�� ��'(�

)�*
+�� "��
��# "�� � ���

,	*�+�-������ ��'.��� �

����

/�*
01�	����� � 2
���

Figure 2.3: The process of Web service composition using program synthesis.

requirements are described in a first-order language, related to classical logic,
and then constructive proofs are generated with SNARK theorem prover. Fi-
nally, service composition descriptions are extracted from particular proofs.

Lämmermann [64] applies Structural Synthesis of Program (SSP) for au-
tomated service composition. SSP is a deductive approach to synthesis of
programs from specifications. The specifications of services only include the
structural properties, i.e. the input/output information. SSP uses proposi-
tional variables as identifiers for input/output parameters and uses intuition-
istic propositional logic for solving the composition problem. The composition
is based on the proofs-as-programs property of intuitionistic logic. It equates
the program of service composition to the problem of proof search. The author
also takes advantage of disjunctions in classical logic to describe exceptions,
which could be thrown away during service invocation.

2.6 Summary

This chapter has aimed to give an overview of recent progress in automated
Web services composition techniques. Firstly, we propose a five-step model for
Web services composition process. The composition model consists of service
presentation, translation, process generation, evaluation and execution. Each
step requires different languages, platforms and methods.

In these five steps, we concentrate on the methods of composite Web ser-
vices process generation. We give the introduction and comparition of selected
methods to support this step. The methods are enabled either by workflow re-
search, AI planning or logic-based program synthesis. The workflow methods
are mostly used in the situation where the request has already defined the pro-
cess model, but automatic program is required to find the atomic services to
fulfill the requirement. The AI planning methods is used when the requester
has no process model but has a set of constraints and preferences. Hence the
process model can be generated automatically by the program. The program
synthesis methods are also fully automated. Theorem proving is used to gen-

30 CHAPTER 2. WEB SERVICE COMPOSITION: STATE OF THE ART

erate the process model of the composite services.
Although the different methods provide different level of automation in

service composition, we can not say the higher automation the better. Because
the Web service environment is highly complex and it is not feasible to gener-
ate everything in an automatic way. Usually, the highly automated methods is
suitable for generating the implementation skeletons that can be refined into
formal specification. A discussion on this topic is presented by Hull et. al. [56].

Chapter 3

Logical Presentation of Web
Services

3.1 Introduction

This chapter provides an analysis of the specification language for atomic Web
services and its translation to LL. The reason that we distinguish the service
specification language and the logical language is that they are implemented
for different purposes when describing Web services. The service specifica-
tion language is used by the users to enhance accessibility of the users in the
sense that the users can easily express what they want. For this purpose, the
specification should not only be easy to read and understand, but also easy to
write by the user. Another main applicable purpose is that the specification
language should allow for been exchanged and processed through Web. In re-
ality, the users have already gotten used to the standard semantic Web service
specification, DAML-S ServiceProfile, which is based on DAML, the W3C rec-
ommended XML markup language. The main problem is that DAML-S does
not have explicitly defined semantics that can be used in its translation into
logic. In order to present the translation in a formal way, we have defined an
upper ontology for atomic Web services using the DAML+OIL notation. We
can present in detail the translation mechanism from the defined classes, prop-
erties and relations in the upper ontology to the specific LL propositions.

The logical language is used to specify the Web services in a way that en-
ables the automated inference. The description of existing web services is en-
coded as LL axioms, and the requirement to the composite service are specified
in form of a LL sequent to be proven. We use an automated LL theorem prover
to determine whether the sequent can be proven by the axioms. If the answer
is positive, a process model of the composite service can be extracted from the
generated proof. We use the propositional fragment of multiplicative, additive
intuitionistic LL (MAILL) as the logical language to specify the Web services.
Soundness and completeness of this fragment of LL have been reported in

31

32 CHAPTER 3. LOGICAL PRESENTATION OF WEB SERVICES

other publications in detail [66]. In this chapter, we will focus on the detail
of presenting the Web service constructs by the LL literals and operators. In
general, the Web service constructs include the functionalities, such as input,
output, precondition, and effect as well as the non-functionality attributes.

The rest of this chapter is organized as follows: we introduce the LL and
its features in Section 3.2, and further evaluate the expressive power of LL in
the context of Web service in Section 3.3. Then we present the upper ontology
of Web services and its general presentation in LL in Section 3.4. Section 3.5
and Section 3.6 discuss the detailed translation of service functionalities and
non-functional attributes respectively. We will further present an example that
considers all aspects of Web service specification in Section 3.7.

3.2 Linear Logic

LL is a refinement of classical logic introduced by J.-Y. Girard to provide a
means for keeping track of “resources”—in LL two assumptions of a proposi-
tional constant A are distinguished from a single assumption of A. This feature
forces the resources to be consumed exactly once. Therefore, resources in LL
may only be supplied or consumed as they may not generally be copied or ig-
nored. In other words, LL treats logical assumptions as consumable resources.
In LL, the weakening and contraction rules that are supported in classical logic
are available only for assumptions marked with the modality !. This means
that, in general, an assumption not thus marked can only be used once in a
branch of the search of a proof. Limited-use formulae can represent limited re-
sources in some domain. Therefore LL is often described as a logic of resources
rather than a logic of truth (such as classical logic). Since the assumptions in
classical logic indicate the truth. Thus two truth values of the same fact are
same as a single value. From this point, LL is not a logic about the truth, in-
stead it is about the computation on amount.

Although LL is not the first attempt to develop resource-oriented logics
(well-known examples are relevance logic [37] and Lambek calculus [63]), it
is by now one of the most investigated one. The main reason is that LL greatly
increases the expressiveness of logic programming, allowing direct and mod-
ular operational semantics specification of state, exceptions, continuations and
concurrency in programming languages. Since its introduction LL has enjoyed
increasing attention from researchers both in proof theory and computer sci-
ence. Since LL embraces computational themes directly in its design, it often
allows direct and declarative approaches to computational and resource sensi-
tive specifications.

In this thesis, we use the propositional part of intuitionistic multiplicative
additive fragment of LL (IMALL or MAILL). Lincoln [66] summarizes that the
complexity result for the propositional MALL fragment(without !) is indicated

3.2. LINEAR LOGIC 33

to be PSPACE-complete. The syntax of the this LL fragment is presented by
the following grammar:

A ::= P|A (A|A ⊗ A|A&A|A ⊕ A|!A|1.

Here, P stands for a propositional variable and A ranges over formulae.
The logic fragment consists of linear implication(, multiplicative conjunction
⊗, additive conjunction &, additive disjunction ⊕, “of course” (!) operator and
trivial goal 1. We now introduce the LL connectives and their inference rules
in detail.

Multiplicative Conjunction (A ⊗ B) denotes that the literals A and B are
consumed or achieved simultaneously. If A ⊗ B is a resource, we have to con-
sume both A and B to achieve the goal. If A ⊗ B is a goal, we have to split
our resources into two parts, Γ and Γ

′
and show that with resources Γ we can

achieve A and with Γ
′

we can achieve B. The splitting of resources, viewed
bottom-up, is a non-deterministic operation.

Additive Conjunction (A&B) is called internal choice. if A&B is a resource,
we have to make both A and B available before achieving the goal. However,
they are not necessary to be consumed. If A&B is a goal, both A and B are
achieved. Both literals are made available in both premises, since we have to
make a choice on which one we want to achieve.

Additive Disjunction (A ⊕ B) is equal to the disjunction in classical logic.
If A ⊕ B is a resource, we can make either A or B available to achieve the goal.
If A ⊕ B is a goal, either A or B are achieved.

Linear Implication (A (B) internalizes the linear hypothetical judgment
at the level of propositions. A (B means that the goal B is achievable only
when resource A is available.

Of Course Modality (!A) means that we can use or generate a literal A as
much as we want—the amount of the resource is infinite. While in classical
logic literals may be copied by default, in LL this has to be stated explicitly. It
can be used to present some kinds of resources, for example, duplicable infor-
mations, that are able to be duplicated arbitrarily.

Unit (1) presents the trivial goal which requires no resources.
The sequent of intuitionistic LL is an expression of the form Γ; ∆ ` G, where

Γ and ∆ are multisets of resource formulae, and G is a goal formula. Γ and ∆

are called intuitionistic context and linear context respectively. The sequent can
be interpreted as follows: given an unbounded set of resource Γ , the goal G can
be achieved by consuming resource ∆. In other words, the sequent Γ; ∆ ` G
can be mapped to the LL sequent !Γ , ∆ ` G.

The inference rules of this fragment of LL are presented in Table 3.1.
LL provides us the expressive power to present Web services in some fea-

tures that Classical Logic does not provide. In general, the reasons that LL is
useful as a declarative language for Web service composition are presented as

34 CHAPTER 3. LOGICAL PRESENTATION OF WEB SERVICES

Logical axiom and Cut rule:

A ` A (id)

Γ ` A Γ
′
, A ` ∆

′

Γ , Γ
′
` ∆

(Cut)

Rules for propositional constants:

` 1
Γ ` A

Γ , 1 ` A

Γ , A, B ` C
Γ , A ⊗ B ` C

(L⊗)
Γ ` A Γ

′
` B

Γ , Γ
′
` A ⊗ B

(R⊗)

Γ1 ` A Γ2, B ` C
Γ1, (A (B), Γ2 ` C

(L ()
Γ , A ` B

Γ ` A (B
(R ()

Γ , A ` ∆ Γ , B ` ∆

Γ , A ⊕ B ` ∆
(L⊕) Γ ` A

Γ ` A ⊕ B (R⊕)(a) Γ ` B
Γ ` A ⊕ B (R⊕)(b)

Γ , A ` ∆

Γ , A&B ` ∆
(L&)(a) Γ , B ` ∆

Γ , A&B ` ∆
(L&)(b) Γ ` A Γ ` B

Γ ` A&B
(R&)

Rules for exponential !:

Γ ` ∆

Γ , !A ` ∆
(W!) Γ , A ` ∆

Γ , !A ` ∆
(L!) Γ , !A, !A ` ∆

Γ , !A ` ∆
(C!)

Table 3.1: Inference rules for MAILL fragment.

3.2. LINEAR LOGIC 35

follows:

1. The multiplicative conjunction enable us to present the quantity of con-
sumable resource in Web services, such as price, time and the size of
cache. For example, Lincoln [66] uses LL multiplicative conjunction to
present the amount of money in their examples.

2. Using or not using “of course” modality before a proposition enables us
to distinguish two aspects of the service functionalities: the information
transformation and the state change produced by the execution of the ser-
vice. The information is presented by the input/output parameters. We
assume information is reusable, thus the input values are used but not
consumed after the execution of a service. The parameters are presented
by propositions with “of course” modality. Contrarily, the states of the
world are changed by the service execution. We interpret the change as
that the old states are consumed and the new states are produced. There-
fore, the multiple state values are presented by propositions without “of
course” modality. It means the state values can be only consumed once.
We will discuss this issue in more detail in Section 3.5.

3. In addition, the inference rules for the “of course” modality enable us to
duplicate information in an explicit way. The rules are similar to the
weakening and contraction in Classical Logic. Except the duplicable
information, the “Of course” modality can also be used in some non-
consumable non-functional attributes.

4. The additive conjunction and disjunction can distinguish the internal
choice and the external choice. It is important in computation but has
not specified explicitly in logic. For example, a dialog box that asks users
to choose “yes” or “no” is an internal choice, because the user’s choice
will lead the program running in different branches. A typical external
choice situation is that a service may produce one of several alternative
outputs every time it is executed. In particular, this is the case with ex-
ception handling. The outputs produced by the service depend on the
execution environment without any user’s intervention. This issue will
not be discuss deeply in this thesis. The main concern is that none of the
available Web service specification languages supports external choice,
so this issue is not usable in reality. However, we regard this an impor-
tant direction of future development of Web service languages.

5. Last but not the least, LL has close connection with the concurrent pro-
cesses that are foundations for modeling the composite Web services. In
particular, the translation from proofs in LL into Milner’s π-calculus [90]
has been studied in many literatures. [8, 86, 18]. For example, the multi-
plicative conjunction(⊗) can present the “composition” in π-calculus; the

36 CHAPTER 3. LOGICAL PRESENTATION OF WEB SERVICES

disjunction(⊕) presents “choice”, and the “of course” modality(!) presents
“replication”.

In the following we justify and present in detail the procedure to trans-
late the service specifications (encoded by DAML-S ServiceProfile) to logical
axioms in LL.

3.3 The Expressive Power of LL

We have introduced the method for automated composition of the Web ser-
vices by LL theorem proving. A main step for this task is the formal translation
between LL and the Web service languages. Therefore, a fundamental question
right now concerns the comparison of LL with other logic-based approaches
for Web service composition. Here, we are going to evaluate the expressive
power of LL. The purpose of the evaluation is to reveal whether the expressive
power of LL is enough to present the features of Web services.

What are the features of Web services? Frankly, people are still arguing
on what should be included in the Web service description to enable auto-
mated software to retrieve and compose Web services to achieve the goals
specified by the end-users. Fortunately, there have been quite some work to
reveal the formal foundation of Web services. In general, it has been agreed on
two points. 1) the atomic services can be modeled as the state change problem,
so those language that related to state-oriented programming can be used for
the description of atomic services; 2) the process of the composite service can
be described by the models of concurrent workflow. Accordingly, to evaluate
the expressive power of LL, what we should do is to discuss the connection
between LL and those two fields: state-oriented programming and models of
concurrency.

Logic-based approaches for dealing with changes can be broadly classified
into two categories: those designed for database or logic programming and
those designed for reasoning about programs and actions [22]. Prolog is an
early (and the base-known) example of the language in the first category. The
situation calculus, Dynamic logic and Temporal Logic are the forefathers of the
modern approaches to reasoning about actions.

Considering the specific requirement of Web services, the available Web
services are modeled as black boxes, by which the services are viewed in terms
of observable inputs and outputs with the internals of the system hidden from
being viewed. Since Web service is a piece of modular software, we can model
it as a transitional component through its interface. The transition made by the
execution of the Web service includes two parts: 1) the Web service reads the
information from the inputs and produces new information through the out-
puts; 2) besides the information change, the execution of the Web service will
change the state of the environment. In a sense, the presentation of available

3.3. THE EXPRESSIVE POWER OF LL 37

Web services is the modeling of the changes made by their execution, from the
point of views for both information and environment.

The composite services have strong connection with the models of concur-
rency. The internal structure of a composite service is described by how control
flow and data flow being formally separated within process models. The mul-
tiple subprocesses inside the composite service can execute in parallel. The
interaction between the services and the environment is also concurrent.

We use Petri Nets as a mediator between the Web service languages and the
LL. We select Petri Nets for its combination of compelling computational se-
mantics, ease of implementation, and its ability to address both offline analysis
tasks such Web service composition and online execution tasks such as dead-
lock determination resource satisfaction, and quantitative performance analy-
sis. Most importantly, on the one hand, an operational semantics for DAML-S
using Petri Nets has been developed in [92]; on the another hand, LL can be
used to define a specification language for Petri nets, by giving precise corre-
spondences, at different levels, between LL and Petri Nets.

Let us introduce Petri Nets briefly. Petri Nets are firstly introduced in Carl
Adam Petri’s PhD thesis(1962) to address the problems of concurrency in sys-
tems, including events, agents and actors. Petri Nets use a special class of
generalized graphs or nets for a mathematical description of the system struc-
ture that can then be investigated analytically. Been represented as graphs,
the Petri Nets consist of the basic notions from graph theory, including nodes,
edges, and the manner in which the nodes and edges are interconnected. In
Petri Nets, we have two types of nodes. By convention, the first type of node is
called a place that represents the types of resources. The second type is called a
transition that represents how resources are consumed or produced by actions.
The edges of a Petri Net are called arcs. Usually, Petri Nets require that an arc
can connect only two nodes that belong to different types. Therefore, there can
only be one arc from a place to a transition, or from a transition to a place. In
the former case, the place acts as an input for the transition, which in the latter
case the place is the output.

Formally, a net N = (P, T, pre, post), where P is a set of places, T is a set
of transitions, as well as two functions pre and post which map each transition
t ∈ T to a multiset of P, called the pre- and post multiset of t respectively.

The Semantic Web markup for Web services, DAML-S has been influenced
by Petri Nets from the very beginning. In [92], the authors show the mapping
from the DAML-S service description to the corresponding Petri Net structure.
For the DAML-S atomic services, the effect axioms specify all and only the
conditions for actions specify all and only the conditions under which a fluent
can change; and the necessary conditions for actions specify all and only the
conditions under which an action is possible to execute. Thus, Petri Nets pro-
vides a computational mechanism for achieving this completion. The graph
structure defines the completion and the computation over the graph struc-

38 CHAPTER 3. LOGICAL PRESENTATION OF WEB SERVICES

ture achieves the computational completion semantics. Hence, the solution to
the frame problem is captured in the computational semantics of Petri Nets.

The DAML-S composite process are compositions of sub-process, all of
which stem out in atomic processes. The DAML-S composedOf property speci-
fies the control flow and data flow of its sub-processes, yielding constraints on
the ordering and conditional execution of these sub-processes.

The Petri Nets structure for composite Web services represent a process
which changes the state from the pre-condition to the post-condition. The pre-
condition and post-condition corresponds to the start and finish items in Petri
Nets. Inside the process, the atomic processes are connected by control con-
structs. Each construct is considered as an appropriate Net structure that cap-
tures a possible execution semantics of that construct. The paper gives the
Petri Nets semantics for the basic control constructs sequence, parallel, condition,
choice and iterate.

The DAML-S atomic processes correspond to transition and embedded com-
posite processes are recursively built up from their ground atomic processes in
a Petri Net. The overall system has a distributed operational semantics. Each
transition is fired based on its local input conditions, and transition firings cor-
respond to system evolution.

The translation from a Petri Net to a LL formula is straightforward. The
idea is: each place of a Petri Net is regarded as an atomic proposition of LL,
and transitions as provability relation. In [39], the authors conclude that intu-
itionistic LL is expressive enough to be considered seriously as a specification
logic for parallel processes. The fragment of LL used here is equal to MAILL,
which includes the following operators:

⊗,(,⊕, &, ! and 1

The judgments of the correspondence between Petri Nets and LL are based
on their interpretation of LL on Petri Nets, and with the implicit assumption
that Petri Nets are a good general model of parallel processes. The paper
shows how Petri Nets can naturally be made into models of MAILL fragment
in such a way that many properties that one might wish to state of Petri Nets
become expressible in LL.

With respect to a net N, the formulas of LL are interpreted as follows:

3.4. THE UPPER ONTOLOGY OF WEB SERVICES AND LL 39

~1�N = {m|m → 0
¯
}

~a�N = {m|m → a}
~A ⊗ B�N = {m|∃mA ∈ ~A�N, mB ∈ ~B�N.m → mA + mB}

~A (B�N = {m|∀mA ∈ ~A�N.m + mA ∈ ~B�N}

~A&B�N = ~A�N ∩ ~B�N

~A ⊕ B�N = ~A�N ∪ ~B�N

~!A�N =
⋃

{q|q a postfixed point of x → 1 ∩ ~A�N ∩ (x ⊗ x)}

In the interpretation, an atomic proposition a is interpreted as the down-
wards closure of the associated place. The downward closure is defined as a
set of places that can reach place a after applying a series of transitions. For-
mally, let m[t〉m′ stand for transition t ∈ T has multisets of input m and output
m′, the relation m0 → mt is defined as follows:

∃t1, . . . , tn ∈ T, m1, . . . , mn ∈ M, n ≥ 0.m0[t1〉m1 . . . [tn〉mn = mt

The soundness and completeness of the above interpretation are proved
by [39]. Soundness states that all provable properties in LL hold in Petri Nets,
while completeness states that properties which hold in any Petri Net can be
proved in LL.

In summary, through the above analysis, we have proven that the MAILL
fragment of LL has enough expressive power for current features of Web Ser-
vices. The reason is that the Web service features can be formally presented by
the semantics of Petri Nets, while the mapping between Petri Nets and LL is
also presented.

3.4 The Upper Ontology of Web Services and LL

Figure 3.1 shows the upper ontology for the declarative specification of a Web
service, namely the ServiceProfile. The upper ontology can be used as a spec-
ification framework to present either the request to the service or the adver-
tisement of existing service. For the existing service, we do not distinguish
the atomic service from composite service, because we model an existing ser-
vice as a black-box. Black-box view of Web services regards a service purely in
terms of observable interfaces with the internals of the system hidden from be-
ing viewed. One can make no assumption about its behavior or state beyond
what is specified by its interface. Therefore, the service process that denotes

40 CHAPTER 3. LOGICAL PRESENTATION OF WEB SERVICES

����� ��� �	��
���
	��� � �

��� �����

� ����� �������

 �!#" $&%(')�* +-,&$&* ' .
/�021�324 5

� ����67����� � �8�9�#� �9�
�:
����;�8�8��� �9�

 �!8" $&%�')�* +-,<$-* ' .

/�021�3<4 5

� ����=7���8�����

 >! " $-%#')	* +-,&$-* ' .

� �����?
�������@A��B�� �
67�9�����(� �8�9��� �9�
C � �#��� B��9� �

 �!8" $&%(')�* +-,&$-* ' .

�D
�������@E��B�� �
67�������(� � ���(� ���
C � �#��� B���� �

��� ���	�

����8��@E���8���
F �������G� ���#�
��

��� �����

6H����� � �8�9�(� ���
�:
��9�I�#�#�>� ���

�J� ���	�

K 3<5�L(M

K 325�LGM K 325�LGM

� ����67���>� � � �9�(� �9�
N ������� �

 �!8" $&%(')�* +-,&$-* ' .

67����� � �8����� �9�
N ������� �

�J� �����

/�02193<4 5

K 3<5(L�M

� ���9
��#��O
�:
���P>� ���
��

 �!8" $-%�')	* +Q,2$&* ' .

/�021�3G4 5

� ����R�� �8���I�

 S! " $&%#')�* +Q,2$-* ' .

/<0G1�3<4 5

� ���9R�T�O
�	���9���
��

 �!#" $-%�')�* +Q,2$&* ' .

R�T9�������(�
��

�J� �����
K 3G5�L�M

/<0<19324 5
/�0&193<4 5

� ���9
����8��@E���8���

 �!#" $&%(')�* +&,2$Q* ' .

U�VGWGX-K 0<Y(M K Z [�\] U�V�W<X-K 02Y�M K Z [G\]

N �9� ���#�;^S

 >! " $-%#')	* +-,&$-* ' .

N ���;�8�(� �;� ��P
^�

 >! " $-%#')	* +-,&$-* ' .
/�0&193<4 5

/�021�324 5

/<0G1�324 5

� �����:
���P�O
� �(�
��

 �!8" $&%�')�* +-,&$2* ' .U(VGWGX_K 0<Y(M K Z [�\]

U�V�W2X-K 02Y�M K Z [G\]

�:
���P>� ���
��

�`� �����
K 325(L�M

T���P�a �I�#�(� ��b
c ��@E�

T���P�a �I�#�(� ��b
^���T�� F ���	����� �9���
��

� ��� F �������G� �
�(�
��

dQ3 Z 3Ge [Y�M X-K 0&Y�M K [

� ��� c ��@E�

dQ3 Z 3�e [Y�M X-K 0<Y(M K [
/�021�3&4 5

/G0<193&4 5

/G0<193<4 5

/�021�324 5

K 3<5(L�M

K 3&5(L�M

T���P�a �I�#�(� ��b
� P

� ����� P
dQ3 Z 3�e [Y�M X-K 0<Y(M K [

K 3<5(L�M

� ����
S���#��@A�
� ��� c ��@f�

dQ3 Z 3�e [Y(M X_K 0GY�M K [T9��P�a �;�#��� ��b

S���#��@E�9�8���
c ��@A�

^Sg9�9�

��� ���	�

S
��8�

��� ���	�

K 325�LGM

K 3<5(L�M

K 3<5(L�M

� ���9h?��� �

 �!8" $-%#')	* +-,&$-* ' .

� ��� C @f
����9�
d_3 Z 3Ge [Y�M X-K 02Y�M K [

T9��P�a � ���
C @E
������h?��� �

�`� �����

/<0G1�324 5/�021�324 5

K 3&5(L�MK 3G5�L�M

Figure 3.1: The upper ontology for Web service declarative specification.

the internal control- and data-flow inside the composite service is not consid-
ered when selecting the service.

The specification describes a service by general information, functionalities
and non-functional attributes. The general information of a Web service in-
cludes the service Id, service name and an optional free text description. The
functionalities include inputs, outputs, precondition, effects and exceptions.
The inputs and outputs are signature definition of the parameters, which are
specified by ParameterDescription class. This class is composed of three fields:
the parameter name, the parameter type and the port where the data should be
send or received. We do not elaborate the data structure for the values of pre-
condition, effect and exception, because we just treat them as DAML classes.
The non-functional attributes are classified into three categories: consumable
quantitative attributes, qualitative constraints and qualitative results. Quali-
tative constraints and qualitative results are simply defined as DAML classes.

3.4. THE UPPER ONTOLOGY OF WEB SERVICES AND LL 41

While the description of consumable quantitative attributes includes the unit
and the amount.

The syntactic definition of the ServiceProfile presentation is represented by
Extended BNF [91] as follows:

〈ServicePro f ile〉 ::=′〈′hasId〈Id〉′〉′

[′〈′hasName〈Name〉′〉′]

[′〈′hasDescription〈TextDescription〉′〉′]

{′〈′hasInput〈Input〉′〉′}

{′〈′hasOutput〈Output〉′〉′}

{′〈′hasException〈Exception〉′〉′}

{′〈′hasEffect〈E f f ect〉′〉′}

{′〈′hasPrecondition〈Precondition〉′〉′}

{′〈′hasConsumableQuantitativeAttribute〈ConsumableQuantitativeAttribute〉′〉′}

{′〈′hasQualitativeConstraint〈QualitativeConstraint〉′〉′}

{′〈′hasQualitativeResult〈QualitativeResult〉′〉′}

〈Id〉 ::=〈%STRING〉

〈Name〉 ::=〈%STRING〉

〈TextDescription〉 ::=〈%STRING〉

〈Input〉 ::=〈ParameterDescription〉

〈Output〉 ::=〈ParameterDescription〉

〈E f f ect〉 ::=〈Condition〉
〈Precondition〉 ::=〈Condition〉

〈ParameterDescription〉 ::=′〈′ParameterName〈ParameterName〉′〉′

′〈′RestrictedTo〈Type〉′〉′

′〈′RefersTo〈Port〉′〉′

〈Exception〉 ::=〈DAMLClass〉
〈Condition〉 ::=〈DAMLClass〉

〈ConsumableQuantitativeAttribute〉 ::=′〈′hasUnit〈Unit〉′〉′

′〈′hasAmount〈Amount〉′〉′

〈QualitativeConstraint〉 ::=〈DAMLClass〉

〈QualitativeResult〉 ::=〈DAMLClass〉

〈ParameterName〉 ::=〈%STRING〉

〈Type〉 ::=〈DAMLClass〉
〈Port〉 ::=〈DAMLClass〉

〈Unit〉 ::=〈DAMLClass〉

〈Amount〉 ::=〈%INTEGER〉

Here, %STRING and %INTEGER refer to the XSD datatype xsd : string
and xsd : int respectively. DAMLClass refer to the definition of the classes in
DAML+OIL language. We interpret a DAML class by the URI that points to
the address where the DAML class is defined.

42 CHAPTER 3. LOGICAL PRESENTATION OF WEB SERVICES

The above ServiceProfile specification can be translated into LL formula.
Generally, a requirement to a Web service (including atomic service or com-
posite service) can be expressed by the following LL formula:

Γ; (∆cn ⊗∆qc) ` (P ⊗ I ((F ⊗ O) ⊕ E) ⊗ ∆qr

where Γ is a set of extralogical axioms representing available web services.
∆cn ⊗ ∆qc is a multiplicative conjunction of non-functional constraints, con-
sisting of consumable quantitative attributes and qualitative constraints. ∆qr
is a multiplicative conjunction of non-functional qualitative results. Some of
the qualitative attributes may denoted by “of course” modality if necessary.
We will introduce the detail in Section 3.6. P ⊗ I ((F ⊗ O) ⊕ E is a func-
tionality description of the required service. Both I and O are multiplicative
conjunctions of literals, where I represents a set of input parameters for the
service and O represents output parameters produced by the service. Because
both of them are information, they are denoted by “of course” modality before
them. P and F are multiplicative conjection of preconditions and effects re-
spectively. E is a presentation of an exception. Intuitively, the formula can
be explained as follows: given a set of available atomic services and non-
functional attributes, try to find a combination of services that computes O
from I as well as changes the world state from P to F. If the execution of
the service fails, an exception is thrown. Every element in Γ is in the form of
(∆cn ⊗ ∆qc) ` (P ⊗ I ((F ⊗ O) ⊕ E) ⊗ ∆qr, where meanings of ∆∗, I, O, P, F
and E are the same as described above.

More concretely, we define a translation T from the ServiceProfile specifi-
cation language to the corresponding LL formula. Considering the syntax of
the specification language, a translation is defined by the following:

3.5. TRANSFORMATION OF FUNCTIONALITIES 43

〈ServicePro f ile〉T ≡(〈ConsumableQuantitativeAttribute〉T ⊗ 〈QualitativeConstraint〉T) `

(〈Input〉T ⊗ 〈Precondition〉T (〈Id〉T (〈Output〉T ⊗ 〈E f f ect〉T)⊕ 〈Exception〉T)

⊗ 〈QualitativeResult〉T

〈ConsumableQuantitativeAttribute〉T ≡〈Unit〉T 〈Amount〉T

〈QualitativeConstraint〉T ≡〈DAMLClass〉T

〈QualitativeResult〉T ≡〈DAMLClass〉T

〈Input〉T ≡〈ParameterDescription〉T

〈Output〉T ≡〈ParameterDescription〉T

〈Exception〉T ≡〈DAMLClass〉T

〈E f f ect〉T ≡〈Condition〉T

〈Precondition〉T ≡〈Condition〉T

〈Id〉T ≡〈%STRING〉T

〈Unit〉T ≡〈DAMLClass〉T

〈Amount〉T ≡〈%INTEGER〉T

〈ParameterDescription〉T ≡〈Type〉T (〈Port〉T)

〈Condition〉T ≡〈DAMLClass〉T

〈Type〉T ≡〈DAMLClass〉T

〈Port〉T ≡〈DAMLClass〉T

〈%STRING〉T ≡the value of the string

〈%INTEGER〉T ≡the value of the integer

〈DAMLClass〉T ≡the URI of the DAMLClass

We will give the detail explanation of the concrete translation through ex-
amples in the consequent sections.

