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Abstract 

A predictive spatio-temporal query retrieves the 
set of moving objects that will intersect a query 
window during a future time interval. Currently, 
the only access method for processing such 
queries in practice is the TPR-tree. In this paper 
we first perform an analysis to determine the 
factors that affect the performance of predictive 
queries and show that several of these factors are 
not considered by the TPR-tree, which uses the 
insertion/deletion algorithms of the R*-tree 
designed for static data. Motivated by this, we 
propose a new index structure called the TPR*-
tree, which takes into account the unique features 
of dynamic objects through a set of improved 
construction algorithms. In addition, we provide 
cost models that determine the optimal 
performance achievable by any data-partition 
spatio-temporal access method. Using 
experimental comparison, we illustrate that the 
TPR*-tree is nearly-optimal and significantly 
outperforms the TPR-tree under all conditions. 

1. Introduction 

Spatio-temporal databases that manage large volumes of 
dynamic objects are becoming increasingly important due 
to numerous emerging applications (e.g., traffic control, 
meteorology monitoring, mobile computing, etc.). Such 
systems can be classified in two major categories 
depending on whether they deal with past information 
retrieval, or future prediction. In this work we focus on 
the second category, i.e., we assume that the database 
stores current data of moving objects and we wish to 
answer queries about the future. In particular, a predictive 
window query (window query, for short) specifies a query 

region qR and a future time interval qT, and retrieves the 
set of objects that will intersect qR at any timestamp t∈ qT 
(e.g., “find all the airplanes that will be over Hong Kong 
in the next 10 minutes”). If qT contains a single (future) 
timestamp, then the query is called a timestamp query; 
otherwise, it is an interval query. 

Instead of recording objects’ locations at individual 
timestamps, spatio-temporal databases usually represent 
objects’ movements as motion functions, so that updates 
are triggered by the changes of function parameters. The 
most common function corresponds to linear movement 
because it requires the minimum number of parameters 
and can be used to describe more complex movements 
(using interpolation). Accordingly, the record of an object 
o contains (i) its extent oR at some reference time tref (a 
system parameter), and (ii) its current velocity oV. Given 
this information, the object’s extent at any future time t 
can be obtained as oR+(t−tref)·oV. In this case, an update is 
necessary only when objects’ velocities are changed. 

•  Motivation 

With the exception of few structures (reviewed in Section 
2) that are either purely theoretical, or applicable only to 
one-dimensional spaces, the Time Parameterized R-tree 
(TPR-tree) [SJLL00] is the sole practical spatio-temporal 
index for predictive queries. The TPR-tree uses the 
insertion/deletion algorithms of the R*-tree [BKSS90], 
which minimize certain penalty metrics to improve the 
quality of the resulting structure. Since the original 
metrics were designed for static objects, the TPR-tree 
replaces them with the corresponding integral metrics. 
Several problems, however, remain open. Since there is 
no analytical model for cost estimation, query 
optimization using the TPR-tree is currently impossible. 
Furthermore, there is no way to quantify the performance 
of the TPR-tree and any possible improvement.  

•  Contribution 

This paper settles the above problems. Specifically: 
•  We derive the first probabilistic model that 

accurately estimates the number of disk accesses in 
answering a window query with a spatio-temporal 
index (including, but not limited to, the TPR-tree).   

•  We analyze, using this model, the optimal 
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performance of any data-partition index.  
•  We show that the current TPR-tree is far from being 

optimal, which implies that it may be significantly 
improved.  

•  We propose the TPR*-tree, which integrates novel 
insertion/deletion algorithms to enhance 
performance. 

•  We prove, through extensive experiments, that the 
TPR*-tree is nearly optimal, and consistently 
outperforms the TPR-tree.  

The rest of the paper is organized as follows. Section 2 
surveys previous spatial and spatio-temporal indexes, 
focusing on R*- and TPR-trees. Section 3 presents the 
analysis on the cost of predictive window queries, while 
Section 4 describes the concrete algorithms of the TPR*-
tree. Section 5 contains an extensive experimental 
evaluation, and Section 6 concludes the paper with 
directions for future work.  

2. Related Work 

A number of structures [CR00, PJT00, KGT+01, TP01, 
HKTG02] have been proposed for historical spatio-
temporal databases. These structures, however, are not 
suitable for future prediction as they are based on 
different principles (e.g., storage of discrete locations 
instead of motion functions) and have different goals (i.e., 
retrieval of information about the past instead of the 
future). Kollios et al. [KGT99] establish lower bounds for 
the cost of answering predictive window queries (using 
linear, or non-linear space) and design several nearly-
optimal indexes for 1D objects. Agarwal et al. [AAE00] 
extend the solutions to two dimensions with the kinetic 
approach [BGH97]. Although the resulting methods have 
good asymptotical performance, they are not applicable in 
practice due to the large hidden constants. From the 
practical perspective, Tayeb et al. [TUW98] adapt the 
Quadtree [S90] for indexing the movements of 1D 
objects. Finally, Saltenis et al. [SJLL00] propose the 
TPR-tree, which adapts the R*-tree construction 
algorithms to moving objects. Section 2.1 reviews the R*-
tree due to its influence in the development of the TPR-
tree, and Section 2.2 describes the TPR-tree.  

2.1 The R*-Tree 

The R*-tree [BKSS90] can be regarded as an extension of 
the B-tree for multi-dimensional static objects. Figure 2.1 
shows a two-dimensional example where 10 rectangles 
(a,b,…,j) are clustered according to their spatial proximity 
into 4 leaf nodes N1,…,N4, which are then recursively 
grouped into nodes N5, N6 that become the entries of the 
root. Each entry is represented as a minimum bounding 
rectangle (MBR). Specifically, the MBR of a leaf entry 
denotes the extent of an object, while the MBR of a non-
leaf entry (e.g., N1) tightly bounds all the MBRs (i.e., 
a,b,c) in its child node. The R*-tree is optimized for the 
window query, which retrieves all the objects that 

intersect a query region. In Figure 2.1, for example, the 
query visits the root of the R-tree, N6, N4, and returns 
object i.  
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Figure 2.1: An R*-tree 

The R*-tree construction algorithm aims at minimizing 
the following penalty metrics: (i) the area, (ii) the 
perimeter of each MBR, (iii) the overlap between two 
MBRs (e.g., N1,N2) in the same node, and (iv) the distance 
between the centroid of an MBR (e.g., a in Figure 2.1) 
and that of the node (e.g., N1) containing it. As discussed 
in [PSTW93], minimization of these metrics decreases the 
probability that an MBR intersects a query region.  

Given a new entry, the insertion algorithm decides, at 
each level of the tree, the branch to follow in a greedy 
manner. Assume that we insert an object k into the tree in 
Figure 2.1. At the root level, the algorithm chooses the 
entry whose MBR needs the least area enlargement to 
cover k; N5 is selected because its MBR does not need to 
be enlarged, while that of N6 must be expanded 
considerably. Then, at the next level (i.e., child node of 
N5), the algorithm chooses the entry whose MBR 
enlargement leads to the smallest overlap increase among 
the sibling entries in the node. Note that different metrics 
are considered at level 1 (leaf nodes are at level 0) and 
higher levels. 

