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Abstract

A predictive spatio-tempora query retrieves the
set of moving objects that will intersect a query
window during a future time interval. Currently,
the only access method for processing such
queries in practice is the TPR-tree. In this paper
we first perform an analysis to determine the
factors that affect the performance of predictive
queries and show that several of these factors are
not considered by the TPR-tree, which uses the
insertion/deletion algorithms of the R*-tree
designed for static data. Motivated by this, we
propose a new index structure called the TPR*-
tree, which takes into account the unique features
of dynamic objects through a set of improved
construction algorithms. In addition, we provide
cost models that determine the optima
performance achievable by any data-partition
spatio-temporal access  method. Using
experimental comparison, we illustrate that the
TPR*-tree is nearly-optima and significantly
outperforms the TPR-tree under all conditions.

1. Introduction

Spatio-temporal databases that manage large volumes of
dynamic objects are becoming increasingly important due
to numerous emerging applications (e.g., traffic control,
meteorology monitoring, mobile computing, etc.). Such
systems can be classified in two major categories
depending on whether they deal with past information
retrieval, or future prediction. In this work we focus on
the second category, i.e., we assume that the database
stores current data of moving objects and we wish to
answer gueries about the future. In particular, a predictive
window query (window query, for short) specifies a query
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region gg and a future time interva gy, and retrieves the
set of objects that will intersect gg at any timestamp tOgyr
(e.g., “find al the airplanes that will be over Hong Kong
in the next 10 minutes’). If gy contains a single (future)
timestamp, then the query is called a timestamp query;
otherwise, it isan interval query.

Instead of recording objects locations at individual
timestamps, spatio-temporal databases usually represent
objects movements as motion functions, so that updates
are triggered by the changes of function parameters. The
most common function corresponds to linear movement
because it requires the minimum number of parameters
and can be used to describe more complex movements
(using interpolation). Accordingly, the record of an object
0 contains (i) its extent og at some reference time t,« (a
system parameter), and (ii) its current velocity oy. Given
this information, the object’s extent at any future time t
can be obtained as or+(t—t,¢)-0y. In this case, an update is
necessary only when objects' velocities are changed.

¢ Motivation

With the exception of few structures (reviewed in Section
2) that are either purely theoretical, or applicable only to
one-dimensional spaces, the Time Parameterized R-tree
(TPR-tree) [SILLOQ] is the sole practical spatio-temporal
index for predictive queries. The TPR-tree uses the
insertion/deletion algorithms of the R*-tree [BKSS90],
which minimize certain penalty metrics to improve the
quality of the resulting structure. Since the original
metrics were designed for static objects, the TPR-tree
replaces them with the corresponding integral metrics.
Several problems, however, remain open. Since there is
no analytica model for cost estimation, query
optimization using the TPR-tree is currently impossible.
Furthermore, there is no way to quantify the performance
of the TPR-tree and any possible improvement.

¢ Contribution

This paper settles the above problems. Specifically:
We derive the first probabilistic model that
accurately estimates the number of disk accesses in
answering a window query with a spatio-temporal
index (including, but not limited to, the TPR-tree).

e We andyze, using this model, the optimal



performance of any data-partition index.

e We show that the current TPR-tree is far from being
optimal, which implies that it may be significantly
improved.

¢ We propose the TPR*-tree, which integrates novel
insertion/del etion algorithms to enhance
performance.

e We prove, through extensive experiments, that the
TPR*-tree is nearly optimal, and consistently
outperforms the TPR-tree.

The rest of the paper is organized as follows. Section 2

surveys previous spatial and spatio-temporal indexes,

focusing on R*- and TPR-trees. Section 3 presents the
analysis on the cost of predictive window queries, while

Section 4 describes the concrete algorithms of the TPR*-

tree. Section 5 contains an extensive experimental

evaluation, and Section 6 concludes the paper with
directions for future work.

2. Related Work

A number of structures [CROO, PJT00, KGT+01, TPO1,
HKTGO02] have been proposed for historical spatio-
temporal databases. These structures, however, are not
suitable for future prediction as they are based on
different principles (e.g., storage of discrete locations
instead of motion functions) and have different goals (i.e.,
retrieval of information about the past instead of the
future). Kollios et al. [KGT99] establish lower bounds for
the cost of answering predictive window queries (using
linear, or non-linear space) and design severa nearly-
optimal indexes for 1D objects. Agarwal et a. [AAEQQ]
extend the solutions to two dimensions with the kinetic
approach [BGH97]. Although the resulting methods have
good asymptotical performance, they are not applicable in
practice due to the large hidden constants. From the
practical perspective, Tayeb et a. [TUW98] adapt the
Quadtree [S90] for indexing the movements of 1D
objects. Finaly, Sdtenis et a. [SILLOO] propose the
TPR-tree, which adapts the R*-tree construction
agorithms to moving objects. Section 2.1 reviews the R*-
tree due to its influence in the development of the TPR-
tree, and Section 2.2 describes the TPR-tree.

2.1TheR*-Tree

The R*-tree [BKSS90] can be regarded as an extension of
the B-tree for multi-dimensional static objects. Figure 2.1
shows a two-dimensional example where 10 rectangles
(a,b,...,j) are clustered according to their spatial proximity
into 4 leaf nodes Ng,...,N;, which are then recursively
grouped into nodes Ns, Ng that become the entries of the
root. Each entry is represented as a minimum bounding
rectangle (MBR). Specificaly, the MBR of a leaf entry
denotes the extent of an object, while the MBR of a non-
leaf entry (e.g., Np) tightly bounds all the MBRs (i.e,
a,b,c) in its child node. The R*-tree is optimized for the
window query, which retrieves al the objects that

intersect a query region. In Figure 2.1, for example, the
query visits the root of the R-tree, Ng, Ny, and returns
objecti.
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Figure2.1: An R*-tree

The R*-tree construction algorithm aims at minimizing
the following penalty metrics. (i) the area, (ii) the
perimeter of each MBR, (iii) the overlap between two
MBRs (e.g., N1,Ny) in the same node, and (iv) the distance
between the centroid of an MBR (e.g., a in Figure 2.1)
and that of the node (e.g., N;) containing it. As discussed
in [PSTW93], minimization of these metrics decreases the
probability that an MBR intersects a query region.