3.5 Transformation of Functionalities

We use DAML-S ServiceProfile as the declarative specification language for
Web services. An essential component of the ServiceProfile is the specification
of what functionality the service provides and the specification of the condi-
tions that must be satisfied for a successful result. We have to distinguish two
aspects of the functionality of the service: the information transformation and
the state change produced by the execution of the service. The information
transformation is represented as a transformation from the input parameters
required by the service to the output parameters produced by the service. It
provides information about the data flow during the execution of a Web ser-
vice. The state change provides information about what the Web service ac-
tually does. We model it as the transformation from one state to another state
in the world. A typical example is a service for logging in a web site. The

44 CHAPTER 3. LOGICAL PRESENTATION OF WEB SERVICES

input information is the username and password, and the output is a confir-
mation message. After the execution, the world state changes from “not login”
to “login”. The “login” state will be kept until the “logout” service is invoked.

Both aspects are important for automated service provision and compo-
sition, and they are specified differently in DAML-S. The parameters are en-
coded by their name, type and the reference to the process model, while the
states are presented by a collection of DAML Classes. In the logical transla-
tion, the parameter types are denoted by a proposition and the references are
denoted by the proposition’s proof term. The states are encoded by a set of
proposition variables that are connected by multiplicative conjunction opera-
tors. Unlike the parameters, the states do not provide information for generat-
ing the dataflow. So they have no attached proof terms. In the following, we
will discuss the translation strategy for those two aspects in greater detail.

3.5.1 Information Transformation

In DAML-S ServiceProfile, the information transformation is represented by
ObjectProperties with the names “input” and “output”. Both input and out-
put are subproperties of “parameter”. The input property specifies the infor-
mation that the service requires to proceed with the computation. The output
property specifies the result of the computation by the service. The value of
“parameter” property ranges over the instances of the class “ParameterDe-
scription”. The class is a collection of the name of the parameter that can be
used as an identifier, the parameter’s type and a reference to the corresponding
parameter in the process model.

parameterName is the name of the actual parameter, which is presented by a
string.

restrictedTo points to the class that is the type of the described parameter.
The type is allowed to be specified by either one DAML class or one XSD
datatype. In other words, a parameter is restricted to only one concept in
the domain ontology.

refersTo provides a reference to the parameter defined in the DAML-S Ser-
viceModel.

We present an example of the functionalities presented in DAML-S for a
measurement converter service as follows. We will explain the translation
from DAML-S ServiceProfile to LL axiom by this example.

<profileHierarchy:InformationService

rdf:ID="MesurementTransformation">

<!-- reference to the service specification -->

<service:presentedBy rdf:resource="&service;#cm2inch"/>

3.5. TRANSFORMATION OF FUNCTIONALITIES 45

<profile:serviceName>Transform_CM_to_Inch</profile:serviceName>

<profile:textDescription>

This service transform a length measured by CM into a length measuered by inch

</profile:textDescription>

<profile:input>

<profile:ParameterDescription rdf:ID="LengthCM">

<profile:parameterName>Length_By_CM</profile:parameterName>

<profile:restrictedTo rdf:resource="&onto;#Centimeter"/>

<profile:refersTo rdf:resource="&model;#LengthCM"/>

</profile:ParameterDescription>

</profile:input>

<profile:output>

<profile:ParameterDescription rdf:ID="LengthIn">

<profile:parameterName>Length_By_Inch</profile:parameterName>

<profile:restrictedTo rdf:resource="&onto;#Inch"/>

<profile:refersTo rdf:resource="&model;#LengthIn"/>

</profile:ParameterDescription>

</profile:output>

</profileHierarchy:TransformationService>

Here, we use entity types as a shorthand for URIs. For example, “&onto; #Centimeter”
refers to the URI of the definitions for measurement converting services, for ex-
ample: http://reliant.teknowledge.com/DAML/SUMO.owl#Centimeter. We trans-
late the input parameter into the following LL term. To avoid the conflict with
the reserved LL operators, we remove “&” and “;” in the RDF resource identi-
fier. The removal does not effect the expression of both DAML and LL.

onto#Centimeter(model#LengthCM)

The value of “restrictedTo” property is translated into a LL proposition
and the value of “refersTo” is translated into a proof term which identifies
the proposition. The proof term is used to guarantee the proposition, which
are introduced during the reasoning process, and are not used outside the
proposition’s scope. In the term of program, it means that the proof term is
a program of type that is restricted by the proposition. This denotion has been
used in functional programming and the literatures about propositions-as-types
or proofs-as-programs paradigm. In particular, the Curry-Howard [55] isomor-
phism specifies that a proposition is identified with the type of its proofs –
every proposition is a type specifying a construction that counts as evidence
for it. For the input parameter, a proof term just refers to the input variable,
which is parameter definition in ServiceModel in our case. For the output pa-
rameter, the proof term presents the process that calculates the outputs from
the given inputs. For the atomic service, the proof term is a combination of the
service id and the output parameters. For example, the output of the above
example is able to be presented as:

service#cm2inch : onto#Inch(model#LengthIn)

The proof term for the output parameter is different from the input param-
eter because we should denote how the output is calculated. The term means

http://reliant.teknowledge.com/DAML/SUMO.owl#Centimeter

46 CHAPTER 3. LOGICAL PRESENTATION OF WEB SERVICES

the invocation of service “cm2inch” produces the output “LengthIn”. The term
in front of the “:” mark is denoted by the name of a service.

From the computation point of view, this service in the above example re-
quires an input that has type “&onto; #Centimeter”(the value of length mea-
sured in Centimeter) and produces an output that has type “&onto; #Inch”(the
value of length measured in Inch). A complete LL formula that describes the
above presented DAML-S document is as follows:

`!onto#Centimeter(model#LengthCM) (

service#cm2inch :!onto# Inch(model#LengthIn)

The multiple input/output parameters are connected by multiplicative con-
junctions and each proposition has “of course” modality in front. The reason
that we use “of course” modality is that we believe that the service consumes
and produces information, that can be either discarded or duplicated by the
user. Therefore we have to enable weakening and contraction in logic. Since
the “of course” modality supports the weakening and contraction in its infer-
ence rules, we do not necessarily need further justification. The main points
will be sufficiently clear from the following examples.

Example. Consider the following two LL sequents:

(!A (!C, !A⊗!C (!D); . `!A (!D (3.1)
(!A (!C⊗!D, !C (!E); . `!A (!E (3.2)

Neither of these sequents are provable if we remove all “of course” modal-
ity “!”, because (3.1) uses A twice, (3.2) discards E. These are common in com-
putation. By using “of course” modality, they become provable.

The proof for sequent (3.1)

axiom
`!A (!C

id
!A `!A

id
!C `!C

!A, !A (!C `!C
L(

!A `!C
cut

axiom
`!A⊗!C(!D

id
!A `!A

id
!C `!C

!A, !C `!A⊗!C
R⊗ id

!D `!D
!A, !C, (!A⊗!C(!D) `!D

L(

!A, !C `!D
cut

!A, !A `!D
cut

!A `!D
C!

`!A(!D
R (

The proof for sequent (3.2)

axiom
`!A(!C⊗!D

id
!A `!A

id
!C⊗!D `!C⊗!D

!A, (!A(!C⊗!D) `!C⊗!D)
L(

!A `!C⊗!D
cut

axiom
`!C (!E

id
!C `!C

id
!E `!E

!C, !C (!E `!E
L(

!C `!E
cut

!C, !D `!E W!

!C⊗!D `!E
L⊗

!A `!E
cut

`!A (!E R(

3.5. TRANSFORMATION OF FUNCTIONALITIES 47

3.5.2 State Change

Instead of modeling Web services by functions or relations, it is more impor-
tant to take account of the possible interactions between the services and their
environment during the course of their invocation. The main concern is that
the services, after the execution, will change the state of their environment.
Many research efforts tackling Web service composition problem via AI plan-
ning consider the state changes produced by Web Services [80, 125, 108]. In
general, a planning problem can be described as a five-tuple 〈S, S0 , G, A, Γ 〉,
where S is the set of all possible states of the world, S0 ⊂ S denotes the ini-
tial state of the world, G ⊂ S denotes the goal state of the world the planning
system attempts to reach, A is the set of actions the planner can perform in at-
tempting to change one state to another state in the world, and the translation
relation Γ ⊆ S × A × S defines the precondition and effects for the execution
of each action.

In the term of Web services, S0 and G are the initial states and the goal
states specified in the requirement of Web service users. A is a set of available
services. Γ further denotes the state change function of each service.

The state change produced by the execution of the service is specified through
the precondition and effect properties of the profile. Precondition presents log-
ical conditions that should be satisfied prior to the service being requested. Ef-
fects are the result of the successful execution of a service. In DAML-S, both
precondition and effect take the value of a “Condition” class. An instance of
“Condition” is a logical formula that is evaluated to be true or false. Since
DAML+OIL, the language used to build DAML-S, uses Description Logic [45]
as its logical foundation, the DAML+OIL has the express power allowing for
logical expressions.

In our translation, we encode the classes as propositions in LL. Multiple
conditions are connected by multiplicative conjunction because DAML-S en-
forces that all conditions must be fulfilled before the execution of a Web service.
We further assume that all preconditions are replaced by the effects after the
execution.

A variety of works in AI on planning languages are considered in develop-
ing the DAML-S ontology. The people in DAML-S coalition has shown how
DAML-S inherited characteristics from Petri Nets [92] and PDDL [77]. Both
languages are used to as formal languages to express the states and transitions
in a process. On the another hand, LL is a powerful tool for reasoning about
state. LL is able to be used as a logical language to present both Petri Nets
and PDDL. Thus it is no difficult to use LL as a method for formally repre-
senting state-based reasoning. We present each condition by a LL proposition.
The meaning of a proposition is specified by the detail of definition inside the

48 CHAPTER 3. LOGICAL PRESENTATION OF WEB SERVICES

condition class.
In the following, we present an example considering both information trans-

formation and state change. A service that enables the user to log on a web
site receives the input as username and password. If the login is successfully,
a “LoginOk” message is outputed. The further requirement for this service
is: before the service is executed, the user can not have been logged in the
web site. So the precondition is “NotLogin”. After the successful execution
of the service, the state changes from “NotLogin” to “Login”. We present the
DAML-S code as follows:
<profileHierarchy:InformationService rdf:ID="LoginToWebSite">

<!-- reference to the service specification -->

<service:presentedBy rdf:resource="&service;#login"/>

<profile:serviceName>Login_to_A_Web_site</profile:serviceName>

<profile:textDescription>

This service enables the user to log on a web site by username and password

</profile:textDescription>

<profile:input>

<profile:ParameterDescription rdf:ID="Username">

<profile:parameterName>UserName</profile:parameterName>

<profile:restrictedTo rdf:resource="&onto;#Username"/>

<profile:refersTo rdf:resource="&model;#User"/>

</profile:ParameterDescription>

</profile:input>

<profile:input>

<profile:ParameterDescription rdf:ID="Password">

<profile:parameterName>PassWord</profile:parameterName>

<profile:restrictedTo rdf:resource="&onto;#Password"/>

<profile:refersTo rdf:resource="&model;#Passwd"/>

</profile:ParameterDescription>

</profile:input>

<profile:output>

<profile:ParameterDescription rdf:ID="Confirmation">

<profile:parameterName>Login_Confirmation</profile:parameterName>

<profile:restrictedTo rdf:resource="&onto;#LoginOk"/>

<profile:refersTo rdf:resource="&model;#LoginOk"/>

</profile:ParameterDescription>

</profile:output>

<profile:precondition>

<profile:ConditionDescription rdf:ID="NotLogin">

<profile:parameterName>NotLogin</profile:parameterName>

<profile:condition rdf:resource="&onto;#NotLogin"/>

</profile:ConditionDescription>

</profile:precondition>

<profile:effect>

<profile:ConditionDescription rdf:ID="Login">

<profile:parameterName>Login</profile:parameterName>

<profile:condition rdf:resource="&onto;#Login"/>

</profile:ConditionDescription>

</profile:precondition>

</profileHierarchy:TransformationService>

The above DAML-S code is able to be translated into the following LL ax-
iom. In front of the propositions that represent parameters are “of course”

3.6. TRANSFORMATION OF NON-FUNCTIONAL ATTRIBUTES 49

modality. The propositions for state values has no “of course” modality.

`!onto#Username(model#User)⊗!onto#Password(model#Passwd)

⊗onto#NotLogin (!onto#LoginOk(model#LoginOk) ⊗ onto#Login

To simplify the problem and improve the efficiency of the prover, we dis-
card the conditional effects that are supported by DAML-S. Only the effect
when the service executes successfully is presented. Otherwise, an exception
is thrown and the state of the world has no change. The detail of the failure can
be given in the exception. In that manner, the conditional effects are presented
implicitly in the exception information.

3.6 Transformation of Non-functional Attributes

Non-functional attributes are considered to be constraints over the function-
alities of the service [32]. In the thesis, we use non-functional attributes to
evaluate and select services when there are several services having the same
functionalities. In this section, we discuss how to represent the non-functional
attributes in term of LL propositions. First of all, we will propose a general
enough model in which the non-functional attributes are classified into three
categories:

• Consumable Quantitative Attributes: These attributes limit the amount
of resources that can be consumed by the composite service. The total
amount of resources is the sum of all resources of atomic services that
form the composite service. For example, the price of composite service
is the sum of prices for all included atomic services. This kind of attribute
includes total cost, total execution time, etc. In LL, we use an to present
the amount of resource a is n. In the definition in LL, an is an abbreviation
of n times of multiplicative conjunction: a ⊗ . . . ⊗ a

︸ ︷︷ ︸

n

, for n > 0, so n has

to be positive integer. But the type can be extended by revising the LL
interpreter.

• Qualitative Constraints: Attributes which can not be expressed by quan-
tities are called qualitative attributes. Qualitative Constraints are qualita-
tive attributes which specify requirements to the execution of a Web ser-
vice. In other words, constraint indicates the service provider’s demand
that the requester should provide. For example, some services may re-
sponse only to some authorized calls. The constraints are regarded as
prerequisite resource in LL.

50 CHAPTER 3. LOGICAL PRESENTATION OF WEB SERVICES

• Qualitative Results: Another kind of qualitative attributes (such as ser-
vice type, service provider or geographical location) specify the results
regarding the services’ context. Contrary to the service constraint, service
result indicates the service requester’s demand that the service provider
should provide. These attributes can be regarded as goals in LL.

We give a tip to distinguish the constraints and results. If a service is se-
lected when the required value is more general than the service’s value given
an attribute, the attribute is a result. Otherwise, it is a constraint. A typical
example is the location of a service. A service concerns two kinds of location
information. One is the location of the service, the other is the location of the
request that the service will respond. If a service is located in Norway, and
a requester requires a service located in Europe. Because the request is more
general than the service’s value, the location of the service is a result. Contrar-
ily, if a service only responds the request from Europe, the request located in
Norway can get response, because the service’s value is more general than the
request value.

In the following, we have to justify that the most common used non-functional
attributes can be put into the three categories. Although there is no agreed con-
clusion on a comprehensive list of non-functional attributes used to describe
the Web services, a survey of non-functional service properties has been re-
ported in [95]. In this survey, the authors classify non-functional attributes into
the following categories: temporal and spatial availability, channels, charging
styles, settlement models, settlement contracts, payment, service quality, secu-
rity, trust and ownership. We have noticed that all the attributes are very com-
plex if we want to accurately describe the detail of them. Fortunately, the Web
services community does not use all advanced features of those attributes. The
non-functional attributes of Web Services just express condition in which the
Web services are available. In the following, we will discuss the detail of those
attributes from three aspects: (1), the meaning and purpose of a given category
of non-functional attributes; (2) the ontology that has been constructed for the
given category; and (3) the map of the attributes to the LL context.

Temporal and spatial availability of a Web service is specified by the con-
straints of when and where the service is invocable. For example, a Web
service may be used at a given duration of time. The spatial constraint of
Web services have two attributes. First, it is necessary to indicate the loca-
tion of a Web service. Second, the Web Service may have constraint to re-
spond only to the invocation request from a given location. A DAML on-
tology for time and space is defined at http://www.cs.rochester.edu/∼ferguson/daml/.
The ontology defines whether an attribute A is more spatially available
or more temporally available than an attribute A′. As we have discussed
above, the location of service is represented by result and the requester’s
location is constraint in LL. The temporal availability is a constraint to

http://www.cs.rochester.edu/~ferguson/daml/

3.6. TRANSFORMATION OF NON-FUNCTIONAL ATTRIBUTES 51

the invocation time from the the requester, so it is also a qualitative con-
straint in LL presentation. [33]

Channels describe the endpoints where the information being transmitted.
The port address of input and output parameters may be a part of de-
scription of service functionalities, but more information is required to
invoke the service. For example, we have to denote the service is sup-
ported by RPC or HTTP protocol in WSDL. An overview of invocation
protocol for Web services can be found at [117].The channel information
is represented as qualitative constraint because it is used to enforce the
format of request.

Charging styles describe the charging technique applied by a service provider
for the use of its service. In general, the charging styles for Web services
are (1) per service request; and (2) by unit of measure and granularity
(e.g. by length, volume, weight, area or time). Charging style is regarded
as a constraint to the service requester.

Settlement is a process that reflects the mutual obligations of the provider
and requester. If a settlement is an obligation of the requester, it is a
constraint. Otherwise, it is a result.

Payment describe the price and the currency for the cost of executing the Web
services. Payment is a quantitative value that is reduced after the execu-
tion of the service.

Service quality is a measure of the difference between expected and actual
service provision. The most notable work on measuring customer per-
ceptions of service quality is SERVQUAL [98]. From the viewpoint of the
requester, it measures the competence of the provider to deliver a service.
So it is represented by service goal in LL.

Security and trust concerns the issues of identity, privacy, alteration and re-
pudiation of information transferred between the service providers and
service requesters. A security annotation for DAML Web services has
been reported in [35]. In this paper, the authors distinguish the security-
related capabilities and requirements of Web services and exploit them
for reasoning and matching against service requests. We consider the
capabilities and requirements from the service provider’s perspective.
Therefore, security capabilities are those features provided by the Web
Services, so they are represented by service goal. The security require-
ments are features that the consumer of a Web service should have in
order to invoke the service, so they are service constraint in LL presenta-
tion.

52 CHAPTER 3. LOGICAL PRESENTATION OF WEB SERVICES

Consumable Quan-
titative Attributes

Qualitative Constraints Qualitative results

Temporal
and spatial
informa-
tion

temporal availability,
spatial availability

service location

Channels invocation protocol
Charging
styles

charging style

Settlement obligation of the re-
quester

obligation of the
provider

Payment cost
Service
quality

quality

Security
and trust

requirement capability

Ownership owner

Table 3.2: The classification of non-functional attributes.

Ownership provides detail information of the service provider, such as com-
pany name, telephone number, address, etc. It is a fact of the service and
expressed by service goal.

A summary of the non-functional attributes and their category is shown in
table 3.2. Given this classification, all non-functional attributes listed here are
able to be presented by LL propositions.

In DAML-S, all non-functional attributes are presented by a general ex-
pandable property in ServiceProfile: serviceParameters. In this property, the
range of each attributes is unconstrained, i.e. no range restrictions are placed
on the service parameters at present. Specific service parameters will specialize
this property by restricting the range appropriately and using subPropertyOf.
The presentation of qualitative constraints and results are similar to those of
service precondition and effects. In LL, we use a propositional variable refer-
ring to the URI of the DAML class that presents the attributes. The consum-
able quantitative attributes are presented by two parts. One is the description
of the attributes that is presented by a propositional variable in LL and a class
in DAML. The other is the amount value of the attribute and presented by a
positive integer.

The different categories of non-functional attributes have different presen-
tation in extralogical axioms. As it was mentioned before, the non-functional
attributes can be described either as constraints or results and they can be pre-
sented as follows:

• The constraints for the service:

3.7. EXAMPLE 53

∆c = Consumablex⊗!Constraint

• The results produced by the service:

∆r = !Fact

3.7 Example

In order to illustrate the LL presentation of Web services, let us consider a sim-
plified service for recommending skis to the customer according to his/her size
and skiing skill level. Available atomic services are specified in DAML-S Servi-
ceProfile documents which can be found at http://bromstad.idi.ntnu.no/services.
An example of service CM2INCH has already been presented in Section 3.5.1.
These documents are automatically translated to the following axioms by a
translater that uses the corresponding concepts we describe in the upper on-
tology. The example takes both functionalities and non-functional attributes
into consideration. For the sake of readability, we omit the namespace of the
parameters.

The available services are specified as follows:

Γ =

NOK10 `!PRICE LIMIT⊗!SKILL LEVEL(SelectModel !BRAND⊗!MODEL
`!HEIGHT CM⊗!WEIGHT KG(SelectLength!LENGTH CM
NOK20 `!LENGTH CM(CM2INCH !LENGTH IN
CA MICORSOFT ` (!PRICE USD(USD2NOK!PRICE NOK)⊗ LOC NORWAY
`!LENGTH IN⊗!BRAND⊗!MODEL(SelectSki!PRICE USD⊕!OUT STOCK

The axioms can be explained as follows:

• SelectModel — This service recommends a brand and a model of skis
given the preferences on price and skill level. NOK10 on the left hand
side of this service denotes NOK ⊗ . . . ⊗ NOK

︸ ︷︷ ︸

10

. This means that 10 Norwegian

Krones are consumed by executing this service;

• SelectLength — This service provides the recommended ski length given
body height and body weight. This service costs 20 NOK;

• CM2INCH — This service transforms a length measured by centimeter
to a length measured by inch;

• USD2NOK — This is a currency exchange service that can calculated the
amount in Norwegian Krones given the amount in US Dollar. It is lo-
cated in Norway, and it only responses to the execution requests that
have been certificated by Microsoft. Here CA MICROSOFT is a non-
functional constraint and LOC NORWAY is a non-functional result.

http://bromstad.idi.ntnu.no/services

54 CHAPTER 3. LOGICAL PRESENTATION OF WEB SERVICES

• SelectSki — This service provides the skis price in US Dollar given a
model, a brand and a length of the skis. If the required skies do not
exist, an “out of stock” exception is returned.

Let’s consider a required composite service specified by the following for-
mula:

(Γ); ∆1 ` (PRICE LIMIT ⊗ SKILL LEVEL ⊗ HEIGHT CM ⊗ WEIGHT KG(PRICE NOK ⊕ OUT STOCK)⊗∆2

The constraints for the composite service are as follows:

∆1 = NOK35⊗!CA MICROSOFT
∆2 = !LOC NORWAY

They mean that we would like to spend at most 35 NOK for the com-
posite service. The composite service consumer has certification from Mi-
crosoft (!CA MICROSOFT) and it requires that all location-aware services are
located within Norway (!LOC NORWAY). ! symbol describes that we allow
an unbound number of atomic services in the composite service. We consider
quantitative constraints (for example, price) as regular resources in LL. If the
total number of resources required by services (which is determined by func-
tionality attributes) is less than the number of available resources, the services
can be included into composite service. Otherwise, if, for example, the Select-
Model service would cost 20 NOK instead of 10 NOK then the total required
amount would be 40 NOK and the composition is not valid.

For the qualitative constraints (for example, location), the service uses a lit-
eral (for example, LOC NORWAY) to present its value, and we can determine
in the set of requirements ∆1 whether a service meets the requirement. How-
ever, if there is no such literal in the service description, the constraint is not
applied to this service at all.

3.8 Summary

In this chapter we have discussed how DAML-S ServiceProfile can be trans-
lated into LL language. A service specification in DAML-S ServiceProfile in-
cludes the functionalities and non-functional attributes of Web services. Fur-
ther, functionalities consist of the denotion of information transformation and
state change produced by the execution of the service. The non-functional at-
tributes are classified into three categories: consumable quantitative attributes,
qualitative constraints and qualitative results. We have reviewed the com-
mon used non-functional attributes and put them into different categories. In
DAML-S, the information about Web services is presented by DAML classes
and properties. They are translated to LL propositions that refer to the specific

3.8. SUMMARY 55

classes and properties. The meaning of the propositions and the semantic re-
lation among the propositions are defined by the ontology relations in DAML.

After the ServiceProfile is translated into LL axioms and LL sequents, the
next steps are theorem proving in LL and derivation of the process model from
proof of the requested composite service. If it has been proven that the re-
quested composite service can be generated using available services, the pro-
cess model can be extracted from the proof guaranteed by the inference rules.
A resulting dataflow of the selected atomic services can also be presented to
the user for inspection. In the next chapter, we will discuss the method to
extract the dataflow process from the proof.

56 CHAPTER 3. LOGICAL PRESENTATION OF WEB SERVICES

Chapter 4

Extraction of a Process Model from
Proof

4.1 Introduction

Chapter 3 introduces the translation from the DAML-S ServiceProfile to LL
language. After service specifications in DAML-S are translated into LL ex-
tralogical axioms and a service request from the customer is translated into a
form of theorem to be proven, the LL theorem prover is invoked. The task of
the LL theorem prover is to prove the specified theorem using LL inference
rules. If the answer is positive, a process model of the composite service can
be extracted from the generated proof. The process model is presented by a
process calculus formally and it is attached to the proof as a type system. The
process calculus process can be further translated into either DAML-S Service-
Model or BPEL4WS.

This chapter focuses on the process model extraction and the translation
from the process calculus to Web service process languages. For the former,
the method of process extraction from the proof is introduced. Most the pre-
vious work have been reported on the program extraction from the proof that
uses λ-calculus to model the sequential algorithmic processes. The λ-calculus
theory is about modeling systems which have no or little interactions with
their environment. On the contrary, the π-calculus theory developed by Robin
Milner [90] in the late 1980s is about the modeling of concurrent communicat-
ing systems that interact with each other through explicitly defined ports and
channels. The correspondence between Web services and π-calculus has been
addressed by research efforts in [83, 123].

For the latter, the translation between the internal and the external pro-
cess languages is presented. Internally, the process for the generated compos-
ite service is presented by a process calculus stemmed from π-calculus. This
calculus is a formal language that is designed to be easily attached to LL for-
mulae, while the external languages aim to be understood by the Web service

57

58 CHAPTER 4. EXTRACTION OF A PROCESS MODEL FROM PROOF

users and supported by the execution engine. For this purpose, both DAML-S
ServiceModel and BPEL4WS are good candidates for the external languages.
DAML-S ServiceModel is the process description part of DAML-S, which pro-
vides the Semantic Web markup to Web service description. Using DAML-S
ServiceModel for composite service enables the compatibility with the DAML-
S ServiceProfile that is used to present more precisely the available services
that form the composite service. The problem, however, is that no platform is
available so far to support the invocation of the services that are described by
DAML-S ServiceModel language. A possible solution is to use BPEL4WS, the
process language based on WSDL, as the grounding of DAML-S ServiceModel
since DAML-S uses WSDL as the service grounding to define the invocable
interface of the atomic service [72]. To enable the translation from the process
calculus to either DAML-S ServiceModel or BPEL4WS, we propose an upper
ontology for service process. Since the upper ontology contains the essential
constructs in both DAML-S ServiceModel and BPEL4WS, the translation from
the upper ontology to the process language is straightforward. Further, the
process calculus can be translated into the upper ontology, then the upper on-
tology can be translated into either DAML-S ServiceModel or BPEL4WS upon
user’s request. Therefore, the upper ontology is used as a mediator language
between the process calculus and the process language. Although the upper
ontology does not take full advantage of all supported functions in DAML-S
ServiceModel and BPEL4WS, it supports enough constructs for the composite
service that can be generated by the automated composition method proposed
in this thesis.

The rest of this chapter is organized as follows. Section 4.2 introduces the
π-calculus and its use in Web service composition. Section 4.3 presents the up-
per ontology for composite service process. Section 4.4 discusses the concrete
method to extract the process model from the proof. At last, an example is
presented in Section 4.5.

4.2 The π-calculus: a Formality of Web Service Pro-
cess

The process calculus we use to present composite service process model is in-
spired by π-calculus. π-calculus is a process calculus that is used to describe
dynamically changing networks of concurrent processes. The fundamental ac-
tivities in π-calculus are processes, which exchange information over channels
and ports. In π-calculus, name is a basic notion: values, variables, ports and
processes are all referred by names. Usually, the names starting with small
letters range from variables to ports, and the names starting with capital letter
refer to the processes. The grammar of polyadic π-calculus is as follow.

4.2. THE π-CALCULUS: A FORMALITY OF WEB SERVICE PROCESS 59

P ::= 0
∣
∣
∣ a(x).P

∣
∣
∣ a〈x〉.P

∣
∣
∣ (νa)P

∣
∣
∣!a(x).P

∣
∣
∣ P.P

∣
∣
∣ P|P

∣
∣
∣ P + P

Polyadic π-calculus is built from the operators of inaction, input prefix,
output prefix, restriction, sequence, parallel composition, and global choice. 0
is an inactive process and it does not perform any action. An input prefixed
process a(x).P receives a variable or message x through port a then executes
process P. An output a〈x〉.P emits message x at port a then executes process
P. The restriction (νa)P defines a name a local to process P. Unlike the global
name, the name a is private and its scope is limited to P. A replication !a(x).P
stands for a countably infinite number of copies of channel a in parallel. The
rest are control operators. “.” represents two processes execute in sequence.
The execution of two processes is synchronous, while the second process is
prevented from executing until the first process has completed. “|” represents
two processes execute concurrently. The two processes can performs indepen-
dently and also communicate each other. “+” represents a non-deterministic
choice which either the first process or the second process will execute.