An overflow occurs if the leaf node reached (i.e., N1 in 
the example) is full (i.e., it already contains the maximum 
number of entries). In this case the algorithm attempts to 
remove and re-insert a fraction of the entries in the node, 
trying to avoid a split if any entry could be assigned to 
other nodes. The set of entries to be re-inserted are those 
whose centroid distances are among the largest 30%. In 
Figure 2.1, b is selected since its centroid is the farthest 
from that of N1 (compared to a,k,c).  

Node splitting is performed if the overflow persists 
after the re-insertion (e.g., b is re-inserted back to N1 in 
Figure 2.1, causing N1 to overflow again). The R* split 
algorithm consists of two steps. The first step decides a 
split axis (from the x-, y-dimensions) as the one with the 
smallest overall perimeter computed as follows. On, for 
example, the x-axis, the algorithm sorts all the entries by 
the coordinates of their left boundaries (in Figure 2.1, the 
sorted order is a,k,c,b). Then, it considers every division 
of the sorted list that ensures that each node is at least 
40% full. Figure 2.2 continues the example, which, for 
simplicity, omits this minimum node utilization constraint 
(we assume that a node can have a single entry, which 
corresponds to 33% utilization). The 1-3 division (Figure 



2.2a), for instance, allocates the first entry (of the sorted 
list) into N, the other 3 entries into N′. The algorithm 
computes the perimeters of N and N', and performs the 
same computation for the other (2-2, 3-1) divisions. A 
second pass repeats this process with respect to the 
MBRs’ right boundaries. Finally, the overall perimeter on 
the x-axis equals the sum of all the perimeters obtained 
from the two passes.  
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Figure 2.2: Possible divisions in splitting N1 on the x-axis 

After deciding the split axis (i.e., the one with the minimal 
overall perimeter), the split algorithm sorts the entries 
(according to their lower or upper boundaries) on the 
selected dimension, and again, examines all possible 
divisions. The final division is the one that has the 
minimum overlap between the MBRs of the resulting 
nodes. Continuing the previous example, assume that the 
split axis is x; then, among the possible divisions in 
Figure 2.2, the 2-2 incurs zero overlap (between N and N′) 
and thus becomes the final splitting. Figure 2.3 
demonstrates the R-tree after the insertion of k (observe 
the MBR changes and the new entry N7 added to N5).  
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Figure 2.3: The R*-tree after inserting k 

The deletion algorithm of the R*-tree is relatively simple. 
First, the leaf node that contains the entry to be removed 
is identified. If the node does not generate an underflow 
(i.e., it does not violate the minimum node utilization), the 
deletion terminates. Otherwise, the underflow is handled 
by simply re-inserting all the entries of the node, using the 
regular insertion algorithm. Both overflows and 
underflows may propagate to upper levels, which are 
handled in the same way.  

2.2 The TPR-Tree 

A moving object o is represented with (i) an MBR oR that 
denotes its extent at reference time 0, and (ii) a velocity 
bounding rectangle (VBR) oV={oV1-,oV1+,oV2-,oV2+} where 
oVi- (oVi+) describes the velocity of the lower (upper) 
boundary of oR along the i-th dimension (1≤i≤2). Figure 
2.4a shows the MBRs and VBRs of 4 objects a,b,c,d. The 
arrows (numbers) denote the directions (values) of their 
velocities, where a negative value implies that the velocity 
is towards the negative direction of an axis. The VBR of a 

is aV={1,1,1,1} (the first two numbers are for the x-
dimension), while those of b,c,d are bV={-2,-2,-2,-2}, 
cV={-2,0,0,2}, and dV={-1,-1,1,1} respectively. A non-leaf 
entry is also represented with an MBR and a VBR. 
Specifically, the MBR (VBR) tightly bounds the MBRs 
(VBRs) of the entries in its child node. In Figure 2.4a, the 
objects are clustered into two leaf nodes N1, N2, whose 
VBRs are N1V={-2,1,-2,1} and N2V={-2,0,-1,2} (their 
directions are indicated using white arrows).  
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(a) MBRs & VBRs at time 0 (b) MBRs at time 1 

Figure 2.4: Entry representations in a TPR-tree 

Figure 2.4b shows the MBRs at timestamp 1 (notice that 
each edge moves according to its velocity). The MBR of a 
non-leaf entry always encloses those of the objects in its 
subtree, but it is not necessarily tight. For example, N1 
(N2) at timestamp 1 is much larger than the tightest 
bounding rectangle for a,b (c,d). A predictive window 
query is answered in the same way as in the R*-tree, 
except that it is compared with the (dynamically 
computed) MBRs at the query time. For example, the 
query qR at timestamp 1 in Figure 2.4b visits both N1 and 
N2 (although it does not intersect them at time 0).   

The TPR-tree is optimized for timestamp queries in 
interval [TC, TC+H], where TC is the current update time, 
and H is a tree parameter called the horizon (i.e., how far 
the tree should “see” in the future). The update algorithms 
are exactly the same as those of the R*-tree, by simply 
replacing the four penalty metrics of the previous section 
with their integral counterparts. Specifically, the area (or 
perimeter) of an entry N equals ∫TC+H

TC
A(N,t)dt (or ∫TC+H

TC

P(N,t)dt), where A(N,t) (or P(N,t)) returns the area 
(perimeter) of N at time t. Similarly, the overlap (or the 
centroid distance) between two MBRs N1 and N2 is 
computed as ∫ TC+H

TC
OVR(N1,N2,t)dt (or ∫ TC+H

TC

CDist(N1,N2,t)dt), where OVR(N1,N2,t) (or CDist(N1, 
N2,t)) returns the overlapping area (centroid distance) 
between N1 and N2 at time t. These integrals are solved 
into closed formulae [SJLL00].  

When an object is inserted or removed, the TPR-tree 
tightens the MBR of its parent node. Figure 2.5 shows the 
MBRs after inserting a new object e (into N1) at time 1. N1 
is adjusted to the tightest MBR bounding a,b,e, by 
computing their respective extents at time 1. Note that this 
does not compromise the update cost because N1 must be 
loaded (written back) from (to) the disk anyway to 
complete the insertion. On the other hand, the MBR of N2 



is not tightened because it is not affected by the insertion 
(attempting to adjust N2 will increase the update cost).  
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Figure 2.5: N1 is tightened during an insertion at time 1 

Saltenis et al. [SJLL00] analyze the optimal node extents 
that minimize the integral penalty, assuming, however, 
only bulk-loaded uniform data. Further, they do not 
discuss query performance. Recently, Saltenis and Jensen 
[SJ02] describe a method to decrease the query cost for a 
different problem, where the database is aware of the 
(future) time when each object will issue the next update. 
Their technique can also be applied to the TPR*-tree.  