Given a new entry, the insertion algorithm decides, at
each level of the tree, the branch to follow in a greedy
manner. Assume that we insert an object k into the tree in
Figure 2.1. At the root level, the algorithm chooses the
entry whose MBR needs the least area enlargement to
cover k; Ns is selected because its MBR does not need to
be enlarged, while that of Ng must be expanded
considerably. Then, at the next level (i.e., child node of
Ns), the algorithm chooses the entry whose MBR
enlargement leads to the smallest overlap increase among
the sibling entries in the node. Note that different metrics
are considered at level 1 (leaf nodes are at level 0) and
higher levels.

An overflow occurs if the leaf node reached (i.e., Ny in
the example) is full (i.e., it aready contains the maximum
number of entries). In this case the algorithm attempts to
remove and re-insert a fraction of the entries in the node,
trying to avoid a split if any entry could be assigned to
other nodes. The set of entries to be re-inserted are those
whose centroid distances are among the largest 30%. In
Figure 2.1, b is selected since its centroid is the farthest
from that of N; (compared to a,k,c).

Node splitting is performed if the overflow persists
after the re-insertion (e.g., b is re-inserted back to N; in
Figure 2.1, causing N; to overflow again). The R* split
agorithm consists of two steps. The first step decides a
split axis (from the x-, y-dimensions) as the one with the
smallest overall perimeter computed as follows. On, for
example, the x-axis, the agorithm sorts all the entries by
the coordinates of their left boundaries (in Figure 2.1, the
sorted order is a,k,c,b). Then, it considers every division
of the sorted list that ensures that each node is at least
40% full. Figure 2.2 continues the example, which, for
simplicity, omits this minimum node utilization constraint
(we assume that a node can have a single entry, which
corresponds to 33% utilization). The 1-3 division (Figure



2.2a), for instance, alocates the first entry (of the sorted
list) into N, the other 3 entries into N'. The agorithm
computes the perimeters of N and N', and performs the
same computation for the other (2-2, 3-1) divisions. A
second pass repeats this process with respect to the
MBRS' right boundaries. Finally, the overall perimeter on
the x-axis equals the sum of al the perimeters obtained
from the two passes.
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Figure 2.2: Possible divisionsin splitting N; on the x-axis
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After deciding the split axis (i.e., the one with the minimal
overal perimeter), the split algorithm sorts the entries
(according to their lower or upper boundaries) on the
selected dimension, and again, examines al possible
divisions. The final division is the one that has the
minimum overlap between the MBRs of the resulting
nodes. Continuing the previous example, assume that the
split axis is x; then, among the possible divisions in
Figure 2.2, the 2-2 incurs zero overlap (between N and N')
and thus becomes the final splitting. Figure 2.3
demonstrates the R-tree after the insertion of k (observe
the MBR changes and the new entry N; added to Ns).
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Figure 2.3: The R*-tree after inserting k

The deletion algorithm of the R*-tree is relatively simple.
First, the leaf node that contains the entry to be removed
is identified. If the node does not generate an underflow
(i.e., it does not violate the minimum node utilization), the
deletion terminates. Otherwise, the underflow is handled
by simply re-inserting all the entries of the node, using the
regular insertion algorithm. Both overflows and
underflows may propagate to upper levels, which are
handled in the same way.

22TheTPR-Tree

A moving object o is represented with (i) an MBR o that
denotes its extent at reference time 0, and (ii) a velocity
bounding rectangle (VBR) 0y={ Oy1.,0v1+,0v2.,0v2+} Where
ovi. (ov+) describes the velocity of the lower (upper)
boundary of ogaong the i-th dimension (1<i<2). Figure
2.4a shows the MBRs and VBRs of 4 objects a,b,c,d. The
arrows (numbers) denote the directions (values) of their
velocities, where a negative value implies that the velocity
is towards the negative direction of an axis. The VBR of a

is a,={1,1,1,1} (the first two numbers are for the x-
dimension), while those of b,c,d are by={-2,-2,-2,-2},
cv={-2,0,0,2}, and dy={-1,-1,1,1} respectively. A non-leaf
entry is aso represented with an MBR and a VBR.
Specificaly, the MBR (VBR) tightly bounds the MBRs
(VBRYy) of the entriesin its child node. In Figure 2.4a, the
objects are clustered into two leaf nodes Nj, N,, whose
VBRs are Np~{-2,1,-2,1} and N»={-2,0,-1,2} (their
directions are indicated using white arrows).
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Figure 2.4: Entry representations in a TPR-tree

Figure 2.4b shows the MBRs at timestamp 1 (notice that
each edge moves according to its velocity). The MBR of a
non-leaf entry always encloses those of the objects in its
subtree, but it is not necessarily tight. For example, N;
(Ny) at timestamp 1 is much larger than the tightest
bounding rectangle for a,b (c,d). A predictive window
query is answered in the same way as in the R*-tree,
except that it is compared with the (dynamicaly
computed) MBRs at the query time. For example, the
query gr at timestamp 1 in Figure 2.4b visits both N; and
N, (although it does not intersect them at time 0).

The TPR-tree is optimized for timestamp queries in
interval [T¢, TctH], where Tc is the current update time,
and H is a tree parameter called the horizon (i.e., how far
the tree should “se€” in the future). The update algorithms
are exactly the same as those of the R*-tree, by simply
replacing the four penalty metrics of the previous section
with their integral counterparts. Specifically, the area (or
perimeter) of an entry N equals [T=™MA(N,t)dt (or [
P(N,t)dt), where A(N,t) (or P(N,t)) returns the area
(perimeter) of N at time t. Similarly, the overlap (or the
centroid distance) between two MBRs N; and N, is
computed as [ T OVR(N,Nptydt (or e
CDist(Ng,Np,t)dt), where OVR(Np,Npt) (or CDist(Ny,
No,t)) returns the overlapping area (centroid distance)
between N; and N, at time t. These integrals are solved
into closed formulae [SILLOQ].

When an object is inserted or removed, the TPR-tree
tightens the MBR of its parent node. Figure 2.5 shows the
MBRs after inserting a new object e (into N,) at time 1. N;
is adjusted to the tightest MBR bounding a,b,e, by
computing their respective extents at time 1. Note that this
does not compromise the update cost because N; must be
loaded (written back) from (to) the disk anyway to
complete the insertion. On the other hand, the MBR of N,



is not tightened because it is not affected by the insertion
(attempting to adjust N, will increase the update cost).
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Figure 2.5: N, istightened during an insertion at time 1

Saltenis et al. [SILLOO] analyze the optimal node extents
that minimize the integral penalty, assuming, however,
only bulk-loaded uniform data. Further, they do not
discuss query performance. Recently, Saltenis and Jensen
[SJ02] describe a method to decrease the query cost for a
different problem, where the database is aware of the
(future) time when each object will issue the next update.
Their technigue can also be applied to the TPR*-tree.