The structural congruence relation defined in the π-calculus will allow us
to rewrite a process in a semantically equal means. Here we introduce the
following congruence relations:

Commutative law:

P|Q ≡ Q|P P + Q ≡ Q + P

Associative law:

(P|Q)|R ≡ P|(Q|R) (P + Q) + R ≡ P + (Q + R)

Inactive law:
P ≡ P|0 ≡ P + 0 ≡ P.0 ≡ 0.P

Replication law:
!a(x).P ≡ a(x).P|!a(x).P

The π-calculus is a very powerful concurrency model, which has been ap-
plied to design communication-based programming languages. It is the foun-
dation of two of the main Web service process markup languages: BPML [25]
from the BPMI consortium and XLANG [116] from Microsoft. In particular,
XLANG was used as the internal processing language of the Microsoft BizTalk
engine. BPEL4WS, the industrial standard language for composite Web ser-
vices, drew much of its inspiration from the version of XLANG. The Seman-
tic Web service markup, DAML-S ServiceModel, can be also adapted to π-
calculus, although it does not announce π-calculus as its logical foundation.

The intended interpretation is that π-calculus describes a theory of pro-
cesses concurrently communicating through distinguished ports and channels.

60 CHAPTER 4. EXTRACTION OF A PROCESS MODEL FROM PROOF

If we regard the Web services as processes, the invocation of those services is
the message passing through their interfaces. In general, the following concur-
rent features of Web services result in that π-calculus is beneficial in presenting
composite Web Services.

1. Processes in π-calculus are built in terms of synchronization constraints
over I/O requests(messages), at a collection of channels. A channel is
built on an output port and an input port. The function of a channel
is transferring data from the output port to the input port. Whilst, the
Web service notion provides an abstraction for autonomous computa-
tional entities that are based on the end-points and message-passing.
End-points, presenting the service interfaces, are the ports for transfer-
ring messages. The service requester accesses a Web service by sending
messages to the service’s input end-points, and then, by fetching result
from the output end-points.

2. π-calculus, unlike λ-calculus which is used to model the sequential single-
thread computation, provides a general theory of concurrent interaction
within and among multiple computational threads. This feature enables
us to present the complex control activities in composite Web services,
such as “sequence”, “parallel” and “branch”.

3. π-calculus has close relationship with LL, which is applied as the logical
presentation of the available Web services in this thesis. The connection
between LL and π-calculus was taken up formally by Abramsky [8], and
further elaborated by Bellin and Scott [18]. Abramsky views proofs as
processes. The key observation is that proof-theoretical communication
(i.e. the Cut rule) is modeled by communication along an output port
and an input port in the process-calculi world. Bellin and Scott give the
formal translation between π-calculus and LL together with proving the
soundness and completeness of the translation.

π-calculus is a general specification to model all kinds of concurrent sys-
tems. Considering the features of Web services, we can generalize some pat-
terns that are specific for the concepts in Web service specification. The process
calculus presented in this thesis is adapted from π-calculus by incorporating
and rewriting the patterns. In the following, we list three kinds of patterns.
They are channels, composite ports and services.

Channels

Firstly, we present how to use π-calculus to present the channels. To have a
better understanding, we should distinguish the different notations when pre-
senting the service from the provider’s side and the requester side. From the

4.2. THE π-CALCULUS: A FORMALITY OF WEB SERVICE PROCESS 61

provider’s side, the Web services are concurrent processes and they are inde-
pendent from each other. The services are invoked as soon as all their input
ports receive data, and the service end after the data are sent to the output
ports. The following example provides an illustration of two services, P and
Q, and their presentation from the view of service provider’s side.

(νa)(νb)inputP(a).P.outputP〈b〉
∣
∣
∣ (νc)(νd)inputQ(c).Q.outputQ〈d〉

We can see that the presentation from the service provider’s side does not
describe the connection between two services in an explicit way. The reason
is that Web service are viewed independently from each other and the connec-
tion of the multiple services is not the concern of the service providers. Let’s
assume that a service requester may ask the above two services to be invoked
in sequence, while the data outputed from service P is sent to service Q as in-
put. Thus, the following process presented at the requester’s side is different
from that at the provider’s side.

(νx)(νy)(νz)(inputP(x).P.outputP〈y〉.inputQ(y).Q.outputQ〈z〉)

Figure 4.1: π-calculus flow graph.

This presentation emphasizes the message transferring between ports outputP
and inputQ, which denotes the workflow between two services that form the
composite service. The workflow is illustrated in Figure 4.1. The process of
workflow includes six sequential steps. First, the data stored in local variable
x is sent to the input port inputP. Second, the process P is invoked. Third,

62 CHAPTER 4. EXTRACTION OF A PROCESS MODEL FROM PROOF

the result is transmitted to the output port outputP and is assigned to a local
variable y. Fourth, the data in y is sent to the input port inputQ. Fifth, the
process Q is invoked. Finally, the output from the outputQ port is assigned
to variable z. A channel between the port outputP and inputQ is defined as
outputP〈y〉.inputQ(y). In the channel, the message passing is represented by
the sending/receiving actions in the fourth and fifth steps. The variable y is
a local variable that indicates the data transferring between the outputP port
and the inputQ port, both of which are global accessible. Because the local
variable can be assigned to arbitrary name, we simply use a set of pair to in-
clude the correlated output and input parameters. Thus the above process can
be rewritten as follows.

inputP.P.(outputPinputQ).Q.outputQ

We call outputP.inputQ a channel pair that denotes a connection between
the output port outputP and the input port inputQ. Each channel pair rep-
resents a means of synchronous interaction between two services. A channel
pair represents a sequence of two actions. The first action reads the informa-
tion from an output port, then the second action sends the same information
to an output port of another services. The items in the pairs can be either ports
or variables. For a variable a, a represents an action reading data from the
variable, while a represents an action assigning a value to the variable.

The channel pair is not a standard presentation in π-calculus, although it
can be rewritten using π-calculus formulae. Such presentation idea has been
applied in many Web service process languages. For example, DAML-S uses
property “sameValues” and Class “ValueOf” to state that the input to one sub-
process should be the output of the previous one within a sequence. The pre-
sentation is enabled by a data set that connects one output parameter with
one input parameter. XLANG uses a business process contract for stitching to-
gether the individual service descriptions using a map that defines the connec-
tions between the ports of the services involved. In XLANG, ports represent
communication endpoints. Each port of each service must be mapped to at
least one port of another service in such a way that the transport endpoints for
the mapped ports are identical. In addition, a port that supports only outgoing
operations must be mapped to exactly one incoming port of a partner service.

The channel pairs are the foundation to specify the dataflow within the
generated composite service. What is believed to be one of the most important
results of the automated service composition is the dataflow within the gener-
ated composite service. The method to generate the dataflow automatically is
introduced in Section 4.4.

4.2. THE π-CALCULUS: A FORMALITY OF WEB SERVICE PROCESS 63

Composite ports

The second pattern is the presentation of composite ports. The composition
of two ports a and b is presented in the form of (a, b). The port composition
enables us to construct a new port that includes two parts. Each part is an
existing port defined previously. The two parts are organized in an order that
is defined by the initial ServiceProfile document. As we have introduced in
Chapter 3, we use propositions to represent the parameters’ types, and the
addresses of the parameters are associated with the propositions as the proof
terms. Thus one service may have several independent input and output ports.
The composite port is a way to represent the multiple ports that belong to one
service or one process. Moreover, we use (a + b) to denote a new port that con-
sists of two parts, but only one part is selected in execution. The selection is
externally. It means which one is selected is not decided by the user. Instead,
it depends on the execution result. An obvious example is the exception. A
service may have two output ports, one of which is used to output the result
if the service executes correctly, and another of which is used to output the
exceptional information if the execution of the service fails. Since each service
has only one exception and no other optional output defined in the upper on-
tology of service profile, an external choice includes only one + symbol. The
external choice is associated with the additive disjunction in LL.

The channel that is formed by two composite ports can be rewritten as a
composite channel given the channel pairs are arranged in the same order as
the ports. For example, a channel (a1 , b1, c1)(a2 , b2, c2) is equal to a composite
channel (a1a2, b1b2, c1c2). The optional ports work in the same way. For exam-
ple, the channel (a1 + b1)(a2 + b2) is equal to a1a2 + b1b2.

Services

Thirdly, we model all Web services as processes in the process calculus,
where an atomic Web service is a process that cannot be decomposed. To dis-
tinguish the ports and services, we use the names starting with small letters
refer to the ports, including the inputs, output, variables and exceptions. And
the names starting with capital letters refer to the services in our setting. The
names of services are available from the information that is provided in LL
axioms.

Therefore, we present the syntax of the process calculus specification for
Web services as follows. Comparing to the syntax of π-calculus at the begin
of this section, this syntax is slightly different and strengthens the specific fea-
tures considering the concepts of Web services.

64 CHAPTER 4. EXTRACTION OF A PROCESS MODEL FROM PROOF

〈Process〉 ::=〈Inputs〉.〈Process〉
∣
∣
∣ 〈Process〉.〈Outputs〉
∣
∣
∣ 〈Process〉.(〈Outputs〉+ 〈Exception〉)
∣
∣
∣ 〈Channels〉.〈Process〉
∣
∣
∣ (ν〈Variable〉)〈Process〉
∣
∣
∣ 〈Process〉.〈Process〉
∣
∣
∣ 〈Process〉|〈Process〉
∣
∣
∣ 〈Process〉+ 〈Process〉
∣
∣
∣ 〈Service〉
∣
∣
∣ 0

〈Inputs〉 ::=(〈InputPort〉, 〈Inputs〉)
|(〈InputPort〉)

〈Outputs〉 ::=(〈OutputPort〉, 〈Outputs〉)

|(〈OutputPort〉)

〈Channels〉 ::=(〈Channel〉, 〈Channels〉)

|(〈Channel〉+ 〈Channel〉)

|(〈Channel〉)
〈Variable〉 ::=〈Port〉

〈InputPort〉 ::=〈Port〉

〈OutputPort〉 ::=〈Port〉

〈Exception〉 ::=〈Port〉
〈Port〉 ::=[!a − z][A − Za − z0 − 9#]∗

〈Service〉 ::=[A − Z][A − Za − z0 − 9#]∗

〈Channel〉 ::=〈OutputPort〉〈InputPort〉

|〈OutputPort〉〈Variable〉

|〈Variable〉〈InputPort〉

|〈Exception〉〈Variable〉

|〈Variable〉〈Variable〉

4.3 An Upper Ontology for the Process Model

A composite Web service can be viewed as a process that is described in terms
of a process model. The process model, which details both the control structure
and data flow structure of the service, is specified by a process language. There
are a variety of process languages available, including the ServiceModel of the
Semantic Web service markup, DAML-S; the industrial standard language for
service process, BPEL4WS; and the formal concurrency modeling language π-

4.3. AN UPPER ONTOLOGY FOR THE PROCESS MODEL 65

DAML-S BPEL4WS π-calculus Explanation
Range Type Type(Sort) data type definitions used to de-

scribe the exchanged messages
Data Message Message an abstract definition of the data be-

ing transmitted
Process Operation Action an abstract description of an action

supported by the service
Range PortType Type(Sort) a set of abstract operations. Each

operation refers to an input mes-
sage or output message

sameValues Binding Interaction the concrete protocol and data for-
mat specifications for the opera-
tions and messages defined by a
particular PortType

Parameter Port Port an address for a binding, a single
communication endpoint

Process Services Process aggregation of a set of invocable ap-
plications

Table 4.1: The concepts in process specification.

calculus. These languages have a lot features in common. In Table 4.1, we give
the mappings of some related concepts used in these process languages.

A successful Web service composition system should consider the different
purpose of the above languages and enable the interoperation among these
languages. In short, π-calculus, or the process calculus in this thesis, is used
to specify the process formally. It is essential when generating the process
from the proof in an automated way. DAML-S ServiceModel is the Semantic
Web markup for the service process. It is naturally used to present the service
process since we use DAML-S ServiceProfile to specify the interface of exist-
ing services. BPEL4WS is used as the grounding for DAML-S ServiceModel
in order to support the invocation of generated composite service. Although
people has noticed that DAML-S ServiceModel and BPEL4WS are not totally
translatable to each other [79], we can enable the translation between these
two languages by discarding some features that is not used in our automated
service composition approach.

To enable the interoperation among the different sources of process lan-
guages, we design a process model that describe the service process in a highly
abstract way. At conceptual level the process model is specified by an upper
ontology in Figure 4.2. We do not expect the process model to serve for specify-
ing all possible concepts in a wide array of services. Instead, the process model
is a minimal set of the concepts of the process that the automated service com-
position method can generate. Moreover, the process model should be able to
be specified by the process calculus formally as well as both by DAML-S and

66 CHAPTER 4. EXTRACTION OF A PROCESS MODEL FROM PROOF

by BPEL4WS languages to present to the users.

The control flow in the process model is recursively defined by the class
“ServiceProcess”, that can be either “AtomicProcess” or “CompositeProcess”.
A “CompositeProcess” contains one or more sub processes. The sub processes
are arranged in order and are executed in a given manner, which is indicated
by the attribute of the type of control constructs, such as, “sequence”, “choice”
and “split”. Each process has a set of parameters, including “inputs”, “out-
puts”, “variables” and an “exception”. The “CompositeProcess” is also speci-
fied by its internal workflow activities. Such activities, including “Send, “Re-
ceive”, “Connect” and “Copy” indicates the data transferring between the pa-
rameters.

More precisely, we summarize the concepts in the upper ontology as below.
We will also explain their counterparts in DAML-S ServiceModel, BPEL4WS
and the process calculus respectively.

ServiceProcess: A “ServiceProcess” refers to either an atomic Web service or
a composite Web service. Accordingly, a “ServiceProcess” is either an
“AtomicProcess” or a “CompositeProcess”. An “AtomicProcess” is di-
rectly invocable and has no subprocesses. A “CompositeProcess” is a
collection of “ServiceProcesses”, each of which can be either “AtomicPro-
cess” or “CompositeProcess”. The “ServiceProcesses” that form a “Com-
positeProcess” are organized by using both “ControlActivities” and “Dataflow”.
The former indicates the ordering execution of the subprocesses, and the
latter indicates end-to-end data exchanging. The term “ServiceProcess”
is equal to the term “process” that is defined in DAML-S, in BPEL4WS
and in the process calculus.

Parameters: “Parameters” include “Input”, “Output”, “Exception” and inter-
nal “Variable”. Here, “Exception” can be regarded as a special kind of
“Output”, so both “Exception” and “Output” are defined as subclasses
of a more general concept “AllOutput”. The data exchange among the
parameters is specified by “Dataflow” that we will discuss later. We
present the “Parameters” as the value of a property of “ServiceProcess”
class. DAML-S uses exact the same specification except that it does not
support internal variable. One possible solution is to use variables as
inputs or outputs inside an abstract process in DAML-S. BPEL4WS and
the process calculus present the parameters in a similar matter presented
above.

ControlActivity: A “CompositeProcess” includes a “ControlActivity” that in-
dicates the ordering and the conditional execution of the subprocesses
from which the “CompositeProcess” is composed. In the upper ontology,

4.3. AN UPPER ONTOLOGY FOR THE PROCESS MODEL 67

����� ��� ���
	��
���������

��� �����

� ����� �������

��� � !#" $ %�& ')(#!)& $ *

+-,#.0/21 3
+4,2.0/21 3

� �5�567�0�
��8-� ��9

�
� � !#":$ %�& '#(#!;& $ *

6<���
��8:� ��9

��� �����

���5=��5���5���

��� �����

� �������

�>� �����

�<���0�5���?�

��� �5���

+-,@.�/@1 3

�A����B

��� �����

������C

��� �5���

D-E4F-GIH / DJD:KIL

D4E4F-GIH / D:DJK�L

DJE2F-G?H / DJD4KIL

M /#3JN4O

���P� � �

��� �5���

� � �P� ���

��� �����

D-E-F2G?H / DJD:K�L D-E2F-G?H / DJD:K�L

DJE2F-G?H / DJD4KIL

Q ���-� ��RP� �

�>� �����

S � �
TU��� �����

�>� �����

�V�

8
�J��W

�V�

8
�J��W

�V�

8
�J��W

+4,2.0/@1 3

+2,2.0/@1 3

+4,2.0/#1 3

+-,#.�/#1 3

+2,2.0/21 3

� �5������R
	X� ���������

�
� � !@":$ %�& ')(@!)& $ *

+-,@.�/@1 3

S �V��WY� �0	��V�����5���

��� �����

�<��WZ�5���0� �V�
	X� �5�������

��� �����

D-E2F-G?H / DJD4K?L

D4E-F4GIH / D:DJK�L

[�0���
� ���

��� �5���

DJE2F4GIH / D
D4KIL
8
�J��W

�V� +-,#.0/21 3

+-,@.�/@1 3

M /23:N-O

+4,2.0/@1 3

M /23-N-O

M /23:N-O

M /@3JN2O

M /23:N-O

M /23:N-O

M /23:N-O

M /23-N-O

M /#3JN4O

\�] �������:� ���

��� �����

TU���
�����

��� �����

D:E4F-G�H / D:D-K�L
D-E-F2G?H / DJD:K�L

� �����A����� �
�P�

^_/J` /:a#b-c:O@d M ,2c:O M b

�<����� � �
� S �?�J� ��� � B

��� �����

� ����TU��� �����

���V� !;"
$ %�& ';(#!)& $ *

+4,2.0/@1 3

� ��� \P] �������:� ���

�
�
� !@"J$ %�& ')(#!)& $ *

+4,2.0/#1 3

M /#3JN4O

M /43-N-O

M /23-N-O

e , H H O e ` 1 ,23 K�L

����� ��� ���
	��
���������5f�� �?� M /#3JN4O

� ��� Q ���-� ��R�� �

�
� � !@":$ %�& ')(@!)& $ *

+-,#.�/#1 3

M /@3JN2O

� �0�0g<�5WZ�

^_/-` /4a2b2c O;d M ,@cJO M b] ��C
h �?�
�:� �5i

�����V��� ���
gj��Wk�
+4,2.0/@1 3 M /23:N-O

Figure 4.2: The upper ontology for the process model.

68 CHAPTER 4. EXTRACTION OF A PROCESS MODEL FROM PROOF

we have attempted to come up with a minimal set of activities that are
potentially supported by the automated service composition approach.
The activities consist of “sequence”, “split” and “choice”:

Sequence: allows us to define a collection of “ServiceProcesses” that are
executed sequentially. This is equal to the “sequence” construct in
both DAML-S and BPEL4WS. In the process calculus, this relation is
denoted by sequential operator “.”.

Split: allows us to specify a collection of “ServiceProcesses” to be exe-
cuted concurrently. DAML-S uses the same name for this activity.
This activity is equal to the “flow” construct in BPEL4WS. In the
process calculus, this is represented by parallel composition “|”.

Choice: allows us to select exactly one branch from a collection of “Ser-
viceProcesses”. This selection is made externally by the program.
DAML-S, although uses the same name, enables to select multiple
processes. This activity can be represented by “switch” construct in
BPEL4WS. In the process calculus, the choice operator “+” has the
same function.

Dataflow: “Dataflow” defines the the data exchange inside the “Compos-
iteProcess”. The “Dataflow” class is defined as a correlation pair which
contains two parameters. These activities in the “Dataflow” include “Send”,
“Receive”, “Connect” and “Copy”. “Send” emits the data stored in a lo-
cal “Variable” to an “Input”. “Receive” takes the data from an “AllOut-
put” and assigns it to a local “Variable”. “Connect” defines that the data
read from an “AllOutput” is sent to an “Input” in a synchronous manner.
“Copy” assigns the data stored in one local “Variable” to another local
“Variable”. We have discussed the method to represent the correlation
pairs in both DAML-S and the process calculus. The “Send” and “Re-
ceive” activities are embedded in “invoke” construct in BPEL4WS, since
the document specifies both the input variable and the output variable
inside the “invoke” construct. “Assign” construct in BPEL4WS is equal
to “Copy” activity. “Connect” activity is represented as the invocation of
two services, if the value of an “Output” of one “ServiceProcess” is equal
to the value of one “Input” of another “ServiceProcess”.

In the following, we define the grammar for the upper ontology of the pro-
cess model. The concepts used in the grammar are exactly equal to what we
have presented above. The grammar is specified by Extended BNF [91]:

4.4. FROM THE PROOF TO THE PROCESS MODEL 69

〈ServiceProcess〉 ::=〈AtomicProcess〉|〈CompositeProcess〉

〈AtomicProcess〉 ::=[′〈′hasName〈%STRING〉′〉′]

{′〈′hasInput〈Input〉′〉′}

{′〈′hasOutput〈Output〉′〉′}

{′〈′hasException〈Exception〉′〉′}

〈CompositeProcess〉 ::={′〈′hasInput〈Input〉′〉′}

{′〈′hasControl〈ControActivity〉′〉′}

{′〈′hasSubProcess〈ServiceProcessList〉′〉′}

{′〈′hasDataflow〈Data f low〉′〉′}

{′〈′hasOutput〈Output〉′〉′}

{′〈′hasException〈Exception〉′〉′}

{′〈′hasVariable〈Variable〉′〉′}
〈Input〉 ::=〈DAMLClass〉

〈Output〉 ::=〈AllOutput〉

〈Exception〉 ::=〈AllOutput〉

〈ControlActivity〉 ::=sequence|split|choice

〈ServiceProcessList〉 ::=′[′〈ServiceProcess〉,〈ServiceProcessList〉′]′

〈AllOutput〉 ::=〈DAMLClass〉
〈Data f low〉 ::=〈Copy〉|〈Send〉|〈Connect〉|〈Receive〉|

〈Copy〉 ::=′〈′from〈Variable〉to〈Variable〉′〉′

〈Send〉 ::=′〈′from〈Variable〉to〈Input〉′〉′

〈Connect〉 ::=′〈′from〈Input〉to〈AllOutput〉′〉′

〈Receive〉 ::=′〈′from〈AllOutput〉to〈Variable〉′〉′

〈Variable〉 ::=〈DAMLClass〉

Here we should emphasize that the upper ontology is not a new Web ser-
vice process language. Instead, the upper ontology describes the concepts used
to specify the service process and shows the connection of these concepts with
their counterparts in other Web service languages, including the process calcu-
lus, DAML-S ServiceModel and BPEL4WS. Therefore, the process calculus that
is extracted from the complete proof is able to be translated into the Web ser-
vice languages for presentation or execution. An example of such translation
will be presented in Section 4.5.

4.4 From the Proof to the Process Model

Here we propose a concrete method for the extraction of the process model pre-
sented in the process calculus from the completed proof. We do it by attaching
proof terms to the deduction rules in the style of type theory. Each inference
rule of the LL has been assigned a computational meaning. This makes the re-
lationship of deduction rules and the process model more clear. It is also easier
to be extended for dealing with any extension of the LL fragments.

70 CHAPTER 4. EXTRACTION OF A PROCESS MODEL FROM PROOF

A type theory has been defined for LL in [7]. In previous publication, proof
terms are seen as programs in λ-calculus. We have, however, expressed the
concern that λ-calculus does not provide enough expressive power for spec-
ifying the process of composite Web services, because it is not possible to
present the concurrency of multiple Web services. Therefore, we choose the
π-calculus-based process calculus in the proof terms.

Fortunately, people have concerned that the LL should have deeper con-
nections with the parallelism and concurrent computation. This concern has
further been taken up more formally by Abramsky [8] in an influential series
of lectures. The Abramsky’s view is essentially a modification of the formulae-
as-types(Curry-Howard) isomorphism. In stead of proofs being functions pre-
sented by λ-calculus, Abramsky views proofs as processes(e.g. π-calculus or
CCS terms). The Abramsky’s view is to transfer the propositions as types
paradigm to concurrency, so that concurrent processes, rather than functional
programs, become the computational counterparts of proofs. The key observa-
tion of this view is that the cut-elimination in deductive inference is modeled
by the construction of a channel for the communication along two ports in
process-calculi world.

The Abramsky’s translation between MALL rules and π-calculus is further
discusses by Bellin and Scott [18]. In their paper, the authors give a detailed
treatment of information flow in proof-nets and show how to mirror various
evaluation strategies for proof normalization. The authors also give soundness
and completeness results for the process-calculus translations of the MALL
fragment. Bellin and Scott’s translation is based on one-sided sequents in Clas-
sical Linear Logic(CLL), while the service presentation in this thesis is based
on Intuitionistic Linear Logic. Considering this, we make some modification
for Abramsky’s translation to fit our presentation. Yet the results of Abramsky,
Bellin and Scott can be applied to the intuitionistic version of MALL fragment,
MAILL. As we have discussed in Chapter 3, MAILL is the fragment of LL that
we use to present the existing Web services.

In the intuitionistic version of LL the cut rule is asymmetric. The left premise
is distinguished from the right by the fact that the cut formula appears in the
output position (i.e. as a result) in one, and in input position(i.e. as a resource)
in the other. This is exactly reflected on the programming level by the fact
that cut rule is interpreted by the operation of function composition(expressed
syntactically as substitution).

We summarize the inference rules with the attached proof terms. Some
rules are different from the MAILL inference rules introduced in Table 3.1. We
discuss those differences in the following:

Firstly, “Shift” is not a default MAILL inference rule. But it can be proven
from the inference rules in Table 3.1:

4.4. FROM THE PROOF TO THE PROCESS MODEL 71

Γ ` A (B axiom A ` A id B ` B id

A, A (B ` B L (

Γ , A ` B cut

Secondly, the composition ports are associated with the multiplicative con-
junction ⊗ and disjunction &. Since, the propositions are used to represent the
parameters’ types, and the addresses of the parameters are associated with the
propositions as the proof terms, a new proposition that composes two exist-
ing propositions by an operator is built when the introduction rule are applied
during the inference. For example, A⊗ B is a joint composition of propositions
A and B. From the process point of view, the new proposition is a new port
type, where the new port is a composition of two exist ports. Thus the formula
A(a) ⊗ B(b) is equal to A ⊗ B(a, b).

Thirdly, the “choice” operator + is associated with additive disjunction ⊕
in LL. From the process point of view, the introduction of additive disjunction
leads to the construction of a composite port with external choice. Therefore,
the formula A(a) ⊕ B(b) is equal to A ⊕ B(a + b)

For attaching the process calculus formulae in the LL inference rules, we
have to introduce a set of structural congruence rules that consider both the LL
and the process calculus. The structural congruence rules used in the inference
rules is presented as following.
Commutative law:

A ⊗ B(a, b) ≡ B ⊗ A(b, a) A&B(a, b) ≡ B&A(b, a)
(P + Q) : A ⊕ B(a + b) ≡ (Q + P) : B ⊕ A(b + a)

Associative law:

(A(a) ⊗ B(b)) ⊗ C(c) ≡ A(a) ⊗ (B(b) ⊗ C(c)) ≡ A ⊗ B ⊗ C(a, b, c)
(A(a)&B(b))&C(c) ≡ A(a)&(B(b)&C(c)) ≡ A&B&C(a, b, c)

(A(a) ⊕ B(b)) ⊕ C(c) ≡ A(a) ⊕ (B(b) ⊕ C(c)) ≡ A ⊕ B ⊕ C(a + b + c)

Interaction law:

(a1 , a2, . . . , an)(b1, b2, . . . , bn) ≡ (a1b1, a2b2, . . . , anbn)

Replication law:
!(A(a)) ≡!A(!a)

The updated inference rules concerning the proof term are presented in
Table 4.2. Each inference rule has a computational interpretation in the context
of Web service composition process and the process calculus. In the following,
we discuss the interpretation of each inference rule of MAILL fragment of LL
we used in service presentation.

72 CHAPTER 4. EXTRACTION OF A PROCESS MODEL FROM PROOF

Logical axiom and Cut rule:

A(x) ` (νx)0 : A(x) (Id)

Γ ` P : A(a1) Γ
′
, A(a2) ` Q : C

Γ , Γ
′
` (P.{a1a2}.Q) : C

(Cut)

Rules for propositional constants:

` 1
Γ ` A

Γ , 1 ` A

Γ , A(a), B(b) ` P : C
Γ , A ⊗ B(a, b) ` P : C

(L⊗)
Γ ` P : A(a) Γ

′
` Q : B(b)

Γ , Γ
′
` (P|Q) : A ⊗ B(a, b)

(R⊗)

Γ ` A(a)(P B(b)
Γ , A(a) ` P : B(b)

(Shi f t)
Γ , A(a) ` P : B(b)

Γ ` A(a.P.b B
(R()

Γ , A(a) ` P : C(c1) Γ , B(b) ` Q : C(c2)

Γ , A ⊕ B(a + b) ` (P + Q) : C(c1 + c2)
(L⊕)

Γ ` P : A(a)
Γ ` P : A ⊕ B(a)

(R⊕)(a)
Γ ` Q : B(b)

Γ ` Q : A ⊕ B(b)
(R⊕)(b)

Γ , A(a) ` ∆

Γ , A&B(a, 0) ` ∆
(L&)(a)

Γ , B(b) ` ∆

Γ , A&B(0, b) ` ∆
(L&)(b)

Γ ` P : A(a) Γ ` Q : B(b)
Γ ` (P|Q) : A&B(a, b)

(R&)

Rules for exponential !:

Γ ` ∆

Γ , !A(0) ` ∆
(W!)

Γ , A(a) ` ∆

Γ , !A(!a) ` ∆
(L!)

Γ , !A(!a), !A(!a) ` ∆

Γ , !A(a) ` ∆
(C!)

Table 4.2: Inference rules for process extraction.

4.4. FROM THE PROOF TO THE PROCESS MODEL 73

id The identity corresponds to a transition to the same parameter type, and it
requires no action. So the corresponding process is empty, 0.

cut The cut rule corresponds to the sending and receiving operations in the
process calculus. It results in the sequential composition of two process.
In the composition, the output of one process is connected to the input of
the other process.