3. Performance Analysis 

In Section 3.1 we derive a cost model that predicts the 
performance of the TPR-tree and reveals the factors that 
determine the query cost. The resulting equations are 
applicable to incrementally constructed or bulkloaded 
trees on uniform/non-uniform data. Based on the model 
we analyze the optimal query cost in Section 3.2. Without 
loss of generality, we consider the two-dimensional space, 
where the data universe has unit length on each axis. The 
discussion extends to arbitrary dimensionality and 
universe extent. 

Given a moving rectangle o, we denote its MBR 
(VBR) as oR={oR1-,oR1+,oR2-,oR2+} (oV={oV1-,oV1+,oV2-, 
oV2+}), where oRi- (oVi-) is the coordinate (velocity) of the 
lower boundary of o on the i-th (1≤i≤2) dimension. 
Similarly, oRi+ (oVi+) refers to the upper boundary. Let 
oRi=[oRi-,oRi+] (oVi=[oVi-,oVi+]) be the extent of o on the i-th 
spatial (velocity) axis, and |oRi| (|oVi|) be the extent length, 
i.e., |oRi|=oRi+−oRi- (|oVi|=oVi+−oVi-). The MBR of o at any 
future time t is represented as oR(t)=oR+oV·t (i.e., assume, 
without loss of generality, that the reference time for oR is 
0). The extent of oR(t) on the i-th spatial dimension is [oRi-

(t), oRi+(t)] and its length is |oRi(t)|.  

3.1 A cost model for the TPR-Tree 

Let o and q be two moving objects. The transformed 
rectangle o′ of o with respect to q, has (i) MBR o′R whose 
extent on the i-th axis is {oRi-−|qRi|/2, oRi++|qRi|/2}, and (ii) 
VBR o′V whose extent on the i-th axis is {oVi-−qVi+, 
oVi+−qVi-}. As an example, Figure 3.1a shows the MBRs 
(at time 0 and 1, respectively) and VBRs of two objects o, 
q. Figure 3.1b shows the transformed object o′ of o with 
respect to q. Note that the MBR (VBR) of o′ is enlarged 
from that of o, by the MBR (VBR) extent of q.  
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Figure 3.1: Sweeping regions of moving rectangles 

Given a moving object o and a time interval T, the 
sweeping region SR(o,T) is the region swept by o during 
T. Denote ASR(o,T) as the area of SR(o,T). The shaded 
areas in Figures 3.1a and 3.1b illustrate SR(o,[0,1]), 
SR(q,[0,1]), SR(o′,[0,1]), with areas ASR(o,[0,1])=21, 
ASR(q,[0,1])=9, ASR(o′,[0,1])=58. Next we present a 
general cost model for spatio-temporal indexes adopting 
the MBR/VBR node representation used in TPR-trees.       

Theorem 3.1 (Query cost model): Let q be a window 
query whose (i) MBR uniformly distributes in the data 
space, and has extent |qRi| on the i-th dimension, (ii) 
velocity vector is qV, and (iii) query interval qT is [qT-,qT+]. 
Then the average number of node accesses for answering 
q is: 

 Cost(q)=∑every node o ASR(o′,qT) (3-1) 

where o is the moving rectangle representation of a node, 
and o′ is the transformed rectangle of o with respect to q. 

Proof (sketch): A node o is visited if its MBR 
intersects the query MBR during qT, which as shown in 
[TSP03], occurs if and only if SR(o′,qT) covers the 
centroid of the query MBR (i.e., a static point). Given 
that, the query MBR distributes uniformly in the data 
space, the access probability equals the area ASR(o′,qT) of 
the sweeping region of o′ during qT. The summation of 
probabilities for all nodes gives the expected number of 
accesses.     ■ 

It is important to note that, for all queries with the 
same parameters |qRi|, qV and qT, ASR(o′,qT) is the same for 
a specific node o. Furthermore, ASR(o′,qT) is different from 
the integral metric ∫TC+H

TC
A(o',t)dt (where A(o',t) is the MBR 

area of o' at time t). Consider Figure 3.2, where the MBR 
o1′R of transformed object o1′ has constant size during its 
movement in time [0,1], while o2′ is static and its MBR 
o2′R has the same area as o1′R. Clearly, 
ASR(o1′,[0,1])>ASR(o2′,[0,1]), meaning that o1 has higher 
probability to be accessed. This cannot be captured by the 

integral metric since ∫10A(o1′R,t)dt = ∫10A(o2′R,t)dt. 
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Figure 3.2: Sweeping region vs. integral metric 



3.2 A hypothetical optimal tree  

According to Theorem 3.1, a TPR-tree optimized for 
queries with specific parameters |qRi|, qV, and qT, should 
aim at minimizing equation 3-1. Let the extended work 
space (EWS) be the 4D space whose dimensions include 
those of the original 2D data and velocity spaces. Each 
(moving) rectangle o with MBR oR and VBR oV can be 
mapped to a 4D box in EWS, whose projection onto the 
spatial (velocity) dimensions corresponds to oR (oV). The 
volume of o is defined as the volume of its 4D box, which 
equals the product of the areas of oR and oV, or formally 
Vol(o)=(∏i=1~2|oRi|)·(∏i=1~2|oVi|). If o is a point object, then 
its EWS representation is a 4D point (i.e., a degenerated 
box) with zero volume. Note that the TPR-tree can be 
regarded as a 4D R-tree in EWS where the 4D box of a 
non-leaf entry encloses those of all the entries in its child 
node.  

To simplify the discussion, we first consider a dataset 
that contains N moving points, whose MBRs and VBRs 
uniformly distribute in the data and velocity spaces, 
respectively. We consider a well-organized TPR-tree 
where the 4D boxes of the leaf nodes are (i) mutually 
disjoint, and (ii) their union covers the entire EWS. As a 
result, a new (moving) data point p is inserted to the leaf 
node whose 4D box covers that of p (conditions (i) and 
(ii) guarantee that such node is unique). This is the best 
choice because it incurs no increase in any sweeping 
region, whereas inserting p in any other node requires 
expanding its MBR or VBR leading to larger sweeping 
region. Since the data distribution is uniform, the 
probability that an object is inserted to a particular node o 
equals its volume Vol(o) divided by the volume of EWS. 
Therefore, the leaf node with the largest volume receives 
the highest number of objects, and will generate the next 
overflow.  

A node o that overflows is split into o1 and o2 in an 
overlap-free manner on a particular dimension of the 
EWS. Specifically, let SA be the split dimension and sp be 
the split position (on SA). Then, the extents of o1 and o2 
can be decided from those of o as follows: (i) for any 
spatial (or velocity) dimension i≠SA, the extents of o1, o2 
equal those of o; (ii) on the split dimension i=SA, the 
extent of o is divided into o1, o2 at sp.  