3. Performance Analysis

In Section 3.1 we derive a cost model that predicts the
performance of the TPR-tree and reveals the factors that
determine the query cost. The resulting equations are
applicable to incrementally constructed or bulkloaded
trees on uniform/non-uniform data. Based on the model
we analyze the optimal query cost in Section 3.2. Without
loss of generality, we consider the two-dimensional space,
where the data universe has unit length on each axis. The
discussion extends to arbitrary dimensionality and
universe extent.

Given a moving rectangle o, we denote its MBR
(VBR) as 0g={Or1Or1+:0r2-0r2+}  (Ov={ Ov1-,0v1+,0v2,
Ov2+}), Where og. (0y;.) is the coordinate (velocity) of the
lower boundary of o on the i-th (1<i<2) dimension.
Similarly, or+ (0Ovi+) refers to the upper boundary. Let
Ori=[Ori-,Ori+] (Ovi=[Owi-,0vi+]) be the extent of o on thei-th
spatial (velocity) axis, and |og| (|ovi]) be the extent length,
i.e., |ori|FOri+—Ori. (JovilFOvi+—0vi.). The MBR of o at any
future time t is represented as og(t)=0gt+0\t (i.€., assume,
without loss of generality, that the reference time for og is
0). The extent of og(t) on the i-th spatial dimension is [0k
(t), or+ ()] and itslength is |ogi(1)].

3.1 A cost model for the TPR-Tree

Let o and g be two moving objects. The transformed
rectangle o’ of o with respect to g, has (i) MBR o'r whose
extent on the i-th axis is { Or.—|0ril/2, Ori++|0ril/2}, and (ii)
VBR 0 whose extent on the i-th axis is {Oy.—Qui«,
Ovi+—0Ovi.} . As an example, Figure 3.1a shows the MBRs
(at time 0 and 1, respectively) and VBRs of two objects o,
g. Figure 3.1b shows the transformed object o’ of o with
respect to g. Note that the MBR (VBR) of o’ is enlarged
from that of o, by the MBR (VBR) extent of g.
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Figure 3.1: Sweeping regions of moving rectangles

Given a moving object o and a time interval T, the
sweeping region SR(0,T) is the region swept by o during
T. Denote Ax(0,T) as the area of SR(o,T). The shaded
areas in Figures 3.1a and 3.1b illustrate SR(0,[0,1]),
R(q,[0,1]), SR(0',[0,1]), with areas A(0,[0,1])=21,
Ax(0,[0,1])=9, Ax(0[0,1])=58. Next we present a
general cost model for spatio-temporal indexes adopting
the MBR/VBR node representation used in TPR-trees.

Theorem 3.1 (Query cost model): Let g be a window
query whose (i) MBR uniformly distributes in the data
space, and has extent |[gr| on the i-th dimension, (ii)
velocity vector isqy, and (iii) query interval ¢ris[dr.,Or+].
Then the average number of node accesses for answering
gis

Cost(0)=2 every node 0 Axr(0',0I7) (31
where o is the moving rectangle representation of a node,
and o' isthe transformed rectangle of o with respect to g.

Proof (sketch): A node o is visited if its MBR
intersects the query MBR during gy, which as shown in
[TSPO3], occurs if and only if SR(0',g;) covers the
centroid of the query MBR (i.e., a static point). Given
that, the query MBR distributes uniformly in the data
space, the access probability equals the area Ag(0’,gr) of
the sweeping region of o’ during gr. The summation of
probabilities for all nodes gives the expected number of
accesses. (]

It is important to note that, for al queries with the
same parameters |gri|, gv and dr, Ax(0',0r) is the same for
a specific node o. Furthermore, Axx(0',q7) is different from
the integral metric [{s*A(0' t)dt (where A(0',t) isthe MBR
area of o' at timet). Consider Figure 3.2, where the MBR
0;'r Of transformed object o,’ has constant size during its
movement in time [0,1], while 0,' is static and its MBR
ok has the same aea as o0k Clealy,
Ax(01',[0,1])>Ax(0,,[0,1]), meaning that o; has higher
probability to be accessed. This cannot be captured by the
integral metric since J5A(01 /& H)dt = JSA0, R ).

01'R(2)

\
T .
— . %2R

—Vor'R (satic)

"
Figure 3.2: Sweeping region vs. integral metric



3.2 A hypothetical optimal tree

According to Theorem 3.1, a TPR-tree optimized for
queries with specific parameters |gw|, v, and gr, should
aim at minimizing equation 3-1. Let the extended work
space (EWS) be the 4D space whose dimensions include
those of the original 2D data and velocity spaces. Each
(moving) rectangle o with MBR o0r and VBR oy can be
mapped to a 4D box in EWS, whose projection onto the
spatial (velocity) dimensions corresponds to o (0y). The
volume of o is defined as the volume of its 4D box, which
equals the product of the areas of og and oy, or formally
Vol(0)=([Ti=1-2l0r ) ([Ti=1-2lou[). If 0 is a point object, then
its EWS representation is a 4D point (i.e., a degenerated
box) with zero volume. Note that the TPR-tree can be
regarded as a 4D R-tree in EWS where the 4D box of a
non-leaf entry encloses those of all the entries in its child
node.

To simplify the discussion, we first consider a dataset
that contains N moving points, whose MBRs and VBRs
uniformly distribute in the data and velocity spaces,
respectively. We consider a well-organized TPR-tree
where the 4D boxes of the leaf nodes are (i) mutually
digoint, and (ii) their union covers the entire EWS. As a
result, a new (moving) data point p is inserted to the leaf
node whose 4D box covers that of p (conditions (i) and
(ii) guarantee that such node is unique). This is the best
choice because it incurs no increase in any sweeping
region, whereas inserting p in any other node requires
expanding its MBR or VBR leading to larger sweeping
region. Since the data distribution is uniform, the
probability that an object is inserted to a particular node o
equals its volume Vol (o) divided by the volume of EWS.
Therefore, the leaf node with the largest volume receives
the highest number of objects, and will generate the next
overflow.

A node o that overflows is split into 0, and 0, in an
overlap-free manner on a particular dimension of the
EWS. Specifically, let SA be the split dimension and sp be
the split position (on SA). Then, the extents of 0, and 0,
can be decided from those of o as follows: (i) for any
spatia (or velocity) dimension i#2SA, the extents of oy, 0,
equal those of o; (ii) on the split dimension i=SA, the
extent of oisdivided into 0, 0, at sp.

