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Abstract In this paper, we propose a method
for automated web service composition by
applying Linear Logic (LL) theorem proving.
We distinguish value-added web services and
core service by assuming that the core ser-
vice is already selected by the user, but its
functionality does not completely match the
user’s requirement. Our method enables au-
tomation for combining the core service to-
gether with a set of value-added services to
solve the problem. The method uses web
service languages for external presentation
of atomic web services (WSDL) or compos-
ite web services (BPEL4WS), while the ser-
vices are internally presented by extralogi-
cal axioms and proofs in LL. In this pa-
per, we are focused on the internal presen-
tation and proof. LL, as the internal rep-
resentation language, enables us to define
some issues required by web service composi-
tion formally, such as qualitative and quan-
titative constraints plus subsumption reason-
ing on concepts. In addition, LL guarantees
the correctness and completeness of service
composition process.
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1 Introduction

Web services are considered as self-contained,
self-describing, modular applications that can
be published, located, and invoked across the
web [1]. Several initiatives with web services
provide platforms and languages that should
allow easy integration of heterogeneous sys-
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tems. In particular, such Web languages as
Universal Description, Discovery, and Integra-
tion (UDDI) [2], Web Services Description
Language (WSDL) [3], Simple Object Access
Protocol (SOAP) [4] and part of DAML-S [5]
ontology, such as service profile and service
grounding, define standard ways for service
discovery, description and invocation (message
passing). Some other initiatives such as Busi-
ness Process Execution Language for Web Ser-
vice (BPEL4AWS) [6] and DAML-S Process
Model, are focused on representing service
compositions where flow of a process and bind-
ings between services are known a priori.

The ability to efficiently select and inte-
grate inter-organizational and heterogeneous
services on the web at runtime is a critical step
towards the development of the online econ-
omy. In particular, if no single web service can
satisfy the functionality required by the user,
there should be a possibility to combine ex-
isting services together in order to fulfill the
request. One challenge is that web services
can be created and updated on the fly and it
may be beyond human capabilities to analyze
the required services and compose them manu-
ally. Another challenge is that web services can
be developed by different organizations, which
use different semantic models to describe the
services. As a result, the ability to efficient
integration of possibly heterogeneous services
on the Web becomes a complex problem (es-
pecially for dynamic composition during run-
time).

On the other hand, if we consider atomic
services as software components, the web ser-
vice composition can be presented as a soft-
ware synthesis problem. In comparison with



software components, web services may present
a higher abstraction level and they are more
loosely coupled. This may allow us to con-
struct a composite service based on a func-
tional specification, without taking into ac-
count low level technical details, such as oper-
ating system, communication protocol or pro-
gramming language. Taking this into account,
advantages of using automatic software synthe-
sis can be described as follows:

e automatic software synthesis provides an
ability to construct composite services in
dynamically changing environments, espe-
cially when there is a huge number of ser-
vices available;

e the resulting composite services (gener-
ated automatically using sound and com-
plete rules) are correct wrt specification of
atomic services.

In this paper, we describe a method for auto-
mated web service composition which is based
on the proof search in (propositional) multi-
plicative intuitionistic fragment of Linear Logic
(MILL [7]). Given a set of existing web services
and a set of functionality and non-functionality
attributes, the method finds a composition of
atomic services that satisfies the user require-
ments. The composition process in our case is
shown in Fig. 1. First, a description of exist-
ing web services (written in WSDL) is trans-
lated into extralogical axioms in Linear Logic
(LL) [8], and the requirements to the composite
services are specified in form of a LL sequent
to be proven. Second, we use a MILL theorem
prover to determine whether the requirements
can be fulfilled by the composition of exist-
ing atomic service. If it is possible then the
last step is to construct flow models (written
in BPEL4WS) from the generated proofs. We
assume that the composite service is ready to
be executed when the flow model and descrip-
tion of each atomic services are given. Because
of soundness of MILL correctness of composite
services is guaranteed with respect to initial
specification. Completeness of MILL ensures
that all composable solutions would be found.
Our method can be regarded as an extension
of the service composition method using Struc-
tural Synthesis of Programs proposed in [9].
The difference is that the method used in this
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Figure 1: The process of web service composi-
tion

paper considers also the quantitative and qual-
itative constraints in addition to the structural
information of services.