The value of sp must guarantee that both o1 and o2 
satisfy the minimum node utilization. Specifically, let n 
be the number of entries in the original node o; then, after 
the split o1 contains n1=n·Vol(o1)/Vol(o) entries, where 
Vol(o) and Vol(o1) denote the volumes of o and o1, 
respectively. Similarly, the number of entries in o2 equals 
n2=n·Vol(o2)/Vol(o). Assuming ξ to be the minimum 
utilization threshold (40% in TPR-trees), n1 and n2 must 
satisfy n1≥ξ·n, and n2≥ξ·n. By solving these inequalities 
on dimension i, we obtain that a valid sp (on dimension i) 
must be in the following valid range: if i is a spatial 
dimension, then sp∈ [oRi-+ξ·|oRi|, oRi+-ξ·|oRi|]; otherwise, 
sp∈ [oVi-+ξ·|oVi|, oVi+−ξ·|oVi|].  

We consider that each split in the hypothetical tree is 
performed in an optimal manner, namely, it minimizes the 
increase ∆ASR of equation 3-1, or specifically: 

 ∆ASR=ASR(o1′,qT)+ASR(o2′,qT)−ASR(o′,qT) (3-2) 
where o′, o1′, o2′ are the transformed rectangles of o, o1, o2 
with respect to the target optimization query parameters. 
Figure 3.3 presents an algorithm that computes the extents 
of the leaf nodes in the hypothetical tree described above. 
The algorithm maintains a priority queue QN, which 
contains the extents of all the leaf nodes created so far. 
Initially, QN contains a single node, which corresponds to 
the root of an empty tree whose MBR and VBR cover the 
entire data and velocity spaces, respectively. The sorting 
keys of nodes in QN are the volumes of their 4D boxes in 
EWS. At each iteration, the node ohead with the largest 
volume is removed from QN and split into o1 and o2, at 
the best split axis SAbest and position spbest that minimize 
∆ASR as in equation 3-2 (see Lemma A.1 in the appendix 
for deciding SAbest and spbest). The extents of o1 and o2 are 
then computed from those of o according to SAbest and 
spbest, after which they are inserted into QN. Note that 
after each iteration, the total number of nodes in QN 
increases by 1. The algorithm terminates after N0−1 
iterations, where N0 is the total number of leaf nodes, 
computed as N/f, where N is the dataset cardinality and f 
the fanout (i.e., average number of entries in a node). The 
extents that remain in QN are the extents of the final leaf 
nodes. The algorithm in Figure 3.3 can also be used to 
estimate the extents of non-leaf nodes, by passing the total 
number Ni of nodes at level i. Given the cardinality N and 
fanout f, Ni equals N/f i+1, for all 0 ≤ i ≤ h−1, where h = 
logf N is the height of the tree. 
 

Algorithm Estimate Node Extents (Ni, q) 
/* Input: Ni is the number of nodes desired; q specifies the 
target query optimization parameters. Output: QN contains the 
node extents when the algorithm terminates. */ 
1. initialize a priority queue QN;  
2. insert o(oR=data space, oV=velocity space) into QN; cnt=1 
3. while (cnt<Ni) 
4.  ohead=de-queue(QN) //ohead has the largest volume 
5.  min∆ASR=∞ //next, decide best split axis and position 
6.  for i=each spatial/velocity dimension 
7.    let spi be the best split position on dimension i  
    //decided using Lemma A.1 (see appendix) 
8.   compute MBRs, VBRs of nodes o1,o2 by splitting 

o along i at position spi 
9.   ∆ASRi= ASR(o1′,qT)+ASR(o2′,qT)−ASR(o′,qT) 
10.   if ∆ASRi<min∆ASR  
11.    min∆ASR=∆ASR; SAopt=i; spopt=spi 
12  compute MBRs, VBRs nodes o1,o2 by splitting o along 

SAopt at position spopt 

13.  en-queue(QN, o1)  
14.  en-queue(QN, o2)  
15.   cnt=cnt+1 
End Estimate Node Extents 

Figure 3.3: Algorithm for predicting node extents 



Our algorithm can estimate the node extents of a tree for 
non-uniform data with the following modifications. First, 
the volume of a node is now defined as the number of 
objects whose 4D boxes (in EWS) are covered by that of 
the node. Second, the valid range [v-, v+] for the split 
position is defined as follows. If node o is split into o1, o2 
at v-, then the volumes of o1, o2 equal Vol(o)·ξ, and 
Vol(o)·(1−ξ), respectively, where ξ is the utilization 
threshold. Similarly, if the split position is at v+, the 
volumes of o1, o2 equal Vol(o)·(1−ξ) and Vol(o)·ξ. The 
volume of a node can be computed with spatio-temporal 
histograms [CC02, TSP03]. Having the node extents of all 
levels, the query cost of the tree is calculated using 
equation 3-1. 

Notice that the hypothetical tree is constructed by 
making “locally optimal” decisions (which may not be 
“globally optimal”). Since, however, all dynamic indexes 
make only local decisions, the cost of the hypothetical 
tree provides a practical lower bound for the performance 
of an actual index. As shown in the experimental section, 
the cost of the TPR-tree is significantly higher than this 
lower bound, which motivates the development of the 
TPR*-tree.  

4. The TPR*-Tree 

The TPR*-tree improves the TPR-tree by employing a 
new set of insertion and deletion algorithms that aim at 
minimizing equation 3-1. However, this equation refers to 
a specific set of query parameters, while in practice 
different queries may have significant diversity. This 
raises the question about the choice of appropriate 
parameter values used for optimization. We optimize the 
TPR*-tree for the static point interval query q, whose (i) 
MBR has length |qRi|=0 on each axis, (ii) VBR={0,0,0,0}, 
and (iii) query interval qT ={0,H}, where H is the horizon 
parameter (also used in the original TPR-tree). As shown 
in the experiments, this choice leads to nearly-optimal 
performance independently of the query parameters. 
Section 4.1 first describes the insertion algorithm, and 
Section 4.2 discusses deletion.  

4.1 Insertion 

Figure 4.1 shows the high level description of the TPR* 
insertion. Specifically, given a new entry e at insertion 
time TI, the TPR*-tree first identifies the leaf N that will 
accommodate e with the choose path algorithm. If N is 
full, a set of entries, selected by pick worst, are removed 
from N and re-inserted. Any leaf node that overflows 
during the re-insertion will be split using node split, after 
which a new entry will be added to the parent node. This 
may cause the parent to overflow, and is handled in a 
similar way. Next we elaborate choose path, pick worst, 
and node split, and explain why the corresponding 
algorithms in the TPR-tree are not efficient.  