The value of sp must guarantee that both o, and o,
satisfy the minimum node utilization. Specifically, let n
be the number of entries in the original node o; then, after
the split o; contains n;=n-Vol(o,)/Vol(o) entries, where
Vol(o) and Vol(o;) denote the volumes of o and o,
respectively. Similarly, the number of entriesin o, equals
n,=n-Vol(0,)/Vol(0). Assuming ¢ to be the minimum
utilization threshold (40% in TPR-trees), n; and n, must
satisfy n;=&n, and n=én. By solving these inequalities
on dimension i, we obtain that a valid sp (on dimension i)
must be in the following valid range: if i is a spatia
dimension, then spO[og.+&[Or], Ori+-&|OR[]; Otherwise,
spl[ovi-+¢ [ovi], ovie =< [ovil]-

We consider that each split in the hypothetical tree is
performed in an optimal manner, namely, it minimizes the
increase 4Ag Of equation 3-1, or specifically:

AAR=AR(01',01)+Asx(02',01)~Ax(0',0r) (32
where o', 01/, 0," are the transformed rectangles of o, 04, 0,
with respect to the target optimization query parameters.
Figure 3.3 presents an algorithm that computes the extents
of the leaf nodes in the hypothetical tree described above.
The agorithm maintains a priority queue QN, which
contains the extents of al the leaf nodes created so far.
Initially, QN contains a single node, which corresponds to
the root of an empty tree whose MBR and VBR cover the
entire data and velocity spaces, respectively. The sorting
keys of nodesin QN are the volumes of their 4D boxes in
EWS. At each iteration, the node 0,y With the largest
volume is removed from QN and split into 0, and o,, at
the best split axis SApey and position Spyey that minimize
AAx asin equation 3-2 (see Lemma A.1 in the appendix
for deciding SAues and Spueg). The extents of 0; and o, are
then computed from those of 0 according to SApes and
SPres, after which they are inserted into QN. Note that
after each iteration, the total number of nodes in QN
increases by 1. The agorithm terminates after Ny—1
iterations, where N, is the tota number of leaf nodes,
computed as[ N/f |, where N is the dataset cardinality and f
the fanout (i.e., average number of entriesin a node). The
extents that remain in QN are the extents of the final leaf
nodes. The agorithm in Figure 3.3 can also be used to
estimate the extents of non-leaf nodes, by passing the total
number N; of nodes at level i. Given the cardinality N and
fanout f, N, equals[ N/f'**], for all 0 <i <h-1, where h =
[log;N|isthe height of the tree.

Algorithm Estimate Node Extents (N;, g)

[* Input: N; is the number of nodes desired; q specifies the
target query optimization parameters. Output: QN contains the
node extents when the algorithm terminates. */

initialize a priority queue QN;

2 insert o(og=data space, o,=velocity space) into QN; cnt=1
3 while (cnt<N;)

4, Ohead=de-queue(QN) //0,exq has the largest volume

5

6

7

=

mindAg=o //next, decide best split axis and position
for i=each spatial/velocity dimension
let sp; be the best split position on dimension i
/ldecided using Lemma A.1 (see appendix)

8. compute MBRs, VBRs of nodes 03,0, by splitting
oalongi at position sp,

9. AAx= Ax(01,0r) +Ax(02',01)~Ax(0,0r)

10. if AAg<mindAg

11. MinAAg=A4Ax; SPopi=i; Pop=SP;

12 compute MBRs, VBRs nodes 0,,0, by splitting o along
SAqp 8t POSition Py

13. en-queue(QN, o,)

14. en-queue(QN, 0,)

15. cnt=cnt+1

End Estimate Node Extents

Figure 3.3: Algorithm for predicting node extents



Our algorithm can estimate the node extents of a tree for
non-uniform data with the following modifications. First,
the volume of a node is now defined as the number of
objects whose 4D boxes (in EWS) are covered by that of
the node. Second, the valid range [v., v.] for the split
position is defined as follows. If node o is split into 0, 0,
a v, then the volumes of o5, 0, equa Vol(0)-¢, and
Vol(0)-(1-¢), respectively, where ¢ is the utilization
threshold. Similarly, if the split position is a v, the
volumes of 05, 0, equal Vol(0)-(1-¢) and Vol(0)-¢ The
volume of a node can be computed with spatio-temporal
histograms [CCO02, TSP03]. Having the node extents of all
levels, the query cost of the tree is calculated using
equation 3-1.

Notice that the hypothetical tree is constructed by
making “locally optimal” decisions (which may not be
“globally optimal”). Since, however, all dynamic indexes
make only local decisions, the cost of the hypothetical
tree provides a practical lower bound for the performance
of an actual index. As shown in the experimental section,
the cost of the TPR-tree is significantly higher than this
lower bound, which motivates the development of the
TPR*-tree.

4. TheTPR*-Tree

The TPR*-tree improves the TPR-tree by employing a
new set of insertion and deletion algorithms that aim at
minimizing equation 3-1. However, this equation refers to
a specific set of query parameters, while in practice
different queries may have significant diversity. This
raises the question about the choice of appropriate
parameter values used for optimization. We optimize the
TPR*-tree for the static point interval query g, whose (i)
MBR has length |gr|=0 on each axis, (ii) VBR={0,0,0,0},
and (iii) query interval gr ={0,H}, where H is the horizon
parameter (also used in the origina TPR-tree). As shown
in the experiments, this choice leads to nearly-optimal
performance independently of the query parameters.
Section 4.1 first describes the insertion algorithm, and
Section 4.2 discusses deletion.

4.1 Insertion

Figure 4.1 shows the high level description of the TPR*
insertion. Specificaly, given a new entry e at insertion
time T,, the TPR*-tree first identifies the leaf N that will
accommodate e with the choose path agorithm. If N is
full, a set of entries, selected by pick worst, are removed
from N and re-inserted. Any leaf node that overflows
during the re-insertion will be split using node split, after
which a new entry will be added to the parent node. This
may cause the parent to overflow, and is handled in a
similar way. Next we elaborate choose path, pick worst,
and node split, and explain why the corresponding
algorithms in the TPR-tree are not efficient.