L⊗ The L⊗ rule generates a new port that is the composition of two separate
ports.

R⊗ The R⊗ rule generates a new process that consists of two sub-processes in
parallel.

shi f t Initially, a Web service is specified by an axiom in the form of ` A(a) (p
B(b). Here A and B are sets of input and output parameters, while p is
the name of the service. The shi f t rule changes the initial presentation
into a sequent that can be used for the future proof.

R (The R (reverses the change made by shi f t rule.

L⊕ The L⊕ introduces an external choice of two processes.

R⊕ The R⊕ indicates if the port a has type A, it also has type A ⊕ B. This is
used in cut elimination with an external choice.

L& The L& produces a redundant input parameter that is not used by the pro-
cess. However, it can be used in cut elimination with an internal choice.

R& The R& introduces an internal choice of two processes.

W! The W! presents a logical weakening. It is used when an output parameter
is discarded.

L! The L! presents dereliction. It is used for explicit presentation of the infor-
mation duplication.

C! The C! presents contraction. It is used to discarding the multiple use of a
single piece of information.

After applying the above inference rules, the complete proof contains a
proof term that is specified by the process calculus introduced in Section 4.2.
The calculus should be translated into Web service process language for execu-
tion. In the Section 4.3, we have shown the relation between the upper ontol-
ogy and the Web service process languages, including DAML-S ServiceModel
and BPEL4WS. Therefore, if we develop the translation from the process cal-
culus to the upper ontology, we can translate it to other Web service process
languages.

74 CHAPTER 4. EXTRACTION OF A PROCESS MODEL FROM PROOF

The syntax of both the process calculus and the upper ontology have al-
ready been introduced in the previous sections. Here, we define a translation
R from the process calculus to the specification of the upper ontology. Consid-
ering the syntax of the specification languages, a translation is defined by the
following:

〈Process〉R ≡if(〈Inputs〉.〈Process〉)Rthen〈Process〉R〈Inputs〉R

if(〈Process〉.〈Outputs〉)Rthen〈Process〉R〈Outputs〉R

if(〈Channels〉.〈Process〉)Rthen〈Process〉R〈Channels〉R

if(〈Process〉.(〈Outputs〉+ 〈Exception〉)Rthen〈Process〉R〈Outputs〉R ′〈′hasException〈Exception〉R ′〉′

if(ν〈Variable〉.〈Process〉)Rthen〈Process〉R ′〈′hasVariable〈Variable〉R ′〉′

if(〈Process〉.〈Process〉)Rthen′〈′hasControl sequence′〉′ ′〈′hasSubProcess′[′〈Process〉R, 〈Process〉R ′]′ ′〉′

if(〈Process〉|〈Process〉)Rthen′〈′hasControl split′〉′ ′〈′hasSubProcess′[′〈Process〉R, 〈Process〉R ′]′ ′〉′

if(〈Process〉+ 〈Process〉)Rthen′〈′hasControl choice′〉′ ′〈′hasSubProcess′ [′〈Process〉R, 〈Process〉R ′]′ ′〉′

if(〈Service〉)Rthen′〈′hasName the string of service name′〉′

if(0)Rthen do nothing

(〈Inputs〉)R ≡′〈′hasInput〈InputPort〉R′〉′〈Inputs〉R

(〈Outputs〉)R ≡′〈′hasOutput〈OutputPort〉R′〉′〈Outputs〉R

(〈Channels〉)R ≡if(〈Channel〉, 〈Channels〉)then′〈′hasDataflow〈Channel〉R′〉′〈Channels〉R

if(〈Channel〉+ 〈Channel〉)then′〈′hasDataflow〈Channel〉R′〉′ ′〈′hasDataflow〈Channel〉R′〉′

(〈InputPort〉)R ≡〈Port〉R

(〈OutputPort〉)R ≡〈Port〉R

(〈Exception〉)R ≡〈Port〉R

(〈Variable〉)R ≡〈Port〉R

〈Channel〉R ≡′〈′from〈Port〉Rto〈Port〉R′〉′

〈Port〉R ≡the string of port name

4.5 An Example Proof

In this Section we show an example about how the process is generated from
the service presentation. We reuse the example that has already been shown
in Chapter 3. To make the proof simple and easy to read, we discard the non-
functional attributes in the example, but the proving process is the same after
introducing the non-functional attributes.

Applied to our motivating example, the predefined axioms and the goal to
be proven can be presented as follows:

Axioms:

Γ =

` PRICE LIMIT(smp)⊗ SKILL LEVEL(sms)(SelectModel BRAND(smb)⊗ MODEL(smm)
` HEIGHT CM(slh) ⊗ WEIGHT KG(slw)(SelectLength LENGTH CM(sll)
` LENGTH CM(cic)(CM2INCH LENGTH IN(cii)
` PRICE USD(unu)(USD2NOK PRICE NOK(unn)
` LENGTH IN(ssl)⊗ BRAND(ssb)⊗ MODEL(ssm)(SelectSki PRICE USD(ssp)⊕ EXCEPTION(sse)

4.5. AN EXAMPLE PROOF 75

Goal/Theorem

` PRICE LIMIT ⊗ SKILL LEVEL⊗ HEIGHT CM ⊗ WEIGHT KG(PRICE NOK ⊕ EXCEPTION

Using the inference rules from the Table 4.2 the proof is as shown in Fig-
ure 4.3. In order to make the proof easier to read, we use abbreviations to rep-
resent the propositions. Here, PL, SL, BR, MO, HC, WK, LC, LI, PU, PN and
EX stand for PRICE LIMIT, SKILL LEVEL, BRAND, MODEL, HEIGHT CM,
WEIGHT KG, LENGTH CM, LENGTH IN, PRICE USD, PRICE NOK and EX-
CEPTION, respectively.

The generated process calculus formula is presented as follows:

(νx1)(smp, sms, slh, slw).((SelectModel|SelectLength.sllcic.CM2INCH)

.(smbssb, smmssm, ciissl).SelectSki.(sspunu + ssex1).USD2NOK.unn+ x1

The above formula of the process calculus can be translated into the follow-
ing code in the language of the upper ontology using the translation mecha-
nism introduced above:

<hasInput smp>

<hasInput sms>

<hasInput slh>

<hasInput slw>

<hasControl sequence>

<hasSubProcess [

<hasControl split>

<hasSubProcess [SelectModel]>

<hasSubProcess [

<hasControl sequence>

<hasSubProcess [SelectLength, CM2INCH]>

<hasDataflow from sll to cic>,

]>

>

<hasSubProcess [SelectSki]>

<hasSubProcess [USD2NOK]>

>

<hasDataflow from smb to ssb>

<hasDataflow from smm to ssm>

<hasDataflow from cii to ssl>

<hasDataflow from smb to ssb>

<hasDataflow from ssp to unu>

<hasDataflow from sse to x1>

<hasOutput unn>

76
C

H
A

PT
ER

4.
EX

TR
A

C
TI

O
N

O
F

A
PR

O
C

ES
S

M
O

D
EL

FR
O

M
PR

O
O

F

` HC(slh)⊗ WK(slw)(SelectLength LC(sll)

HC(slh)⊗ WK(slw) ` SelectLength : LC(sll)
Shi f t

` LC(cic)(CM2INCH LI(cii)

LC(cic) ` CM2INCH : LI(cii)
Shi f t

HC(slh)⊗ WK(slw) ` SelectLength.sllcic.CM2INCH : LI(cii)
cut

HC ⊗ WK(slh, slw) ` SelectLength.sllcic.CM2INCH : LI(cii)
Structural congruence

(4.1)

. . .
` PL(smp)⊗ SL(sms)(SelectModel BR(smb)⊗ MO(smm)

PL(smp)⊗ SL(sms) ` SelectModel : BR(smb)⊗ MO(smm)
Shi f t

PL ⊗ SL(smp, sms) ` SelectModel : BR ⊗ MO(smb, smm)
Structural congruence

PL ⊗ SL ⊗ HC ⊗ WK(smp, sms, slh, slw) ` (SelectModel|SelectLength.sllcic.CM2INCH) : BR ⊗ MO ⊗ LI(smb, smm, cii)
R ⊗ (with(4.1))

(4.2)

. . .
` PU(unu)(USD2NOK PN(unn)

PU(unu)` USD2NOK : PN(unn)
Shi f t

PU(unu)` USD2NOK : PN ⊕ EX(unn)
R ⊕ (a)

EX(x1) ` (νx1)0 : EX(x1)
id

EX(x1) ` (νx1)0 : PN ⊕ EX(x1)
R ⊕ (b)

PU ⊕ EX(unu+ x1)) ` (νx1)(USD2NOK + 0) : PN ⊕ EX(unn+ x1)
L⊕

PU ⊕ EX(unu+ x1) ` (νx1)(USD2NOK) : PN ⊕ EX(unn+ x1)
Structural Congruence

(4.3)

. . .
` BR(ssb)⊗ MO(ssm)⊗ LI(ssl)(SelectSki PU(ssp)⊕ EX(sse)

BR(ssb)⊗ MO(ssm)⊗ LI(ssl) ` SelectSki : (PU(ssp)⊕ EX(sse))
Shi f t

BR ⊗ MO ⊗ LI(ssb, ssm, ssl)` SelectSki : PU ⊕ EX(ssp+ sse)
StructualCongruence

BR ⊗ MO ⊗ LI(ssb, ssm, ssl) ` (νx1)(SelectSki.ssp+ sse(unu + x1).USD2NOK) : PN ⊕ EX(unn+ x1)
cut(with(4.3))

PL ⊗ SL ⊗ HC ⊗ WK(smp, sms, slh, slw)` (νx1)((SelectModel|SelectLength.sllcic.CM2INCH).(smb, smm, cii)(ssb, ssm, ssl).SelectSki.ssp+ sse(unu + x1).USD2NOK) : PN ⊕ EX(unn+ x1)
cut(with(4.2))

PL ⊗ SL ⊗ HC⊗ WK(smp, sms, slh, slw) ` (νx1)((SelectModel|SelectLength.sllcic.CM2INCH).(smbssb, smmssm, ciissl).SelectSki.(sspunu + ssex1).USD2NOK) : PN ⊕ EX(unn+ x1)
StructrualCongruence

` PL ⊗ SL ⊗ HC⊗ WK((νx1)(smp,sms,slh,slw).((SelectModel|SelectLength.sll cic.CM2INCH).(smb ssb,smm ssm,cii ssl).SelectSki.(ssp unu+sse x1).USD2NOK.unn+x1
PN ⊕ EX

R(
(4.4)

Figure 4.3: The example proof.

4.6. SUMMARY 77

<hasException x1>

<hasVariable x1>

]>

At the conceptual level, the above code is equal to the process illustrated
in Figure 4.4. The figure uses the denotation of concepts presented in the pro-
cess upper ontology. Therefore, it can be further translated into DAML-S or
BPEL4WS by the translation framework we proposed before.

����� ����� 	�

�����

���

�������

� �����������

���
��������

 !	���" �� $#

���
��������

�%�&� �
���('���)+*
� ,

���

���
���

�%�&� �
��� ��-�.

�%�
��������

�+/10
")�0�2��

��/��
")�0
2+�

2�)�2
")�0�2��

��. �
")�0�2��

��� 3
")�0�2��

��� ,
")
0�2��

���+/
")
0�2��

���+4
")
0�2��

�����
")�0�2��

��/�4
�52��(0
2+�

��/�/
�52�� 0
2+�

�
� �
�62+� 0�2+�

��. .
�62+� 0�2��

���+0
�62+� 0�2+�

7989:<;=8=> 8 7?8<:9;@8<> 8

7A8A:9;=8=> 87989:<;=8<> 8
7?8<:<;<8<> 8

7A89:<;=8<> 8

7?8A:<;=8A> 87?8<:A;=8<> 8

7?8A:<;=8A> 8

7989:<;=8<> 8
7?8<:9;B8A> 8

7?8<:<;=8A> 8

2�)�)
�62+� 0�2��
7A89:<;=8<> 8

C > D=E+F G D

C > D<E�F G D

C > DAE�F G DC > DAE�F G D

C > D=E�F G D

798<:9;=8=> 8

7A89:<;=8<> 8

����

H&I ����0+�(.
�)
7A89:<;=8<> 8

��J

����K�2���)����

L G MAE�N

L G MAE
O

�P�

��0�� . �
L G MAE

L G MAE

��Q

����K�2���)����

L G M<E
R

L G MAE
O

L G M=E�N

S J
T�U�� . U 4�� �

C > DAE�F G D

Figure 4.4: The illustration of result process for example.

4.6 Summary

This Chapter presents the approach to extract the process description of the
generated composed service from the complete LL proof. In order to do so

78 CHAPTER 4. EXTRACTION OF A PROCESS MODEL FROM PROOF

we need to extend the inference rules in Table 3.1 with terms. We study the
LL inference rules from the viewpoint of giving each rule a concrete compu-
tational interpretation in the context of composite Web services. The updated
inference rules supplied with proof terms enable us to construct the process at
each inference step.

Because LL has deep connections with parallelism and concurrent compu-
tation, it is natural to use LL proof terms to present the process calculi that is
used to model Web services, which has put much concern in concurrency. In
this chapter, we use a π-calculus based process calculus to present the proof
terms. The process calculus is attached to the LL inference rules in the style
of type theory. A complete process presented by the process calculus can be
extracted from the complete proof.

We use the process calculus to present the composite service formally, but
the final result is presented to the users in DAML-S ServiceModel or BPEL4WS
languages. We use both DAML-S and BPEL4WS here because DAML-S lacks
the support for service invocation. Therefore, we use BPEL4WS as the ground-
ing of DAML-S ServiceModel. To enable the translation among the process
calculus, DAML-S and BPEL4WS, we propose an upper ontology that is gen-
eral enough to cover the essential aspects of the different languages, thus the
upper ontology can be used as a mediator for translation.

The composite service that satisfies the customer’s request is generated
only if the theorem prover can find a service with an input that has the exactly
same type as the output of another existing service. This puts too much restric-
tion because different DAML classes for representing the parameter types may
refer to the same concept. In addition, if the type of an output parameter of one
service is the subtype of the type of an input parameter of another service, it
is also safe to transfer data from the output to the input. In the next Chapter,
we will discuss how to apply the Semantic Web information to enable a more
flexible composition of Web services.

Chapter 5

Semantic Web Service Composition

5.1 Introduction

In the previous Chapter, we have introduced a Web service composition ap-
proach based on LL proof. A general idea of such approach is inspired by
the cut rule in LL inference. Since we use LL proposition to refer to the the
classes in DAML+OIL (also called DAML classes) that represent the type of
parameters, the computational meaning of the cut rule is: if an output port of
one service is restricted to the same DAML class as an input port of another
service, the output port and the input port can form a channel pair. A chan-
nel pair represents a means of synchronous interaction between two services.
In the interaction, the information is read from an output port, then the same
information is sent to the input port.

The above method should obey a very restricted constraint that the input
and the output have to be restricted to the same DAML class. Actually, the re-
searches in Object-Oriented programming have provided the support of sub-
class polymorphism, where when a value or instance of class A is expected,
a value or instance of any subclass B of A can also be accepted [15]. As a re-
sult, we can also model subsumption-based semantic inferencing as it has been
done in Object-Oriented programming.

The classes in DAML-S are defined through DAML+OIL language, which
owes to its foundations in RDF Schema, providing a typing mechanism for
Web resource. DAML+OIL enables some measure of semantic inferencing to
be made by an semantic reasoner. Here, we model subsumption-based seman-
tic inferencing as it has been done in Object-Oriented programming. The major
difference between a DAML class and a class in a typical Object-Oriented pro-
gramming language is that DAML classes are meant primarily for data mod-
eling and they contain no methods.

The subsumption inference of DAML+OIL language is possible because
DAML+OIL is an XML binding to a formal Description Logic(DL) model [51].
DLs are a general class of logic designed to model vocabularies and their rela-

79

80 CHAPTER 5. SEMANTIC WEB SERVICE COMPOSITION

tionships. Several DL algorithms have been developed to ensure logical con-
sistency of the model developed by DAML+OIL language and to answer logic
queries including satisfiability, equivalence and subsumption.

In this Chapter, we will introduce the class subsumption into the Web ser-
vice composition system. In general, we will discuss three techniques to solve
such kind of problem.

1. Firstly, we describe the subsumption inference for DAML+OIL language.
Since DAML+OIL corresponds to a fragment of DL, the DL reasoner
can be used to detect the subsumption relationships between each two
DAML class used in describing the parameter types of the Web services;

2. After the subsumption relationships are known, the next problem is how
to present the subsumption by LL so that the results of the semantic rea-
soner can be used in LL proof. We will prove that the subsumption can be
presented as LL implication, thus the Web service composition method
introduced in the last Chapter can also deal with subclass polymorphism;

3. Finally, we will design a concrete interaction protocol between the se-
mantic reasoner and the LL theorem prover. The two parts are imple-
mented separately and used for different purposes. The correctness and
the efficiency for the interaction will be also discussed. This is elaborated
in the next Chapter instead of this Chapter.

The rest of this chapter is organized as follows. Section 5.2 introduce the
basic concepts and languages about Semantic Web. Section 5.3 presents the
relationship between DAML+OIL language and DL. This Section also intro-
duces how subsumption inference is enabled by DL. Section 5.4 introduces
how to present the subsumption relationships by the subtyping rules for LL.
At last, the Chapter is summarized in Section 5.5.

5.2 Semantic Web and Languages

Today’s Web enables people to access documents and services on the Internet.
Because the interface to services is represented in Web pages written in natural
language, today’s methods require human intelligence to understand the Web
pages. The Semantic Web is an extension of the current Web in which informa-
tion is given well-defined meaning, aiming for machine-understandable Web
resources, whose information can be shared and processed both by automated
tools, such as software agents, and by human users. The vision of the Semantic
Web was first introduced by Tim Berners-Lee [20]. An example in [21] illus-
trated how the Semantic Web might be useful. ”Suppose you want to compare
the price and choose flower bulbs that grow best in your living area given zip

5.2. SEMANTIC WEB AND LANGUAGES 81

�����

�����
	

�����

������

������� �����

�����

���������������

Figure 5.1: The layer of data representation standards for the Semantic Web

code, or you want to search online catalogs from different manufactures for
equivalent replacement parts for a Volvo 740. The raw information that may
answer these questions, may indeed be on the Web, but it is not in a machine-
usable form. You still need a person to discern the meaning of the information
and its relevances to your needs”.

The Semantic Web addresses this problem in two ways. First, it will enable
communities to expose their data so that a program does not have to strip
the formatting, pictures and ads from a Web page to guess at the relevant bits
of information. Second, it will allow people to write (generate) files which
explain - to a machine - the relationships between different sets of data. For
example, one will be able to make a ”semantic link” between a database with
a ”zip-code” column and a form with a ”zip” field that they actually mean
the same thing. This will allow machines to follow links and facilitate the
integration of data from many different sources.

To make sure that different users have a common understanding of the
terms, one needs ontologies in which these terms are described, and which
establish a joint terminology between the Semantic Web users. The mean-
ings of the vocabularies are defined explicitly by ontologies. The word ”on-
tology” [46] seems to generate some controversy in the published literatures.
It has a long history in philosophy, in which it refers to the subject of existence.

In the context of knowledge sharing, the term ontology is used to mean a
specification of a conceptualization. That is, an ontology is a description (like
a formal specification of a program) of the concepts and relationships that can
exist for an agent or a community of agents. This definition is consistent with
the usage of ontology as set-of-concept-definitions, but more general. And it
is certainly a different sense of the word than its use in philosophy.

The Semantic Web is designed to be built on layers of enabling standards.
Figure 5.1 shows their relationships. In general, the Semantic Web languages

82 CHAPTER 5. SEMANTIC WEB SERVICE COMPOSITION

include the following standards:

• Uniform Resource Identifiers (URIs) is a fundamental component of cur-
rent Web, which provides the ability to uniquely identify resources as
well as relations among resources. The symbol of a URI includes two
parts: an XML namespace and a vocabulary. XML namespace are used
to distinguish the same vocabularies of different symbols that defined in
different documents.

• eXtensible Markup Language (XML) [26] is a fundamental component
for syntactical interoperability on Web. XML is the universal format for
structured documents and data on the Web. XML itself is not an ontology
language, but XML-Schemas, which define the structure, constraints and
the semantics of XML documents, can to some extent, be used to specify
ontologies.

• The Resource Description Framework (RDF) [65] family of standards lever-
ages URI and XML to allow documents being described in the form of
metadata by means of resources (subjects, available or imaginable enti-
ties), properties (predicates, describing the resources), and statements (the
object, a value assigned to a property in a resource).

• RDF Schema (RDFS) [27] is an extension of RDF, which defines a sim-
ple modeling language on top of RDF. RDFS enables the representation
of class, property and constraint while RDF allows the representation
of instances and facts, thus making it a qualified lightweight ontology
language. While RDF and RDFS are different, they are combined to-
gether to form the basic language for knowledge representation denoted
as RDF(S).

• Other Web based ontology specification languages, such as DAML+OIL
and OWL use the RDF(S) as a starting point and extend it to the more ex-
pressive powered ontology specification languages for the description of
the Semantic Web. The different languages are developed initially by dif-
ferent communities, but the merging of the languages to a universal lan-
guage is undertaken by W3C. The knowledge sources presented by Web
based ontology are openly available and decentralized, typically using
HTTP as an access mechanism.

In the following, we introduce the Semantic Web standards and languages
in greater detail.

OIL(Ontology Inference Layer) [40] is an initiative funded by the European
Union programme for Information Society Technologies as part of the On-
To-Knowledge project. OIL is both a representation and exchange language
for ontologies. The language synthesized work from different communities

5.2. SEMANTIC WEB AND LANGUAGES 83

(modeling primitives from frame-based languages; semantics of the primitive
defined by Description Logic; and XML syntax) to achieve the aim of providing
a general-purpose markup language for the Semantic Web. OIL is also com-
patible with RDF(S) as it is defined as an extension of RDF(S). The language is
defined in a layered approach. The three layers are: Standard OIL (mainstream
modeling primitives usually found in ontology language), Instance OIL (in-
cludes individual into the ontology) and Heavy OIL (not yet defined, but aims
at additional reasoning capabilities). OIL provides a predefined set of axioms
(like disjoint class, covering etc.) but does not allow defining arbitrary axioms.

DAML+OIL [54,2] is a product of efforts in merging two language - DAML
(DARPA Agent Modeling Language) and OIL. Usually we also simply call it
as DAML language. DAML+OIL is a language based on RDF(S) with richer
modeling primitives. In general, what DAML+OIL adds to RDF Schema is
the additional ways to constrain the allowed values of properties, and what
properties a class may have. The differences between OIL and DAML+OIL
are subtle, as the same effect can be achieved by using different construct of
the two languages (For instance, DAML+OIL has no direct equivalent to OIL’s
”covered” axiom, however, the same effect can be achieved using a combina-
tion of ”unionOf” and ”subClass”) . In addition, DAML+OIL has better com-
patibility with RDF(S) (for instance, OIL has explicit ”OIL” instances, while
DAML+OIL relies on RDF for instance). DAML+OIL is also a proposed W3C
recommendation for semantic markup language for web resources.

OWL (Web Ontology Language). OWL [34] is a semantic markup language
for publishing and sharing ontologies on the web. OWL is the latest W3C pro-
posed recommendation for that purpose. The language incorporates learning
from the design and application of DAML+OIL. OWL has three increasingly-
expressive sublanguages, namely, OWL Lite (Classification hierarchy and sim-
ple constraints), OWL DL (adding class axioms, Boolean combinations of class
expression and arbitrary cardinality) and OWL Full (Permits also meta-modeling
facilities in RDF(S)). Ontology developers should consider which sublanguage
best suits their needs. The choice between OWL Lite and OWL DL depends
on the extent to which users require the more-expressive constructs provided
by OWL DL. The choice between OWL DL and OWL Full mainly depends on
to which extend the users require the meta-modeling facilities of RDF Schema.
The reason why OWL DL contains the full vocabulary but restricts how it may
be used is to provide logical inference engines with certain properties desirable
for optimization.

Currently, both DAML+OIL and OWL are W3C recommendations for Se-
mantic Web markup languages. Although it seems that the the trend is OWL
will overwhelm DAML+OIL and become a universal language, DAML+OIL
and OWL is very similar in syntax and they can replace each other in most
cases. In this chapter, we will only discuss the semantic reasoning for DAML+OIL

84 CHAPTER 5. SEMANTIC WEB SERVICE COMPOSITION

because we built the Web service composition system by DAML+OIL language
from the beginning. Because both DAML+OIL and OWL use DLs as the logical
foundation, the semantic reasoning techniques for DAML+OIL could apply to
OWL as well [52].

5.3 Semantic Reasoning for DAML+OIL

DAML+OIL is designed to describe the structure of a domain. It takes an object
oriented approach that describes the structure in terms of classes and proper-
ties. An ontology consists of a set of axioms that assert, e.g., subsumption
relationships between classes and properties. The subsumption relationships
are defined through the property rdfs:subClassOf and rdfs:subPropertyOf.
From a formal point of view, DAML+OIL can be seen to be equivalent to an ex-
pressive Description Logic(DL), with a DAML+OIL ontology corresponding to
a DL terminology. As in a DL, DAML+OIL classes can be names (URIs) or ex-
pressions, and a variety of constructors are provided for building class expres-
sions. The expressive power of the language is determined by the class(and
property) constructors supported, and by the kinds of axiom supported.

Description Logics(DLs), a family of logical formalisms for the representa-
tion of and reasoning about conceptual knowledge, are of crucial importance
to the development of Semantic Web. Their role is to provide formal underpin-
nings and automated reasoning services for Semantic Web ontology languages
such as OIL, DAML+OIL and OWL.

DLs include several fragments, each of which provides different expressive
power. In general, DAML+OIL equals to the SHIQ(D) fragment of DL. In the
leftmost three columns of Table 5.1, we summarize the terms in the fragment
of DLs and their counterparts in DAML+OIL.

An important feature of DAML+OIL is that, besides “abstract” classes de-
fined by the ontology, one can also use XML Schema Datatype (e.g., so called
primitive datatype such as string, decimal or float, as well as more complex
derived datatypes such as integer sub-ranges) as a special class. The domain
of XML Schema Datatype is represented by ∆D. This feature is enabled by (D)
fragment of DLs. The reasoning issue of datatypes is introduced in [96].

The interpretations of the DLs terms is the basis for the reasoning of DLs.
An interpretation I =(∆I , ·I) consists of a set ∆

I , presenting the set of all
instances in the domain, and a function ·I , which maps every class to a subset
of ∆

I and every property to a setset of ∆
I × ∆

I . For example, the property
hasBook takes an object class Person and a subject class Book. Here, a class C
is interpreted by a set CI ⊆ DI if all instances of class C are also instances of
class D. The interpretations of all term in SHIQ(D) are summarized in the
rightmost column of Table 5.1.

We can define the reasoning tasks for DAML+OIL in term of its interpreta-

5.3. SEMANTIC REASONING FOR DAML+OIL 85

DL Syntax DAML+OIL Syntax Example
C daml:Class CI ⊆ ∆

I

P daml:Property PI ⊆ ∆
I ×∆

I

> daml:Thing ∆
I

⊥ daml:Nothing ∅
C1 u C2 daml:intersectionOf CI

1 ∩ CI
2

C1 t C2 daml:disjointUnionOf CI
1 ∪ CI

2
¬C daml:complementOf ∆

I\CI

C1 v C2 daml:subClassOf CI
1 ⊆ CI

2
C1 ≡ C2 daml:sameClassAs CI

1 = CI
2

∀P.C daml:toClass {x1 | ∀x2.〈x1, x2〉 ∈ PI → x2 ∈ CI}

S

∃P.C daml:hasClass {x1 | ∃x2.〈x1, x2〉 ∈ PI ∧ x2 ∈ CI}
P1 v P2 daml:subPropertyOf PI

1 ⊆ PI
2H P1 ≡ P2 daml:samePropertyOf PI

1 = PI
2

I P− daml:inverseOf {〈x1 , x2〉 ∈ PI | 〈x2, x1〉 ∈ PI}
≤ nP daml:maxCardinality

{
x1

∣
∣ |{x2 | 〈x1, x2〉 ∈ PI}| ≤ n

}

≥ nP daml:minCardinality
{

x1
∣
∣ |{x2 | 〈x1, x2〉 ∈ PI}| ≥ n

}
N

= nP daml:cardinality
{

x1
∣
∣ |{x2 | 〈x1, x2〉 ∈ PI}| = n

}

≤ n.P.C daml:maxCardinalityQ
{

x1
∣
∣ |{x2 | 〈x1 , x2〉 ∈ PI ∧ x2 ∈ CI}| ≤ n

}

≥ n.P.C daml:minCardinalityQ
{

x1
∣
∣ |{x2 | 〈x1 , x2〉 ∈ PI ∧ x2 ∈ CI}| ≥ n

}
Q

= n.P.C daml:cardinalityQ
{

x1
∣
∣ |{x2 | 〈x1 , x2〉 ∈ PI ∧ x2 ∈ CI}| = n

}

D daml:Datatype DI ⊆ ∆D
I

T daml:datatypeProperty TI ⊆ ∆
I × ∆D

I

∃T.d daml:hasClass + XMLS Type {x1 | ∃x2.〈x1, x2〉 ∈ TI ∧ x2 ∈ DI}
(D)

∀T.d daml:toClass + XMLS Type {x1 | ∀x2.〈x1, x2〉 ∈ TI → x2 ∈ DI}

Table 5.1: The correspondence of DL and DAML+OIL terms.

tions. In summary, the reasoning tasks for the DAML+OIL classes include the
following four categories:

Satisfiability: A class C is satisfiable if there exists an interpretation I so that
CI , ∅. Such an interpretation I is called a model of C.

Subsumption: A class C is subsumed by a class C′ if CI ⊆ C′I . In this case
we write I |= C v C ′.