This paper is focusing on the second step of
the composition process, namely presentation
and proof using LL. We assume that WSDL
presentation of services has been translated
into a set of LL axioms by a compiler (we will
explain this translation in details in a separate
publication).

The complete automation of service compo-
sition is still a very complex problem and it
requires further research. In this paper we
restrict the problem to composition of value-
added services assuming that the core service
(atomic or composed) already exists. The rest
of this paper is organized as follows: Section
2 presents a motivating example, Section 3 de-
scribes LL and its usage in service composition,
Section 4 discusses the usage of type system to
enable semantic composition, and the last sec-
tion concludes the paper.

2 Motivating Example

Value-added services differ from core services—
they are not a part of core services but act as
complements to the core services. In particu-
lar, they may stand alone in terms of operation
and profitability as well as provide adds-on to
core services. It is important to mention that
value-added services may allow different com-
bination and they may provide incremental ex-
tension of core services. For example, in online
shopping, the core services are product search,
ordering, payment and shipment. However,
some other services, such as currency exchange,



measurement converter, language translation
can also be required in a case when the core
services cannot meet the users’ requirements.
Those services are not designed for a particu-
lar core service but they rather extend an abil-
ity of core services and add value to the core
services.

As a working example we consider a ski sell-
ing web service. A core service, in this case, re-
ceives characteristics of a pair of skis (length,
brand, model etc) and provides prices, avail-
ability and other requested characteristics as
output. We assume that user would like to
use this service but there are gaps between the
user’s requirements and the functionalities the
service provides.

The differences could exist, for example, in
the following details:

e the user would like to receive local cur-
rency (such as Norwegian Krone) as price
but the service provides price in US Dol-
lars only;

e the user would like to use centimeters as
length measurement units but the service
uses inches;

e the user does not know what ski length or
model is needed and s/he would like that
they can be calculated from his/her height
and weight;

e the user doesn’t know which brand is most
suitable and s/he would like to get a rec-
ommendation from a web service.

Here we illustrate a case that considers only
the functionality attributes, basically input
and output of a service. However, our method
is able to consider the non-functionality at-
tributes as well.

We assume the user provides the body
height measured in centimeters (cm), the body
weight measured in kilograms (kg), his/her
skill level and the price limit. The user would
like to get a price of recommended pair of skis
in Norwegian Krone (NOK).

The core service selectSkis accepts the ski
length measured in inch, ski brand, ski model
and gives the ski price in US Dollars (USD).

The available value-added services are as fol-
lows :

LENGTH_I NCH &=
BRAND —= selectSkis = PRI CE_USD
MODEL —+

Figure 2: The core service for buying skis.
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Figure 3: Available value-added services.

o selectBrand—given a price limit and a
skill level, provides a brand;

o selectModel—given body height in cm and
body weight in kg, provides ski length in
cm and a model;

e cm2inch—given ski length in cm provides
ski length in inches;

o USD2NOK—given ski price in USD pro-
vides ski price in NOK.

The core service and available value-added
services are depicted respectively in Fig. 2 and
Fig. 3. A required service is presented in Fig. 4.
The structure of a solution for the required ser-
vice is represented in Fig. 5.

We would like to mention that our work-
ing example is made simpler than required for
practical cases. This has been done in order
to keep simplicity of presentation. In more
practical cases there can be more value-added
services available and more parameters for the
core service. Therefore, the user would not
have an ability to find a solution intuitively.
In addition, it is also beyond the user’s ability
to search the huge amount of available value-
added services to find all possible solutions. In
particular, if the set of possible solutions con-
sists of all existing converters to all inputs and

HEI GHT_CM

VEEI GHT_KG
SKI LL_LEVEL
PRICELIMT

PRI CE_NOK

Figure 4: The required service for buying skis.



PRICELIMT —=
SKI LL_LEVEL » BRAND T

HEI GHT_CM = sel ect Mbdel ” L
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Figure 5: The final service structure for buying skis.

outputs of all web services (both core and value
added), this may cause big overhead in service
provision. Taking this into account, we think
that automatic composition would be an effi-
cient and practical solution in this case.