Algorithm Insert (e)

[* Input: eisthe entry to be inserted. */

re-inserted;=false for all levels 1<i<h-1 (h isthe tree height)
2. initialize an empty re-insertion list L,gngert

3. invoke Choose Path to find the leaf node N to insert e

4. Invoke Node Insert(N, €)
5
6

=

. for each entry € inthe L, gnsert
invoke Choose Path to find the leaf node N to insert €
7. Invoke Node I nsert(N, €)
End Insert
Algorithm Node Insert (N, €)
/* Input: N is the node where entry eisinserted */
1. if Nisaleaf node
enter theinformation of e
3 if N overflows
4 if re-insertedy=false //no re-insertion at leaf level yet
5. invoke Pick Worst to select a set Sy Of entries
6
7
8

N

remove entriesin S,q.¢ from N; add them to Lgnsert
re-insertedy=true
else
. invoke Node Split to split N into itself and N'
10. let P bethe parent of N
11. Nodelnsert(P,d) or Node Insert(P,N") if N has been split
12. else//N isanon-leaf node
13. similar to lines 2-9 except that (i) the MBR/VBR of the
affected child node is adjusted, and (ii) in lines 4, 7 replace
re-inserted, with re-inserted; wherei isthelevel of N
End Node I nsert

@ -

Figure 4.1: Overview of the TPR* insertion algorithm

¢ Choose Path

Given a new abject, the traditional TPR-tree selects, at
each non-leaf level, the branch with the smallest
deterioration (in terms of certain penaty metrics) to
continue the insertion. The efficiency of this “greedy”
approach drops considerably, if multiple branches have
the same (zero) deterioration. To illustrate this, we use
Figure 4.2a that shows 6 leaf nodes a,b,...,f with their
parent nodes g,h,i that are the entries of the root (the
absolute values of al velocities are 1). Note that although
the MBRs of g,h are digoint at time O, they overlap
significantly at timestamp 2 (Figure 4.2b).

Consider the insertion of (static) point p at time 2. At
the root level, g and h have no deterioration because
inserting p into either one does not expand the
corresponding MBR/VBR. In this case the algorithm must
rely on the “tie-breaking” conditions which, however, are
much less effective. In the example, his preferred because
it has smaller MBR, inside which the best leaf node to
include p is d. The best choice, however, is to insert p to
node a, as it requires significantly smaller MBR
expansion than d. Note that this problem becomes even
more serious as time progresses and the overlaps between
MBRs become increasingly larger. Eventually, the greedy
agorithm becomes amost random, i.e., it just picks one
of the numerous candidate branches with zero penalty.
The problem is less serious in R-trees (i.e., static data)
where the MBRs do not grow with time.
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Motivated by this, we propose a choose path algorithm
which, given a new object, returns the insertion path with
the minimal increase in equation 3-1 (called cost
degradation in the sequel) among all the paths. Towards
this, choose path maintains a priority queue QP that
records the candidate paths inspected so far. In Figure
4.2b, at the root QP is initiated with {[(g),0], [(h),0],
[(i),26]}, where each number indicates the cost
degradation (for the static point interval query with
a=[0,1]), if p isinserted into the corresponding path. The
degradation is O for g and h because, as mentioned earlier,
their MBRS/VBRs do not need to be expanded. Note that
at this point we have not accessed any of nodes g,h,i, i.e.,
the cost degradation is computed from their extents stored
in the root. At each step, choose path explores the path
with the smallest cost degradation. In this example, it
visits node g and inserts two paths (a,g) and (b,g) in QP,
after which QP = {[(h),0], [(a,9).2], [(i),26], [(b,9).31]}.
Notice that (a,g) and (b,g) are complete, meaning that
they include the leaf level (although leaves a and g are not
visited). Similarly, the next path expanded is (h), and QP
becomes QP={[(a,9),2], [(d,h).8], [(c,h),16], [(i),26],
[(b,0),31]}. Now the agorithm terminates with (a,g) as
the overall best path, because its (accumulated) cost
degradation is smaller than that of all the other entries in
QP. Note that [(i),26] is not explored at all, as it aready
incurs larger degradation at the highest level.

Choose path finds the best insertion path at the cost of
some extra node accesses. This, however, pays off due to
the following reasons. First, it leads to a better tree
structure, which improves the query performance. Second,
our experiments show that in most cases it only needs to
explore on average 2-3 complete paths because most
paths will terminate at very high levels (e.g., (i) in Figure
4.2b). Third, choose path only visits non-leaf nodes that
usually reside in the buffer. Fourth, each update in spatio-
temporal databases usualy involves one deletion
(followed by an insertion), which as explained in the next
section, is usualy the dominating factor in the total
update cost. The deletion requires a query to locate the
object to be removed. Due to its improved query
performance with respect to the TPR-tree, the update
overhead of the TPR*-tree is much lower. A similar
situation exists for the relative performance of updatesin

R*- and R-trees, athough the R*-tree involves more
complex insertion operations, it results in faster updates
dueto its better structure.

¢ Pick Worst

Insertion to a full node generates an overflow, in which
case both TPR- and TPR*-trees re-insert a fraction of the
entries from the node. The TPR-tree, following the
strategy of R*-trees, selects the entries by evaluating the
distances between the centroids of their MBRs and that of
the node. We observe that this usually does not lead to
decrease in the MBR/VBR of the overflowing node, and
hence limits the effectiveness of re-insertion. Figure 4.3a
shows an example where leaf node e contains objects
a,b,c,d (all velocities have absolute values 1), and Figure
4.3b illustrates their MBRs at time 2. Assume that node e
generates an overflow at time 0 and one entry must be re-
inserted. Notice that b, ¢, d move towards the centroid of
e (whose coordinates are (5.5,6) during [0,2]), while a
moves away and is selected for re-insertion (its centroid
has the farthest integrated distance, introduced in Section
2.2, fromthat of e during [0, 2]).

The removal of a, however, does not affect the extents
of e, whose MBR and VBR are actually decided by b, c
(see Figure 4.33). This means that a has a high chance to
be re-inserted back into e again (especially if our choose
path is applied), because this does not lead to extent
expansion (and performance degradation). So the re-
insertion becomes useless and a node split must occur. In
general, entries selected in this manner are usually those
that move away most quickly from the centroid of the
bounding MBR, instead of those that decide the extents.
Again, this problem is not important for conventional R-
trees. For instance, in Figure 4.3a, if the MBRs werein an
R-tree, object ¢ would be removed, resulting in smaller
MBR for e.
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Figure 4.3: Selecting an entry for re-insertion at time O

To overcome this problem, pick worst returns a set of
entries whose removal reduces the MBR or VBR of the
parent node. Towards this, it targets directly entries that
determine the MBR/VBR of their parent. Specifically, on
a selected spatial/velocity dimension i, the algorithm sorts
the entries by the starting points of their extents on
dimensioni. In Figure 4.3a, for instance, the sorting list is
{b,d,a,c} if i isthe x-spatial dimension, or {c,d,a,b} ifiis



the x-velocity dimension. Obviously, removing the first
(=30% in our implementation) entries in the list will
guarantee smaller parent node extent on dimension i. The
same holds for sorting with respect to the ending points of
entries’ extents.