Equivalence: Two class C and C′ are equivalent if CI = C′I . In this case, we
wirte I |= C ≡ C ′. C and C′ are equivalent iff C is subsumed by C′ and
C′ is subsumed by C.

Disjointness: Two classes C and C′ are disjoint if CI ∩ C′I = ∅.

One can reduce the above four tasks to the unsatisfiability problem of classes.
For classes C1 and C2, we have:

86 CHAPTER 5. SEMANTIC WEB SERVICE COMPOSITION

1. C1 is satisfiable iff ¬C1 is unsatisfiable;

2. C1 is subsumed by C2 iff C1 u ¬C2 is unsatisfiable;

3. C1 and C2 are equivalent iff both C1 u¬C2 and ¬C1 uC2 are unsatisfiable;

4. C1 and C2 are disjoint iff C1 u C2 is unsatisfiable.

The unsatisfiability of class descriptions can be proven by so-called tableau-
based algorithms. The basic idea of the algorithm is to decide the satisfiability
of the classes with respect to the property hierarchies and transitive proper-
ties. This procedure, which is described in more detail in [53], incrementally
builds the model by looking at the formula, by decomposing it in a top/down
fashion. Since SHIQ(D) has a tree model property, we can assume that this
model has the form of a finite tree. In the tree representing this model, a node x
corresponds to an instance, and we label each node with the set of classes that
the node is supposed to be an instance of. Similary, edges represent property-
successor relationships, and an edge between x and y is labelled with the prop-
erties supposed to connect x and y. The procedure exhaustively looks at all
possibilities, so that it can eventually prove that no model could be found for
unsatisfiable formulas. The unsatisfiable formula is called a clash, i.e., an ob-
vious inconsistency, such as {C,¬C}.

An efficient algorithm for SHIQ(D) is implemented in the FaCT system [50]
and has been proven to be PSPACE complete. The FaCT system is programmed
by Lisp language and has a CORBA interface to communicate with other sys-
tems. FaCT has been used for many DLs reasoning tasks, in particular in
OilEd [16] to inference the OIL language. The connection among DLs, SHIQ(D),
FaCT and OIL is illustrated in Figure 5.2, which is revised from the original
version in [78]. In summary, FaCT is an inference engine for SHIQ(D), a
fragment of DLs. OIL is implemented as the logical programming language
for FaCT. DAML+OIL is the XML syntax for OIL so it can be used as a Web
based ontology language.

The Web service composition system in this thesis requires to know the sub-
sumption relationships between each two classes or two properties. This task
can be committed by DL reasoners. For example, in the composition system,
the Web services are described by DAML+OIL language, so FaCT can be used
to detect the hidden subsumption relationships between DAML classes. From
the application prespective, in term of DAML+OIL constructors, the hidden
subsumption relationships exist in the following three occasions.

The transitive subsumption relationships: If class A is a subclass of class B
and class B is a subclass of class C, then class A is a subclass of class C.
Such rule also applies to the subproperty relationships.

5.3. SEMANTIC REASONING FOR DAML+OIL 87

���������
	 �
��	 ����������	 ���

��������� �!

"$#&%�'

()� �

*,+.- /�02143�5 6�786:9<;=6?>:@�A=B
14>=6DC:E25 F:@G5 A�H8I:A<J�5 C?6

�.K�LM�
N (O� �

1$P.Q8ISR�TU- I�5 6V7�HXW.Q8I
6:FS>=CS5 BG5 C?7D@25 A�H�BYA�E
T�- I

Z 7�HSJ[9S7[J<>

T�- IU5 6V7 Z A[J
5 C?7 Z
FSEYA[J�E\7�]8]85 H:J Z 7�H=J�9:7[J<>
@^A_F[E^A[J�EY7�]a`�7<b�c

`�7�b&cO5 6V7�H
5]�F Z >�]U>[H:@^7=@25 A�HdA:B
5 HDBY>[Ee>�HSC?>U>�H=J
5 H=>�BYA�E

*,+.- /V021f3

Figure 5.2: The connections among DLs’ components, adapted from [78]

Part of the union: If class A is defined as a union of multiple classes of which
class B is a member, then class B or any subclass of class B are subclass of
class A.

Narrower inclusive datatype: For two classes A and B that are both defined
as the restrictions of datatype properties, if the restriction to A is nar-
rower than that to B, A is a subclass of B. For example, the class Adult
could be asserted to be equivalent to Person u ∃age.over18, which states
the adults are person whose age is over 18 years old. Thus the class
OldPeople, which is defined as person whose age is over 60 years, is a
subclass of Adult.

All the above three occasions can be proven by tableau-based algorithms in
FaCT system.

After the detection of the subsumption relationship for each two DAML
classes or properties using the method included in this Section, the next step
is to use those subsumption relationships in the LL theorem prover so that the
Web service composition system would deal with the subsumption polymor-
phism just as what has been done in Object-Oriented programming. The next
Section describe the subtyping methods in LL.

88 CHAPTER 5. SEMANTIC WEB SERVICE COMPOSITION

5.4 Subtyping Rules for LL

Under the condition that the subsumption relationships between the DAML
classes and properties are known, the problem is how to use the subsumption
relationships in the LL theorem prover so that the Web Service composition
process takes the Semantic Web information into account inside the proof. We
have developed a method to integrete the subsumption relationships to the
inference rules introduced in the previous Chapter. This method uses the LL
propositions to represent the specific DAML classes and properties, and the
subsumption relationships are represented in the form of LL implication(. In
this Section, we will discuss the subtyping rules in term of LL formulae.

We just recall some terms in LL. In the intuitionistic LL, a sequent is di-
vided into two parts by ` symbol. We call the propositions at the left side as
“resources”, and the propositions at the right side are called “goals”. A LL
sequent can be explained as: a set of goals can be achieved by consuming a set
of resources. In the following two cases, the resources or goals in a LL sequent
can be replaced:

1. given a goal x of type T, it is safe to replace x by another goal y of type S,
as long as it holds that T is a subtype of S;

2. given a resource x of type S, it is safe to replace x by another resource y
of type T, as long as it holds that T is a subtype of S.

Here, type T is a subtype of S iff S subsumes T. More precisely, the follow-
ing rules capture basic facts of the subtype relations. These rules are defined
as subtype behavior presented by Markus Lumpe [69]. In the rules, S <: T
denotes that proposition S is a subtype of proposition T.

The subtype relations consist of two structural rules stating that it is relex-
ive and transitive:

Subtyping reflexivity:
` T <: T

Subtyping transitivity:

` T <: S ` S <: U
` T <: U

The subtyping rules state that the replacement of either resource or goal
propositions given the subtyping relations:

Resource subtyping:
U ` S ` T <: U

T ` S

Goal subtyping:
T ` U ` U <: S

T ` S

5.4. SUBTYPING RULES FOR LL 89

In addition, two propositions are of the same type iff they subsume each
other:

S ≡ T a` (S <: T) ∧ (T <: S)

The readers may have noticed that the subtyping operator <: has same in-
ference behaviour as the LL implication(. Actually, if we replace the subtyp-
ing operator by the LL implication, the above subtyping rules can be proven
by LL inference rules.

Subtyping reflexivity can be proven directly from “Identity” rule:

T ` T id

` T (T R (

Subtyping transitivity can be proven by “cut” rule in LL:

` T (S
T ` S

Shi f t ` S (U
S ` U

Shi f t

T ` U cut

` T (U R (

The resource and goal subtyping rules can be proven by “cut” as well:

` T (U
T ` U

shi f t
U ` S

ax

T ` S cut

T ` U
ax ` U (S

U ` S
shi f t

T ` S cut

Type equivalence is defined as LL theorem:

S ≡ T a` (S (T) ⊗ (T (S)

According to the above proof, the subtyping rules are defined as certain
inference figures in LL. In order to emphasize that new inference rules are used
for typing purposes, but not for describing the Web service computation like
what we introduced in the previous Chapter, we further write (< to denote
the subtype relations.

Considering the process extraction, we associate the proof terms to the in-
ference rules. Thus the “Goal subtyping” and “Resource subtyping” rules are
rewritten as follows:

Σ ` P : T(t) Γ ` T (< S
Σ, Γ ` P : S(t)

Goal subtyping

90 CHAPTER 5. SEMANTIC WEB SERVICE COMPOSITION

Σ, S(s) ` G Γ ` T (< S
Σ, Γ , T(s) ` G

Resource subtyping

The subtyping rules can be applied either to functionality (parameters and
states)or non-functional attributes. We use the following two examples to il-
lustrate the basic idea of subtype relations.

First, we show a simple case of how two services with different types of
parameters are composed. Let us assume that the output of the skis recom-
mendation service is the length of skis measured by centermeter. While the
input of a measurement converting service is a general centermeter unit that
can be used to measure everything.

<daml:Class rdf:about="&Onto#SkiLengthInCM">

<rdfs:subClassOf>

<daml:Class rdf:about="&Onto#LengthInCM"/>

</rdfs:subClassOf>

</daml:Class>

Because the DAML Class &onto#SkiLengthInCM is a subclass of the DAML
Class &onto#LengthInCM, it is safe to transfer data from the more specific out-
put to the more general input. We can either apply the “Goal subtyping” rule
to replace the output by its superclass, or apply the “Resource subtyping” rule
to replace the input by its subclass.

Another example considers the non-functional qualitative fact about ser-
vice location. We assume that a service requester specifies that the composite
service is located in Europe, which means all atomic services included in the
composite service should be in Europe. If an atomic service is located in Nor-
way and since Norway is an European country, the DAML class definition of
Norway is a subclass of the DAML class definition of Europe. Because the
qualitative fact is presented as a LL goal proposition, we can us the goal sub-
typing to replace Norway with Europe in the service composition process us-
ing LL theorem prover. Intuitively, if the user requires a service that is located
within Europe, the service located within Norway meets such requirement.

5.5 Summary

In this Chapter, we have elaborated the method to introduce subsumption rea-
soning to the Web service composition system. Because the building blocks
of Web services, including functionalities and non-functional attributes are de-
scribed by DAML+OIL based Semantic Web language, we can use semantic
reasoner to detect the subtyping relationships between the DAML classes and
properties. We further prove that the subtyping relatiioships can be repre-
sented by LL implication, thus they can be asserted into the LL theorem prover

5.5. SUMMARY 91

as axioms. In case all the subtyping relations can be detected by the semantic
reasoner, the Web service composition system should deal with the subtypes
during the composition process.

A limitation of the method in this Chapter is that it can only handle the
subsumption relationships from one concept to another concept. Actually, the
“union”(t) in DL can be mapped to LL “multiplicative conjunction”(⊗), and
the “disjunction” (u) can be mapped to LL “additive disjunction”(⊕) by fol-
lowing some restrictions. For example, we assume the type of an output for a
service is a union of two classes C and D, and the other service has two con-
junct inputs that have types as C and D respectively. It should be possible to
decompose the output into two parts, thus they can be sent to two separate
inputs. Such problem has been partly discussed in [23]. But we will not go
deeply because of the complexity of such method.

We should emphasize that the semantic reasoner can only detect the sub-
sumption relationships that can be reasoned from the applied fragment of DLs.
In the research area of ontology mapping, information retrieval and statistic
methods are used to find the similarity between two concepts, including the
subsumptions. A survey of such kind of methods is reported in [59]. However,
such methods can not ensure the completeness and correctness of the result, so
we do not consider them in this thesis.

92 CHAPTER 5. SEMANTIC WEB SERVICE COMPOSITION

Chapter 6

A Multi-agent Architecture

6.1 Introduction

In this Chapter, we will present a system architecture for Web service composi-
tion based on a multi-agent platform, AGORA. We use software agents to rep-
resent the Web services’ providers, requesters and other facilitators due to the
consideration of the dynamic nature of Web and Web services. In contrary to
the centrally controlled systems, the distributed systems, such as multi-agent
systems provide more scalability and flexibility to the Web service applica-
tions. In summary, the increasing demand of distribution for Web service en-
vironment raises the following new challenges:

• The number of Web services increases rapidly, which makes a huge repos-
itory. But little consideration has been reported on scalability for those
kinds of system currently. It is common to have a centralized mainte-
nance of Web services repository/directory/catalog which restrict scala-
bility.

• Both the location and the programming interface of the Web services can
be changed. For a central controlled system, the service composer needs
to know all the changes about the existing services by checking them
frequently. That’s a big hurdle on performance.

• The search and retrieval of components is done only in one way. It means
that a system looks for Web services but not Web services look for a sys-
tem where they can be applied.

A practical way to solve those problems is applying agent system into au-
tomated programming. The agent system is composed of service requesters,
service providers and other facilitators, such as theorem prover, semantic rea-
soner, translator, etc. The provider, acting as the representative of a Web ser-
vice, advertises the service’s specification, e.g. functionalities and non-functional

93

94 CHAPTER 6. A MULTI-AGENT ARCHITECTURE

attributes, to the the broker agents. The requester represents the one who
needs the composite service. It gives the requirement specification to the bro-
ker agents too. A broker agent is a synthesizer who builds a service that meets
the requester’s requirement by the composition of a set of providers’ services.
During the composition process, the broker agent interacts with other facili-
tator agents for the specific functions, such as semantic reasoning and multi-
criteria negotiation.

The advantages of this architecture are:

• The system is easily scalable. No central repository is required.

• Decentralized control and asynchronous processing.

• Both providers and requesters can be active in performing mutual search.
The providers are autonomous which can inform any change on compo-
nents to the broker agents.

• Easily to integrate into a Web service framework, for example, Apache
and .NET.

• Non-traditional software engineering methods like, service advertising
and marketing, can be embedded to the service composition system,
since service providers are proactive.

In this Chapter we propose the agent architecture based on AGORA infras-
tructure [74]. In Section 6.2 we introduce the basic concepts of AGORA system.
Next we present a system architecture for Web service composition based on
AGORA system. The system architecture includes both the agent model and
the interaction model. Finally, we present conclusions and future work.

6.2 The AGORA Multi-agent Platform

6.2.1 General Description

The AGORA system is a multi-agent infrastructure which provides support
for implementation of software agents and agent-based marketplaces. The
concept of cooperative node is an infrastructure element where agents par-
ticipating in a cooperative activity can register themselves and get support for
communication, coordination and negotiation among the agents. The basics of
the AGORA system architecture are depicted in Figure 6.1.

It consists of a set of interconnected components. There are basically two
component types: agents and agora nodes. Agora nodes are meeting places
or facilitators that provide services and a common context for agents. Agents
are divided into registered agents (external) and default agents (internal). The

6.2. THE AGORA MULTI-AGENT PLATFORM 95

���������

	 ��
��

�
�������

	 ��
��

���������

	 ��
��

��� 	 �������

��� 	 �������

��� 	 �������

�
��������� �������

�
����� ����������

�
��� 	 �

������� ����������

����� 	 �

������� ����������

�
��� 	 �

������� ��� ������

����� 	 �

������� ����������

����� 	 �

! ������
�� 	 �������

���������"� �����#�

! ������
�� 	 �������

���������"� �����$�

! �#����
�� 	 �����#�

Figure 6.1: Basic AGORA system architecture.

registered agents are participants at the agora nodes who represent the service
providers and service requesters. The default agents are attached to agora
nodes to perform specific tasks, for example, the coordinator, the negotiator
and the manager.

The idea is that the registered agents with specific goals or interests receive
services and information through agora nodes. An registered agent can regis-
ter itself at an agora node by announcing its name and general properties. The
properties might consist of goals, tasks of interest or tasks it can perform. The
agora node collects information about the registered agents and helps them to
fulfill their tasks and goals. Some functionalities of the agora nodes are imple-
mented through their default agents.

An agent can be registered at several agora nodes, and may have different
goals and tasks registered in each of them. Agora nodes associate agents with
roles according to their registered goals and tasks. The role of an agent may be
predefined or established dynamically after registration.

6.2.2 Agent

The structure of a single agent, either a default agent or a registered agent is
illustrated in Figure 6.2. An agent uses the Message Proxy and the Log System
to interact with the outside world. The Message Proxy allows agents commu-
nicate in Agent Communication Language, which is compliant with both FIPA
ACL [3] and KQML [41].

The Log System is the interaction channel between the agent and its owner,
normally a human user. First, the user is able to monitor the executing status
of an agent through the Log System. This information can be presented either
through a GUI log window or stored as a log file. The second function of the

96 CHAPTER 6. A MULTI-AGENT ARCHITECTURE

���������	�
�

�
� �����

��� �����	� �
�����
� �

���
�

������� � �

!�� �����
� �
� � �

"#� $
�	�
%&�
����� � �����	�

'
����()� �	*
���,+ �
���

Figure 6.2: An agent architecture.

Log System is that the agent should be able to get instructions from the user at
runtime. This is important for e-market applications because, in many cases,
the final decision is made by the user and not by the software agent.

We use a Prolog-based presentation for messages, facts and rules in the
Knowledge Base, implemented using the XProlog system [120]. In order to
integrate the FIPA messages with the Knowledge Base, a Compiler between
agent communication language and Prolog clauses is implemented. Currently,
the compiler just translates seven FIPA message elements that are important
for the decision making process: performative, ontology, sender, receiver, con-
tent, reply-with and in-reply-to. The last two are used to uniquely identify
a message. This set of elements can be extended as required by the specific
application.

The Planning Unit decides the agent’s next action by a set of explicitly de-
fined rules. In Agora, the plan is specified in a XML-based scripting language.
Each step in the plan has an action to be performed and post-conditions. The
action refers to an outgoing FIPA message or a method (function) written in
Java or Prolog. Post-conditions are described as a reaction of the agent to a
communicative act received from another agent.

6.2.3 Agora node

The Agora node is a cooperative node which facilitates communication, coor-
dination and negotiation between agents. As shown in Figure 6.1, the regis-
tered agents connect to the agora nodes and exchange information. Basic in-
formation about the registered agents is stored in individual agent information
repository. It contains:

Identity: name and address of the agent.

6.2. THE AGORA MULTI-AGENT PLATFORM 97

Goals: the problem to be solved or supported by the agent.

Beliefs, desires and intentions (BDI): agents are rational and have the ability
to reason about the information they are working on.

Tasks: those an agent can perform and those an agent is interested in.

Friend agents: the name of agent who have connection with this agent.

This information makes it possible for the agora node to provide the ser-
vices expected by the registered agents. The basic goal is to matchmaker agents
to each other, so that they can cooperate and accomplish their goals in a coop-
erating manner.

Agora nodes and agents have some similar properties, and agora nodes
may have information about itself (self-information) like tasks, goals, beliefs
and so on. This may include:

• Organizational model of participating agents.

• Protocols for communication (set of performatives).

• A set of default agents (at least one coordination or negotiation agent).

• Information about current activities, both their own and those belonging
to other registered agents.

• List of registered individual agents.

An agora node contains several default agents, including manager, nego-
tiator and coordinator. A standard manager implements general agora node
functions, such as matchmaking and registration. However, functionality of
the manager can be modified by user via overriding the standard implemen-
tation. In particular, the manager can perform decision making procedure,
fuzzy matchmaking, knowledge base and ontology managing etc. Complexity
of the manager agent can be different for different applications, however, basic
matchmaking functionality is provided by default in all managers. The default
matchmaker can be overridden in order to support more advance functional-
ity, such as:

• Matchmaking using ontology and semantic relations.

• Event handling.

• Decision making.

• Processing queries about registered activities, ontology used and other
general information

98 CHAPTER 6. A MULTI-AGENT ARCHITECTURE

• Handling agent registration/unregistration protocols

• Pro-active reasoning with available knowledge

• History maintenance and analysis

Negotiator manages the negotiation process. Negotiation is initiated in
order to achieve an agreement between two or more parties. The negotiator
agent acts as a broker in negotiation, and receives startup messages from the
manager when activities require negotiation. The negotiator decides on a spe-
cific negotiation protocol, and the agents must be able to follow its instructions.
One widely used negotiation protocol is the Contract Net Protocol [112], which
has been implemented in AGORA system as a default negotiation protocol.
The current AGORA version offers basic infrastructure for protocol specifica-
tions. In specific scenarios, decisions must be taken on what kind of attributes
that should be negotiated.

Making the involved agents in a system interact in a coherent way is the
responsibility of the coordinator. The coordinator is an essential part when
applications are realized in open environments. However, this part is not em-
phasized in the current version of AGORA.

6.3 The Agent Architecture

In this Section, we propose a general architecture of the system for agent-based
Web service composition. The main approach is as follows. We use software
agents for representing the service providers, service requesters and facilita-
tors. These agents cooperate in processing requests from the service requesters.
The problem solving process includes the following five stages. First, the ser-
vice manager agent collects the service requests and service advertisements
from the service requester agents and service provider agents respectively.
Second, a matchmaker agent discovers the matching offers for each request.
Third, besides the exact matching results, the requests can be also fulfilled by
the composition of existing services. We use LL theorem proving to fulfill each
request by the composition of existing services. During the proving, the ser-
vice composer agents interact with the semantic reasoner agents to get the sub-
sumption relationship information. Fourth, if more than one solution is found,
multi-criteria negotiation is used to select the “best” solution. Fifth, the unique
selected composition service is used for invocation.

We present the proposed architecture in three steps. In the first step, we
present an agent model that describes the agent roles who participates in the
composition process and their functionalities. The second step is to elaborate
an interaction model stating the interaction protocol among the participant
agents. In the final step, we discuss the usage of the facilitator agents and

6.3. THE AGENT ARCHITECTURE 99

presents a candidate solution to integrate these agents into the Web service
composition system.

6.3.1 The Agent Model for Service Composition

To create an AGORA-based agent model we should go through the following
steps:

• participants of the cooperative activities should be defined (in our prob-
lem they are users and service providers)

• nodes where the cooperative activities are performed should be defined
(in our problem such nodes are, for example, service providers shops,
user agents coordination node and facilitators coordination node)

• participants are mapped into agents

• cooperative nodes are mapped into agora nodes

• functionalities of corresponding agora managers, coordinators and nego-
tiators are defined/implemented

Based on the above mentioned approach an AGORA-based architecture for
Web service composition is presented in Figure 6.3.

����� ��� �	��
��
���	� ���
����� � ��� ��� �

������� ��� ���
 � ����!
����� � �

� ��� ��� �	�"
��$# ��%
�
�"� � ��� ��� �

� ��� ��� �	�"
��$# ��%
�
�"� � ��� ��� �

& ���"� ' � � �"�(� � �)����� � �
� ��� �

����� ��� �	��*���+��,����� ���
��� ���	�

& ���"� ' � � ���(� � �
�
� ����� �

�-�.� �"� �	��*���+��,����� ���
��� �.���

� �.� �"� ���0/$� � ��� � ���
�
� ���	�

� �.� �"� ���0/$� � ��� � ���
�
� ���	�

& �"�"� ' � � ���(� � �
�
� ���	� �

� �.� �"� ���0/$� � ��� � ���
�
� ���	�

1 1 1

1 1 1

1 1 1

1 1 1
1 1 1

������� ��� ���
 � ����!
�
�"� � ��� ��� �

Figure 6.3: An architecture for Web services provision.

A Web service composition system includes the following participants:

100 CHAPTER 6. A MULTI-AGENT ARCHITECTURE

Service Provider Agent: The Service Provider Agents propose Web services
to users and other agents. Capability of the agents are specified by the
Web services the agents provide, described by the DAML-S ServicePro-
file.

Service Requester Agent: The Service Requester Agents consume informa-
tion or services offered by Service Providers Agents. The service re-
questers are willing to pay (or provide some information) for getting the
wanted information or services. We present the request of a service re-
quester as an offer. The offer is also written in DAML-S ServiceProfile.

Service-Shop Agora Node: The Service Provider Agents register their capa-
bilities at specific Service-Shop Agora Nodes according to their service
domains. For example, agents providing services for measurement con-
verting may register themselves and their services at Service-Shop Agora
nodes devoted to that domain. Some agora nodes may represent also
coalitions of service providers.

Service-Center Agora Node: The Service-Center Agora Node represents co-
operative node where service provision planning is performed. Service
Requester Agents register themselves at this agora node with required
service tasks and Service-Shop Agora Nodes register here with their pro-
vided services. The manager of the Service-Center Agora Node may ap-
ply registration protocol to each requester agent in order to create a re-
quester’s profile (the information that the requester is willing to disclose
to a service provider) and requester’s task description. Another of the
manager’s functions is to create a composition of available services for
satisfying each requester’s task. The resulting service provision plan will
contain the matching or composition of services registered at the Service-
Center Agora Node.

Customer-Task Agora Node: When the plan is ready the coordinator of the
Service-Center Agora Node creates a new Customer-Task Agora Node
where coordinator of the Customer-Task Agora Node employs the ser-
vice provision plan as a coordinating activity. The coordinator agent
sends information to all registered Service-Shops Agora Nodes about re-
quested services. The service providers registered at the Service-Shop
Agora Nodes may contact the Service Requester Agent for marketing
their services and the Service Requester Agent may decide to register
at corresponding Service-Shop Agora Node for the selection of a partic-
ular service provider. Finally, only the selected Service Provider Agent
register themselves to the Customer-Task Agora Node. These registered
agents may provide the results of the invocation of their services to fulfill
the requirement from the Service Requester Agent.

6.3. THE AGENT ARCHITECTURE 101

Facilitating Agora Node: During the planning process, the manager of the
Service-Center Agora Node may require extensional capabilities to deal
with the problems, such as theorem proving, semantic reasoning and lan-
guage translating, etc. One Facilitating Agora Node is a collection of the
agents who provide a specific facilitating service. For example, the agents
in semantic reasoning agora node may support the reasoning on different
fragment of DLs. The ability to use Facilitating Agora Nodes provides
flexibility to the architecture where a new capability that is required can
be registered as a facilitating agent at a specific Facilitating Agora Node.

After the participant agents and agora nodes have been defined, the next
step is to design the interaction among the participants.

6.3.2 The Interaction Model

Ongoing conversations between agents often fall into typical patterns. In such
cases, certain message sequences are expected, and, at any point in the conver-
sation, some predefined messages are expected to be received. These typical
patterns of message exchange are called interaction models. The term interac-
tion model is a synonym for the term interaction protocol used in FIPA spec-
ification [6]. A designer of agent systems has the responsibility to make the
agents sufficiently being aware of the meanings of the messages and the goals,
beliefs and other mental attitudes the agent possesses, and that the agent’s
planning process causes such interaction models to arise spontaneously from
the agents’ choices. In other words, at any point, the agent should know what
is its next step according to the message it receives from other agents. In the
AGORA system, we use a reactive model to direct the agent following a given
interaction model, so we could develop as many interaction models for the
agents in agora nodes by storing them in different plan files. In general, the in-
teraction model is a pragmatic solution for agent conversation, so that an agent
can engage in meaningful conversation with other agents, simply by following
the interaction model.

The interaction model is formally represented via preconditions and ac-
tions. Each precondition is defined by the performatives in the interaction
model. We use the FIPA (The Foundation for Intelligent Physical Agents) [3]
communicative acts for interoperability with other FIPA compliant agent sys-
tems. Each performative has unique meaning in the context of service compo-
sition ontology (Table 6.1).

Figure 6.4 presents the proposed interaction model in Agent UML notation
as follows.

1. The Service Provider Agents register their capabilities to a Service Shop
Agora. The Service Shop Agora then tells the registration information to
the Service Center Agora.

102 CHAPTER 6. A MULTI-AGENT ARCHITECTURE

2. The Service Requester Agents register their offers to the Service Center
Agora.

3. The manager of Service Center Agora starts the matching and compo-
sition process. For each offer, three alternative results can be returned
according to the available services and offers:

• If the offer can be satisfied by a single registered capability, both
the Service Requester Agent who submits the offer and the Service
Provider Agent whose capability is matched are informed.

• If the offer can be satisfied based on the registered capabilities, both
the Service Requester Agent and the Service Provider Agents whose
capabilities are candidate solutions are informed.

• If no solution is found, the process is failed.

4. After the Service Requester Agent and Service Provider Agents are get
informed, they will register at the Service Customer Agora and submit
their preferences.

5. The Service Customer Agora holds a negotiation and the “best” offer will
be selected. The negotiation process is a coalition formation task which
has been discussed in many papers. In particular, a virtual enterprise
formation method based on AGORA has been introduced in [100]. This
method select the partners based on their costs, availabilities and skills
providing the candidate partners are known. This method can be also
used in composite service selection.

6.3.3 Facilitating Agora Nodes

We use the facilitating agoras to improve the scalability and flexibility of the
service composition system. A system architecture is illustrated in Figure 6.5.
In general, a logic-based Semantic Web service synthesis system requires the
following components:

Translator Agents: translate between an external presentation of Web service
and the internal logical presentation. In our system, DAML-S profile is
used externally for presentation of semantic web service specification,
while LL axioms are used internally for planning and composition. The
process model is internally presented by a process calculus. The calculus
can be translated either into DAML-S or BPEL4WS.

Matchmaker Agents: allow service requesters to upload their service requests,
and the matchmaker agent determines the connectivity of the require-
ments with the registered services in its repository. There are quite a lot

6.3. THE AGENT ARCHITECTURE 103

��������� 	
�
� ����
����������

��������� 	
�
� ������� �����

����� �! #"
$�%'&)(�%+*-,

.
/ 0-132�4�5

�76��98;:#<��9��= > ��?
�@���:A<��9��=

B�C�D�E F�G�H I

1 J�/ K L�4�M

N OQP�R�S�T

U�,WV
X *Y� ,+Z

[Y�!X \

] 432] 2
^QM

.