3 Service Composition
Method
3.1 Functionality and Non-

functionality Attributes

When we present the web service specifica-
tion, we distinguish functionality attributes
and non-functionality attributes of a single ser-
vice. In [10], the authors give the definitions of
functionality and non-functionality attributes
that are used to specify the service profile
in DAML-S. Service functionalities are repre-
sented as a transformation from the inputs re-
quired by the service to the outputs produced
by the service. Non-functionality attributes
are other properties than functionalities that
can be used to describe a service, for example,
price, location, quality of the service.

The functionality attributes are used in
composition for connecting atomic services by
means of inputs and outputs. The composition
is only possible if output of one service could
be transferred to another service as input.

Non-functionality attributes are useful in
evaluating and selecting service when there are
many services that have the same functionality
attributes. In the user’s requirement, the non-
functionality attributes are specified as con-
straints. In general, those constraints can be
put into three categories:

e quantitative constraints for compos-
ite service: These constraints limit the
resources consumed by the composite ser-
vice. The total resource is the sum of all
atomic services that form the composite
service. For example, the price of com-
posite service is the sum of prices for all
included atomic services.

e quantitative constraints for atomic
service: These constraints limit the re-
sources consumed by each single atomic
service. For example, the user can specify
the price limit for each included service.

e qualitative constraints: Some at-
tributes, such as service type, service
provider or geographical location, can’t be
expressed by quantities. We call them
qualitative attributes. The constraints to
qualitative attributes propagate to all in-
cluded services. For example, if the user
requires that the composite service locates
in Norway, all included service should also
reside in Norway.

In the next section, we will illustrate pre-
sentation of quantitative constraints (e.g. cost
of executing web service) and qualitative con-
straints (e.g. location constraints) by LL.
Those constraints are considered during proof
search. In other words, if an atomic service
does not meet the constraints, it cannot be se-
lected.

3.2 Linear Logic for Web Service
Composition

LL is a refinement of classical logic introduced
by J.-Y. Girard [8] to provide a means for keep-
ing track of “resources”—in LL two assump-
tions of a propositional constant A are distin-
guished from a single assumption of A. Al-
though LL is not the first attempt to develop
resource-oriented logics (well-known examples
are relevance logic and Lambek calculus), it
is by now one of the most investigated ones.
Since its introduction LL has enjoyed increas-
ing attention both from researchers in proof
theory and computer science. Therefore, be-
cause of its maturity and well-developed se-
mantic, LL is useful as a declarative language
and inference system.

MILL fragment of LL consists of multiplica-
tive conjunction ®, linear implication — and
“of course” (!) operator. In terms of resource

sel ect Ski s F PRI CE_USD PRI CE_NOK



acquisition the logical expression A ® B —o
C ® D means that goals C' and D are obtain-
able only if both resources A and B are avail-
able. Thus the connective ® defines determin-
istic relations between resources. After literals
A and B are consumed, literals C and D are
generated. In that way we can encode differ-
ent behaviors of computations. The formula
!A means that we can use or generate a literal
A as much as we want—the amount of the re-
source is unbounded. While in classical logic
literals may be copied by default, in LL it has
to be stated explicitly.

Generally, the requirements for a composite
service could be expressed by a logical formula:

Ty, Te); AT —O

where both I';, and ', are sets of extralog-
ical axioms representing available value-added
web services and core services respectively, A is
a conjunction of non-functionality constraints.
The constraints could be used either for spec-
ifying quantitative or qualitative attributes of
required services. I —o O is a functionality
description of the required composite service.
Both I and O are conjunctions of literals, I rep-
resents the set of input parameters of the ser-
vice and O represents output parameters pro-
duced by the service. Intuitively, the formula
can be explained as follows: given a set of avail-
able atomic services and the constraints, try to
find a combination of services that computes O
from I. Every element in I';, and I is in form
A F I — O, whereas meanings of A, I and O
are the same as described above.

Here, we illustrate the LL presentation of
our motivating example taking both function-
alities and non-functionalities into considera-
tion.