It remains to decide (i) the sorting dimension, and (ii)
whether sorting should be performed on the starting or
ending points (of the extents). One easy way to achieve
this is to actually sort on every dimension/direction,
which, however, requires sorting al the entries 4-d times
(while the original TPR-tree requires only one sorting),
where d is the dimensionality of the data space. Instead,
we make decisions (i) and (ii) by estimating the decrease
of the sweeping region area of the parent node for each
possible combination. Consider, for instance, the sorting
according to the starting point on the spatial dimension i,
on which the parent node o has extent (before removing
any entry) [0r.(T)), or+(T)] @ theinsertion time T,. Then,
after removal its extent would become [og (T))+4- |0 (T))|,
Ori+(Ti)] (where |0g(T))|=0ri+(T)—0ri(T))), assuming the
starting points of the entries’ extents uniformly distribute
in [0r.(T)), Ori+(T})]. On the other dimensions, the extents
of o are approximately the same as those of o' (the node
after removal). The difference between the sweeping
region areas of o and o' is the “benefit” of this sorting.
Then, the final decisions (of (i) and (ii)) correspond to the
combination with the largest benefit, after which the
entries for re-insertion are obtained with only one sorting
(according to the selected combination).

It is worth mentioning that, even though the overal
data distribution may be non-uniform, the distribution
inside leaf nodes can be regarded as uniform. This is
because the MBR (VBR) of a leaf covers a small area of
the data (velocity) space, inside which the data
distribution may not change significantly. On the other
hand, since the MBRs/VBRs of nodes at higher levels (=2
in our implementation) cover larger areas, their contents
are less uniform. For these nodes the set of re-inserted
entries are decided by performing the actual (4-d) sorting
as described earlier. Note that this does not increase the
total update cost significantly, because the number of non-
leaf overflows accounts for a negligible fraction of the
total number of overflows at the leaf level.

* Node Split

Similar to TPR-trees, the split algorithm of the TPR*-tree
computes the overall perimeter for each dimension i, by
considering all possible divisions of the entry list sorted
according to the starting/ending points of their extents on
this dimension. Then, the split axis is selected as the one
with the smallest overall perimeter. The difference is that,
in our case the “perimeter” of a node should be defined as
the perimeter of the sweeping region of the corresponding
transformed rectangle (with respect to the optimization
query). The reasoning is that, (i) a polygon (i.e., the
sweeping region) with small perimeter usually has small

area (but not the opposite), and (ii) the sweeping regions
of nodes created this way are more “square” (i.e, we
avoid sweeping regions that are especialy elongated on
one particular axis). Note that the perimeter computation
is very efficient because the number of vertices of a
sweeping region is small (at most 6 in 2D space). The
sorting on a spatia dimension is based on the entry
extents at insertion time T,. After deciding the split axis
SA, the algorithm sorts the entries according to the
starting/ending points of their extents on SA, and
considers al possible divisions. The one that minimizes
equation 3-2 becomes the final splitting.

4.2 Deletion

To remove an object e whose (i) MBR at the deletion time
Tp is ex(Tp), and (ii) VBR is ey, the deletion algorithm
first identifies the leaf node that contains e, by searching
the tree using ex(Tp) as the query window. Specificaly, a
node o is visited if and only if (i) its MBR o(Tp) at time
Tp contains ex(Tp), and (ii) its VBR oy contains e,. A
difference from normal window queries is that the search
terminates as soon as e is found. We note that the deletion
overhead dominates the cost of an update (which involves
one deletion and insertion) in TPR- (also TPR*-) trees
because of the ever-increasing MBR overlap. Consider,
for example, Figure 4.4a where objects a,b,...,f are stored
in 3 leaf nodes h,i,j whose MBRs are mutually digoint at
time 0. Assume at time 1 object e changes its velocity,
and thus its previous record must be removed from the
index (before a new record can be inserted). To find the
node that contains e, the algorithm starts from the root,
and considers those nodes whose MBRs at time 1 contain
ex(1)={5,6,56} and VBRs contain e~{1,1,-1,-1}. In
Figure 4.4b, all the leaf nodes satisfy these conditions and
hence in the worst case all of them must be searched. Let
the access order be alphabetic; then, node h isfirst visited,
followed by i, where record e isfound and removed.
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The traditional TPR-tree will tighten the MBR of node i
(enclosing f and g) after the deletion. We propose an
improved active tightening technique that allows
adjusting multiple MBRs in a single deletion, when the
object to be removed falls in the overlapping region of
these MBRs. For instance, although node h does not incur



any change, we can dtill tighten its MBR without any
additional cost (observe that the MBR will decrease
considerably), because the root node must be written to
disk anyway (to reflect the extent change of i). The MBR
of j, however, cannot be adjusted because it was not
visited during the search for ¢ (hence its tightest MBR at
time 1 cannot be computed).

Figure 4.5 shows a more general case where the tree
consists of 3 levels and the entry e to be removed is found
in node N,, after visiting (leaves) Ny, Na, (level-1) nodes
Ns, Ng and the root (accessed nodes are shaded). The tree
path that must be written to disk after deletion includes
N4, Ng, and the root; as a result, the set of entries that can
be tightened includes ns, ny, Ns, Ne. Particularly, notice that
n; cannot be modified even though N; is accessed (this
will force to write Ng). On the other hand, the MBR of ng
is adjusted to tightly bound n; and n, (which, however,
may not be the tightest for their respective child nodes).

root
N
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g | YeRg ]
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N, NN

Figure 4.5: MBR tightening after deletion of e

This technique is especially useful for datasets where
object updates are infrequent. In such cases, many nodes
may not receive any update for a long time and their
MBRs will become increasingly *“loose’. Active
tightening can also be applied in choose path, however
with small effect because, as described earlier, choose
path does not access any leaf node. The rest of the
deletion agorithm is similar to that of the TPR-tree.
Specificaly, if (after removing the entry) the leaf node
generates an underflow, all its entries are re-inserted and
the node is erased. This may cause a higher level node to
underflow, which is handled in asimilar way.