>
��
���9_`���
:A<��9��=

U�,WV
X *Y� ,+Z
/ 0Q132
4�5

/ 0-132�4�5
] 4 2] 2
^QM

B C�D�E F G�H I
J�a-aQM]-b3c�] 432] 2
^QJ�K

d�e�f3e
g'h3i�j d3k j k�lYm�n

.
o L
M�4 p c / 1

1�J�/ K L�4�M

$
Zq,+�!� ,
%-r r ,!Z

$
Zq,+�!� ,
%-r r ,+Z

$
Zq,���� ,
(��Y��s��+V
,

t�u���\ v'�!� ,
t�w�x

U9,+y ��Z�,���� ,
(��Y��s��+V
,

[Q�!X \

Figure 6.4: An interaction model of service composition participants.

work for Web service matching. A significant result based on DAML-S
service specification has been reported in [97]. The matching algorithm
used in this work has been further elaborated in [115]. It is natural to
assume that the matchmaker agent uses this algorithm in the matchmak-
ing process. Although the service composition is also a special case for
service matching, we believe that the matchmaking algorithm is usually
more efficient than the composition algorithm, since the matchmaking
task is usually simpler. Therefore, the overall performance of the system
is improved by separating the matchmaking and the composition tasks.

Theorem Prover Agents: prove whether the input sequent can be proven by
the available axioms. In case the sequent represents the user’s require-
ment and axioms represent the existing services, the proving process ac-
tually constructs the process model for the composite service. The pro-
cess model is extracted from the proof.

Semantic Reasoner Agents: detect the subtyping and some other relation-
ships among concepts in input ontology. The formal logics used in Se-
mantic Reasoner Agent could be logics developed for expressing knowl-
edge and reasoning about concepts and concept hierarchies, for example,
the Description Logic [45].

Other Adapter Agents: perform as the mediator between other component

104 CHAPTER 6. A MULTI-AGENT ARCHITECTURE

����� ��� ����	�
���
������
����� ���

��������
���� �
� ����� �
���� ����� ���

 �! � � �����#"�� � �����
����� ��� ����
���$ ��� � � ����� ���

%���&(' 	 '�'
 ����
���$ ��� � � ��� ��
��

%�' " ��� ��
��

'�� $ $ ��")� � ����� �*� ��
+�
"�� 	 %)��&,'

 ����
���$ ��� � � ��� ��
��

- ��
 .��� ��
��

��/ ��0�� ��� ����� ���

'�1��
2"3� � ����� ��� ��
��

'�' 	 %4'5��/ ��0�� ���
��� ��
��

& ����� ! ����67�8�
����� ��� ' ����67� ��� ��
��

Figure 6.5: The agent architecture for facilitators.

agents who can not interact with each other. For example, although we
have proven the subsumption relationship has the same behavior as the
implication in LL, they are encoded differently in SHIQ(D) DL Seman-
tic Reasoner Agent and LL Theorem Prover Agent. Thus an Adapter
Agent is required for the translation between LL and the internal presen-
tation used by the Semantic Reasoner.

1. For each service advertisement, the manager of Service Center Agora
sends it to the DAML-LL Translator Agent. The return LL axiom is as-
serted into LL Theorem Prover Agent.

2. On receiving a requirement, the manager of Service Center Agora asks
the DAML-LL Translator Agent to transform the requirement into LL se-
quent. The sequent is sent to the LL Theorem Prover Agent for proving.

3. Before proving, the LL Theorem Prover Agent ask the Adapter Agent to
check the hidden subsumption relationships.

4. The Adapter translates the classes and properties to an ontology model
in the format that is recognized by the Semantic Reasoner Agent.

5. The Semantic Reasoner Agent analyzes the ontology model and derives
all subtype relations of the classes and properties in the ontology model.

6.4. SUMMARY 105

�����������
	���
���� ������� ��

������ ��
�������	��������

� � �"!�#%$

& �(' �)�)*�
������	+������� � �,����*�- �)�.
��	��
�����

/�0�1 # 243.# 1 �

5
687�9 : ; 6=<

& ��>%��� 	�?���@������
	��
�����

A)BDCFEHG E4E; <"IKJK:HL I=; 9 MHJ
5
68749 : ; 6=<
N <%MHO=9 P 6=<

B�:=:)6Q<";B�R)9 MTSU:
� �T�"!�#%$

5
6V7)9 : ; 6Q<5
6=W X46Y:H; 6Q< Z�[�\�] ^4_%]`\)a b XH9 L PMHJ ; MTL MK7 c� �H�"!�#"$
/�0�1 # 2)3.# 1 � d J ; M L MT7Tc<.6QIV:HMHJ 9 JK7� �H� !�#%$

Z�[\�] ^ _.]`\4a
� �H�`!�#%$

� � �`!�#"$

eK<`I=JT: L IT; 6I�R�9 M SU:
B�:=:46=<";B�R49 MTSU:

/�0)1 # 243.# 1 � f�<`M O=6� �H�"!�#%$

� �H�"!�#"$
g�h�i�j k4l.j"i)m f�9 G A�BDCnE; <%I=J=: L I=; 9 MTJ

Figure 6.6: An interaction model for facilitators.

6. The Adapter Agent translates the subtype relations to LL axioms. The
axioms are sent to the LL Theorem Prover Agent.

7. The LL Theorem Prover Agent checks whether the request can be satis-
fied by composition of existing atomic services (this is done by perform-
ing theorem proving in LL). If the sequent corresponding to the requested
composite service has been proven and the proof is generated then a pro-
cess calculus presentation is extracted from the proof directly.

8. The last step is the construction of flow models. For example, if the
process calculus is sent to the calculus-DAML Translator Agent, the pro-
cess model described in DAML-S ServiceModel is returned to the Service
Center Agora.

6.4 Summary

In this Chapter we describe an agent-based design for the system of automated
composition of Web services. Agent-specific aspects provide Web service com-
position system with proactivity, reactivity, social ability and autonomy, while
the use of DAML-S, FIPA ACL and application domain specific ontologies pro-
vides a standardized medium for Web service deployment. In particular, the

106 CHAPTER 6. A MULTI-AGENT ARCHITECTURE

use of DAML-S allows to publish semantically enriched specifications of Web
services and thus to fit well to the Semantic Web initiative, where both Web
services and data are labeled with semantic information.

Another aspect of the agent-based design is that it enables the plugin of the
facilitator agents. This design enables the different components for Web ser-
vice composition system, such as the theorem prover, semantic reasoner and
translator to integrate to each other in a loosely coupled manner. We present a
general architecture and interaction model for such design.

Although the different components are located distributely, the service com-
position is centrally controlled by the Service Center Agora Node that could be
the bottleneck for the performance. The idea of using Partial Deduction [67,61]
to enable cooperative problem solving has been discussed in [62]. The sys-
tem performance would be improved if multiple service composer agents can
work in a coordinated way. However, this method need further development
and justification, so it will not be included in this thesis.

6.4. SUMMARY 107

Performative Sender Receiver Meaning
inform Provider Shop

Agora
The Service Provider Agent tells its capa-
bility to the Service Shop Agora

inform Shop
Agora

Center
Agora

The Service Shop Agora tells the capabil-
ities of all registered agents to the Service
Center Agora

query-if Requester Center
Agora

The Service Requester Agent tells its offer
to the Service Center Agora

inform Center
Agora

Requester The Service Center Agora finds one or
more solution for the Service Requester
Agent’s offer. The Service Requester
Agent should contact with the Customer
Task Agora in selecting the best solution

failure Center
Agora

Requester The Service Center Agora does not find
any solution for the Service Requester
Agent

inform Center
Agora

Provider The Service Center Agora informs one
Service Provider Agents to be selected as
a candidate to provide its service. The
Service Provider Agent should contact
with the Customer Task Agora for nego-
tiation

propose Requester Customer
Agora

The Service Requester Agent registers at
the Service Customer Agora and tells its
preferences on composite service

propose Provider Customer
Agora

The candidate Service Provider Agent
registers at the Service Customer Agora
and tells the conditions on using its ser-
vice

query-if Customer
Agora

Requester The Service Customer Agora creates a
package solution according to the Service
Requester Agent’s preference and asks if
the requester will accept it

accept-
proposal

Requester Customer
Agora

The Service Requester Agent satisfies
with the proposed package solution

reject-
proposal

Requester Customer
Agora

The Service Requester Agent does not
satisfies with the proposed package solu-
tion

fail Customer
Agora

Requester No solution can satisfy the Service Re-
quester Agent, so the negotiation fails

Table 6.1: Meanings of performatives.

108 CHAPTER 6. A MULTI-AGENT ARCHITECTURE

Chapter 7

The Prototype Implementation

7.1 Introduction

A prototype of the approach is implemented as a part of the thesis work. The
prototype is the main tool to verify that the proposed approach is an applicable
solution. It also paves way for evaluating the approach in both qualitative and
quantitative manners. This chapter is focused on functionality specification, as
well as some technical details that are specialized for this system.

We illustrate an implemented architecture in Figure 7.1. Although, as we
have described in Chapter 6, the different agents connect to different agoras,
we omit the details about how agoras are connected. Here, we emphasize four
components for implementing the functionalities of the agents who form the
composition system. They are Jena for parsing and generating DAML docu-
ments, FaCT for semantic Web reasoning, Forum for LL theorem proving and
GUI for interacting with end-users. We describe them in detail as follows:

Jena: Jena (a Java framework for building Semantic Web applications) [5] is
used to implement the translator between DAML-S documents and the
internal presentation of Web services.

FaCT: The FaCT system [50] is programmed by Lisp language and has a
CORBA interface to communicate with other systems. FaCT has been
used for many DLs reasoning tasks, in particular in OilEd [16] to infer-
ence the OIL language.

Forum: Forum, a LL programming language introduced by Dale Miller in
1994 [87], is distinguished by two key features. First, it is complete for
all fragments of LL, in the sense that LL operators that are not part of
Forum can be mapped to Forum by a provability-preserving translation.
Second, a form of goal-directed proof search (as characterized by uniform
proofs) is complete. Forum, as an abstract language framework, can be
implemented by different languages. In our work, we use UMA Forum

109

110 CHAPTER 7. THE PROTOTYPE IMPLEMENTATION

��������� �	�

��
	�����
�� �������������

� ����
���� � �
����
	���	��������������� �	�! "� ��#��	�	��������� �� � ���$�!�

"�
������
�� �	�����	�	���

%�����
 &	��� '	�&	
�(�

�����	�
�����	�	�
	��������
��

� �	� #�� ����� ��)	'��	�*� ���

����	��� +-,/.

Figure 7.1: An illustration of the implemented agents.

that is developed by Pablo López and Ernesto Pimental in University of
Málaga, Spain. UMA Forum is an implementation in Prolog of a subset
of Forum. It is being used as part of a research project concerning LL
logic programming, object orientedness and concurrency. UMA Forum
can be obtained from http://www.lcc.uma.es/∼lopez/umaforum/.

GUI: visualizes services (both composed and atomic). The graphical pre-
sentation includes visualization of functionalities and non-functional at-
tributes. The GUI has been implemented in Java Swing.

We will not present the components in same detail, because the implemen-
tations of most components are quite straightforward. The most difficult part
is the LL theorem prover based on Forum. The point is, we should encode the
proof extraction method described in Chapter 4. We will firstly introduce the
implementation of LL theorem prover in the next section. Then we will discuss
other components in sequence.

7.2 LL Theorem Prover

In recent years, a number of logic programming languages based on LL have
been proposed: LO [11, 12], LinLog [10], Lolli [49], Lygon [48], Forum [87] and
RAPS [60].

A foundation of LL theorem prover is the idea of uniform proof [88], pro-
posed by Miller et. al. Uniform proof is a simple and powerful notion for
designing logic programming languages. Uniform proof search is a cut-free,
goal-direct proof search in which a sequent Γ ` G denotes the state of the
computation trying to solve the goal G from the resource Γ . Uniform proof is
characterized operationally by the bottom-up construction of proofs in which

http://www.lcc.uma.es/~lopez/umaforum/

7.2. LL THEOREM PROVER 111

right-introduction rules are applied first and left-introduction rules are applied
only when the right-hand side is atomic. This means that the operators in the
goal G are executed independently from the program Γ , and the program is
only considered when its goal is atomic. A logical system is an abstract logic
programming language if restricting it to uniform proofs retains completeness.
Lolli is a LL programming language based on the theory of uniform proof.

Although uniform proof can guarantee the soundness and completeness,
its highly restriction makes a lot of valid sequent unprovable. For example, it
can not deal with the program that has multiple conjunctive goals. In this way,
uniform proof has problem to present the concurrent features emerging from
LL.

Forum, providing the presentation of concurrency features, can be regarded
as an extension of those systems based on uniform proof. Forum, a fragment
of LL introduced by Dale Miller in 1994 [87], is distinguished by two key fea-
tures. First, it is complete for all of LL, in the sense that LL operators that
are not part of Forum can be mapped to Forum by a provability-preserving
translation. Second, a form of goal-directed proof search (as characterized by
uniform proofs) is complete.

From this point, Forum is most likely a theorem prover instead of a logic
programming language.

Since we use LL sequents to represent Web services, we should study the
method for specifying LL sequents and their inference rules using Forum pre-
sentation. As we have mentioned before, a requirement to a Web service is
expressed by a LL sequent in the form of Γ; ∆ ` G, where Γ denotes a set
of extralogical axioms representing available Web services, ∆ is a multiplica-
tive conjunction of non-functional constraints; and G is a multiplicative con-
junction of a required service and non-functional results. This sequent can be
translated into a Forum sequent as:

·; · `?bΓc℘b∆c℘dGe.

The b·c and d·e predicates are used to identify which formulas appear on
which side of the sequent, and the ? modal is a par of the ! modal, which is
used to mark the formulas can be used for unbounded times.

The inference rules in LL sequent calculus can be encoded as clauses in
Forum. Consider the LL inference rules we have introduced in Table 4.2, we
can specify the inference rules in Forum using the clauses in Table 7.1. Let Ψ

represent the set of clauses, The sequent

Ψ; · `?bΓc℘b∆c℘dGe

has a Forum proof iff the sequent Γ; ∆ ` G has a LL proof using the in-
ference rules in Table 4.2. This issue has been proven in [89]. Here, the right
introduction rule for multiplicative conjunction (R⊗) enables us to prove the

112 CHAPTER 7. THE PROTOTYPE IMPLEMENTATION

(id) bBc℘dBe (Cut) ⊥� bBc� dBe
(1L) b1c � ⊥ (1R) d1e ⇐ >

(L⊗) bA ⊗ Bc� dAe℘bBc (R⊗) dA ⊗ Be� bAc� dBe
(L() bA(Bc� dAe� bBc (R() dA(Be� bAc℘dBe
(L⊕) bA ⊕ Bc� bAc&bBc (R ⊕ (a)) dA ⊕ Be� dAe

(R ⊕ (b)) dA ⊕ Be� dBe (R&) dA&Be� dAe&dBe
(L&(a)) bA&Bc� bAc (L&(b)) bA&Bc� bBc
(W!, L!) b!Bc� ((B(⊥) ⇒ ⊥) (C!) d!Be � dBe

Table 7.1: Forum specification of the LL sequent calculus.

sequents other than the uniform conclusion ones. In all cases, proofs in Forum
match closely proofs in the LL sequents with all operators.

We implement the clauses in Table 7.1 by the program of a specific Fo-
rum system, UMA Forum. UMA Forum is an implementation of a subset of
Dale Miller’s Forum Specification Language developed at the University of
Malaga (UMA). UMA Forum uses a new stack-based resource management
system based on the Lolli resource management system. The key idea of the
resource management system is that LL sequent contexts (i.e. logic programs
and goals) can be manipulated as stacks, just as in hereditary Harrop formula
based languages like lambda Prolog. In particular, the UMA Forum resource
management system represents sequent contexts as stacks instead of multisets,
replacing costly union and intersection multiset operations by simple, inex-
pensive push and pop stack operations. This stack-based approach to resource
management simplifies the implementation, providing an efficient linear logic
proof search strategy at a very low cost. The UMA Forum system, written in
Prolog, can be easily applied to the implementation of LL theorem provers and
programming languages, either single or multiple-conclusion. The searching
mechanism of UMA Forum is based on a lazy splitting system [68]. Lazy split-
ting can considerably improve the performance of the implementation of the
theorem prover.

UMA Forum clauses are freely generated from the LL asynchronous con-
nectives. The ASCII rendering of these connectives is shown in Table 7.2.

We implement the LL theorem prover as well as the process extraction us-
ing UMA Forum. The code is presented as follows. An atom in the program
is in form of predicate(A, B, C), where predicate can be replaced by either res
or goal. A is the sequent to be proven. It equals to the combination of propo-
sitions and connectives in the LL presentation of Web service. B denotes the

7.2. LL THEOREM PROVER 113

Name LL operators UMA Forum connectives
additive true > top

multiplicative false ⊥ bot

multiplicative disjunction ℘ #

additive conjunction & &

linear implication (-*, *-
intuitionistic implication ` =>, <=
why not exponential ? ?

Table 7.2: The connectives in UMA Forum.

correspond port variables of the LL sequent represented by A. It represents the
information in the brackets in the LL presentation of Web service. C provides
the information of the progress of the proof. It equals to the information stored
in the proof terms.

% linear implication

res((A -* B), impl(Name, A1, B1), 0) *- goal(A, A1, A2) *- res(B, B1, seq(A2, Name)).

goal((A -* B), 0, B2) *- res(A, 0, 0) # goal(B, 0, B2).

% multiplicative conjunction

res((A x B), (A1 x B1), par(Pa, Pb)) *- res(A, A1, Pa) # res(B, B1, Pb).

goal((A x B), (A1 x B1), par(Pa, Pb)) *- goal(A, A1, Pa) *- goal(B, B1, Pb).

% multiplicative disjunction

res((A & B), (A1 & 0), Pa) *- res(A, A1, Pa).

res((A & B), (0 & B1), Pb) *- res(B, B1, Pb).

goal((A & B), (A1 & B1), par(Pa, Pb)) *- goal(A, A1, Pa) # goal(B, B1, Pb).

% additive disjunction

res((A @ B), (A1 @ B1), cho(Pa, Pb) *- res(A, A1, Pa) & res(B, B1, Pb).

goal((A @ B), A1, Pa) *- goal(A, A1, Pa).

goal((A @ B), B1, Pb) *- goal(B, B1, Pb).

% of course modality

res((!B), B1, Pb) *- ((res(B, !B1, Pb) -* bot) => bot).

goal((!B), B1, Pb) <= goal(B, !B1, Pb).

%cut

bot *- res(B, A1, A3) *- goal(B, A2, seq(A3, cut(A1, A2))) *- A1 \== 0 *- A2 \== 0.

%Id

res(B, 0, 0) # goal(B, A2, rec(A2)).

res(B, A1, A2) # goal(B, 0, seq(A2, snd(A1))).

The result of the generated process model is shown in a formula as the
value of variable C. The formula has a straightforward mapping with the pro-
cess calculus introduced in Chapter 4. The following presents the mapping
between the formula and the process calculus:

114 CHAPTER 7. THE PROTOTYPE IMPLEMENTATION

0 ≡ π(0) !a ≡ π(!a)
rec(a) ≡ π(a) snd(a) ≡ π(a)

cut(a, b) ≡ π(ab) seq(a, b) ≡ π(a.b)
par(a, b) ≡ π(a|b) cho(a, b) ≡ π(a + b)

7.3 Jena

Jena is a Java framework for building Semantic Web applications. As an open
source software, it is grown out of work within the Hewlett-Packard Labs Se-
mantic Web Programme. Jena provides a programmatic environment for RDF,
RDFS DAML+OIL and OWL. By using Jena, one can parse, create and search
the concepts in Semantic models based on RDF technique. The most recent
version, Jena2 was released in August 2003. The Web page for Jena2 is located
at http://jena.sourceforge.net.

Jena2 uses RDF Graph as its core data structure. An RDF Graph is simply
a set of triples (S, P, O), where P names a binary predicate over (S, O). Here,
P can either refer to a user-defined property or a reserved binary relationship,
such as subClassO f or propertyO f . S and O refers to the classes, properties,
instances or XSD datatypes.

One of the main contribution of Jena is the rich Model API for manipu-
lating RDF Graphs. Through the API, Jena provides various tools, including
I/O modules for: RDF/XML, N3 and N-triple; and the query language RDQL.
Using the API the user can choose to store RDF Graphs in memory or in per-
sistent stores. In addition, Jena provides an integrated module to manipulate
both DAML+OIL and OWL in an uniform data model.

The Jena architecture is illustrated in Figure 7.2. The heart of the Jena archi-
tecture is the RDF graphs, a set of triples of nodes. This is shown in the Graphs
layer. The Graph layer is based on the RDF Abstract Syntax. The most impor-
tant functionality of the Graph layer is a triple storage. The triples of nodes
are stored both in memory and backed by persistent storage. The Model layer
is the interface between the application programmer and Jena internal stor-
age. This gives a rich set of methods for operating on both the graph itself
(the Model interface) and the nodes within the graph (the Resource interface
and its subclasses). Further, the DAML API is updated and enhanced in Jena2
to form Ontology Models that can be realized as a DAML API or an OWL
API. The Model layers lie on top of the Graph layer via an intermediate layer:
the EnhGraph layer. This provides an extension point for providing views of
graphs, and views of nodes within a graph. The views include the inheritance
hierarchy and polymorphism.

http://jena.sourceforge.net

7.3. JENA 115

��������� �
	���
����
�
� �

������
�����������

�����������! #"
$%�#&!�('*)%+#,.-��!/ 0 120 3 0 / �

4�57698(:
;#<(=(<(82>�87?@<

A(8CB#57D9E(F78

G �
H
I��J�
K�H����@�����

L�+�M7 �NO0 &*)%+#&P/ 2QR/
�(+C3 �2,S+C" -7T20 N2,
U#V@W!�#3 0 / �

X7?#Y@ZCE#=2[CY X7?(Y#\9576@8

I]�J��K
H^���9���
�

_9 # a` b�c
dfe
+#&�)P (-P/ N%g
d7��NP/ hi�(�2/ T.j*W! (" �
b� �k 0)%�%/ 0 +#&

ZCE#=7[CY \9576@8

l@E#m2[9:(8

n.o^p qir
sftfu

p v@wyx]z�x]{�| }
~#� {
| z ~ � | �
������v�� {�v� v(� z�| z
v@�9� v �

�*���
��� � ���@� ~ z

��� | � �@��� � | �
�9� ~��� � z�|J� ��� � �Cz�� � | �
�@� ~

Figure 7.2: The Jena architecture, from [28]

When translating the DAML-S Web service specification, the DAML-S doc-
uments for the services are stored as Jena data models. Each instance in the
model corresponds to the description of a service; The ServiceProfile of a DAML-
S service is defined as a DAML class as the value of the “profile” property.
The functionalities and non-functional attributes are properties of the “profile”
class.

Jena2 provides a range of inference capabilities for reasoning of Semantic
Web languages, such as OWL and DAML+OIL. The main part of Jena build-in
reasoner is a transitive reasoner that provides transitive closure of the RDFS
subClassOf and subPropertyOf relationships contained in the source graphs.
This reasoning mechanism is relatively simple. In Chapter 5, we enumerate
three different cases for subsumption relationships: “transitive subsumption
relationships”, “part of the union” and ”Narrower inclusive datatype”. The
build-in reason can only deal with the first case. Fortunately, the Jena2 archi-
tecture permits plug-in connections to engines being developed by the wider
community, such as Racer [47], FaCT [50] and the Java Theorem Prover [42].
So, we use FaCT as a stronger semantic reasoning engine. The connection be-
tween Jena inference framework and FaCT is a CORBA interface.

116 CHAPTER 7. THE PROTOTYPE IMPLEMENTATION

7.4 FaCT

FaCT is a prototype knowledge representation system for DL. It uses an opti-
mized tableaux subsumption algorithm to provide complete inference for a rel-
atively expressive concept description language, SHIQ. We have given suffi-
cient introduction about the SHIQ fragment of the DLs in Chapter 5 and we
have known the expressive power of this fragment is comparable with that of
the DAML+OIL. FaCT is written in Common Lisp, and has been run success-
fully with several commercial and free lisps, including Allegro, Liquid (for-
merly Lucid), Lispworks and GNU Lisp. As the source code is available (under
the GNU general public license), FaCT can be run on any system where a suit-
able Lisp system is available. Binaries (executable code) of FaCT are also avail-
able (in addition to the source code) for Linux and Windows systems, allow-
ing FaCT to be used without a locally available Lisp system. A generic FaCT
server has been built using the Object Management Group(OMG)’s Common
Object Request Broker Architecture(CORBA) [94]. The CORBA interface was
chosen because it is not tied to any particular language or platform. In partic-
ular, CORBA can be used with both Lisp and Java running on both Unix and
Microsoft platform.

The communication between the FaCT client and server is to pass classes
and properties as single data items using eXtended Markup Language(XML).
The interface conforms to a standard “tell and ask” format: facts are asserted
to the knowledge base (KB) and queries answered by the reasoner engine auto-
matically. The available “tell” and “ask” operations that can be invoked from
Java client has been listed in [17]. In general, the “tell” operations assert ax-
ioms that represent the relationships between concepts, for example, the rela-
tionship between two classes or two properties. It also asserts the conclusion
on whether a property is transitive or functional. The “ask” operations will
answer the question asked by the client. One of the most common used “ask”
operation in the prototype is the subsumes operation that returns true if two
classes or properties have subsumption relationship. Another operation is the
equivalent operation that returns true if two classes or properties are equiva-
lent.

The DAML+OIL data model of Jena can be used by FaCT directly through
the third-party adapter. Given the DAML+OIL model, we use FaCT to detect
the hidden subsumption relationships between each DAML classes or prop-
erties. The subsumption relationships are used in the LL theorem prover as
axioms. The working process is shown as follows:

• Before the LL theorem prover starts, the Jena data model of the DAML-S
documents is asserted into the KB as a set of axioms through the “tell”
operation.

• We have discussed before that all propositional variables in the LL se-

7.5. GUI 117

quents refer to the DAML+OIL classes and properties. The next step is
to detect the subsumption relationships between each resource proposi-
tional variable and goal propositional variable in the LL sequents. This
is done by the “ask” operation provided by FaCT.

• If the answer is “true”, a new axiom that indicates the subsumption rela-
tionship between the goal propositional variable and the resource propo-
sitional variable is asserted into the LL theorem prover.

• The LL theorem prover starts after all pairs are asked.

7.5 GUI

Figure 7.3: A screen shot of main window.

Basic GUI features of the prototype are depicted in Fig. 7.3. The interface of
the required service is presented in the ServiceProfile panel (upper right) and
the dataflow of the component atomic services is presented in the Service-
Model panel (lower right). The screenshot in Fig. 7.3 shows that the composed
service is combined from five atomic services. For each Web service, the de-
tailed information of functionalities and non-functional attributes is displayed
in the left hand side panel. The bottom panel demonstrates semantic relation-
ships between parameters.

118 CHAPTER 7. THE PROTOTYPE IMPLEMENTATION

Figure 7.4: Namespaces mapping window.

To use a short name to present the classes and properties, we use num-
ber to represent the namespaces that allow us to disambiguate between things
that may use the same name. The mapping between the numbers and the
actual URLs for the namespaces can be obtained from the Namespace map-
ping windows shown in Figure 7.4. For example, the actual URI for the service
SelectSki@6 is file:///home/jinghai/projects/jwsst/data/ICWS04RepService.daml#SelectSki.

Figure 7.5: A screen shot of generated process model.

The generated composite service is presented both graphically and in code.
The generated process model corresponding to the composite service illus-
trated in the ServiceModel panel is presented to the user through a process
document window (figure 7.5). The result process calculus is presented at
the upper text area. The corresponding DAML-S ServiceModel document and
BPEL4WS document are presented as well. The user can store the documents
as files to local disk.

file:///home/jinghai/projects/jwsst/data/ICWS04RepService.daml#SelectSki

7.6. SUMMARY 119

7.6 Summary

In this Chapter, we have elaborated the four different components forming
the Web service composition system, namely, the LL theorem prover based
on UMA Forum, the DAML-S translator based on Jena, the semantic reasoner
based on FaCT, and the GUI. The implementation is of prototype quality and
we have tried to integrated those components through the AGORA multi-
agent system. The different components are represented by different software
agents.

Besides the LL theorem prover and the DAML-S translator, the implemen-
tation of other components are straightforward, because the supporting plat-
forms of those components have been already well developed by there devel-
opers. In this Chapter, we discuss the LL theorem prover in greater detail. In
particular, we give the code to present the generation of the process calculus
formula from the LL proof in UMA Forum. The correctness of the generated
result is guaranteed by the correctness of the Forum programs. The quality
of the result and the performance evaluation are the subjects of the coming
evaluation chapter.

120 CHAPTER 7. THE PROTOTYPE IMPLEMENTATION

Chapter 8

Evaluation

This chapter evaluates the thesis mainly by evaluating the answers to the re-
search questions, the contributions and the comparition with other similar sys-
tems. Most of the result in this thesis has been published in international con-
ferences and journals. We also give a discussion of the performance issue of
the implemented system.

8.1 Answers to the Research Questions

The main research question, which is presented in Chapter 1, is:

How can we enable the intelligent agents to automatically retrieve and compose
Web services to achieve the goals specified by their users?

The main research question has been answered, in general, by the design
and implementation of an agent-based system for automated Web Service re-
trieval and composition. The system includes three parts. First, we proposed
an automated Web service composition approach using LL-based program
synthesis. The service composition problem is represented as a process of
LL theorem proving, and the process model of the composite service can be
extracted from the complete proof directly. Second, the user’s requirement
and the available services are described by Semantic Web markup languages,
so that the composition system can deal with the semantic relations between
the concepts that are used to define the types of Web service parameters. Fi-
nally, all the components for service composition are implemented as software
agents. Such design, on one hand, enables the distributed manner of Web ser-
vices; on the other hand, makes the system scalable.

Our answers to the underlying and more specific research questions are as
follows:

RQ1: What is Web services and how are they composed?

121

122 CHAPTER 8. EVALUATION

• We model the existing Web services from the black box view of mod-
ular software. The Web services are viewed in terms of observable
interfaces with the internals of the system hidden from view. The
interfaces of a Web service include the input/output parameters,
pre-/post conditions and the non-functional attributes.

• The process model of the generated composite service is represented
by a process calculus that specifies the data flow and control flow
among the component services. The data flow is represented by
a multiset of pairs including an output parameter and an input pa-
rameter, which reveals the message of data transferred from the out-
put of one service to the input of another service. The control flow
presents the execution orders of component services, including se-
quence, parallel and choice.