The available value-added services are spec-
ified as follows:

NOK!? - PRICE_LIMIT ® SKILL_-LEVEL —o y¢joctBrand BRAND
- HEIGHT-CM @ WEIGHT-KG — sciecinioder LENGTH-CM @ MODEL  The required service can be proven to be cor-

r, = :
v NOK?’ + LENGTH_CM —o ,p,5incn, LENGTH_IN

LOC_NORWAY + PRICE_USD —o ygpanox PRICE_NOK

NOKY in the left hand side of rec-
ommendation service selectBrand denotes
NOK® ... NOK. This means that 10

10
NOK are consumed by executing the service.
The cm2inch service costs 20 NOK and other

services are for free. In the specification it is

also said that the currency converting service
USD2NOK is performed within Norway and
for other services it does not matter where they
are performed.

The core service is specified by:

I'c =+ LENGTH_IN ® BRAND @ MODEL — PRICE_USD

The constraints for the composite service are
as follows:

A= NOK4’QILOC_NORWAY

This means that we would like to spend
40 NOK for the composite service and all
location-aware services have to be performed
within Norway (/LOC_NORWAY). ! symbol in
ILOC_NORWAY describes that we allow un-
bound number of services from Norway in the
composite service. Here, we consider quanti-
tative constraints (price) as regular resources
in LL. If the total number of resources re-
quired by services, determined by functional-
ity attributes, is less than the number of avail-
able resources, the services can be included into
composite service. Otherwise, for example, if
the selectBrand service would require 30 NOK
for execution, the total required amount would
be 50 NOK and the composition is not valid.

For the qualitative constraints (location),
the service uses a literal LOC_NORWAY to de-
termine its value and we can determine in the
set of requirements A whether a service meets
the requirement. However, if there is no such
literal in the service description, the constraint
does not apply to that service at all.

Finally, the requirements for the composite
service are specified as follows:

('y,Te); A+ HEIGHT_-CM @ WEIGHT_KG ® PRICE_LIMIT
® SKILL_LEVEL — PRICE_NOK

rect (and then extracted from the proof) from
the specification of available value-added ser-
vices and the core service. Due to the lack
of space we do not represent the complete
proof. However a small fragment in Fig. 6
shows clearly how dependencies between ser-
vices are discovered and the resulting compos-
ite service is constructed by the LL theorem
prover. Additionally all details considering



non-functionality constraints have been omit-
ted here for reducing size of the proof fragment.
The inference rules of MILL and the complete
proof of a similar problem can be found in [11].

4 Composition using Seman-
tic Description

To make service composition more flexible, we
should consider a case where two services can
be connected together, even if the output pa-
rameters of one service does not match exactly
the input parameters of another service. In
general, if a type assigned to the output pa-
rameter for service A is a subtype of the type
assigned to an input parameter for service B,
it is safe to transfer data from the output to
the input. In addition, if we consider resources
and goals in LL, the subtyping is used in two
cases: 1) given a goal = of type T, it is safe
to replace x by another goal y of type S, as
long as it holds that T is a subtype of S; 2)
conversely, given a resource x of type .S, it is
safe to replace x by another resource y of type
T, as long as it holds that T is a subtype of S.

Such subtyping rules can be applied to either
functionality (parameters) or non-functionality
constraints. Here we use two examples to
illustrate the basic idea. First, we show a
simple case how two services with different
types of parameters are composed. Let us
assume that the output of selectModel ser-
vice is SKI_LENGTH _CM, while the input
of emZinch service is LENGTH_CM that is
more general. So it is safe to transfer the more
specific output to the more general input. An-
other example considers the qualitative con-
straints. If we require a service which is per-
formed within Europe, we regard Europe as a
resource. Because Norway is a country in Eu-
rope, it is safe to replace Europe with Norway.
Intuitively, if we require a service that is per-
formed within Europe, the service performed
within Norway meets such requirement.

In this paper, we assume that the service re-
quester and the service provider use a shared
ontology to denote concepts in description of
services. Otherwise, the ontology interoper-
ability is a big issue that is beyond a scope
of this paper. WSDL has basic capabilities to
define simple relationships between data types
and it uses XSD as the canonical type system.