5. Experiments

This section (i) assesses the accuracy of the probabilistic
model, (ii) evaluates the number of node accesses (NA) of
the TPR- and TPR*-tree against the lower bound provided
by the hypothetical structure, and (iii) compares the
query/update performance of TPR- and TPR*-trees in
practice. For all experiments, the disk page size is set to
1k bytes, and the maximum number of entriesin anodeis
27 for al indexes. We use arelatively small page size so
that the number of nodes in an index simulates realistic
situations, where the dataset cardinality is higher. Similar
methodology was aso used to evaluate R*-trees
[BKSS90]. The section is divided into two parts, focusing
on the evaluation of the analytical model and practical
performance, respectively.

5.1 Evaluation of the cost model

Our first goa is to show the accuracy of the cost model
and assess the efficiency of the structures with respect to
the lower bound. Towards this direction, we deploy
spatio-tempora data that contain insertions at a single
timestamp 0. Specifically, objects MBRs are taken from
area gpatial dataset LA or LB [Tiger] (containing 128k
and 109k 2D rectangles, respectively) where each axis of
the space is normalized to [0,10000]. Then, each object is
associated with aVBR such that on each dimension (i) the
velocity extent is zero (i.e., the object does not change
spatial extents during its movement), (ii) the velocity
value distribution is skewed (Zipf, biased coefficient 0.8)
towards O in range [0,50], and (iii) the velocity can be
positive or negative with egual probability. For each
dataset, all indexes have similar sizes. Specificaly, for
LA, each tree has 4 levels and around 6700 |leaves, while
the numbers are 4 and 5700 for LB.

Each query q has three parameters. gglen, gJen, and
grlen, such that (i) its MBR gy is a square, with length
grlen, uniformly generated in the data space, (ii) its VBR
is av~{-glen/2,q/en/2,-qlen2,qlen/2}, and (iii) its
query interval is gr=[0,qlen]. The query cost is measured
as the average number of node accesses in executing a
workload of 200 queries with the same parameters. For
each workload, the horizon parameters of the TPR- and
TPR*-trees are set to the corresponding g+len.

e Cost model accuracy

We evauate the accuracy of equation 3-1 by using it to
predict the query costs of TPR- and TPR*-trees. The error
is measured as Y j|acti—est;|/>act;, where act; (est;) denotes
the actual (estimated) number of node accesses for the i-th
query in the workload. Figure 5.1 plots the error rate, for
LA and LB, as a function of gglen (which ranges from
100 to 1600, i.e., gr covers up to 2.56% of the data space),
fixing gJlen and gfen to 5 and 50, respectively. Our
model is accurate in al cases (maximum error below 6%),
confirming our probabilistic derivation. The error rates
with respect to other parameters (i.e., glen and grlen) are
similar and omitted due to space constraints.
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Figure5.1: Accuracy of equation 3-1 (gylen=5, glen=50)

e Comparison with the optimal performance

This set of experiments compares the costs of TPR- and



TPR*-trees to the optimal performance computed by the
agorithm in Figure 3.3. In order to verify the
effectiveness of optimizing the TPR*-tree with respect to
static point queries, for each query workload, we create a
speciad TPR*-tree (referred to as TPR*-QW), which
minimizes equation 3-1 for the parameters of the
workload. Figure 5.2 shows the number of node accesses
as a function of ggrlen, fixing gJlen=5 and grlen=50. The
TPR-tree incurs almost twice the cost of the lower bound,
while the TPR* and TPR*-QW are nearly optimal. It is
important to note that, although the TPR* is not
specifically optimized for the query workload parameters,
it has almost the same performance as the TPR*-QW
(difference  below 2%), confirming its generd
applicability (also verified by subsequent experiments).
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Figure 5.2: Query performance (gylen=5, gylen=50)

Next we fix grlen, grlen to 400, 50 respectively, and vary
gvien from O (static query) to 10. As shown in Figure 5.3,
the query cost increases with gylen, because higher gyen
leads to faster enlargement of the query MBR and hence
more node accesses. The TPR*-tree and TPR*-QW again
have similar performance, and outperform the TPR-tree
significantly. Figure 5.4 repeats the same experiments for
different gen (1 to 100), fixing grlen, gven to their
median values 400 and 5, respectively. The TPR-tree is
competitive only for very small glen because in this case
the indexes are optimized for the very near future, and
thus behave like conventional R-trees (i.e, the data
clustering is mainly according to objects MBRS). The
TPR* and TPR*-QW, however, achieve considerable
speedup for longer gilen, and the difference becomes
larger as grlen increases. In al cases, the TPR*- has
identical performance to TPR*-QW, and their costs are
close to the optimal values (10%-20% higher).
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5.2 Evaluation of practical performance

We now proceed to compare TPR- and TPR*-trees in
practical scenarios where (i) object updates are
chronological, and (ii) the queries are “versatile’, i.e, a
workload involves queries with distinct parameters. Due
to the lack of real datasets, we use synthetic data
simulating moving aircrafts. First 5000 rectangles are
sampled from a real spatial dataset (LA/LB) and their
centroids serve as the “airports’. At timestamp 0, 100k
aircrafts (each represented as a point) are generated such
that for each aircraft o, (i) its location is at one (random)
airport, (ii) it (randomly) chooses a destination airport,
and (iii) its velocity value o0.Vel uniformly distributes in
[20,50], and (iv) the velocity direction is decided by the
source and destination airports. If 0.Dist is the Euclidean
distance (between the starting and ending airports), an
aircraft generates the next update at time o.Dist/o.Vel
(when it reaches its destination), by randomly selecting
the next destination. The average values for 0.Dist and
0.Vel are around 3000 and 35 respectively, so that every
object issues an update approxi mately every 90 time units.