Algorithm Insert (e) 
/* Input: e is the entry to be inserted. */ 
1. re-insertedi=false for all levels 1≤i≤h−1 (h is the tree height) 
2. initialize an empty re-insertion list Lreinsert 

3. invoke Choose Path to find the leaf node N to insert e 
4. Invoke Node Insert(N, e) 
5. for each entry e' in the Lreinsert 
6.  invoke Choose Path to find the leaf node N to insert e' 
7.  Invoke Node Insert(N, e) 
End Insert 
Algorithm Node Insert (N, e) 
/* Input: N is the node where entry e is inserted */ 
1. if N is a leaf node 
2. enter the information of e 
3. if N overflows 
4.  if re-inserted0=false //no re-insertion at leaf level yet 
5.    invoke Pick Worst to select a set Sworst of entries 
6.  remove entries in Sworst from N; add them to Lreinsert 
7.  re-inserted0=true 
8.  else 
9.  invoke Node Split to split N into itself and N' 
10. let P be the parent of N  
11. Node Insert(P,∅ ) or Node Insert(P,N') if N has been split 
12. else //N is a non-leaf node 
13. similar to lines 2-9 except that (i) the MBR/VBR of the 

affected child node is adjusted, and (ii) in lines 4, 7 replace 
re-inserted0 with re-insertedi where i is the level of N 

End Node Insert 
Figure 4.1: Overview of the TPR* insertion algorithm 

•  Choose Path 

Given a new object, the traditional TPR-tree selects, at 
each non-leaf level, the branch with the smallest 
deterioration (in terms of certain penalty metrics) to 
continue the insertion. The efficiency of this “greedy” 
approach drops considerably, if multiple branches have 
the same (zero) deterioration. To illustrate this, we use 
Figure 4.2a that shows 6 leaf nodes a,b,…,f with their 
parent nodes g,h,i that are the entries of the root (the 
absolute values of all velocities are 1). Note that although 
the MBRs of g,h are disjoint at time 0, they overlap 
significantly at timestamp 2 (Figure 4.2b).  

Consider the insertion of (static) point p at time 2. At 
the root level, g and h have no deterioration because 
inserting p into either one does not expand the 
corresponding MBR/VBR. In this case the algorithm must 
rely on the “tie-breaking” conditions which, however, are 
much less effective. In the example, h is preferred because 
it has smaller MBR, inside which the best leaf node to 
include p is d. The best choice, however, is to insert p to 
node a, as it requires significantly smaller MBR 
expansion than d. Note that this problem becomes even 
more serious as time progresses and the overlaps between 
MBRs become increasingly larger. Eventually, the greedy 
algorithm becomes almost random, i.e., it just picks one 
of the numerous candidate branches with zero penalty. 
The problem is less serious in R-trees (i.e., static data) 
where the MBRs do not grow with time.  
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(a) MBRs & VBRs at time 0 (b) MBRs at time 2 

Figure 4.2: Inserting p at time 2 

Motivated by this, we propose a choose path algorithm 
which, given a new object, returns the insertion path with 
the minimal increase in equation 3-1 (called cost 
degradation in the sequel) among all the paths. Towards 
this, choose path maintains a priority queue QP that 
records the candidate paths inspected so far. In Figure 
4.2b, at the root QP is initiated with {[(g),0], [(h),0], 
[(i),26]}, where each number indicates the cost 
degradation (for the static point interval query with 
qT=[0,1]), if p is inserted into the corresponding path. The 
degradation is 0 for g and h because, as mentioned earlier, 
their MBRs/VBRs do not need to be expanded. Note that 
at this point we have not accessed any of nodes g,h,i, i.e., 
the cost degradation is computed from their extents stored 
in the root. At each step, choose path explores the path 
with the smallest cost degradation. In this example, it 
visits node g and inserts two paths (a,g) and (b,g) in QP, 
after which QP = {[(h),0], [(a,g),2], [(i),26], [(b,g),31]}. 
Notice that (a,g) and (b,g) are complete, meaning that 
they include the leaf level (although leaves a and g are not 
visited). Similarly, the next path expanded is (h), and QP 
becomes QP={[(a,g),2], [(d,h),8], [(c,h),16], [(i),26], 
[(b,g),31]}. Now the algorithm terminates with (a,g) as 
the overall best path, because its (accumulated) cost 
degradation is smaller than that of all the other entries in 
QP. Note that [(i),26] is not explored at all, as it already 
incurs larger degradation at the highest level.  

Choose path finds the best insertion path at the cost of 
some extra node accesses. This, however, pays off due to 
the following reasons. First, it leads to a better tree 
structure, which improves the query performance. Second, 
our experiments show that in most cases it only needs to 
explore on average 2-3 complete paths because most 
paths will terminate at very high levels (e.g., (i) in Figure 
4.2b). Third, choose path only visits non-leaf nodes that 
usually reside in the buffer. Fourth, each update in spatio-
temporal databases usually involves one deletion 
(followed by an insertion), which as explained in the next 
section, is usually the dominating factor in the total 
update cost. The deletion requires a query to locate the 
object to be removed. Due to its improved query 
performance with respect to the TPR-tree, the update 
overhead of the TPR*-tree is much lower.  A similar 
situation exists for the relative performance of updates in 

R*- and R-trees; although the R*-tree involves more 
complex insertion operations, it results in faster updates 
due to its better structure.  

•  Pick Worst 

Insertion to a full node generates an overflow, in which 
case both TPR- and TPR*-trees re-insert a fraction of the 
entries from the node. The TPR-tree, following the 
strategy of R*-trees, selects the entries by evaluating the 
distances between the centroids of their MBRs and that of 
the node. We observe that this usually does not lead to 
decrease in the MBR/VBR of the overflowing node, and 
hence limits the effectiveness of re-insertion. Figure 4.3a 
shows an example where leaf node e contains objects 
a,b,c,d (all velocities have absolute values 1), and Figure 
4.3b illustrates their MBRs at time 2. Assume that node e 
generates an overflow at time 0 and one entry must be re-
inserted. Notice that b, c, d move towards the centroid of 
e (whose coordinates are (5.5,6) during [0,2]), while a 
moves away and is selected for re-insertion (its centroid 
has the farthest integrated distance, introduced in Section 
2.2, from that of e during [0, 2]).  

The removal of a, however, does not affect the extents 
of e, whose MBR and VBR are actually decided by b, c 
(see Figure 4.3a). This means that a has a high chance to 
be re-inserted back into e again (especially if our choose 
path is applied), because this does not lead to extent 
expansion (and performance degradation). So the re-
insertion becomes useless and a node split must occur. In 
general, entries selected in this manner are usually those 
that move away most quickly from the centroid of the 
bounding MBR, instead of those that decide the extents. 
Again, this problem is not important for conventional R-
trees. For instance, in Figure 4.3a, if the MBRs were in an 
R-tree, object c would be removed, resulting in smaller 
MBR for e.  
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(a) MBRs & VBRs at time 0 (b) MBRs at time 2 

Figure 4.3: Selecting an entry for re-insertion at time 0 

To overcome this problem, pick worst returns a set of 
entries whose removal reduces the MBR or VBR of the 
parent node. Towards this, it targets directly entries that 
determine the MBR/VBR of their parent. Specifically, on 
a selected spatial/velocity dimension i, the algorithm sorts 
the entries by the starting points of their extents on 
dimension i. In Figure 4.3a, for instance, the sorting list is 
{b,d,a,c} if i is the x-spatial dimension, or {c,d,a,b} if i is 



the x-velocity dimension. Obviously, removing the first λ 
(=30% in our implementation) entries in the list will 
guarantee smaller parent node extent on dimension i. The 
same holds for sorting with respect to the ending points of 
entries’ extents. 