The user is able to define the subsumption on
taxonomies of data types as it is usually done
for XML schema. In this case, the subtyping
rules mentioned above could be applied to the
services that are described by WSDL. How-
ever, WSDL is not designed as an ontology
language. If we require richer semantic infor-
mation and more complex relations, we have
to link the WSDL types to other ontologies
that describe particular object types and their
features, for example, the ontology written in
OWL or DAML+OIL. [12] proposes a proto-
type to combine the DAML-S semantic service
description with invocation information of the
WSDL descriptions.

5 Conclusion and Future

Work

In this paper, we propose a method for value-
added web service composition. We distinguish
value-added web services and core service by
assuming that the core service is already se-
lected by the user, but its functionality does
not completely match the user’s requirement.
Our method enables automation for finding a
composition of the core service together with
a set of value-added services to solve the prob-
lem.

The method uses web service languages for
external presentation of atomic web services
(e.g. WSDL) or composite web services (e.g.
BPEL4WS), while the services are internally
presented by extralogical axioms and proofs in
LL. We are focused on the internal presenta-
tion and proof in this paper. Using LL for in-
ternal representation language we can formally
define some issues required by web service com-
position, such as qualitative and quantitative
constraints and subsumption reasoning on con-
cepts. In addition, LL guarantees the correct-
ness and completeness of composite services.
We have also implemented a theorem prover
for first-order MILL and performed initial ex-
periments. The theorem prover is available at
http://www.idi.ntnu.no/ " peep/RAPS.

Despite the advantages of LL over other for-
mal frameworks, LL has been barely consid-
ered for either web services composition or
software synthesis. This may be due to its
higher computational complexity compare to
other logics. However, our first experiments
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Figure 6: A fragment of the LL proof for composing the ski buying service.

show that efficient theorem proving is available
at least for MILL fragment of LL, if certain
proof search strategies are considered.

[5]

David Martin et al. Daml-s 0.7 draft re-
lease, January 2003.

The composition of core services usually [6] F Curbera et al. Business process execu-
needs business model to specify the relation- tion language for web services (bpeldws)
ship between multiple core services. The L0, July 2002.
method presented iq t‘his paper is a.lso valid for [7] Patrick Lincoln. Deciding provability of
core service composition if the business model linear logic formulas. In Jean-Yves Girard,
18 given. . . i Yves Lafont, and Laurent Regnier, edi-

Our current work is directed to integrating tors, London Mathematical Society Lec-
all steps of the web service composition process ture’ Note Series, volume 222, pages 109
presented in Fig. 1. In other words, we are 122. Cambridge bniversity Press. 1995,
working on integration of the theorem prover ’
with the compilers for the semantic description [8] J.-Y. Girard. Linear logic. Theoretical
of web services and the LL axioms. Computer Science’ 50]_7]_02’ 1987.

We are also working on adding the dis-
junction connective to the logical specification [9] Mihhail Matskin and Jinghai Rao. Using
of service output. This is useful when we structual synthesis of programs to facili-
should consider exceptions or optional outputs tate web services composition. In C. Bus-
of atomic services. sler et al., editors, The first workshop of

Web Services, e-Business and the Seman-
tic Web, Toronto, Canada, volume LNCS
Acknowledgment 2512. Springer Verlag, May 2002.
This work is partially supported by the Norwe- [10] Anuprlya Ankolekar et al. Da'ml—s: Se-
gian Research Foundation in the framework of mantic ‘markup for web Services. Ip
the Information and Communication Technol- Proceedings of the International Semantic
ogy (IKT-2010) program—the ADIS project. Web Workshop, 2001.
[11] Peep Kiingas and Jinghai Rao. Lin-
ear logic for structural software synthesis.
References .
submitted.
[1] Ibm web services tutorial. [12] Evren Sirin, James Hendler, and Bijan

[2] Tom Bellwood et al. Universal descrip-
tion, discovery and integration specifica-
tion (uddi) 3.0.

[3] Erik Christensen et al. Web services de-
scription language (wsdl) 1.1.

[4] Don Box et al. Simple object access pro-
tocol (soap) 1.1, 2001.

Parsia. Semi-automatic composition of
web services using semantic descriptions.
In Web Services: Modeling, Architecture
and Infrastructure” workshop in conjunc-

tion with ICEIS2003, 2003.