For each dataset, we construct a TPR- and TPR*-tree,
whose horizons are fixed to 50, by first inserting 100k
aircrafts at timestamp 0, and then, for every object update,
performing one deletion and insertion. As aresult, the size
of each tree remains the same at al times. Specificaly,
each tree contains 4 levels and around 5400 leaf nodes.
The cost is measured again as the average number of node
accesses in executing a workload consisting of 200
queries with the same parameters gglen, gJen, grlen. A
query is generated as follows: (i) on each spatial
(velocity) dimension i (1<i<2), the starting point of its
extent uniformly distributes in [0,10000-gglen] ([-10,
10—qylen]), and (ii) the starting query timestamp ¢y. is
uniform in [Tc, Tc+120—qglen] (Tc is the time when the
query workload is performed). Note that, unlike the
experiments in the previous section, queriesin a workload
have different VBRs and starting timestamps.

e Query cost comparison

In order to study the deterioration of the indexes with
time, we measure the performance of TPR and TPR*,
using the same query workload, after every 10k updates.
Figure 5.5 shows the query cost (for datasets generated
from LA and LB as described above) as a function of the



number of updates, using workloads with different
parameters. Specifically, in each row (e.g., Figures 5.5a,
5.5b) we fix two workload parameters (e.g., gen and
grlen), and use the smallest and largest values for the third
(e.q., grlen). It is clear that the deterioration of the TPR-
tree is considerably faster in al cases. In particular, after
100k updates, the query cost of the TPR-tree is up to 5
times higher than the TPR*-tree. This indicates that the
TPR* update algorithms, which take the special
characteristics of moving objects into account, are more
effective than the algorithms of the TPR, which follow
directly those of the R*-tree.
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Figure 5.5: Query cost comparison

e Update cost comparison

Figure 5.6 compares the average cost (amortized over
each insertion and deletion) as afunction of the number of
updates. The TPR*-tree has nearly constant update cost,
while the cost of the TPR-tree increases significantly
(e.g., nearly 100 node accesses after 100k updates!). This
is because, as mentioned earlier, each deletion must
perform a query to retrieve the object to be removed, and
the cost of this query increases with the number of
updates (see Figure 5.5). The TPR*-tree is dightly more

expensive before 20k updates because, up to this time the
TPR-tree has not degraded considerably and the insertion
agorithm (choose path) of TPR* accesses more nodes.
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Figure 5.6: Update cost comparison

In summary, the experimental evaluation confirms that:

e The proposed cost model is highly accurate, yielding
error below 6%.

e The TPR*-tree has nearly optimal performance and
consistently outperforms the TPR-tree by a wide
margin.

e The TPR*-tree remains efficient as time evolves,
while the TPR-tree degrades significantly.

6. Conclusion

Although spatio-temporal indexes are crucial for the
efficient processing of conventional and novel query types
([TPO2, BJKS02]), the existing structures are either purely
theoretical, or based on traditional spatial access methods
with limited provision for moving objects. This paper
proposes the first analytical model that (i) accurately
estimates the costs of predictive window queries, and (ii)
quantifies the performance of spatio-temporal access
methods. Then it presents the TPR*-tree, a new spatio-
temporal access method highly optimized for moving
data. Extensive experiments prove that the TPR*-tree
significantly outperforms the conventional TPR-tree
under al conditions.

This work initiates several interesting directions for
future work. First, we would like to investigate alternative
predictive queries using the TPR*-tree, in particular,
nearest neighbors and joins. A predictive nearest
neighbor query specifies a (moving) query point g and
retrieves the database objects that will come closest to g
during the query interval. A predictive spatio-temporal
join will return all pairs of objects from two datasets (each
indexed by a TPR*-tree) that will come within distance d
from each other during the query interval.

Currently, all existing spatio-temporal access methods
either aim at the past or the future, but not both. It would
be interesting to develop a “persistent” version of the
TPR*-tree, suitable for historical and future information
retrieval. In such a tree, outdated versions of objects are
not deleted, but kept separately. Queries can now involve
both past and future intervals (e.g., find all airplanes that
appeared in the last five minutes, or will appear in the
next five minutes in the airspace of Hong Kong).
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Appendix

Lemma A.1 (Best split position): Let o be the node to be
split, i be the split dimension being considered, and g the
target query for optimization.
e Ifiisagpatia dimension, let v be the middle point
of the extent of o on dimension i, namely, Vc=(0g.
+Om+)/2; then, i=Vc.
« If i isavelocity dimension, let [v, v.] be the vaid
range for sp; (i.e., V.=0y;.+&[ovi], Ve=0vi+—&-Jovi]), and v be
the middle velocity of the valid range (i.e., ve=(v.+v,)/2).
Then, the best value for sp; is obtained by comparing [v.,
v.] with [qui,, Qui+]: () If Vi<Qui., spi=vs; (i) If Que<Vv,,
spi=v; (iii) If [v,, vi] intersects [Qvi., Qvi+], let [1., 1.] bethe
intersection range (i.e., |.=max(V.,qu.), l+=min(Vs,0i+)-
Then, sp; is decided according to the relation between [1,
I.] and v¢ (i.e., middle of the validity range): (a) if I.<vc,
spi=l+; (b) if ve <L, spi=L; (c) if 1 <vc <., spi=ve. u
Thefirst part of the lemmais simple, i.e., the best split
position on a spatial axis is at the middle of the node's
extent on this dimension. We explain the second half
(split on velocity) using Figure A.1 where rectangle
ABCD denotes the MBR of o (to be split), whose VBR is
{-1,4,1,1}. Let the minimum node usage ¢ be 40% and
hence the valid range for the split position sp on the x-
velocity axis is [1,2]. Assume, for simplicity, that the
target query g has parameters |gr =0, gv={0,0,0,0}, and
0=[0,1]. Using Lemma A.1, we obtain that the best sp on
this dimension is sp=1. As a result, the MBRs of the new
nodes oy, 0, are the same as that of o; the VBR of 0, is{-
1,90=1,1,1} while that of o, is {sp=1,4,1,1}. As shown in
Figure A.1 the MBRs 0,'r(1), 0,'r(1) of 04, 0, at time 1 are
rectangles 1JKL, EFGH, respectively. Hence the sweeping
region SR(0,,[0,1]) is hexagon ABJKLI, while
SR(0,,[0,1]) is ABFGHD. On the other hand, SR(0',[0,1]),
the sweeping region of the original node, is hexagon
ABFGLI. Thus, 4Ax (see equation 3-2) is the area of
hexagon ABJKHD that includes (i) rectangle ABCD, (ii)
trapezoids DCKH, and (iii) BJKC. Note that, the areas of
(i) and (ii) are invariant to sp (the split position), or
specifically area(ABCD) = |AB[|BC| = |0'rd'[0'ry, and
area(DCKH) = |DC|1gr] =|o'rdLllor|, where *1”
corresponds to the velocity of edge DC. Hence, to
minimize AAs, we should minimize area(DCKH) =
[BC|-spr|ar] (the shaded region in Figure A.1). Thus, the
best sp is the smallest value (i.e.,, 1) in the valid range,
confirming the value returned by the lemma.
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Figure A.1: lllustration of LemmaA.2