• In our experimental system, we use software agents in AGORA-
based multi-agent system to represent the service providers, service
requesters and the facilitating components for service publishing,
matching, composing and invocation. The interaction of the agents
are presented as interaction protocol of multi-agent systems. This
is not the only solution to tackle the problem of Web service sup-
porting platform. A lot of systems, such as .NET, WebSphere and
Apache can be used as Web service platforms as well.

RQ2: How can we automatically compose the Web services via logic-based
program synthesis?

• In the logical language level, we specify the existing Web services as
the logical axioms. In Chapter 3, we have presented a guideline and
formal semantics for the translation from the DAML-S ServicePro-
file to the LL axioms.

• The foundation of our automated Web service composition approach
is based on deductive program synthesis. Deductive program syn-
thesis is stemmed from the observation that proofs are equivalent to
programs because each step of a proof can be interpreted as a step
of a computation. This transforms the problems of software compo-
sition or program synthesis into a theorem proving task. This ob-
servation is also known in the literature as the “Curry-Howard iso-
morphism”, or the “proofs as programs paradigm”. Comparing to
the traditional program synthesis methods that are based on func-
tional programming and sequential process, our service composi-
tion approach considers much more about the relationship between
LL and the concurrent features in Web services. In our research, we
take advantage of the previous results relating LL with concurrent
process modeling, such as Petri Nets and π-calculus. Therefore, the

8.1. ANSWERS TO THE RESEARCH QUESTIONS 123

process model of the generated composite service can be extracted
directly from the complete proof, enabled by attaching the process
information specified by the π-calculus based process calculus.

• The concrete method used to extract the process model from the LL
proof is presented in Chapter 4. In general, the process information
is attached to the logical formulae as proof terms. We study the in-
ference rules of MAILL fragment of LL from the point of view of
giving each inference rule a concrete computational interpretation
in the context of Web service composition. We have developed a
set of inference rules with proof terms in Table 4.2. The inference
rules enable us to construct the process from the steps of the LL
proof. We use a process calculus to present the process model of the
composite service formally, and the final result is presented to the
users in XML based Web service process languages, such as DAML-
S ServiceModel or BPEL4WS. The formal semantics of the transla-
tion from the process calculus to the Web service process languages
is given in Chapter 4.

RQ3: Is it reasonable to present the Web service composition problem in the
context of multi-agent framework?

• The main purpose to use multi-agent system as the platform for our
Web service composition approach is to develop a scalable and flex-
ible environment concerning the dynamic features of Web services.
In the the agent-based approach, both service providers, service re-
questers and other facilitators, such as theorem prover, semantic rea-
soner, translator, etc., are represented by software agents. The ser-
vice providers and requesters can be active in performing mutual
searching. The design of facilitator agents enables easily to add new
functions or components to the legacy system.

• We use the agent interaction protocol to present the communica-
tion among the participants in Web service composition system. In
particular, this design leverages the heterogeneity between the LL
theorem prover and DL-based semantic reasoner. The two parts
are implemented separately and used for different purposes. The
agents who represent the different parts can interact and exchange
messages by unifying the message format. We have developed a
concrete interaction model in Chapter 6.

RQ4: How can we use Semantic Web markup for facilitating the Web service
composition task?

• We use the Semantic Web technology to enable the type inference.
The service composition approach allows reasoning with types from

124 CHAPTER 8. EVALUATION

the service specifications. We use the types to define the valid dataflow
for the composite services. For example, when a value of type A is
expected in an input port, a value of any subtype of type A can
also be accepted. The type specification is built using the Semantic
Web markup language, DAML+OIL. We have developed a seman-
tic reasoner based on Description Logic (DL) to detect the subtyping
relations between the classes and properties used to describe the
Web services. Since DL is developed to ensure logical consistency of
the model developed by DAML+OIL language and to answer logic
queries including satisfiability, equivalence and subsumption, such
task is straightforward.

• Under the condition that the subtyping relationships between the
DAML+OIL classes and properties are known, we can use the sub-
typing relationships in the LL theorem prover in a way that the
Web service composition system takes the Semantic Web informa-
tion into consideration as well. This is supported by the help of two
techniques. First, we use LL propositions to represent the classes
and properties in DAML+OIL language. Second, we have proven
that the subtyping relationship can be represented by the linear im-
plication in LL. We developed a set of subtyping rules, which can be
incorporated with the regular LL inference rules for theorem prov-
ing.

8.2 Contributions

A more detailed summary of the contributions of this thesis are given below:

C1: An generic framework is developed for the purpose of presenting an ab-
stract process of the automated Semantic Web service composition. The
framework is presented in Chapter 2. This framework is in high-level ab-
straction, without considering a particular language, platform or method
used for the service composition tasks. The aim of the framework is to
give the basis to discuss similarities and differences of the available auto-
mated service composition methods. This framework can be considered
as a contribution to the automated Web service composition community,
regardless of which composition method is used. Its contribution to the
state-of-the art is that it is very likely to be the first published framework
that generalizes the process of automated Semantic Web service compo-
sition tasks.

C2: A specific system based on the generic platform in C1 has been devel-
oped. The system uses LL-based program synthesis to construct the
composite Web services in an automated manner. The general process

8.2. CONTRIBUTIONS 125

of such system is as follows. First, the system uses a Semantic Web ser-
vice language (DAML-S) for external presentation of existing Web ser-
vices, while, internally, the services are presented by extralogical axioms
and proofs in LL. The translation from DAML-S to LL axioms is elab-
orated in Chapter 3. Second, we use a process calculus to present the
process model of the composite service formally. The process calculus
is attached to the LL inference rules in the style of type theory. Thus
the process model for a composite service can be generated directly from
the complete proof. Further, the process calculus can be translated into
either DAML-S ServiceModel or BPEL4WS. The process extraction and
translation is presented in Chapter 4. The contributions of this part in-
clude: 1) this is the first effort that demonstrate both the guideline and
the formal semantics for the translation between Web service languages
and the logical languages; 2) it applies the “Proof as Process” view from
Abramsky [8] into a practical application of the concurrent system.

C3: Application of the subtyping inference rules that are used for semantic
reasoning is discussed. The main contribution is that we present the se-
mantic relations as LL inference figures, thus the semantic reasoner and
LL theorem prover can operate together. It is natural to notice that the
formal language used to describe the services and the language used to
present semantic information are very different. However, no previous
work attempting to tackle such heterogeneity problem has been reported
so far. In our setting where LL is used to present the services and DL-
based languages, such as DAML+OIL is used to provide semantic infor-
mation, the heterogeneity has been tackled by a unified presentation that
is introduced in Chapter 5.

C4: We have developed an agent architecture as the platform for Web service
provision and composition. The main feature of the agent-specific archi-
tecture is that it provides Web service composition task with proactiv-
ity, reactivity, social ability and autonomy, while the usage of DAML-S,
FIPA ACL and application domain specific ontologies provides a stan-
dardized medium for Web service advertisement, interaction, and de-
ployment. Another reason that we consider agent architecture is that it
enables the plugin of the facilitator agents. This design enables the dif-
ferent components for Web service composition system, such as the the-
orem prover, semantic reasoner and translator to integrate to each other
in a loosely coupled manner. The agent architecture can be regarded as a
contribution in developing the Web service composition system because
the different components and their interaction for such system is never
elaborated in previous research efforts. In Chapter 6, we demonstrate the
agent model and the interaction model for such agent architecture. We
further elaborate the detail implementation of each facilitator agents in

126 CHAPTER 8. EVALUATION

Chapter 7.

8.3 Comparison with Other Methods

A lot of research efforts have been reported in the area of automated compo-
sition based on the semantic description of Web services. Comparing to the
other systems reviewed in Chapter 2, the approach in this thesis has a number
of properties:

• Our method, at the first time, unify the presentation of both service func-
tionalities and non-functional attributes together in the composition pro-
cess. Other AI planning based methods mostly consider only the func-
tionalities, namely the input/output parameters and pre-/post condition
of the service. Although in [111], non-functional attributes are treated as
filters and they are specified by the user as constraints, it is an extra step
that is outside the planning process. In our approach, both functionalities
and non-functional attributes are treated as LL propositions. The inputs,
preconditions and non-functional constraints are represented as LL re-
sources, while the outputs, postconditions and non-functional results are
represented as LL goals. For the LL theorem prover, the functionalities
and non-functional attributes are treated without any difference.

• Most Web service composition approaches based on AI planning make
an closed world assumption, meaning that if a literal does not exist in the
current world, its truth value is considered to be false. In logic program-
ming this approach is called negation as failure. The main trouble with the
closed world assumption, from Web service construction’s perspectives,
is that merely with truth literals we cannot express that new informa-
tion has been acquired. For instance, one might want to describe that
after sending a message to another agent, an identity number to the mes-
sage will be generated. Thus during later communication the ID could
be used. The ID number is a new literal that can not be considered in
close world assumption. While using resource-conscious logics, like LL
or transition logic, this problem is treated implicitly and there is no need
to distinguish informative and truth values. The reason is that the literals
are regarded as resources to be consumed or generated instead of truth
values. Therefore, we can view generated literals as references to infor-
mative objects. If a new literal is inserted into the world model, new piece
of information will be available. LL provides an elegant framework for
modeling incomplete knowledge – although before plan execution only
partial knowledge is available, and during execution more details would
be revealed.

8.4. PUBLICATIONS 127

• Another advantage of using LL instead of classical logic is that LL pro-
vides a richer set of connectives. In particular, the additive conjunction
and disjunction of LL distinguish the internal choice and the external
choice. The internal choice is enabled by additive conjunction &. An
applicable interpretation for this operator is a dialog box that asks users
to choose “yes” or “no”. From the computational viewpoint, the dialog
box service produces two outputs and either of them chosen by the users
would lead the process to follow different branches. A typical external
choice situation is that a service may produce one of several alternative
outputs every time when it is executed. In particular, this is the case with
exception handling. In that case, the output produced by the service de-
pends on the execution environment instead of the user. None of the
existing Web service specification languages supports internal choice, so
this issue is not applicable in current stage. However, we regard this as
an important branch of future development of Web service languages.

• The multi-agent platform for the Web service composition system helps
to leverage the heterogeneity among the different components used for
the service composition. Although a lot of approaches are designed for
the Semantic Web services composition using AI planning technique,
there is no concrete method that has been proposed for the interaction
between the AI planner and the Semantic Web reasoner. In our approach,
we try to tackle such problem using two techniques. First, we introduce
a set of subtyping rules for the LL theorem prover, so that the subtyping
relationships in Semantic Web description can be represented as LL im-
plication. The second technique is to model the LL theorem prover and
semantic reasoner as software agents. Thus the interaction between those
two components can be specified as agent interaction protocols. Further-
more, by using the concept facilitator agent, different theorem provers
and semantic reasoner can be attached or detached from the system in
a loosely coupled manner. This enhance the scalability and flexibility of
the system. We have present the concrete method in this thesis.

8.4 Publications

This thesis is partly based on papers presented at international conferences
and journals. This Section summarized the results presented in a collection of
selected papers. Each paper is summarized briefly together with its relation to
the contributions and answering research questions in the thesis.

Paper A - Mihhail Matskin and Jinghai Rao. “Value-Added Web Services
Composition using Automatic Program Synthesis”. In Proceedings of Web ser-
vices, e-Business, and the Semantic Web Workshop, WES’2002, Toronto, Canada,
May, 2002. LNCS 2512, Springer-Verlag. [75]

128 CHAPTER 8. EVALUATION

This paper presents the idea to apply the software synthesis and composi-
tion methods to value-added Web services composition. The program synthe-
sis method is based on Structural Synthesis of Programs(SSP). The paper can
be regarded as an early exploration in the approaches of Web service compo-
sition using logic-based program synthesis. The content of this paper does not
appear in this thesis, however, this paper shows the pace of the development
of our research work.

Paper B - Jinghai Rao, Peep Küngas and Mihhail Matskin. “Application
of Linear Logic to Web Service Composition”. In Proceedings of the First In-
ternational Conference on Web Services, ICWS’2003, Las Vegas, USA, June, 2003.
CSREA Press. [102]

This paper presents our first attempt to use Linear Logic as the formal de-
scription language for the modeling of Web services. This paper focuses on the
presentation of Web services, in particular, elaborating the translation mecha-
nism from the DAML-S ServiceProfile to LL axioms. The content of this paper
corresponds directly to Chapter 3 in the thesis.

Paper C - Sobah Abbas Petersen, Jinghai Rao and Mihhail Matskin. “Vir-
tual Enterprise Formation with Agents – an Approach to Implementation”.
In Proceedings of the 2003 IEEE/WIC International Conference on Intelligent Agent
Technology, IAT’2003, Halifax, Canada, October, 2003, IEEE Computer Society
Press. [100]

The papers describes an implementation of virtual enterprises using AGORA
multi-agent system. The method used in this paper is quite close to what pre-
sented in Chapter 6. In a virtual enterprise setting, the software agents repre-
sent the interested parties to form the enterprise. Therefore the whole system
are presented in terms of multi-agent architecture, including agent model and
interaction model. We also use the same manner to present the Web service
composition system.

Paper D - Xiaomeng Su, Mihhail Matskin and Jinghai Rao. “Implementing
Explanation Ontology for Agent System”. In Proceedings of the 2003 IEEE/WIC
International Conference on Web Intelligence, WI’2003, Halifax, Canada, October,
2003. IEEE Computer Society Press. [114]

The overall issue addressed in this paper is to improve semantic interop-
erability among and across agent systems. The interoperation is expressed in
terms of an explanation ontology shared by the agents who participate in the
communication. The explanation ontology is defined in a way being general
enough to support a variety of explanation mechanisms. The paper describes
the explanation ontology and provides a working through example illustrating
how the proposed generic ontology can be used to develop specific explana-
tion mechanism. The example has been implemented using AGORA multi-
agent system. The paper demonstrates an early result of semantic integration
in the context of multi-agent system. This is the basis of Chapter 5 and Chap-
ter 6.

8.4. PUBLICATIONS 129

Paper E - Jinghai Rao and Xiaomeng Su. “Toward the Composition of Se-
mantic Web Services”. In Proceedings of the Second International Workshop on
Grid and Cooperative Computing, GCC’2003, Shanghai, China, December, 2003.
LNCS 3033, Springer-Verlag. [105]

The main contribution of this paper is to propose a general framework for
the task of automated Semantic Web service composition. The functional set-
tings of the framework are discussed and techniques for DAML-S presenta-
tion, Linear Logic presentation, and semantic integration are presented. A
prototype implementation of the approach is proposed to fulfill the task of
representing, composing and handling of the services. This paper contributes
to parts of Chapter 2 and Chapter 7 in the thesis.

Paper F - Jinghai Rao, Peep Küngas and Mihhail Matskin. “Logic-Based
Web Service Composition: from Service Description to Process Model”. In
Proceedings of the 2004 IEEE International Conference on Web services, ICWS’2004,
San Diego, USA, July, 2004. IEEE Computer Society Press. This paper received
a best paper runners up award at the conference. [104]

This paper focuses on the extraction of the process model from the LL proof.
We developed a process calculus to present the composite service formally.
The process calculus is attached to the LL inference rules in the style of type
theory. Thus the process model for a composite service can be generated di-
rectly from the proof. This paper is the basis of Chapter 4 in the thesis.

Paper G - Jinghai Rao and Xiaomeng Su. “A Survey of Automated Web Ser-
vice Composition Methods”. In Proceeding of the First International Workshop on
Semantic Web Services and Web Process Composition, SWSWPC’2004, San Diego,
USA, July, 2004. To be published by Springer-Verlag’s LNCS series. [106]

This paper has aimed to give an overview of recent progress in automatic
Web services composition. The paper firstly proposes a five-step model for
Web services composition process. The composition model consists of ser-
vice presentation, translation, process generation, evaluation and execution.
In these five steps, the paper concentrates on the methods of composite Web
services process generation. The paper gives the introduction and compari-
son with selected methods to support this step. These methods are enabled
either by workflow research or AI planning. This paper provides content to
Chapter 2.

Paper H - Peep Küngas and Jinghai Rao. “Symbolic Agent Negotiation for
Semantic Web Service Exploitation”. In Proceedings of the Fifth International Con-
ference on Web-Age Information Management, WAIM’2004, Dalian, China, July,
2004. LNCS 3129, Springer-Verlag. [62]

This paper presents an architecture and a methodology for agent-based
Web service discovery and composition. The paper assumes that Web services
are described with declarative specifications like DAML-S. Then symbolic rea-
soning methods can be applied while searching for or composing new services
in an automated manner. The paper proposes that symbolic agent negotia-

130 CHAPTER 8. EVALUATION

tion enables dynamic Web service discovery and composition to be applied
in a more distributed environment. Symbolic negotiation, as demonstrated
in this paper, is a mixture of distributed planning and information exchange.
Therefore, by using symbolic negotiation for automated service composition,
additional information collection and integration are supported during ser-
vice composition process. The agent architecture presented in this paper has
directly contribution to Chapter 6. The symbolic negotiation part does not ap-
pear in the thesis. We consider it as future research direction.

Paper I - Jinghai Rao, Peep Küngas and Mihhail Matskin. “Composition
of Semantic Web Services using Linear Logic Theorem Proving. To appear in
Information Systems Journal - Special Issue on the Semantic Web and Web Services,
Elsevier Science Publisher. [103]

This paper appeared in journal is a concentration of Chapter 2, 3, 4, 5
and part of 7 in the thesis. This is my first publication to concern all steps
of the composition of Semantic Web services using LL theorem proving. The
approach uses a Semantic Web service language (DAML-S) for external pre-
sentation of Web services, while, internally, the services are presented by ex-
tralogical axioms and proofs in LL. LL, as a resource conscious logic, enables
us to capture the concurrent features of Web services formally (including pa-
rameters, states and non-functional attributes). We use a process calculus to
present the process model of the composite service. The process calculus is
attached to the LL inference rules in the style of type theory. Thus the process
model for a composite service can be generated directly from the complete
proof. We introduce a set of subtyping rules that defines a valid dataflow for
composite services. The subtyping rules that are used for semantic reason-
ing are presented with LL inference figures. We propose a system architecture
where the DAML-S translator, LL theorem prover and semantic reasoner can
operate together.

Besides the publications, I have made several public presentations during
the years I pursue the study towards the doctoral degree. Below is a list of
selected presentations.

• “Using Program Synthesis to Facilitate Web Services Composition”, pre-
sented at Computer Science Graduate Student Conference, CSGSC’2002, Trond-
heim, Norway, May, 2002.

• “Value-Added Web Service Composition using Automatic Program Syn-
thesis”, presented at Web services, e-Business, and the Semantic Web Work-
shop, WES’2002, Toronto, Canada, May, 2002.

• “Adapting Structural Synthesis of Programs for Web Services Compo-
sition”, presented at the Seminar organized by IS-group, IF-group and KS-
group, Trondheim, Norway, October, 2002.

8.5. PERFORMANCE EVALUATION 131

• “Application of Linear Logic to Web Service Composition”, presented at
the First International Conference on Web Services, ICWS’2003, Las Vegas,
USA, June, 2003.

• “Toward the Composition of Semantic Web Service”, presented at the Sec-
ond International Workshop on Grid and Cooperative Computing, GCC’2003,
Shanghai, China, December, 2003.

• “Logic-Based Web Service Composition: from Service Description to Pro-
cess Model”, presented at the 2004 IEEE International Conference on Web
services, ICWS’2004, San Diego, USA, July, 2004.

• “A Survey of Automated Web Service Composition Methods”, presented
at the First International Workshop on Semantic Web Services and Web Process
Composition, SWSWPC’2004, San Diego, USA, July, 2004.

• “Semantic Web Service Composition via Logic-based Program Synthe-
sis”, presented at the DIS lunch meeting, Trondheim, Norway, October,
2004.

8.5 Performance Evaluation

The performance is not the main concern of the result of this thesis. The reason
is that our tasks focus on the presentation of Web services by logical languages
and the design of the general framework instead of the development of new
theorem prover and semantic reasoner. We take advantage of the third-party
developed tools for the most time-consuming work, namely, using UMA Fo-
rum as LL theorem prover and using FaCT as semantic reasoner. The overall
performance of the Web service composition task highly depends on the per-
formance of these tools together with the preferred quality of the results. For
example: if the user doesn’t require the theorem prover to report the complete
result, the computational time can be decreased significantly.

We ran an experiments to test if the performance of our system is eligible
in a runtime response manner. The experiments is run on a Sun SPARC-server
with four 1281 MHz sparcv9 processor, 16 GB of RAM, and under a Solaris
operating system. We use SICStus Prolog 3.11.1 to as the platform of UMA
Forum. The FaCT semantic reasoner is supported by GNU Common Lisp 2.2.

The test set is generated according to the setting presented in Table 8.1. The
number of services is up to 1000, which means that we have maximum 1000
axioms in theorem proving. Each axiom that represents a service has no more
than 50 literals. The literals here represent service parameters, conditions and
non-functional attributes. We also limit the total number of different literals to
5000. We assume that there are 500 pairs of existing subtyping relations. The
axioms are randomly generated from the above constraints.

132 CHAPTER 8. EVALUATION

Variable Range
Number of services 10 – 1000
Number of literals 50 – 5000
Literals for each service 10 – 50
Number of subtyping relations 5 – 500

Table 8.1: Experimental settings.

We evaluate the time for generating the process model of the composite
service(Table 8.2). We consider three execution times. The first one is the time
for semantic reasoner. The second one is time for LL theorem prover to gen-
eral complete result. The third one is time by sacrifice the completeness of the
result. We add two restriction to the experiment for the third time. First, the
theorem prover stops whenever ten results have been found. Second, the in-
troduction rule of the “of course” modality for each literal is applied no more
than twice continuously. The reason for the latter restriction is because the us-
ing of “of course” modality significantly increase the complexity of LL theorem
proving [66].

Number of Service Time for semantic
reasoning (ms)

Time for theorem
proving (ms)

Time for theorem
proving (incom-
plete) (ms)

10 1 1850 1160
100 13 5.1 × 104 5180
500 73 3.1 × 106 1.8 × 104

1000 146 no result 4.4 × 104

Table 8.2: Process generation time.

The result shows the performance is in a reasonable scope by sacrifice the
completeness of the result. For 1000 services, the generation time is no more
than one minute, which is acceptable for runtime composition. However, the
performance still needs to be improved for a larger number of services.

8.6 Limitations

The limitation is related to the chosen logical framework, which is the propo-
sitional fragment of LL. We assume that the composition is correct in a param-
eter pair if the output is of the same type or subtype of the input. However,
in service composition, it is useful to know the properties expected of an in-
put to the Web services or guaranteed of an output, where these properties
may be based on the values, rather than the data types. Moreover, considering
the service execution, “uncertain” result may still be produced although the

8.7. LESSONS LEARNED 133

type correctness is guaranteed. To understand why this happens, we give an
example shown in [101]:

Example: Consider the following services: personname-to-address
and address-to-phone. Further, assume that multiple people can
live at the same address and that different people living at the same
address may use different phones. For the composite service name-
to-phone, the data flow chains the name-to-address and address-
to-phone services. And the output type of name-to-address and
the input type of address-to-phone are the same. Now, if John and
Jack live at the same address but have different phone numbers, the
composite service would return both their phone numbers when
asked for John’s phone. The reason this happens is because address
neither uniquely determine the phone number nor the name.

It is clear that the propositional logic can only guarantee the type correct-
ness instead of the correctness of the instances of the type during the run-
time. First-order LL should allow better presentation of Web service proper-
ties. In particular, first-order LL may provide the express power to present the
instances of the types. Moreover, first-order LL may provider the ability of
calculation of more complex math type, other than in propositional LL, we can
only present positive integer in consumable quantitative attributes.

However, first-order LL may suffer from poor efficiency (also completeness
is not ensured). Before moving to the first-order LL we would like to gain
experience in practical usage of propositional LL and better understand its
niche in the whole Web service composition process. We consider the using of
first-order LL to present Web Services as our future research direction.

We ignore some features for Web service system such as security control
and transaction management. For example, the service repository should only
be exposed to the authorized users. Considering the service repository is op-
erated by multiple distributed users, the transaction control is definitely nec-
essary to keep the consistency of the data. Here, we apply a simple transaction
control mechanism. Any time when our user is accessing the repository, either
reading or updating, the repository is locked and refuses access from other
users. This is not the best solution. However, to elaborate the transaction con-
trol is so complex that it is beyond the scope of this paper.

8.7 Lessons Learned

The core part of the work presented in this thesis has been published in interna-
tional conferences and journals. We have received valuable feedback through
the reviewing process. We also learned a lot from the presentation of the pa-
pers in the conference, including both questions from the audience and the

134 CHAPTER 8. EVALUATION

discussion with researchers who have the same research interest. One of the
difficulties for this thesis is the multi-disciplinary nature that covers at least the
area of logic-based program synthesis, Web Services and multi-agent systems.
It was often difficult to get the right focus for the papers because, depending
on the reviewers and their background, the contents of the paper were inter-
preted differently. However, this helped enrich the feedback that was received
for this work.

Chapter 9

Conclusion

9.1 Summary of Results and Contributions

In this thesis we describe an approach to automatic Semantic Web service com-
position. Our approach has been directed to meet the main challenges in ser-
vice composition. First, it is autonomous so that the users do not required to
analyze the huge amount of available services manually. Second, it has good
scalability and flexibility so that the composition is better performed in a dy-
namic environment. Third, it solves the heterogeneous problem because the
Semantic Web information is used for matching and composing Web services.
The applicable scenario for this approach is: given the specification of avail-
able Web services and user’s requirement, an automated agent or program can
generate a composition of available services which matches the requirement of
the user. The result generation process is fully autonomous without the inter-
vention from the user. The process generation should rely on the specification
of Web services, including the functionalities and non-functional attributes.

We have introduced a solution that uses LL based program synthesis to
solve the problem. In the solution, the Web services and the user’s requirement
are both specified by DAML-S ServiceProfile. We use a translator to translate
them into LL formulae. The description of existing Web services is encoded
as LL axioms, and the requirement to the composite service are specified in
form of a LL sequent to be proven. We use an automated LL theorem prover
to determine whether the sequent can be proven by the axioms. If the answer
is positive, a process model of the composite service can be extracted from the
generated proof. The process model is presented formally by a process calcu-
lus that is inspired by π-calculus. The calculus is attached to the proof as terms
in a type system. The process calculus can be further translated into document
in either DAML-S ServiceModel or BPEL4WS languages to presented to the
user. The user can use the document to invoke the composite service.

To develop such a solution, we have developed the techniques from the
following sources.

135

136 CHAPTER 9. CONCLUSION

First, we argue that the composition approach must also support a spec-
ification language that enables users to specify services in an easy way. In
this thesis, we use the Semantic Web service markup language DAML-S as the
specification language for both the profiles and the processes of Web services.
The composition result can additionally be presented by BPEL4WS in order to
support the invocation of services. We have developed the translation mech-
anism considering the translation between the Web service language and the
logical languages. In Chapter 3, we elaborate the approach to translate the
DAML-S ServiceProfile to the LL axioms. The translation between the process
calculus and the Web service process language, such as DAML-S ServiceModel
and BPEL4WS is demonstrated in Chapter 4.

Second, we have developed a concrete approach to extract the process of
the process of the composed service from the proof. First, we study the the rela-
tionship between LL and the concurrent process modeling, such as π-calculus.
This relationship is taken up by Abramsky’s “proofs as processes” view and
further supported by the work of Bellin and Scott. Second, we have developed
a set of inference rules of MAILL fragment of LL considering the proof terms
from the point of view of giving a concrete computational interpretation in ser-
vice composition. These inference rules have been implemented based on a LL
programming language, UMA Forum.

Third, we use the Semantic Web technology to enable the type inference.
Our composition approach allowing reasoning with types from the service
specifications is presented in Chapter 5. We use the types to define the valid
dataflow inside the composite services. For example, if the output type of one
service is subtype of the input type of another service, it is safe to transfer data
from the output to the input. The type system is built above the Semantic Web
markup language, DAML+OIL. We take advantage of Jena as the DAML+OIL
interpreter and the FaCT system as the semantic reasoner with the foundation
of SHIQ(D) fragment of DLs.

Fourth, in order to improve the interoperability flexibility and the scalabil-
ity of the composition system, we use an agent-based approach to support the
service composition platform. The agent system is based on an agent archi-
tecture, AGORA. In AGORA, we have three kind of agents, service providers,
service requesters and the facilitator agents. We elaborate the multi-agent ar-
chitecture, including the agent model and the interaction model in Chapter 6.
The use of facilitator agents, in particular, the theorem prover agent and the
semantic reasoner agent, enables the interoperability between the LL prover
and the DL-based semantic reasoner through agent communication.

We argue that LL theorem proving, combined with semantic reasoning of-
fers a flexible approach to the success to the composition of Web services. LL,
as a logic for specifying concurrent programming, provides higher expressive
powers to model Web services than classical logic. Further, the agent-based
design enables the different components for Web service composition system

9.2. DIRECTIONS FOR FUTURE WORK 137

to integrated to each other in a loosely coupled manner.
The contributions of this thesis is summarized as follows. First, an generic

framework is developed for the purpose of presenting an abstract process of
the automated Semantic Web service composition. Second, a specific system
based on the generic platform in has been developed. Third, applications of
the subtyping inference rules that are used for semantic reasoning is discussed.
Fourth, an agent architecture is developed as the platform for Web service pro-
vision and composition. The detail of these contributions are elaborated in
Chapter 8.

9.2 Directions for Future Work

We see two directions for continuing this work. One direction is to use partial
deduction to enable a more flexible composition method in a distributed en-
vironment. Another direction is to apply software adaptation to enhance the
reusability of the previous composition result.