It remains to decide (i) the sorting dimension, and (ii) 
whether sorting should be performed on the starting or 
ending points (of the extents). One easy way to achieve 
this is to actually sort on every dimension/direction, 
which, however, requires sorting all the entries 4·d times 
(while the original TPR-tree requires only one sorting), 
where d is the dimensionality of the data space. Instead, 
we make decisions (i) and (ii) by estimating the decrease 
of the sweeping region area of the parent node for each 
possible combination. Consider, for instance, the sorting 
according to the starting point on the spatial dimension i, 
on which the parent node o has extent (before removing 
any entry) [oRi-(TI), oRi+(TI)] at the insertion time TI. Then, 
after removal its extent would become [oRi−(TI)+λ·|oRi(TI)|, 
oRi+(TI)] (where |oRi(TI)|=oRi+(TI)−oRi-(TI)), assuming the 
starting points of the entries’ extents uniformly distribute 
in [oRi-(TI), oRi+(TI)]. On the other dimensions, the extents 
of o are approximately the same as those of o' (the node 
after removal). The difference between the sweeping 
region areas of o and o' is the “benefit” of this sorting. 
Then, the final decisions (of (i) and (ii)) correspond to the 
combination with the largest benefit, after which the 
entries for re-insertion are obtained with only one sorting 
(according to the selected combination).  

It is worth mentioning that, even though the overall 
data distribution may be non-uniform, the distribution 
inside leaf nodes can be regarded as uniform. This is 
because the MBR (VBR) of a leaf covers a small area of 
the data (velocity) space, inside which the data 
distribution may not change significantly. On the other 
hand, since the MBRs/VBRs of nodes at higher levels (≥2 
in our implementation) cover larger areas, their contents 
are less uniform. For these nodes the set of re-inserted 
entries are decided by performing the actual (4·d) sorting 
as described earlier. Note that this does not increase the 
total update cost significantly, because the number of non-
leaf overflows accounts for a negligible fraction of the 
total number of overflows at the leaf level. 

•  Node Split 

Similar to TPR-trees, the split algorithm of the TPR*-tree 
computes the overall perimeter for each dimension i, by 
considering all possible divisions of the entry list sorted 
according to the starting/ending points of their extents on 
this dimension. Then, the split axis is selected as the one 
with the smallest overall perimeter. The difference is that, 
in our case the “perimeter” of a node should be defined as 
the perimeter of the sweeping region of the corresponding 
transformed rectangle (with respect to the optimization 
query). The reasoning is that, (i) a polygon (i.e., the 
sweeping region) with small perimeter usually has small 

area (but not the opposite), and (ii) the sweeping regions 
of nodes created this way are more “square” (i.e., we 
avoid sweeping regions that are especially elongated on 
one particular axis). Note that the perimeter computation 
is very efficient because the number of vertices of a 
sweeping region is small (at most 6 in 2D space). The 
sorting on a spatial dimension is based on the entry 
extents at insertion time TI. After deciding the split axis 
SA, the algorithm sorts the entries according to the 
starting/ending points of their extents on SA, and 
considers all possible divisions. The one that minimizes 
equation 3-2 becomes the final splitting.  

4.2 Deletion 

To remove an object e whose (i) MBR at the deletion time 
TD is eR(TD), and (ii) VBR is eV, the deletion algorithm 
first identifies the leaf node that contains e, by searching 
the tree using eR(TD) as the query window. Specifically, a 
node o is visited if and only if (i) its MBR o(TD) at time 
TD contains eR(TD), and (ii) its VBR oV contains eV. A 
difference from normal window queries is that the search 
terminates as soon as e is found. We note that the deletion 
overhead dominates the cost of an update (which involves 
one deletion and insertion) in TPR- (also TPR*-) trees 
because of the ever-increasing MBR overlap. Consider, 
for example, Figure 4.4a where objects a,b,…,f are stored 
in 3 leaf nodes h,i,j whose MBRs are mutually disjoint at 
time 0. Assume at time 1 object e changes its velocity, 
and thus its previous record must be removed from the 
index (before a new record can be inserted). To find the 
node that contains e, the algorithm starts from the root, 
and considers those nodes whose MBRs at time 1 contain 
eR(1)={5,6,5,6} and VBRs contain eV={1,1,-1,-1}. In 
Figure 4.4b, all the leaf nodes satisfy these conditions and 
hence in the worst case all of them must be searched. Let 
the access order be alphabetic; then, node h is first visited, 
followed by i, where record e is found and removed.  
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(a) MBRs & VBRs at time 0 (b) MBRs at time 1 

Figure 4.4: Deleting record e 

The traditional TPR-tree will tighten the MBR of node i 
(enclosing f and g) after the deletion. We propose an 
improved active tightening technique that allows 
adjusting multiple MBRs in a single deletion, when the 
object to be removed falls in the overlapping region of 
these MBRs. For instance, although node h does not incur 



any change, we can still tighten its MBR without any 
additional cost (observe that the MBR will decrease 
considerably), because the root node must be written to 
disk anyway (to reflect the extent change of i). The MBR 
of j, however, cannot be adjusted because it was not 
visited during the search for c (hence its tightest MBR at 
time 1 cannot be computed).  

Figure 4.5 shows a more general case where the tree 
consists of 3 levels and the entry e to be removed is found 
in node N4, after visiting (leaves) N1, N3, (level-1) nodes 
N5, N6 and the root (accessed nodes are shaded). The tree 
path that must be written to disk after deletion includes 
N4, N6, and the root; as a result, the set of entries that can 
be tightened includes n3, n4, n5, n6. Particularly, notice that 
n1 cannot be modified even though N1 is accessed (this 
will force to write N5). On the other hand, the MBR of n5 
is adjusted to tightly bound n1 and n2 (which, however, 
may not be the tightest for their respective child nodes).  

n1 n2

n5 n6

n3 n 4

root 

...

...e

to be written
back to disk

N1 N2 N3 N4

N5 N6

 
Figure 4.5: MBR tightening after deletion of e 

This technique is especially useful for datasets where 
object updates are infrequent. In such cases, many nodes 
may not receive any update for a long time and their 
MBRs will become increasingly “loose”. Active 
tightening can also be applied in choose path, however 
with small effect because, as described earlier, choose 
path does not access any leaf node. The rest of the 
deletion algorithm is similar to that of the TPR-tree. 
Specifically, if (after removing the entry) the leaf node 
generates an underflow, all its entries are re-inserted and 
the node is erased. This may cause a higher level node to 
underflow, which is handled in a similar way.  

5. Experiments 

This section (i) assesses the accuracy of the probabilistic 
model, (ii) evaluates the number of node accesses (NA) of 
the TPR- and TPR*-tree against the lower bound provided 
by the hypothetical structure, and (iii) compares the 
query/update performance of TPR- and TPR*-trees in 
practice. For all experiments, the disk page size is set to 
1k bytes, and the maximum number of entries in a node is 
27 for all indexes. We use a relatively small page size so 
that the number of nodes in an index simulates realistic 
situations, where the dataset cardinality is higher. Similar 
methodology was also used to evaluate R*-trees 
[BKSS90]. The section is divided into two parts, focusing 
on the evaluation of the analytical model and practical 
performance, respectively.  

5.1 Evaluation of the cost model   

Our first goal is to show the accuracy of the cost model 
and assess the efficiency of the structures with respect to 
the lower bound. Towards this direction, we deploy 
spatio-temporal data that contain insertions at a single 
timestamp 0. Specifically, objects’ MBRs are taken from 
a real spatial dataset LA or LB [Tiger] (containing 128k 
and 109k 2D rectangles, respectively) where each axis of 
the space is normalized to [0,10000]. Then, each object is 
associated with a VBR such that on each dimension (i) the 
velocity extent is zero (i.e., the object does not change 
spatial extents during its movement), (ii) the velocity 
value distribution is skewed (Zipf, biased coefficient 0.8) 
towards 0 in range [0,50], and (iii) the velocity can be 
positive or negative with equal probability. For each 
dataset, all indexes have similar sizes. Specifically, for 
LA, each tree has 4 levels and around 6700 leaves, while 
the numbers are 4 and 5700 for LB.   

Each query q has three parameters: qRlen, qVlen, and 
qTlen, such that (i) its MBR qR is a square, with length 
qRlen, uniformly generated in the data space, (ii) its VBR 
is qV={-qVlen/2,qVlen/2,-qVlen/2,qVlen/2}, and (iii) its 
query interval is qT=[0,qTlen]. The query cost is measured 
as the average number of node accesses in executing a 
workload of 200 queries with the same parameters. For 
each workload, the horizon parameters of the TPR- and 
TPR*-trees are set to the corresponding qTlen.  

•  Cost model accuracy 

We evaluate the accuracy of equation 3-1 by using it to 
predict the query costs of TPR- and TPR*-trees. The error 
is measured as ∑i|acti−esti|/∑iacti, where acti (esti) denotes 
the actual (estimated) number of node accesses for the i-th 
query in the workload. Figure 5.1 plots the error rate, for 
LA and LB, as a function of qRlen (which ranges from 
100 to 1600, i.e., qR covers up to 2.56% of the data space), 
fixing qVlen and qTlen to 5 and 50, respectively. Our 
model is accurate in all cases (maximum error below 6%), 
confirming our probabilistic derivation. The error rates 
with respect to other parameters (i.e., qVlen and qTlen) are 
similar and omitted due to space constraints.  
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(a) Error rate vs. qRlen (LA) (b) Error rate vs. qRlen (LB) 
Figure 5.1: Accuracy of equation 3-1 (qVlen=5, qTlen=50) 

•  Comparison with the optimal performance 

This set of experiments compares the costs of TPR- and 



TPR*-trees to the optimal performance computed by the 
algorithm in Figure 3.3. In order to verify the 
effectiveness of optimizing the TPR*-tree with respect to 
static point queries, for each query workload, we create a 
special TPR*-tree (referred to as TPR*-QW), which 
minimizes equation 3-1 for the parameters of the 
workload. Figure 5.2 shows the number of node accesses 
as a function of qRlen, fixing qVlen=5 and qTlen=50. The 
TPR-tree incurs almost twice the cost of the lower bound, 
while the TPR* and TPR*-QW are nearly optimal. It is 
important to note that, although the TPR* is not 
specifically optimized for the query workload parameters, 
it has almost the same performance as the TPR*-QW 
(difference below 2%), confirming its general 
applicability (also verified by subsequent experiments).   
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(a) NA vs. qRlen (LA) (b) NA vs. qRlen (LB) 
Figure 5.2: Query performance (qVlen=5, qTlen=50) 

Next we fix qRlen, qTlen to 400, 50 respectively, and vary 
qVlen from 0 (static query) to 10. As shown in Figure 5.3, 
the query cost increases with qVlen, because higher qVlen 
leads to faster enlargement of the query MBR and hence 
more node accesses. The TPR*-tree and TPR*-QW again 
have similar performance, and outperform the TPR-tree 
significantly. Figure 5.4 repeats the same experiments for 
different qTlen (1 to 100), fixing qRlen, qVlen to their 
median values 400 and 5, respectively. The TPR-tree is 
competitive only for very small qTlen because in this case 
the indexes are optimized for the very near future, and 
thus behave like conventional R-trees (i.e., the data 
clustering is mainly according to objects’ MBRs). The 
TPR* and TPR*-QW, however, achieve considerable 
speedup for longer qTlen, and the difference becomes 
larger as qTlen increases. In all cases, the TPR*- has 
identical performance to TPR*-QW, and their costs are 
close to the optimal values (10%-20% higher).  
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Figure 5.3: Query performance (qRlen=400, qTlen=50) 
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(a) NA vs. qTlen (LA) (b) NA vs. qTlen (LB) 
Figure 5.4: Query performance (qRlen=400, qVlen=5) 

5.2 Evaluation of practical performance 

We now proceed to compare TPR- and TPR*-trees in 
practical scenarios where (i) object updates are 
chronological, and (ii) the queries are “versatile”, i.e., a 
workload involves queries with distinct parameters. Due 
to the lack of real datasets, we use synthetic data 
simulating moving aircrafts. First 5000 rectangles are 
sampled from a real spatial dataset (LA/LB) and their 
centroids serve as the “airports”. At timestamp 0, 100k 
aircrafts (each represented as a point) are generated such 
that for each aircraft o, (i) its location is at one (random) 
airport, (ii) it (randomly) chooses a destination airport, 
and (iii) its velocity value o.Vel uniformly distributes in 
[20,50], and (iv) the velocity direction is decided by the 
source and destination airports. If o.Dist is the Euclidean 
distance (between the starting and ending airports), an 
aircraft generates the next update at time o.Dist/o.Vel 
(when it reaches its destination), by randomly selecting 
the next destination. The average values for o.Dist and 
o.Vel are around 3000 and 35 respectively, so that every 
object issues an update approximately every 90 time units.  

For each dataset, we construct a TPR- and TPR*-tree, 
whose horizons are fixed to 50, by first inserting 100k 
aircrafts at timestamp 0, and then, for every object update, 
performing one deletion and insertion. As a result, the size 
of each tree remains the same at all times. Specifically, 
each tree contains 4 levels and around 5400 leaf nodes. 
The cost is measured again as the average number of node 
accesses in executing a workload consisting of 200 
queries with the same parameters qRlen, qVlen, qTlen. A 
query is generated as follows: (i) on each spatial 
(velocity) dimension i (1≤i≤2), the starting point of its 
extent uniformly distributes in [0,10000−qRlen] ([-10, 
10−qVlen]), and (ii) the starting query timestamp qT- is 
uniform in [TC, TC+120−qTlen] (TC is the time when the 
query workload is performed). Note that, unlike the 
experiments in the previous section, queries in a workload 
have different VBRs and starting timestamps.  