9.2.1 Partial Deduction

We consider to use partial deduction [67] to extend the current composition
method to provide more flexibility and efficiency. First, our experience with
the Web service composition shows that users are not always able to com-
pletely specify the requirement of the composite service. We consider to apply
the principle of partial deduction to provide more flexibility to the user. In case
there is no result that can match the user’s requirement exactly, it is possible
to present the user some partial result and lead the user to update the require-
ment in a heuristic manner. Second, using partial deduction enables coopera-
tive theorem proving over multiple distributed service repositories. The main
advantage of distributed service composition over centralized approaches is
that the composition systems are able to engage new Web services more effec-
tively, however, the challenging problem is to scale the proposed composition
method up to work on a large number of network nodes. Some initiate re-
sults about using partial deduction and symbolic negotiation for Web service
composition based on a multi-agent architecture have been reported in [62].

9.2.2 Reusability of Composition Result

Different users may have similar requests to the composite services. It is likely
to improve the system efficiency if the solution of the new request can be
adapted from the previously generated solutions. Collections of previous so-
lutions can be stored in the service repository to provide generic services and

138 CHAPTER 9. CONCLUSION

software architectures, called design patterns [43]. It is also possible to gen-
erate implementation skeletons that can be refined into full implementations.
However, this may cause a repository scalability problem, where the size of the
repository must grow combinatorially as additional features are supported.
Another problem is the dynamic feature of the service repository. If some ser-
vices in the previous solution are on longer available, the solution needs adap-
tation and the services can be replaced by other available services. A software
component adaptation method based on traditional input/output signatures
proposed by Penix [99] may provide help in this problem.

Bibliography

[1] Axis – an Java implementation of the SOAP protocol. Online:
http://ws.apache.org/axis/.

[2] The DARPA Agent Markup Language homepage. Online:
http://www.daml.org.

[3] FIPA Agent Communication Language. http://www.fipa.org/.

[4] IBM Web services tutorial. Online : http://www-
106.ibm.com/developerworks/webservices/.

[5] Jena - Semantic Web framework for Java. Online:
http://jena.sourceforge.net.

[6] FIPA Interaction Protocol Library Specification, 2000.
http://www.fipa.org/specs/fipa00025/XC00025E.html.

[7] S. Abramsky. Computational interpretations of Linear Logic. Theoretical
Computer Science, (111):3–57, 1993.

[8] S. Abramsky. Proofs as processes. Theoretical Computer Science, 135(1):5–
9, 1994.

[9] G. Alonso, F. Casati, H. Kuno, and V. Machiraju. Web Services – Concepts,
Architectures and Applications. Springer-Verlag, 2004.

[10] J.-M. Andreoli. Logic programming with focusing proofs in Linear
Logic. Journal of Logic and Computation, 2(3):297–347, 1992.

[11] J.-M. Andreoli and R. Pareschi. Communication as fair distribution of
knowledge. In Proceedings of OOPSLA 91, pages 212–229, 1991.

[12] J.-M. Andreoli and R. Pareschi. Linear Objects: Logical processes with
built-in inheritance. New Generation Computing, 9(3–4):445–473, 1991.

[13] T. Andrews et al. Business Process Execution Language
for Web Services (BPEL4WS) 1.1. Online: http://www-
106.ibm.com/developerworks/webservices/library/ws-bpel, May
2003.

139

140 BIBLIOGRAPHY

[14] A. Ankolekar et al. DAML-S: Semantic markup for Web serivces. In
Proceedings of the International Semantic Web Workshop, 2001.

[15] A. Ankolekar, F. Huch, and K. Sycara. Concurrent execution semantics
for DAML-S with subtypes. In Proceedings of the First International Seman-
tic Web Conference(ISWC), Seattle, USA, 2002.

[16] S. Bechhofer, I. Horrocks, C. Goble, and R. Stevens. OilEd: a reasonable
ontology editor for the Semantic Web. In Proceedings of the Joint Ger-
man/Austrian Conference on Artificial Intelligence (KI 2001), number 2174
in LNAI, pages 396–408. Springer-Verlag, 2001.

[17] S. Bechhofer, I. Horrocks, P. F. Patel-Schneider, and S. Tessaris. A pro-
posal for a Description Logic interface. In Proceeding of the 1999 Interna-
tional Workshop on Description Logics (DL’99). CEUR Pubblication, 1999.

[18] G. Bellin and P. J. Scott. On the π-calculus and Linear Logic. Theoretical
Computer Science, 135(1):11–65, 1994.

[19] T. Bellwood et al. Universal Description, Discovery and Integration
specification (UDDI) 3.0. Online: http://uddi.org/pubs/uddi-v3.00-
published-20020719.htm.

[20] T. Berners-Lee, J. Hendler, and O. Lassila. The Semantic Web. Scientific
American, May 2001.

[21] T. Berners-Lee and E. Miller. The Semantic Web lifts off. ERCIM News,
(51):9–10, October 2002.

[22] A. J. Bonner and M. Kifer. The state of change: a survey. In International
Seminar on Logic Databases and the Meaning of Change, Transactions and
Change in Logic Databases, pages 1–36. Springer-Verlag, 1998.

[23] M. Bory. A logical basis for modular software and systems engineer-
ing. In Proceedings of the SOFSEM’98: Theory and Practice in Informatics,
number 1521 in LNCS, pages 19–35. Springer-Verlag, 1998.

[24] D. Box et al. Simple Object Access Protocol (SOAP) 1.1. Online:
http://www.w3.org/TR/SOAP/, 2001.

[25] bpmi.org. The Business Process Modeling Language (BPML). Online:
http://www.bpmi.org/bpml.esp.

[26] T. Bray, J. Paoli, C. M. Sperberg-McQueen, and E. Maler. Extensible
Markup Language (XML) 1.0 (second edition), W3C recommendation
6 october 2000. http://www.w3.org/TR/2000/REC-xml-20001006.

BIBLIOGRAPHY 141

[27] D. Brickley and R. V. Guha. RDF Vocabulary Description Language 1.0:
RDF Schema. Online: http://www.w3.org/TR/rdf-schema/.

[28] J. J. Carroll, I. Dickinson, C. Dollin, D. Deynolds, A. Seaborne, and
K. Wilkinson. Jena: Implementing the Semantic Web recommendations.
In Proceedings of the Thirteenth International World Wide Web Conference
(WWW 2004), New York, USA, May 2004. ACM Press.

[29] F. Casati, S. Ilnicki, and L. Jin. Adaptive and dynamic service composi-
tion in EFlow. In Proceedings of 12th International Conference on Advanced
Information Systems Engineering(CAiSE), Stockholm, Sweden, June 2000.
Springer Verlag.

[30] F. Casati, M. Sayal, and M.-C. Shan. Developing e-services for com-
posing e-services. In Proceedings of 13th International Conference on Ad-
vanced Information Systems Engineering(CAiSE), Interlaken, Switzerland,
June 2001. Springer Verlag.

[31] R. Chinnici et al. Web Services Description Language (WSDL) 1.2. On-
line: http://www.w3.org/TR/wsdl/.

[32] L. Chung. Representation and utilization of non-functional requirements
for information system design. In R. Anderson, J. J.A. Bubenkio, and
A. Solvberg, editors, The Third Int. Conf. on Advanced Information Systems
Enginerring, pages 5–30, Trondheim, Norway, 1991. Springer-Verlag.

[33] A. G. Cohn and S. M. Hazarika. Qualitative spatial representation and
reasoning: An overview. Fundamenta Informaticae, 46(1-2):1–29, 2001.

[34] M. Dean et al. OWL Web Ontology Language 1.0 reference. Online:
http://www.w3.org/TR/owl-ref/, July 2002.

[35] G. Denker, L. Kagal, T. Finin, M. Paolucci, and K. Sycara. Security for
DAML Web services: Annotation and matchmaking. In Proc. 2nd In-
ternational Semantic Web Conference (ISWC2003), Sanibel Island, Florida,
USA, October 2003.

[36] M. Doerr, N. Guarino, M. López, E. Schulten, M. Stefanova, and A. Tate.
State of the art in content standards., November 2001.

[37] J. M. Dunn. Handbook of Philosophical Logic, volume III, chapter Rele-
vance logic and entailment, pages 117–224. D. reidel Publishing Com-
pany, 1986.

[38] ebXML Technical Architecture Team. ebXML technical architecture spec-
ification v1.0.4. online: http://www.ebxml.org, February 2001.

142 BIBLIOGRAPHY

[39] U. Engberg and G. Winskel. Petri Nets as models of Linear Logic. In
Proceedings of the 15th Colloquium on Trees in Algebra and Programming,
CTAP 1990, volume 431 of LNCS, pages 147–161, Copenhagen, Denmark,
1990. Springer-Verlag.

[40] D. Fensel, I. Horrocks, F. van Harmelen, S. Decker, M. Erdmann, and
M. Klein. OIL in a nutshell. In R. Dieng et al., editors, Proceedings of the
European Knowledge Acquisition Conference (EKAW-2000), number 1937 in
LNAI. Springer-Verlag, October 2000.

[41] T. Finin, R. Fritzson, D. McKay, and R. McEntire. KQML as an agent
communication language. In Proceedings of the third International Confer-
ence on Information and Knowledge Management (CIKM’94), 1994.

[42] G. Frank. A general interface for interaction of special purpose reason-
ers within a modular reasoning system. In Question Answering Systems,
Papers from the 1999 AAAI Fall Symposium, pages 57–62, 1999.

[43] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Ele-
ments of Reusable Object-Oriented Software. Addison-Wesley Professional,
1995.

[44] J.-Y. Girard. Linear Logic. Theoretical Computer Science, 50:1–102, 1987.

[45] B. N. Grosof, I. Horrocks, R. Volz, and S. Decker. Description Logic pro-
grams: Combining logic programs with Description Logic. In Proceedings
of the 12th International Conference on the World Wide Web (WWW 2003, Bu-
dapest, Hungary, 2003.

[46] N. Guarino. Formal ontology in information systems. In Proceedings of
Formal Ontology in Information Systems, FOIS’98, pages 3–15. IOS Press,
1998.

[47] V. Haarslev and R. Möller. Description of the RACER system and its
applications. In Proceedings of the International Workshop on Description
Logic (DL-2001), Stanford, USA, August 2001.

[48] J. Harland, D. Pym, and M. Winikoff. Programming in lygon: An
overview. In Proceedings of the Fifth International Conference on Algebraic
Methodology and Software Technology, pages 391–405, July 1996.

[49] J. S. Hodas and D. Miller. Logic programming in a fragment of intuition-
istic Linear Logic. Information and Computation, 110(2):327–365, 1994.

[50] I. Horrocks. The FaCT system. In Automated Reasoning with Analytic
Tableaux and Related Methods: International Conference Tableaux’98, number
1397 in LNAI, pages 307–312. Springer-Verlag, 1998.

BIBLIOGRAPHY 143

[51] I. Horrocks. DAML+OIL: a Description Logic for the Semantic Web. Bul-
letin of the IEEE Computer Society Technical Committee on Data Engineering,
25(1):4–9, March 2002.

[52] I. Horrocks and P. F. Patel-Schneider. Reducing OWL entailment to de-
scription logic satisfiability. In D. Fensel, K. Sycara, and J. Mylopou-
los, editors, Proceedings of the 2003 International Semantic Web Conference
(ISWC 2003), number 2870 in LNCS, pages 17–29. Springer-Verlag, 2003.

[53] I. Horrocks, U. Sattler, and S. Tobies. Practical reasoning for very expres-
sive description logics. Logic Journal of the IGPL, 8(3):239–263, 2000.

[54] I. Horrocks, F. van Harmelen, and P. F. Patel-Schneider. Reference de-
scription of the DAML+OIL (march 2001) ontology markup language.
http://www.daml.org/2001/03/reference.html, 2001.

[55] W. Howard. The formulae-as-types notion of construction. In To H.B.
Curry: Essays on Combinatory Logic, Lambda Calculus and Formalism, pages
479–490, London, 1980. Academic Press.

[56] R. Hull, M. Benedikt, V. Christophides, and J. Su. E-service: A look
behind the curtain. In Proceedings of the 22nd ACM SIGACT-SIGMOD-
SIGART Symposium on Principles of Database Systems (PODS), San Diego,
USA, June 2003.

[57] IBM. BPWS4J – the IBM Business Process Execution
Language for Web Services Java Run Time. Online:
http://www.alphaworks.ibm.com/tech/bpws4j.

[58] IBM. WebSphere software platform. Online: http://www-
306.ibm.com/software/info1/websphere/index.jsp.

[59] Y. Kalfoglou and M. Schorlemmer. Ontology mapping: The state of the
art. Knowledge Engineering Review, 18(2), 2003.

[60] P. Küngas. RAPS – Resource-Aware Planning System. Online:
http://www.idi.ntnu.no/ peep/RAPS/index.html.

[61] P. Küngas and M. Matskin. Linear Logic, partial deduction and coopera-
tive problem solving. In Proceedings of the First International Workshop on
Declarative Agent Languages and Technologies (in conjunction with AAMAS
2003), DALT’2003, Melbourne, Australia, July 15, 2003. Springer-Verlag,
2004.

[62] P. Küngas, J. Rao, and M. Matskin. Symbolic agent negotiation for
Semantic Web service exploitation. In Proceedings of the 5th Interna-
tional Conference on Web-Age Information Management, WAIM’2004, num-
ber 3129 in LNCS, Dalian, China, July 2004. Springer-Verlag.

144 BIBLIOGRAPHY

[63] J. Lambek. The mathematics of sentence structure. American Mathemati-
cal Monthly, 65(3):154–170, 1958.

[64] S. Lämmermann. Runtime Service Composition via Logic-Based Program
Synthesis. PhD thesis, Department of Microelectronics and Information
Technology, Royal Institute of Technology, June 2002.

[65] O. Lassila and R. R. Swick. Resource Description Framework
(RDF) model and syntax specification, W3C recommendation. on-
line: http://www.w3.org/TR/1999/REC-rdf-syntax-19990222/, Febru-
ary 1999.

[66] P. Lincoln. Deciding provability of Linear Logic formulas. In London
Mathematical Society Lecture Note Series, volume 222. Cambridge Univer-
sity Press, 1995.

[67] J. W. Lloyd and J. C. Shepherdson. Partial evaluation in logic program-
ming. Jornal of Logic Programming, 11:217–242, 1991.

[68] P. López and E. Pimentel. A lazy splitting system for forum. In Proceed-
ings of the Joint Conference on Declarative Programming — APPIA-GULP-
PRODE’97, pages 247–258, Grado, Italy, 1997.

[69] M. Lumpe. A π-Calculus Based Approach for Software Composition. PhD
thesis, Institute of Computer and Applied Mathematics, University of
Bern, 1999.

[70] Z. Manna and R. Waldinger. Fundamentals of deductive program syn-
thesis. IEEE Transactions on Software Engineering, 18(8):674–704, 1992.

[71] Z. Manna and R. J. Waldinger. A deductive approach to program synthe-
sis. ACM Transactions on Programming Languages and Systems, 2(1):90–121,
1980.

[72] D. Martin et al. DAML-S(and OWL-S) 0.9 draft release. Online:
http://www.daml.org/services/daml-s/0.9/, May 2003.

[73] M. Matskin. Collaborative advertising over internet with agents. In Pro-
ceedings of the Twelfth International Workshop on Database and Expert Sys-
tems Applications (DEXA 2001), Munich, Germany, September 2001.

[74] M. Matskin, O. J. Kirkeluten, S. B. Krossnes, and Ø. Sæle. Infrastruc-
ture for Agents, Muddlti-Agents, and Scalable Multi-Agent Systems, volume
1887 of LNCS, chapter Agora: An Infrastructure for Cooperative Work
Support in Multi-Agent Systems, pages 28–40. Springer Verlag, 2001.

BIBLIOGRAPHY 145

[75] M. Matskin and J. Rao. Value-added Web services composition using
automatic program synthesis. In Web Services, E-Business, and the Seman-
tic Web, CAiSE 2002 International Workshop, WES2002, number 2512 in
LNCS, Toronto, Canada, 2002. Springer Verlag.

[76] M. Matskin and E. Tyugu. Structural synthesis of programs and its ex-
tensions. Computing and Informatics Journal, 20(1), 2001.

[77] D. McDermott. Estimated-regression planning for interactions with Web
services. In Proceedings of the 6th International Conference on AI Planning
and Scheduling, Toulouse, France, 2002. AAAI Press.

[78] R. E. McGrath, A. Ranganathan, R. H. Campbell, and M. D. Mickunas.
Use of ontologies in pervasive computing environments. Technical re-
port, Department of Computer Science, University of Illinois at Urbana-
Champaign, April 2003.

[79] S. McIlraith and D. Mandell. Compari-
son of DAML-S and BPEL4WS. Online:
http://www.ksl.stanford.edu/projects/DAML/Webservices/DAMLS-
BPEL.html, Knowledge Systems Lab, Stanford University, September
2002.

[80] S. McIlraith and T. C. Son. Adapting Golog for composition of Semantic
Web services. In Proceedings of the 8th International Conference on Knowl-
edge Representation and Reasoning(KR2002), Toulouse, France, April 2002.

[81] S. McIlraith, T. C. Son, and H. Zeng. Semantic Web services. IEEE Intel-
ligent Systems, 16(2):46–53, March/April 2001.

[82] B. Medjahed, A. Bouguettaya, and A. K. Elmagarmid. Composing Web
services on the Semantic Web. The VLDB Journal, 12(4), November 2003.

[83] L. Meredith and S. Bjorg. Contracts and types. Communications of the
ACM, 46(10), October 2003.

[84] Microsoft Corporation. ASP.NET Web. Online: http://www.asp.net.

[85] Microsoft Corporation. The Component Object Model specification, Oc-
tober 1995. Draft Version 0.9.

[86] D. Miller. The π-calculus as a theory in Linear Logic: Preliminary results.
In E. Lamma and P. Mello, editors, Proceedings of the 1992 Workshop on
Extensions to Logic Programming, number 660 in LNCS, pages 242–265.
Springer-Verlag, 1993.

146 BIBLIOGRAPHY

[87] D. Miller. Forum: A multiple-conclusion specification logic. Theoretical
Computer Science, 165(1):201–232, 1996.

[88] D. Miller, G. Nadathur, F. Pfenning, and A. Scedrov. Uniform proofs as
a foundation for logic programming. Annals of Pure and Applied logic,
51:125–157, 1996.

[89] D. Miller and E. Pimentel. Linear Llogic as a framework for specifying
sequent calculus. In Proceedings of the Annual European Summer Meeting
of the Association for Symbolic Logic, Utrecht, Netherlands, August 1999.

[90] R. Milner. Logic and Algebra of Specification, chapter The Polyadic Pi-
calculus: A tutorial. Springer-Verlag, 1993.

[91] J. C. Mitchell and K. Apt. Concepts in Programming Languages. Cambridge
University Press, 2001.

[92] S. Narayanan and S. McIlraith. Simulation, verification and automated
composition of Web service. In Proceedings of the 11th International World
Wide Web Conference, Honolulu, Hawaii, USA, May 2002. ACM. presen-
tation available at http://www2002.org/presentations/narayanan.pdf.

[93] H. S. Nwana. Software agents: An overview. The Knowledge Engineering
Review, 11(3):1–40, 1996.

[94] Object Management Group. The Common Object Request Broker Archi-
tecture (CORBA) core specification, December 2002. Version 3.0.

[95] J. O’Sullivan, D. Edmond, and A. T. Hofstede. What’s in a service? To-
wards accurate description of non-functional service properties. Dis-
tributed and Parallel Databases, 12:117–133, 2002.

[96] J. Pan and I. Horrocks. Web ontology reasoning with datatype groups.
In D. Fensel, K. Sycara, and J. Mylopoulos, editors, Proc. of the 2003 In-
ternational Semantic Web Conference (ISWC 2003), number 2870 in LNCS,
pages 47–63. Springer, 2003.

[97] M. Paolucci, T. Kawamura, T. R. Payne, and K. Sycara. Semantic match-
ing of web services capabilities. In First International Semantic Web Con-
ference, Sardinia, Italy, June 2002.

[98] A. Parasuraman, V. Zeithaml, and L. Berry. SERVQUAL: A multiple-item
scale for measuring consumer perceptions of service quality. Journal of
Retailing, 64(1):12–40, 1988.

[99] J. J. Penix. Automated Component Retrieval and Adaptation Using Formal
Specifications. PhD thesis, Division of Research and Advanced Studies of
the University of Cincinnati, 1998.

BIBLIOGRAPHY 147

[100] S. A. Petersen, J. Rao, and M. Matskin. Virtual enterprise formation with
agents - an approach to implementation. In Proceedings of the IEEE/WIC
International Conference on Intelligent Agent Technology (IAT’2003), Halifax,
Canada, October 2003. IEEE Publications.

[101] S. R. Ponnekanti and A. Fox. SWORD: A developer toolkit for Web ser-
vice composition. In Proceedings of the 11th World Wide Web Conference,
Honolulu, HI, USA, 2002.

[102] J. Rao, P. Küngas, and M. Matskin. Application of Linear Logic to Web
service composition. In Proceedings of the 1st International Conference on
Web Services, Las Vegas, USA, June 2003. CSREA Press.

[103] J. Rao, P. Küngas, and M. Matskin. Composition of Semantic Web ser-
vices using Linear Logic theorem proving. Information Systems Journal –
Special Issue on the Semantic Web and Web Services, 2004. to appear.

[104] J. Rao, P. Küngas, and M. Matskin. Logic-based Web services composi-
tion: from service description to process model. In Proceedings of the 2004
International Conference on Web Services, San Diego, USA, July 2004. IEEE.

[105] J. Rao and X. Su. Toward the composition of Semantic Web services.
In Proceedings of the Second International Workshop on Grid and Cooperative
Computing, GCC’2003, volume 3033 of LNCS, Shanghai, China, Decem-
ber 2003. Springer-Verlag.

[106] J. Rao and X. Su. A survey of automated Web service composition meth-
ods. In Proceedings of the First International Workshop on Semantic Web
Services and Web Process Composition, SWSWPC’2004, LNCS, San Diego,
USA, July 2004. Springer-Verlag. to appear.

[107] H. Schuster, D. Georgakopoulos, A. Cichocki, and D. Baker. Model-
ing and composing service-based and reference process-based multi-
enterprise processes. In Proceeding of 12th International Conference on
Advanced Information Systems Engineering (CAiSE), Stockholm, Sweden,
June 2000. Springer Verlag.

[108] M. Sheshagiri, M. desJardins, and T. Finin. A planner for composing
service described in DAML-S. In AAMAS Workshop on Web Services and
Agent-Based Engineering, Melbourne, Australia, 2003.

[109] S. Shrivastava, L. Bellissard, D. Fliot, et al. A workflow and agent based
platform for service provisioning. In Proceedings of the 4th IEEE/OMG
International Enterprise Distributed Object Computing Conference(EDOC
2000), Makuhari, Japan, September 2000. IEEE Computer Society Press.

148 BIBLIOGRAPHY

[110] M. Siddalingaiah. Overview of ebXML. Online:
http://dcb.sun.com/practices/webservices/, August 2001.

[111] E. Sirin, J. Hendler, and B. Parsia. Semi-automatic composition of
Web services using semantic descriptions. In Proceedings of Web Ser-
vices: Modeling, Architecture and Infrastructure workshop in conjunction with
ICEIS2003, 2002.

[112] R. G. Smith. The contract net protocol: High-level communication and
control in a distributed problem solver. IEEE Transactions of Computer
Science, 29(12):1104–1113, 1980.

[113] T. Sollazzo, S. Handschuh, S. Staab, and M. Frank. Semantic Web service
architecture – evolving Web service standards toward the Semantic Web.
In Proceedings of the 15th International FLAIRS Conference, Florida, USA,
2002.

[114] X. Su, M. Matskin, and J. Rao. Implementing explanation ontology for
agent system. In Proceedings of the 2003 IEEE/WIC International Conference
on Web Intelligence, WI’2003. IEEE Computer Society Press, October 2003.

[115] K. Sycara, S. Widoff, M. Klusch, and J. Lu. Larks: Dynamic matchmaking
among heterogeneous software agents in cyberspace. Autonomous Agents
and Multi-Agent Systems, 5(3):173–203, September 2002.

[116] S. Thatte. XLANG: Web services for business process design. Online:
http://www.gotdotnet.com/team/xml wsspecs/xlang-c/default.htm.

[117] A. Tsalgatidou and T. Pilioura. An overview of standards and related
technology in Web services. Distributed and Parallel Databases, 12:135–
162, 2002.

[118] M. Turner, D. Budgen, and P. Brereton. Turning software into a service.
IEEE Computer, 36(10), October 2003.

[119] M. T. Tut and D. Edmond. The use of patterns in service composition.
In The First Workshop of Web Services, e-Business and the Semantic Web,
Toronto, Canada, 2002.

[120] J. Vaucher. Xprolog for java. http://www.iro.umontreal.ca/˜vaucher/XProlog/.

[121] W3C. Web services architecture requirements. online:
http://www.w3.org/TR/wsa-reqs, October 2002.

[122] R. Waldinger. Web agents cooperating deductively. In Proceedings of
FAABS 2000, Greenbelt, MD, USA, April 5–7, 2000, volume 1871 of LNCS,
pages 250–262. Springer-Verlag, 2001.

BIBLIOGRAPHY 149

[123] L. Wischik. New directions in implementing the π-calculus. In CaberNet
Radicals Workshop, 2002.

[124] M. Wooldridge and N. R. Jennings. Intelligent agents: Theory and prac-
tice. The Knowledge Engineering Review, 10(2):115–152, 1995.

[125] D. Wu, E. Sirin, J. Hendler, D. Nau, and B. Parsia. Automatic Web ser-
vices composition using SHOP2. In Proceedings of the Workshop on Plan-
ning for Web Services, Trento, Italy, June 2003.

[126] J. Yang and M. P. Papazoglou. Web component: A substract for Web
service reuse and composition. In Proceedings of the 14th International
Conference for Advanced Information Systems Engineering (CAiSE), volume
LNCS 2348, Toronto, Canada, May 2002.

150 BIBLIOGRAPHY

Index

π-calculus, 58

agent architecture, 98
agent model, 99, 102
interaction model, 101, 104

AGORA, 94
agent, 95
agora node, 96, 102

AI Planning, 24, 47

Composition Service Definition Lan-
guage, 23

CSDL, see Composition Service Def-
inition Language

DAML, see DARPA Agent Modeling
Language

DAML+OIL, see DARPA Agent Mod-
eling Language, 84

DAML-S, see DARPA Agent Markup
Language Services, 24

ServiceModel, 64
ServiceProfile, 41

DARPA Agent Markup Language Ser-
vices, 18

DARPA Agent Modeling Language,
83

Description Logics, 84
DLs, see Description Logics

SHIQ(D), 84
FaCT, 116
semantic reasoner, 116

ebXML, 18
EFlow, 23
eXtensible Markup Language, 82

Golog, 25

Jena, 114

Linear Logic, 32
LL, see Linear Logic

Forum, 110
IMALL, 32
inference rules, 33, 71, 89
MAILL, 32
syntax, 33
theorem prover, 110
UMA Forum, 110

OIL, see Ontology Inference Layer
Ontology Inference Layer, 83
OWL, see Web Ontology Language
OWL-S, see DAML-S

PDDL, see Planning Domain Defini-
tion Language

Petri Nets, 37
Planning Domain Definition Language,

25
Polymorphic Process Model, 23
PPM, see Polymorphic Process Model
process model

syntax, 68
translation, 74
upper ontology, 66

RDF, see Resource Description Frame-
work

Resource Description Framework, 82

service profile
syntax, 41
translation, 42
upper ontology, 39

151

152 INDEX

ServiceProfile, 39
Simple Object Access Protocol, 18
SOAP, see Simple Object Access Pro-

tocol
SSP, see Structural Synthesis of Pro-

gram
Structural Synthesis of Program, 29
SWORD, 27

UDDI, see Universal Description, Dis-
covery and Integration

Uniform Resource Identifiers, 82
Universal Description, Discovery and

Integration, 17
URIs, see Uniform Resource Identi-

fiers

Web Service Description Language,
18

Web Ontology Language, 83
Web services, 15
WSDL, see Web Service Description

Language

XML, see eXtensible Markup Language

	Preface
	Introduction
	Motivation and Aim
	An Application Example
	Research Questions
	Background
	Proposed Solution
	Research Activities and Contributions
	Thesis Outline

	Web Service Composition: State of the Art
	Web Services: Standards and Related Technologies
	IBM Web Service Languages
	Semantic Web Service Description with DAML-S
	ebXML
	Platforms

	An Abstract Model for Web Service Composition
	Web Service Composition via Business Process
	Web Service Composition via AI Planning
	Situation Calculus
	Planning Domain Definition Language (PDDL)
	Rule-based Planning
	Other AI-planning Methods

	Service Composition using Program Synthesis
	Summary

	Logical Presentation of Web Services
	Introduction
	Linear Logic
	The Expressive Power of LL
	The Upper Ontology of Web Services and LL
	Transformation of Functionalities
	Information Transformation
	State Change

	Transformation of Non-functional Attributes
	Example
	Summary

	Extraction of a Process Model from Proof
	Introduction
	The -calculus: a Formality of Web Service Process
	An Upper Ontology for the Process Model
	From the Proof to the Process Model
	An Example Proof
	Summary

	Semantic Web Service Composition
	Introduction
	Semantic Web and Languages
	Semantic Reasoning for DAML+OIL
	Subtyping Rules for LL
	Summary

	A Multi-agent Architecture
	Introduction
	The AGORA Multi-agent Platform
	General Description
	Agent
	Agora node

	The Agent Architecture
	The Agent Model for Service Composition
	The Interaction Model
	Facilitating Agora Nodes

	Summary

	The Prototype Implementation
	Introduction
	LL Theorem Prover
	Jena
	FaCT
	GUI
	Summary

	Evaluation
	Answers to the Research Questions
	Contributions
	Comparison with Other Methods
	Publications
	Performance Evaluation
	Limitations
	Lessons Learned

	Conclusion
	Summary of Results and Contributions
	Directions for Future Work
	Partial Deduction
	Reusability of Composition Result