•  Query cost comparison  

In order to study the deterioration of the indexes with 
time, we measure the performance of TPR and TPR*, 
using the same query workload, after every 10k updates. 
Figure 5.5 shows the query cost (for datasets generated 
from LA and LB as described above) as a function of the 



number of updates, using workloads with different 
parameters. Specifically, in each row (e.g., Figures 5.5a, 
5.5b) we fix two workload parameters (e.g., qVlen and 
qTlen), and use the smallest and largest values for the third 
(e.g., qRlen). It is clear that the deterioration of the TPR-
tree is considerably faster in all cases. In particular, after 
100k updates, the query cost of the TPR-tree is up to 5 
times higher than the TPR*-tree. This indicates that the 
TPR* update algorithms, which take the special 
characteristics of moving objects into account, are more 
effective than the algorithms of the TPR, which follow 
directly those of the R*-tree.   
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Figure 5.5: Query cost comparison  

•  Update cost comparison 

Figure 5.6 compares the average cost (amortized over 
each insertion and deletion) as a function of the number of 
updates. The TPR*-tree has nearly constant update cost, 
while the cost of the TPR-tree increases significantly 
(e.g., nearly 100 node accesses after 100k updates!). This 
is because, as mentioned earlier, each deletion must 
perform a query to retrieve the object to be removed, and 
the cost of this query increases with the number of 
updates (see Figure 5.5). The TPR*-tree is slightly more 

expensive before 20k updates because, up to this time the 
TPR-tree has not degraded considerably and the insertion 
algorithm (choose path) of TPR* accesses more nodes. 
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Figure 5.6: Update cost comparison  

In summary, the experimental evaluation confirms that: 
•  The proposed cost model is highly accurate, yielding 

error below 6%.  
•  The TPR*-tree has nearly optimal performance and 

consistently outperforms the TPR-tree by a wide 
margin. 

•  The TPR*-tree remains efficient as time evolves, 
while the TPR-tree degrades significantly. 

6. Conclusion 

Although spatio-temporal indexes are crucial for the 
efficient processing of conventional and novel query types 
([TP02, BJKS02]), the existing structures are either purely 
theoretical, or based on traditional spatial access methods 
with limited provision for moving objects. This paper 
proposes the first analytical model that (i) accurately 
estimates the costs of predictive window queries, and (ii) 
quantifies the performance of spatio-temporal access 
methods. Then it presents the TPR*-tree, a new spatio-
temporal access method highly optimized for moving 
data. Extensive experiments prove that the TPR*-tree 
significantly outperforms the conventional TPR-tree 
under all conditions.  

This work initiates several interesting directions for 
future work. First, we would like to investigate alternative 
predictive queries using the TPR*-tree, in particular, 
nearest neighbors and joins. A predictive nearest 
neighbor query specifies a (moving) query point q and 
retrieves the database objects that will come closest to q 
during the query interval. A predictive spatio-temporal 
join will return all pairs of objects from two datasets (each 
indexed by a TPR*-tree) that will come within distance d 
from each other during the query interval.   

Currently, all existing spatio-temporal access methods 
either aim at the past or the future, but not both. It would 
be interesting to develop a “persistent” version of the 
TPR*-tree, suitable for historical and future information 
retrieval. In such a tree, outdated versions of objects are 
not deleted, but kept separately. Queries can now involve 
both past and future intervals (e.g., find all airplanes that 
appeared in the last five minutes, or will appear in the 
next five minutes in the airspace of Hong Kong).   
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Appendix 

Lemma A.1 (Best split position): Let o be the node to be 
split, i be the split dimension being considered, and q the 
target query for optimization. 
•  If i is a spatial dimension, let vC be the middle point 
of the extent of o on dimension i, namely, vC=(oRi-

+oRi+)/2; then, spi=vC.  
•  If i is a velocity dimension, let [v-, v+] be the valid 
range for spi (i.e., v-=oVi-+ξ·|oVi|, v+=oVi+−ξ·|oVi|), and vC be 
the middle velocity of the valid range (i.e., vC=(v-+v+)/2). 
Then, the best value for spi is obtained by comparing [v-, 
v+] with [qVi-, qVi+]: (i) If v+<qVi-, spi=v+; (ii) If qVi+<v-, 
spi=v-; (iii) If [v-, v+] intersects [qVi-, qVi+], let [I-, I+] be the 
intersection range (i.e., I-=max(v-,qvi-), I+=min(v+,qvi+). 
Then, spi is decided according to the relation between [I-, 
I+] and vC (i.e., middle of the validity range): (a) if I+<vC, 
spi=I+; (b) if vC <I-, spi=I-; (c) if I+≤vC ≤I+, spi=vC.     ■ 

The first part of the lemma is simple, i.e., the best split 
position on a spatial axis is at the middle of the node’s 
extent on this dimension. We explain the second half 
(split on velocity) using Figure A.1 where rectangle 
ABCD denotes the MBR of o (to be split), whose VBR is 
{-1,4,1,1}. Let the minimum node usage ξ be 40% and 
hence the valid range for the split position sp on the x-
velocity axis is [1,2]. Assume, for simplicity, that the 
target query q has parameters |qRi|=0, qV={0,0,0,0}, and 
qT=[0,1]. Using Lemma A.1, we obtain that the best sp on 
this dimension is sp=1. As a result, the MBRs of the new 
nodes o1, o2 are the same as that of o; the VBR of o1 is {-
1,sp=1,1,1} while that of o2 is {sp=1,4,1,1}. As shown in 
Figure A.1 the MBRs o1′R(1), o2′R(1) of o1, o2 at time 1 are 
rectangles IJKL, EFGH, respectively. Hence the sweeping 
region SR(o1′,[0,1]) is hexagon ABJKLI, while 
SR(o2′,[0,1]) is ABFGHD. On the other hand, SR(o′,[0,1]), 
the sweeping region of the original node, is hexagon 
ABFGLI. Thus, ∆ASRi (see equation 3-2) is the area of 
hexagon ABJKHD that includes (i) rectangle ABCD, (ii) 
trapezoids DCKH, and (iii) BJKC. Note that, the areas of 
(i) and (ii) are invariant to sp (the split position), or 
specifically area(ABCD) = |AB|·|BC| = |o′Rx|·|o′Ry|, and 
area(DCKH) = |DC|·1·|qT| =|o′Rx|·1·|qT|, where “1” 
corresponds to the velocity of edge DC. Hence, to 
minimize ∆ASRi, we should minimize area(DCKH) = 
|BC|·sp·|qT| (the shaded region in Figure A.1). Thus, the 
best sp is the smallest value (i.e., 1) in the valid range, 
confirming the value returned by the lemma. 
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Figure A.1: Illustration of Lemma A.2 


